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Abstract

Motivation: Planarians are emerging as a model organism to study regeneration in animals. However, the
little available data of protein-protein interactions hinders the advances in understanding the mechanisms
underlying its regenerating capabilities.
Results: We have developed a protocol to predict protein-protein interactions using sequence homology
data and a reference Human interactome. This methodology was applied on ten Schmidtea mediterranea
transcriptomic sequence datasets. Then, using Neo4j as our database manager, we developed PlanNET,
a web application to explore the multiplicity of networks and the associated sequence annotations. By
mapping RNA-seq expression experiments onto the predicted networks, and allowing a transcript-centric
exploration of the planarian interactome, we provide researchers with a useful tool to analyse possible
pathways and to design new experiments, as well as a reproducible methodology to predict, store, and
explore protein interaction networks for non-model organisms.
Availability: The web application PlanNET is available at https://compgen.bio.ub.edu/PlanNET.
The source code used is available at https://github.com/scastlara/PlanNET.
Contact: jabril@ub.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
The freshwater planarian Schmidtea mediterranea, a platyhelminth of
the class Turbellaria, has become a model for studying regeneration in
animals due to its ability to regenerate its whole body even from small
parts of it. Planarians only have one cell type able to divide by mitosis,
named neoblasts, which are responsible for the extraordinary regeneration
capabilities of these organisms (Wagner and Wang, 2011).

In recent years, several studies have been performed in order to
unravel the molecular mechanisms of planarian regeneration, as well as
its regulation (for instance: Cebrià 2007; Scimone et al. 2010; Fernandez-
Taboada et al. 2010). Additionally, different high-throughput RNA-seq
experiments have been carried out; up to nine of those transcriptomes are
publicly available for S. mediterranea alone (Abril et al., 2010; Adamidi
et al., 2011; Blythe et al., 2010; Rouhana et al., 2012; Galloni, 2012; Kao
et al., 2013; Labbé et al., 2012; Resch et al., 2012; Sandmann et al., 2011;
Solana et al., 2012), and more datasets are coming for this and related
species (Brandl et al., 2016).

Gene or protein expression analyses take into account significant
statistical differences between two or more experimental conditions;
however, the large amount of collected data and the fact that this data
usually refers to specific proteins or transcripts can lead to key functional
elements to remain hidden. Approaches based in systems biology can help
to unravel the importance of the different proteins in particular functional
processes, as to help to identify similarities between different protein
interactions networks. Those techniques will pinpoint missing components
of the network (relative to networks from different species like humans)
that may reveal driver components of planarian-specific processes such as
regeneration. Furthermore, it is possible that those approaches will also
suggest homologous functional candidates to test in planarians as an in
vivo model. Cross-referencing pathways information with genome and
transcriptome data may also be useful for researchers, facilitating the link
to the functional annotation over the sequences and cis-regulatory elements
around the genic loci.

Instead of studying and analyzing individual genes or proteins,
focusing on the environment of such elements where those components
play their roles may reveal interesting insights. Molecular medicine based
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on gene and protein networks has been expanding rapidly, and has shown
that most disease-causing genes often work together, either forming protein
complexes or participating in the same signalling pathways.

Several approaches have been developed in order to infer protein
interactions networks from different sources. Sequence homology can be
used to predict interactions that have been conserved between species, and
the information about these protein interactions can be transferred from one
species to another using different approaches (Garcia-Garcia et al., 2012;
Murakami and Mizuguchi, 2014; Schuette et al., 2015). In the context
of planarians, Lobo and levin developed a method to infer regulatory
networks from morphological phenotypes distilled from genetic, surgical
and pharmacological experiments (Lobo and Levin, 2015). However, this
approach is limited by the currently available phenotypic data on planarians
described in the literature; and, although the amount of data collected for
this organism is increasing, other approaches based on high-throughput
experiment results and large-scale sequence analyses to predict planarian
protein-protein interactions will be very useful to the developmental and
regeneration research community.

Linking a predicted planarian interactome with a human network may
not only provide a useful tool for researchers in order to associate planarian
genes with certain cellular functions, but it may also provide a link between
planarian regeneration and human molecular pathways.

2 Methods

2.1 Summary of the protocol

A protocol based on sequence homology was developed to infer
possible interolog relationships between proteins of one arbitrary
species and human. In this work, we predicted interactions for ten
Schmidtea mediterranea transcriptomes (Supplementary Fig.1). The
method searched for human homologs to a set of transcripts of the desired
species through BLAST searches (Altschul et al., 1990), PFAM domain
meta-alignments (Punta et al., 2011), and EggNOG alignments (Huerta-
Cepas et al., 2016). Then, a set of features was computed for each possible
pair of transcripts, using information from 3did (Mosca et al., 2014), Gene
Ontology (GO; Carbon et al. 2009), and a human interactome graph.
The protocol was first applied to Drosophila melanogaster’s transcript
sequences; then a random forest classifier was built using this data.

The program TransPipe was implemented in order to automate the
whole procedure, taking as input a FASTA file with the S. mediterranea
transcripts, a hidden Markov model domain database, a FASTA with
human sequences and an EggNOG hidden Markov model database.
The program also allows to adjust the E-value cutoff for each of the
alignment methods independently, as well as providing several plots
generated using the R module ggplot (Wickham, 2009) to visualize the
results. The source code is available from https://compgen.bio.

ub.edu/PlanNET/downloads, alongside the install information and
the required dependencies. The program is distributed under the free
software GNU 2 license, but users should register first.

2.2 Datasets

2.2.1 Sequences and hidden Markov models
With the aim to have a sequence assigned to each of the HUGO Gene
Nomenclature Comittee (HGNC) symbols (Gray et al., 2015), a list of
identifiers and synonyms was downloaded from that project website. One
set of human sequences was built using three databases: SwissProt (version
2014/09) (Wasmuth and Lima, 2016), TrEMBL (version 2014/09), and
ENSEMBL (gene build 79, GRCh38.p2, Yates et al. 2016).

The mapping of HGNC identifiers against human sequences was done
sequentially. First, priority was given to Swissprot sequences, followed by

ENSEMBL and finally TrEMBL sequences. Each sequence was assigned
to a specific HGNC symbol using the aforementioned synonyms table,
looking for sequences in the next database only if a symbol remained
unassigned. This constitued the H-Prot dataset.

The PFAM domains were downloaded from the PFAM site, version
27.0; and the EggNOGs hidden Markov models, animals meNOG version
4.0, from the database website. The Drosophila melanogaster transcript
sequences to train the random forest classifier were downloaded from
FlyBase release r5.56 (Gramates et al., 2017).

We predicted interactions over 10 planarian transcripts datasets:
Adamidi (Adamidi et al., 2011), Blythe (Blythe et al., 2010), Consolidated
(Kao et al., 2013), Cthulhu (kindly provided by Kerstin Bartscherer lab),
Dresden (Brandl et al., 2016), Graveley (Resch et al., 2012), Illuminaplus
(Sandmann et al., 2011), Newmark (Rouhana et al., 2012), Pearson (Labbé
et al., 2012) and Smed454 (Abril et al., 2010).

2.2.2 Protein-protein interactions
The human protein-protein interactions dataset was retrieved from
BioGRID (version 3.4.133, Stark et al. 2006) and STRING (version
10, Von Mering et al. 2003). All the nodes were renamed to HGNC
symbols when possible, using the HGNC synonyms table, and when no
synonym was found, the node remained as an ENSEMBL protein (ENSP)
identifier. This whole human gene/protein network included 26,934 nodes
and 794,052 edges.

Drosophila melanogaster’s protein-protein interactions were downloaded
from DroiD FlyBase curated PPI dataset (version 2015_12, Yu et al. 2008).

2.3 Homology prediction

The transcript sequences were aligned to the H-Prot dataset using BLASTX
and TBLASTN, with an E-value cutoff of 10−10 in both cases. From
the resulting alignments the best reciprocal hits were selected. In order
to simplify the whole protocol, we selected the translated longest open
reading frame (ORF) for each of all the transcript sequences. These ORF
were used for the two following procedures.

The alignment to the EggNOG hidden markov models were performed
using hmmsearch (Eddy, 1998), with an E-value cutoff of 10−10. We have
chosen the subset meNOG (version 4.1), restricting the dataset to only
those domains that contained a human protein with an HGNC identifier.
The program hmmsearch was used in order to annotate the PFAM domains
on the transcript sequences, using an E-value cutoff of 10−10 and the
hidden markov model database of PFAM-A, release 27.0.

The redundancy of the annotation of the domains over the transcripts
was reduced by joining several consecutive domains. The conditions used
for that merge were the following:

1. Both domains should be equal and consecutive.
2. Both domains annotated over the ORF should represent different

regions of the domain. In order to decide if this condition was met,
the overlap between both annotations had to be less than 25% of the
real length of the PFAM domain.

3. The distance between the domains over the ORF had to be equal or
less than the real length of the domain that is not annotated over the
transcript, plus a 25% of the total length of the domain.

Once the PFAM domains were annotated, each transcript sequence and
each protein of the H-Prot dataset was transformed into a meta-sequence
where the annotated domains were concatenated, producing a string of
domain symbols suitable for a meta-alignment. Those constructs were
then aligned using the Needleman-Wunsch algorithm, with a match value
of +30, a missmatch value of -30, and a gap value of -5. The match
score was also adjusted to the percentage of the domain annotated on the
transcript sequence. Best reciprocal hits were also selected.
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The best homologous human protein was selected for each transcript
using the following criteria:

1. If a protein is a unique best reciprocal hit in the EggNOG alignment,
set it as the best homolog for that particular transcript.

2. Contrarily, if a unique protein has the largest number of supporting
evidences from all the different methods, select it.

3. Otherwise, if a unique sequence is the best hit in the EggNOG
alignment (lower E-value), set it as an homolog.

4. Or then, if only a sequence is the best BLAST hit (lower E-value),
select it.

5. Else, select the best scoring hit in the PFAM domain meta-alignment.
6. If no condition is met, the contig is discarded.

These decision rules were established because of the EggNOG
aligment was set to be more reliable than the others, given that it uses
hidden Markov profiles instead of similarity searches, and also given that
we had assesed the performance of each method separately.

2.4 Prediction of interactions

A set of 19 features was computed for each possible pair of transcripts
with at least one human homolog:

1. Path length. The shortest path between the homologous proteins in
the human interactome was computed. If no path was found, a value of
-1 was assigned. Self-interactions (those pairs with a shortest path of
0) were removed. In order to speed up the prediction, all the shortest
paths between all the human proteins were pre-computed using the
python module graph_tool (Peixoto, 2014).

2. Domain interaction score. This score is the number of all the PFAM
domain pairs found in the transcripts using hmmsearch (E-value ≤
10−10) that are annotated as interacting in the 3did database.

3. Gene ontology normalized term overlap (NTO) between the
homologous proteins (Mistry and Pavlidis, 2008). This GO similarity
measure was chosen because of its simplicity and the speed to compute
it compared to other similarity scores. For each pair of transcripts and
each of the GO domains ("molecular function", "cellular component"
and "biological process") all the parents in the gene ontology graph for
the annotated terms of the two homologous proteins were retrieved.
Then, the overlap of these two sets (normalized over the minimum
set) was computed. This feature takes values between 0 (no GO term
overlap) and 1 (all the annotated GO terms are the same).

4. Alignment measures. Several of the alignment measures reported by
BLAST, hmmsearch, and the meta-alignment, were used to train the
classifier: BLAST and EggNOG E-values, BLAST query coverage
and PFAM meta-alignment score. Finally, a boolean variable for each
of the alignments and each of the three methods was defined. This
variable was set to "True" if the transcript-human sequence pairs were
best reciprocal hits, and "False" otherwise.

To build the random forest classifier, a training set of 11,595
Drosophila melanogaster interacting pairs was retrieved from DroiD
(Flybase curated dataset), and 853,023 random pairs filtered against
the DroiD pairs constituted the non-interacting protein pairs. All the
features were manually discretized into fixed ranges specific to each
variable. We used the R module randomForest (version 4.6-10,
Liaw and Wiener 2002), setting the number of trees to 1,000 and
downsampling the non-interacting pairs so that for building each tree
the ratio between non-interacting and interacting pairs was 5:1.

For all the performance validation measures the out-of-bag votes
reported by the module were used. A cutoff of 0.6 votes was set to
decide if a pair is interacting. In order to reduce the search space of
interologs, the program TransPipe only considers those pairs with a
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Fig. 1. Neo4j database core schema used to store the predicted interactomes, along with
the reference human interactome and the sequence annotations for the planarian datasets. a)
Diagram summarizing types of relationships and labels used in the database. b) Example of
two planarian interactomes (Smed #1 and Smed #2) connected through HOMOLOG_OF
relationships (dotted lines in the figure) to the Human interactome. This database schema
allows us to incorporate any number of predicted interactomes in the database, connect
them through the Human protein-protein interactions network, and relate similar nodes.

path length <= 2, and removes all the pairs that are not connected
on the human interactome (path length = −1).

2.5 Neo4j database

All the predicted interactomes, as well as the annotations of the different
planarian transcripts were stored in a Neo4j database, version 3.1.1
(Robinson et al., 2013). The choice of a graph database instead of a
relational database such as MySQL was driven by the nature of the
data itself: an interactome can be easily stored as a series of nodes and
connections. Traversing the graph can then be done in a very time-efficient
way, and operations such as obtaining the transcripts/proteins connected
to a given node through an arbitrary number of intermediate connections
is trivial.

In addition, having the interactomes stored as a series of nodes and
connection not only allows us to perform queries faster, but gives us
the ability to use different types of connections that are associated to
different meanings. All the homology relationships between planarian
contigs and human sequences were also stored as connections between
nodes. This allows us to map the predicted interactomes over the human
protein-protein interactions. Thanks to this, we are able to search planarian
interactions using human protein symbols, as well as comparing subgraphs
and pathways across all the different predicted interactomes. The PFAM
alignments were also stored in this graph, as well as the Gene Ontology
annotations, giving us the the ability to, for example, look for pathways
were the genes involved have a particular GO code or a PFAM domain.

Finally, gene expression information from a Digital Gene Expression
(DGE) experiment (Rodríguez-esteban et al., 2015) was also stored in the
Neo4j database. As can be seen in Fig.1, we used up to five different
types of connections, each one with a set of attributes storing the relevant
features of that relationship: for example, HOMOLOG_OF relationships
have attributes such as the BLAST E-value and the sequence alignment
coverage.

3 Results

3.1 Performance of the predictor

The performance of the classification of contig pairs as interacting or
non-interacting was evaluated using the following measures: precision,
sensitivity, specificity, out-of-bag error rate (OOB error), and area under
the curve of the receiver operating characteristic (ROC); see Fig.2. The
area under the curve calculated using different votes cutoffs was 0.82. In
order to improve all the performance measures, but at the same time, to
give the user the freedom to choose or focus on more or less confident
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Table 1. Results of the prediction of protein-protein interactions for ten S. mediterranea transcriptome datasets. The “Average degree” describes the connectivity
of each graph as interactions/nodes. The “Percentage of Plen1” corresponds to the fraction of interactions in each network that are also found in the reference
human interactome.

Transcriptome
Total

contigs
Contigs

with homolog
Human

homologs
Contigs

in interactome
Number

of interactions
Average
degree

Percentage
of Plen1

Adamidi 18,547 9,478 5,187 4,903 32,626 6.657 36.8%
Blythe 24,008 10,930 5,564 5,929 32,892 5.548 34.7%

Consolidated 23,545 12,775 5,809 7,098 53,609 7.553 30.8%
Cthulhu 117,763 10,793 5,741 5,411 36,049 6.662 41.9%
Dresden 40,480 14,626 5,889 7,713 68,805 8.921 30.4%

Graveley 19,503 8,475 4,329 3,796 14,254 3.755 30.6%
Illuminaplus 28,926 10,090 5,182 5,263 29,574 5.619 36.8%

Newmark 53,898 20,665 6,359 11,188 100,138 8.950 39.0%
Pearson 25,889 10,465 5,656 5,176 30,538 5.810 31.0%

Smed454 46,602 14,720 4,711 8,734 112,512 4.061 57.4%
Mean 12,302 5,441 6,521 51,100 6,354

Std.Dev 3,412 568 2,085 31,047 1,687

Fig. 2. Receiver operating characteristic (ROC) curve of the random forest classifier.
Using Drosophila melanogaster’s protein-protein interactions data downloaded from
DroiD and a Human interactome as reference, we built a random forest classifier to
predict interactions from transcript alignments to human proteins. The ROC curve was
built using the Out-of-Bag votes of the random forest for the Drosophila interacting
and non-interacting transcript pairs.

Fig. 3. Variable importance of the features used by the random forest classifier to
predict interacting protein pairs.

predictions, we decided to use a votes cut-off of 0.6. By using this cut-off,
we obtained a precision of 0.35, a sensitivity of 0.34, a specificity of 0.99
and an OOB error of 2.67%.

We analyzed the relative importance of the 19 features used for
the classification of each contig pair using the “Gini importance” index
provided by the R randomForest package, as it has been shown to be
useful for feature selection in classification problems (Menze et al., 2009).
The most useful feature to predict protein-protein interactions resulted to be
the distance between the homologous proteins in the human interactome
graph, defined as “PATH_LENGTH” in Fig.3. Although other features,
such as the Gene Ontology NTOs, are also relevant for the classification,
there is a clear separation in terms of importance between path length and
all the other features.

3.2 Prediction of planarian interactions

The contigs of the 10 planarian transcriptomes were aligned to the H-Prot
dataset using BLAST searches, HMMER alignments to EggNOG models,
and PFAM meta-alignments. We selected the best hit for each contig and
we computed the 19 features for each possible pair of contigs required for
the random forest classifier. Although each planarian contig had only one
selected homolog, several human proteins had more than one homologous
planarian contig in the selected pairs used for the prediction. However,
among the selected contig pairs, most human proteins had between
one and two homologous contigs for all the datasets (Supplementary
Fig.2). Two human proteins (ACTB and ACTG1) had 6,117 and 4,222
homologous contigs in the Smed454 dataset, possibly due to the fact
that the corresponding RNA libraries were unnormalized. Because of
limitations of computing power when predicting the interactions, all except
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one contig for each of these two human proteins were removed. We selected
the contig with the lowest E-value in the EggNOG alignment for each of
these cases.

The classifier was used to predict interactions in 10 planarian
transcriptomes. As it can be seen in Table 1, the number of contigs with
an homolog varies from 9,478 to 20,665, while the number of Human
homologs for each dataset shows a way lower variation. The final number
of predicted interactions is also highly variable. However, the number of
interactions strongly correlates with the initial number of contigs with an
homolog in each dataset (Spearman′s rho = 0.939, p-value < 10−10).
The number of contigs in each predicted interactome is also dependant on
the initial contig count (Spearman′s rho = 0.988, p-value < 10−10).

In order to compare the confidence of each prediction, we plotted
the distribution of votes of the classifier for each dataset (including the
OOB votes for the testing dataset). As can be seen in Supplementary
Fig.3, all the planarian interactomes have a very similar distribution of
votes, with the votes for the testing dataset being slightly higher. Most
predictions fall between 60% of votes and 70% of votes, but there is
a big number of predicted interacting pairs with a high percentage of
votes in all the datasets. For all the datasets, the proportion of contig
pairs with interacting homologs in human (path length = 1) was less
than 1%, while this proportion increased significantly when considering
only the available predicted interactions (Table 1). Additional information
about both the predictions and the sequence alignments for each dataset
is available at the protocol summary page (https://compgen.bio.
ub.edu/PlanNET/datasets).

3.3 PlanNET web application

In order to explore the predicted interactomes and the sequence annotations
of the planarian sequences, we implemented a web application called
PlanNET using the python web development framework Django and
the javascript plugin cytoscape.js (Franz et al., 2015). The starting
form is divided in four sections that serve as different entry points to the
Neo4j database.

GeneSearch provides a text-based search by keywords, thanks to it, the
user can look for all the annotated features of the planarian contigs using
either planarian contig identifiers or human protein symbols. The latter
will retrieve all the S. mediterranea contigs of a particular dataset that are
homologous to the specified human protein.

We also provide a way to explore the predicted interaction networks
utilizing cytoscape.js in NetExplorer, where the user can search for
nodes across the different planarian protein-protein interaction networks,
either using contig identifiers, human protein symbols (wildcards allowed),
PFAM identifiers, or GO codes.

Thanks to the graph-based database manager Neo4j, traversing
the networks to retrieve any subset of them does not have a huge
performance impact; we took advantage of this capability to implement
PathwayFinder. This application looks for all the possible paths between
two protein/contigs in the specified interactome, rating all these paths
depending on their overall confidence. This score was defined as the
mean of the random forest votes for each of its predicted interactions. Just
like in NetExplorer, users can search by human protein symbols, PFAM
identifiers, contig identifiers and GO codes.

For the sake of completeness, we also implemented a BLAST web
form to look for contigs on the graphs using sequence homology searches.

4 Discussion
In this work we introduce a tool to predict protein-protein interactions
from transcript sequences using sequence alignments and a reference
Human interactome. This tool was then used to predict ten different protein

interactions networks from ten S. mediterranea transcript datasets. As a
result, we provide PlanNET, a web application that allows researchers
to explore these networks in different ways, as well as to access to all
sequence annotations performed in order to predict the interactions.

Given the out-of-bag performance evaluation of the predictor, we
conclude that this random forest classifier is useful for inferring
interologies between two species, for instance planarian and human.
The area under the ROC curve of 0.82 strongly indicates the significant
improvement from a random predictor of our tool. The low precision
and sensitivity (0.35 and 0.34, respectively) can be attributed to the fact
that from all the possible pairs of proteins of a given organism, only a
tiny subset of them really interact. It has been described that the protein
interaction network of any given species is always very sparse, as the
degree distribution of most of them follow the power-law (Barabási and
Oltvai, 2004). This fact alone makes it harsh for any predictor to retrieve
a large amount of interactions out of those pairs, without retrieving many
false positives. However, the developed predictor can be further improved
in different ways; for example, introducing new features such as the
confidence of the annotated interactions in the reference human network,
or adding new reference interactomes from other species.

From all the features used by the classifier, the most important one is
the distance of the homologous human genes in the Human protein-protein
network (PATH_LENGTH). After that, the most crucial features for the
correct classification of the protein pairs were the GO similarities and the
EggNOG alignment E-value. Those features paired together, ensure that
both proteins have a high sequence similarity to their respective human
homologs, that those homologs are known to be in a similar cellular
location (cellular component) and that they share GO biological process
and molecular function annotations. Thus, our tool not only predicts
interactions between putative proteins translated from transcripts, but it
essentially clusters these contigs according to their functional similarities
(instead of, for example, their location in the genome). The relative
importance of the EggNOG E-values may be due to two reasons: firstly,
the performed protocol favors EggNOG alignments when selecting best
hits for each contig, and secondly, hidden markov models are known to
detect more distant homologies than sequence searches such as BLAST
(Park et al., 1998).

The different number of interactions predicted for each dataset can be
attributed to the different number of homologs found for each one, as the
strong correlation between the “Contigs with an homolog” and “Number
of interactions” suggests. Therefore, the different level of fragmentation
of the contigs from the transcriptomes could greatly affect the final result
of the prediction. This reinforces the importance of building a proper full-
length mRNA reference set, especially for S. mediterranea, as it has been
shown for model organisms like human (Cho et al., 2014).

Using Neo4j as our database backend, we developed a web application,
called PlanNET, to explore not only the predicted networks, but the
sequence annotations as well. Apart from BLAST searches and simple
text searches (provided by the applications BLAST and GeneSearch at
PlanNET, respectively), we have also implemented two additional ways to
explore the protein networks. NetExplorer (Fig.4), will allow researchers
to look for predicted interaction networks using contig IDs, GO codes or
PFAM domains as baits. The asynchronous javascript searches will
allow the users to dinamically compare the networks annotated for the
different transcriptomes with respect to the reference interactome, human
in this case. The application PathwayFinder provides a simple way to look
for protein interaction pathways in the predicted networks; specifying a
starting protein, an ending protein, and the length of the desired pathways.

We can also integrate gene expression data from different sources,
which has been tested by showing results from a DGE experiment
performed by Rodriguez-Esteban et al. This data can be projected over
the graphs, coloring the nodes according to the expression levels; right
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Fig. 4. Screenshot of the PlanNET NetExplorer browser. Each node in the graph represents a protein/contig, the shape of the nodes determines the dataset to which they belong. The size
of the nodes depends on the node degree (total number of interactions). The edges color varies depending on the type of relationship (see “Legend” on the lower left corner of this figure).
DGE data comparing two samples from the experiment described in Rodríguez-esteban et al. 2015 was projected over this visualization; the color of nodes is based on the expression fold
change (scale shown on the upper left corner of this figure). The controls on the right panel allow users to explore the graph further by clicking on nodes, as well as getting information for
each contig/protein. Numbers on the edges correspond to the proportion of votes of the random forest classifier, as a measure of the confidence of any given interaction. Users can filter these
interactions by confidence value with the slider on the right (under “Filter interactions”). Finally, the interface allows researchers to save and load graphs in JSON format.

know, the application allows to color the nodes using expression data from
one sample (binning colors by percentils of absolute expression levels)
or to compare two samples at the same time from the same experiment
(assigning colors in function of log2(FoldChange)). We are planning
to add further RNA-seq expression data to this tool, which will allow more
complex queries to be performed, such as retrieving subnetworks having
correlated expression levels across different experiments and samples.
Neo4j manager and the Cypher query language make those complex
queries simple and fast (Yoon et al., 2017), and they allow to perform
them in real time as opposed to pre-computing them.

When designing experiments with the aim to unravel the underlying
mechanisms of planarian regeneration, the biological context of any given
candidate gene is just as important as its annotations. Thus, a predicted
protein-protein interaction network for many planarian transcriptomes will
be useful in determining that context from a transcript-centric point of
view. Our applications allow researchers to compare the human homologs
found in all the transcriptomes, to look for possible interacting proteins,
to retrieve sub-networks using Gene Ontology codes and PFAM domains,
and to compare expression levels across the transcriptomes. Our approach

focuses on the planarian contigs instead of the annotated genes on a
reference genome; giving researchers the flexibility to work with any
contig as a proper separate entity with its own annotations. When new
refined transcriptomes will be made available in the future they will
be easily incorporated to PlanNET using our current pipeline, without
interfering with all the previous datasets and maintaining the relevance of
the application.

At last, in this work we provide one of the firsts practical applications
of the database manager Neo4j to store and analyze multiple protein-
protein interaction networks. Sequence homologies predicted for the
planarian contigs allow us to link the S. mediterranea and the human
interactome in the database, making quick queries to compare and traverse
the networks easy. Our current database design will facilitate the inclusion
of genetic interactions, as well as the extension with new interfaces to
explore them in the future. In conclusion, this database engine provides
a very adaptable framework for storing, modelling and visualizing many
networks projected over a reference interactome. This has been crucial to
implement a responsive interactive interface, PlanNET, over the extensible
interologs network that projects planarian transcriptomes towards human
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sequences and vice versa. The analysis pipeline can be applied to any
species transcriptomic datasets to map it over a model organism reference
interactome, which makes our protocol extensible to a broader range of
similar research problems.

Acknowledgements
We are grateful to Emili Saló for his continuous and generous
encouragement, as well as for his insights on the planarian molecular
biology.

Funding
This work was supported by research grants from Spanish Ministry
of Economy (BFU2014-56055P), and from Generalitat de Catalunya
(2014SGR687). Sergio Castillo-Lara is fellow of the Catalan Government
"AGAUR" (FI-FDR, 2017FI_B_00191).

References
Abril, J. F., Cebrià, F., Rodríguez-esteban, G., Horn, T., Fraguas, S., Calvo,

B., Bartscherer, K., and Saló, E. (2010). Smed454 dataset: unravelling
the transcriptome of Schmidtea mediterranea. BMC Genomics, 11, 731.

Adamidi, C., Wang, Y., Gruen, D., Mastrobuoni, G., You, X., Tolle, D.,
Dodt, M., Mackowiak, S., Gogol-Doering, A., Oenal, P., Rybak, A.,
Ross, E., S., A. A., Kempa, S., Dieterich, C., Rajewsky, N., and Chen,
W. (2011). De novo assembly and validation of planaria transcriptome
by massive parallel sequencing and shotgun proteomics. Genome Res.,
21(21), 1193–1200.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J.
(1990). Basic local alignment search tool. Journal of molecular biology,
215(3), 403–410.

Barabási, A.-L. and Oltvai, Z. N. (2004). Network biology: understanding
the cell’s functional organization. Nature reviews. Genetics, 5(2), 101–
113.

Blythe, M. J., Kao, D., Malla, S., Roswell, J., Wilson, R., Evans,
D., Jowett, J., Hall, A., Lemay, V., Lam, S., and Aziz Aboobaker,
A. (2010). A dual platform approach to transcript discovery for the
planarian Schmidtea mediterranea to establish RNAseq for stem cell
and regeneration biology. PLOS ONE.

Brandl, H., Moon, H. K., Vila-Farr??, M., Liu, S. Y., Henry, I., and Rink,
J. C. (2016). PlanMine - A mineable resource of planarian biology and
biodiversity. Nucleic Acids Research, 44(D1), D764–D773.

Carbon, S., Ireland, A., Mungall, C. J., Shu, S., Marshall, B., Lewis, S.,
Lomax, J., Mungall, C., Hitz, B., Balakrishnan, R., Dolan, M., Wood,
V., Hong, E., and Gaudet, P. (2009). AmiGO: Online access to ontology
and annotation data. Bioinformatics, 25(2), 288–289.

Cebrià, F. (2007). Regenerating the central nervous system: how easy for
planarians!. Dev. Genes Evol., 217(217), 733–748.

Cho, H., Davis, J., Li, X., Smith, K. S., Battle, A., and Montgomery, S. B.
(2014). High-resolution transcriptome analysis with long-read RNA
sequencing. PLoS ONE, 9(9).

Eddy, S. (1998). Profile hidden Markov models. Bioinformatics, 14(14),
755–763.

Fernandez-Taboada, E., Moritz, S., Zeuschner, D., Stehling, M., Schö ler,
H. R., Saló, E., and Gentile, L. (2010). Smed-SmB, a member of the LSm
protein superfamily, is essential for chromatoid body organization and
planarian stem cell proliferation. Development, 137(137), 1055–1065.

Franz, M., Lopes, C. T., Huck, G., Dong, Y., Sumer, O., and Bader,
G. D. (2015). Cytoscape.js: A graph theory library for visualisation and
analysis. Bioinformatics, 32(2), 309–311.

Galloni, M. (2012). Global irradiation effects, stem cell genes and rare
transcripts in the planarian transcriptome. Int. J. Dev. Biol., 56, 103–116.

Garcia-Garcia, J., Schleker, S., Klein-Seetharaman, J., and Oliva,
B. (2012). BIPS: BIANA Interolog Prediction Server. A tool for
protein-protein interaction inference. Nucleic Acids Research, 40,
147–151.

Gramates, L. S., Marygold, S. J., Santos, G. d., Urbano, J.-M., Antonazzo,
G., Matthews, B. B., Rey, A. J., Tabone, C. J., Crosby, M. A., Emmert,
D. B., Falls, K., Goodman, J. L., Hu, Y., Ponting, L., Schroeder, A. J.,
Strelets, V. B., Thurmond, J., and Zhou, P. (2017). Flybase at 25: looking
to the future. Nucleic Acids Research, 45(D1), D663–D671.

Gray, K. a., Daugherty, L. C., Gordon, S. M., Seal, R. L., Wright, M. W.,
and Bruford, E. a. (2015). Genenames.org: The HGNC resources in
2015. Nucleic Acids Research, 43(D1079-D1085).

Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D.,
Walter, M. C., Rattei, T., Mende, D. R., Sunagawa, S., Kuhn, M.,
Jensen, L. J., Von Mering, C., and Bork, P. (2016). EGGNOG 4.5: A
hierarchical orthology framework with improved functional annotations
for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Research,
44(D1), D286–D293.

Kao, D., Felix, D., and Aboobaker, A. (2013). The planarian regeneration
transcriptome reveals a shared but temporally shifted regulatory program
between opposing head and tail scenarios. BMC Genomics, 14(14), 797.

Labbé, R. M., Irimia, M., Currie, K. W., Lin, A., Zhu, S. J., Brown, D.
D. R., Ross, E. J., Voisin, V., Bader, G. D., Blencowe, B. J., and Pearson,
B. J. (2012). A comparative transcriptomic analysis reveals conserved
features of stem cell pluripotency in planarians and mammals. Stem
Cells, 30(30), 1734–1745.

Liaw, A. and Wiener, M. (2002). Classification and regression by
randomforest. R News, 2(3), 18–22.

Lobo, D. and Levin, M. (2015). Inferring Regulatory Networks from
Experimental Morphological Phenotypes: A Computational Method
Reverse-Engineers Planarian Regeneration. PLOS Computational
Biology, 11(6), e1004295.

Menze, B. H., Kelm, B. M., Masuch, R., Himmelreich, U., Bachert, P.,
Petrich, W., and Hamprecht, F. A. (2009). A comparison of random forest
and its Gini importance with standard chemometric methods for the
feature selection and classification of spectral data. BMC bioinformatics,
10(1), 213.

Mistry, M. and Pavlidis, P. (2008). Gene Ontology term overlap as a
measure of gene functional similarity. BMC bioinformatics, 9(1), 327.

Mosca, R., Céol, A., Stein, A., Olivella, R., and Aloy, P. (2014). 3did:
A catalog of domain-based interactions of known three-dimensional
structure. Nucleic Acids Research, 42(D1), 374–379.

Murakami, Y. and Mizuguchi, K. (2014). Homology-based prediction
of interactions between proteins using Averaged One-Dependence
Estimators. BMC bioinformatics, 15(1), 213.

Park, J., Karplus, K., Barrett, C., Hughey, R., Haussler, D., Hubbard, T.,
and Chothia, C. (1998). Sequence comparisons using multiple sequences
detect three times as many remote homologues as pairwise methods.
Journal of molecular biology, 284(4), 1201–1210.

Peixoto, T. P. (2014). The graph-tool python library. figshare.
Punta, M., Coggill, P. C., Eberhardt, R. Y., Mistry, J., Tate, J., Boursnell,

C., Pang, N., Forslund, K., Ceric, G., Clements, J., Heger, a., Holm,
L., Sonnhammer, E. L. L., Eddy, S. R., Bateman, a., and Finn, R. D.
(2011). The Pfam protein families database. Nucleic Acids Res., 40,
D290–D301.

Resch, A. M., Palakodeti, D., Lu, Y. C., Horowitz, M., and Graveley, B. R.
(2012). Transcriptome analysis reveals strain-specific and conserved

Page 7 of 11 Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

8 S. Castillo-Lara

stemness genes in Schmidtea mediterranea. PLOS ONE, 7(7).
Robinson, I., Webber, J., and Eifrem, E. (2013). Graph Databases.

O’Reilly Media, Inc.
Rodríguez-esteban, G., González-sastre, A., Rojo-laguna, J. I., and Saló,

E. (2015). Digital gene expression approach over multiple RNA-
Seq data sets to detect neoblast transcriptional changes in Schmidtea
mediterranea. BMC genomics, 16, 361.

Rouhana, L., Vieira, a. P., Roberts-Galbraith, R. H., and Newmark,
P. a. (2012). PRMT5 and the role of symmetrical dimethylarginine
in chromatoid bodies of planarian stem cells. Development, 139(6),
1083–1094.

Sandmann, T., Vogg, M. C., Owlarn, S., Boutros, M., and Bartscherer, K.
(2011). The head-regeneration transcriptome of the planarian Schmidtea
mediterranea. Genome Biol., 12, R76.

Schuette, S., Piatkowski, B., Corley, A., Lang, D., and Geisler, M. (2015).
Predicted protein-protein interactions in the moss Physcomitrella patens:
a new bioinformatic resource. BMC Bioinformatics, 16(1), 89.

Scimone, M. L., Meisel, J., and Reddien, P. W. (2010). The Mi-2-like
Smed-CHD4 gene is required for stem cell differentiation in the planarian
Schmidtea mediterranea. Development, 137(137), 1231–1241.

Solana, J., Kao, D., Mihaylova, Y., Jaber-Hijazi, F., Malla, S., Wilson,
R., and Aboobajer, A. (2012). Defining the molecular profile of
planarian pluripotent stem cells using a combinatorial RNA-seq, RNAi
and irradiation approach. Genome Biol., 13(3), R19.

Stark, C., Breitkreutz, B., Reguly, T., Boucher, L., Breitkreutz, A., and
Tyers, M. (2006). BioGRID: a general repository for interaction datasets.
Nucleic Acids Res., 34, D535–D539.

Von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., and Snel,
B. (2003). STRING: A database of predicted functional associations
between proteins. Nucleic Acids Res., 31, 258–261.

Wagner, D. E. and Wang, I. E. (2011). Clonogenic neoblasts are
pluripotents adult stem cells that underlie planarian regeneration.
Science, 332(332), 811–816.

Wasmuth, E. V. and Lima, C. D. (2016). UniProt: the universal protein
knowledgebase. Nucleic Acids Research, 45, 1–12.

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York.

Yates, A., Akanni, W., Amode, M. R., Barrell, D., Billis, K., Carvalho-
Silva, D., Cummins, C., Clapham, P., Fitzgerald, S., Gil, L., Gir??n,
C. G., Gordon, L., Hourlier, T., Hunt, S. E., Janacek, S. H., Johnson,
N., Juettemann, T., Keenan, S., Lavidas, I., Martin, F. J., Maurel, T.,
McLaren, W., Murphy, D. N., Nag, R., Nuhn, M., Parker, A., Patricio,
M., Pignatelli, M., Rahtz, M., Riat, H. S., Sheppard, D., Taylor, K.,
Thormann, A., Vullo, A., Wilder, S. P., Zadissa, A., Birney, E., Harrow,
J., Muffato, M., Perry, E., Ruffier, M., Spudich, G., Trevanion, S. J.,
Cunningham, F., Aken, B. L., Zerbino, D. R., and Flicek, P. (2016).
Ensembl 2016. Nucleic Acids Research, 44(D1), D710–D716.

Yoon, B.-H., Kim, S.-K., Kim, S.-Y., Jensen, L., Bork, P., and Felix, V.
(2017). Use of Graph Database for the Integration of Heterogeneous
Biological Data. Genomics & Informatics, 15(1), 19.

Yu, J., Pacifico, S., Liu, G., and Jr, R. L. F. (2008). DroID: the Drosophila
Interactions Database, a comprehensive resource for annotated gene and
protein interactions. BMC genomics, 9, 1–9.

Page 8 of 11Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

General overview of the protocol used to predict protein-protein interactions on Schmidtea mediterranea 
transcriptomes. Using a human protein-protein interactions network retrieved from BioGrid and String, we 

predicted protein interactions for planarian transcripts. First, we searched for homology relationships 
between human proteins and planarian transcripts using BLAST and HMMER, and then, using a random 

forest classifier trained with Drosophila melanogaster sequences, we predicted a different interactome over 
each transcript set. All the information gathered during this process was uploaded to a Neo4j database, and 
we built a web interface called PlanNET to navigate through those networks and explore the connectivity and 

the nodes content such as sequence and domain information or projected expression levels.  

 
650x408mm (600 x 600 DPI)  

 

 

Page 9 of 11 Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Number of homologous contigs for each human protein with at least one homolog in the analyzed 
transcriptomes.  

 

101x101mm (300 x 300 DPI)  

 

 

Page 10 of 11Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Proportion of positive votes of random forest classification of protein-protein interactions per dataset. Note 
that the votes displayed for the training set correspond to the out of bag votes.  

 

101x101mm (300 x 300 DPI)  

 

 

Page 11 of 11 Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


