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a b s t r a c t 

The two-dimensional nature of mammography makes estimation of the overall breast density challeng- 

ing, and estimation of the true patient-specific radiation dose impossible. Digital breast tomosynthesis 

(DBT), a pseudo-3D technique, is now commonly used in breast cancer screening and diagnostics. Still, 

the severely limited 3rd dimension information in DBT has not been used, until now, to estimate the 

true breast density or the patient-specific dose. This study proposes a reconstruction algorithm for DBT 

based on deep learning specifically optimized for these tasks. The algorithm, which we name DBToR, is 

based on unrolling a proximal-dual optimization method. The proximal operators are replaced with con- 

volutional neural networks and prior knowledge is included in the model. This extends previous work 

on a deep learning-based reconstruction model by providing both the primal and the dual blocks with 

breast thickness information, which is available in DBT. Training and testing of the model were performed 

using virtual patient phantoms from two different sources. Reconstruction performance, and accuracy in 

estimation of breast density and radiation dose, were estimated, showing high accuracy (density < ±3% ; 

dose < ±20% ) without bias, significantly improving on the current state-of-the-art. This work also lays 

the groundwork for developing a deep learning-based reconstruction algorithm for the task of image in- 

terpretation by radiologists. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Breast cancer screening with mammography has proven effec- 

ive in reducing breast cancer-related mortality ( Plevritis et al., 

018 ). However, since mammography is a 2D imaging modality, it 

esults in the projection of the internal tissue of the breast onto a 

ingle plane, yielding tissue superposition. This results in a lower 

ensitivity and specificity, especially with dense breasts. 
∗ Corresponding author at: Department of Medical Imaging, Radboud University 

edical Center, the Netherlands. 

E-mail address: ioannis.sechopoulos@radboudumc.nl (I. Sechopoulos). 
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.1. Digital breast tomosynthesis 

Digital breast tomosynthesis (DBT) has been introduced over 

he last two decades to decrease the impact of tissue superposition 

n mammography, by providing limited depth information, result- 

ng in improved detection and diagnosis performance ( Zackrisson 

t al., 2018; Zuley et al., 2013 ). Hence, DBT is rapidly replacing dig- 

tal mammography as the primary X-ray technique for breast imag- 

ng ( Niklason et al., 1997 ). DBT imaging consists of acquiring sev- 

ral low-dose planar X-ray projections over a limited angle. These 

rojections are then used to reconstruct a pseudo-3D volume, al- 

eit with very limited vertical spatial resolution. A secondary ben- 

fit of the introduction of DBT for widespread use for screening of- 
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ers the opportunity, for the first time, to obtain accurate estimates 

f the breast density and, subsequently, of the fibroglandular dose. 

.2. Breast density 

In mammography, the lack of information on the true tissue 

istribution in the vertical (X-ray source to detector) direction lim- 

ts the ability to accurately estimate the breast density (i.e., the 

roportion of the breast that consists of fibroglandular tissue). Up 

o now, estimates of breast density from mammography neces- 

itated the use of models of the image acquisition process and 

ssumptions and simplifications regarding tissue distribution. Al- 

hough these models have been characterized for consistency and 

recision, their accuracy is unknown. Estimating breast density is 

f intense interest because it is an important factor for both mask- 

ng and breast cancer risk ( McCormack, 2006 ). As a result of its

ignificance, breast density reporting is now mandated by law in 

everal states in the USA. This makes it especially important to 

se methods that provide objective and quantitative breast den- 

ity estimates. The feasibility of accurate breast density estimation 

rom DBT images has been recognized before. However, given the 

ery poor spatial resolution in the vertical direction obtained with 

ll current DBT reconstruction algorithms, the localization of the 

broglandular tissue in DBT images has proven extremely chal- 

enging. Previous effort s to achieve this have not resulted in im- 

rovements over the model-based dose estimates obtained from 

D imaging ( Geeraert, 2014 ), or have involved algorithms that re- 

uire a lot of manual input, making them challenging to imple- 

ent clinically ( Förnvik et al., 2018 ). 

.3. Radiation dose 

In breast imaging, the dose of interest is only that to the fi- 

roglandular tissue, since this is the tissue most at risk of devel- 

ping breast cancer ( Dance and Sechopoulos, 2016 ), and to deter- 

ine this dose it is necessary to know its vertical location within 

he breast. Therefore, currently, all breast dosimetry is based on 

ose estimates using a model breast, which does not reflect the 

ose deposited in the actual patient breast. It has been shown that 

he use of a model breast results in an average overestimation of 

he true patient breast of 30% and that this error can be as high

s 120%, if not more ( Dance et al., 2005; Sechopoulos et al., 2012;

ernandez et al., 2015 ). Even if a more accurate, unbiased model 

f the average breast is developed, an effort that is currently on- 

oing ( Arana Peña et al., 2020 ), the over 100% error in patient-

pecific dose estimates using a population-wide model will not be 

meliorated. To obtain accurate radiation dose estimates, the actual 

mount and position of the fibroglandular tissue in the individual 

atient’s breast needs to be considered. However, due to its com- 

lete lack of information on the vertical position of tissues, this 

s impossible to achieve with mammography. Only with the intro- 

uction of digital breast tomosynthesis, is it now feasible to gather 

his knowledge for each imaged breast. 

Therefore, in this work, we propose a new approach to DBT re- 

onstruction, based on our earlier work ( Moriakov et al., 2019 ), us- 

ng deep learning methods, that results in the 3D representation of 

he imaged breast optimized for estimation of the true distribution 

f the fibroglandular tissue. This in turn allows for accurate estima- 

ion of both the breast density and the radiation dose imparted on 

t, improving significantly upon the state-of-the-art. 

.4. DBT reconstruction 

Both FBP-based and iterative methods are in clinical use to re- 

onstruct breast tomosynthesis images, and both methods result 

n severely limited resolution in the direction perpendicular to the 
2 
etector plane ( Sechopoulos et al., 2012; Vedantham et al., 2015 ). 

espite this, most research is focused on improving image quality 

n the high-resolution planes parallel to the detector plane since 

nly this direction is examined by radiologists. In particular, the 

hoice of the reconstruction algorithm and regularization parame- 

ers can greatly influence the reconstruction quality, as was shown 

n previous work ( Rodriguez-Ruiz et al., 2017; Michielsen et al., 

016 ). Approaches that try to improve image quality in the ver- 

ical direction typically require strong prior knowledge to suffi- 

iently constrain the inverse problem. In industrial settings this is 

easible if the scanned object contains a small number of known 

aterials by applying a discrete tomography method such as poly- 

ART ( Six et al., 2019 ). A different approach recently proposed by 

hang et al. (2021) obtained promising results under the assump- 

ion that the true total variation in each direction of the scanned 

bject is known. 

.5. Deep learning for reconstruction 

A recent and very promising development in medical imag- 

ng reconstruction uses methods that rely on deep learning 

 Arridge et al., 2019 ). The goal of this paper is to show the poten-

ial of such methods for the problem of DBT reconstruction, using 

he quantitative estimation of breast density and radiation dose as 

he target application. Our method combines a deep learning net- 

ork with an inductive bias given by the forward and backward 

odels (and therefore considering part of the physics processes 

nvolved in image acquisition). This is in contrast to other estab- 

ished methods that postprocess initial reconstructions with a deep 

earning network to improve image quality ( Kang et al., 2017; Jin 

t al., 2017 ). To build this algorithm, we extended our previous re- 

ults on DBT reconstruction ( Moriakov et al., 2019 ) and investigate 

 data-driven reconstruction algorithm called Deep Breast Tomo- 

raphic Reconstruction (DBToR), where the reconstruction is com- 

uted from projection data with a deep neural network. To train 

he model, and to test the performance of DBToR for the tasks of 

reast density and radiation dose estimation, we used dedicated 

reast CT images, where the tissue distribution is known, and use a 

nite-element model to simulate the change in the tissue distribu- 

ion when under compression in DBT. In addition to these images, 

e also evaluate the model on simulated breast phantoms. 

.6. Our contribution 

In this work, we show: (i) the feasibility of reconstruction of 

BT using deep learning, having developed a novel deep learning- 

ased model, to reconstruct DBT; (ii) that the resulting reconstruc- 

ions have greatly improved vertical resolution compared to state- 

f-the-art analytical and iterative reconstruction methods; (iii) that 

he proposed reconstruction method is able to provide accurate 

reast density estimates; and (iv) that the dense tissue location in- 

ormation results in accurate patient-specific dosimetric estimates. 

This paper is organized as follows: Section 2 sets the con- 

ext, describing DBT reconstruction as an inverse problem, and 

resents the architecture and model. Section 3 describes the 

ataset and methods used for the dosimetric evaluation. We follow 

n Section 4 with the results obtained with the DBToR algorithm, 

nd providing several comparisons against existing algorithms. Fi- 

ally, we conclude in Section 5 . 

. Deep learning-based reconstruction 

Before we describe our model in more detail, we give a brief 

verview on how to formulate the reconstruction problem as an 

nverse problem. 
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.1. Inverse problems and DBT reconstruction 

DBT reconstruction can be formulated as an inverse problem. In 

 mathematically simplified setting this means that given an object 

o be imaged x ∈ X and measured projection data y ∈ Y, we have 

 = Px + η (1) 

here P : X → Y is the forward, or projection, operator, that mod- 

ls how the object x gives rise to the projection Px in the absence

f noise, and η is a Y -valued random variable modeling the noise 

omponent of the measurements. The forward model used is given 

y 

 i (x ) = b i exp 

(
−

∑ 

j 

l i j x j 

)
, (2) 

here y i is the projection data, b i the number of X-ray photons 

mitted towards detector pixel i and l i j the length of the intersec- 

ion between voxel j and the line between the source and detector 

ixel i . The linear attenuation in voxel j is denoted by x j . 

The noise vector η is typically assumed to be additive Gaussian, 

hich is a good approximation for high photon counts, which are 

ommon in transmission imaging. In our work, we do not require 

n explicit noise model for inversion, and assume a more realistic 

oise model given by Poisson noise in Section 3 for the simulations 

f the projection data. 

The goal of reconstruction is to retrieve the object x from mea- 

ured (and noise-corrupted) projection data y . Inversion of the op- 

rator P is an ill-posed problem, and we will consider the esti- 

ation of x from a Bayesian perspective and consider X and Y as 

robability spaces, therefore identifying in this work the spaces X

nd Y with L 2 (R 

2 ) . The goal for the Bayes estimator is to mini-

ize the expected loss over all estimators ˆ x : Y → X that give an 

stimate of x given measurements y . That is, 

ˆ 
 Bayes := argmin 

ˆ x : Y → X 

E x ∼X ( ̂  x (y ) − x ) 2 . (3) 

In our approach, we will obtain a neural network approxima- 

ion to the Bayes estimator ˆ x Bayes , where argmin in Eq. (3) is 

aken over the estimators given by a family of neural networks 

nd where optimization is performed using minibatch stochastic 

radient optimization, with expectation E x ∼X being approximated 

y sampling x ∼ X . For a complete overview on statistical inverse 

roblems, we refer to the book by Kaipio and Somersalo (2005) . 

.2. DBT neural network 

The DBToR algorithm is a data-driven algorithm, which extends 

he Learned Primal-Dual (LPD) reconstruction algorithm ( Adler and 

ktem, 2018 ), by incorporating additional prior information about 

he geometry in the form of the thickness measurement of the 

reast under compression in DBT. 2 The LPD algorithm itself is an 

nrolled iterative scheme, based on the proximal primal-dual hy- 

rid gradient method, where proximal operators are replaced by 

eural networks. The algorithm is trained to reconstruct the im- 

ges directly from projection data. The DBToR neural network con- 

ists of several ‘reconstruction blocks’, which take in projection 

ata, together with information on the thickness of the breast un- 

er compression as the initial input, perform a forward and a back- 

ard pass by taking projections and back-projections, and use a 

onvolutional neural network to produce an intermediate recon- 

truction result, which is then improved further by each successive 

econstruction block. The architecture and the training algorithm 

re illustrated in Fig. 1 and Algorithm respectively. In all our ex- 

eriments we set the number of primal blocks N prim 

and dual 
2 This information is measured by the DBT device and stored in the DICOM image 

eader. 

3 
locks N dual to 10. The blocks, denoted by �
θd 

i 
and �θ p 

i 
are all 

esNet-type blocks consisting of three convolutional layers with 

ernel size 3 × 3 followed by a PreLU layer (with slope initialized 

s 0.25) and 6 4, 6 4 and 5 filters respectively. As the operators P
nd P 

∗ we select the forward and backward operators respectively. 

he backward operator P 

∗ with P as in (1) is the (matrix) adjoint 

f the forward operator P . In our model, these are implemented 

sing ASTRA ( van Aarle et al., 2016 ). 

At test time, the algorithm takes the input projection data y and 

he breast thickness information to compute the reconstruction us- 

ng the function compute_reconstruction . 
In what follows, we denote the training set of objects by D train . 

or an object x, we let y = sinogram x be the corresponding projec- 

ion data for clarity. As is common, we assume that the training 

ata D train is a representative sample from the domain of DBT im- 

ges that we want to reconstruct. 

The neural network is trained in a supervised fashion as fol- 

ows. We repeatedly sample an image x ∼ D train and the corre- 

ponding input projection data y = sinogram x from the training 

ataset. The corresponding thickness mask is denoted by m = 

hickness_mask x and is represented by a rectangular mask with 

he same width as the detector and where the height is given 

y the measured breast thickness during compression. These mea- 

urements are provided by the DBT system, and are available both 

t training and at test time. 

To find the parameters θ of the neural network 

ompute_reconstruction , we train the network with the L 2 - 

oss l θ := ‖ x − z‖ 2 
2 
. The parameters θ are updated using the 

dam optimizer with a cosine annealing learning rate schedule 

 Loshchilov and Hutter, 2019 ), i.e. the learning rate in step t was 

t = 

η0 

2 

(
1 + cos 

(
π

t 

N iter 

))

tarting at a learning rate η0 of 10 −4 . For the other Adam pa- 

ameters, we choose the default parameters of β = (0 . 9 , 0 . 999) ,

= 10 −8 and weight decay 0. The total number of iterations N iter 
nd batch size differ per dataset, and are detailed in the Methods 

ection. Before feeding the data into the network, the input pro- 

ection data is log-transformed, and scaled such that the standard 

eviation and mean over the training set is 1. 

lgorithm 1 Pseudocode of the DBToR reconstruction and training 

lgorithm. 

1: procedure compute_reconstruction ( m, g) 

2: f 0 ← 0 ∈ X N prim � Initialize primal vector 

3: h 0 ← 0 ∈ U 

N dual � Initialize dual vector 

4: for i ← 0 , N do 

5: h i ← �
θd 

i 
(h i −1 , P( f (2) 

i −1 
) , g, P(m ))) 

6: f i ← �θ p 
i 
( f i −1 , P 

∗(h (1) 
i 

) , m ) 

7: end for 

8: return f (1) 
I 

9: end procedure 

0: for j ← 0 , N iter − 1 do 

11: x ∼ D train � Sample train data 

2: y ← sinograms x � Sample sinograms 

3: m ← thickness_mask x � Create masks 

4: z ← compute_reconstruction (m, y ) 

5: loss ← ‖ z − x ‖ 2 
2 

6: change parameters θ p 
i 
, θd 

i 
, i = 1 , . . . , N to reduce loss 

17: end for 
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Fig. 1. Network architecture of DBToR. Dual blocks (green) are on the upper row and primal blocks (blue) are in the bottom row. The blocks have the same architecture, 

elaborated in the first blocks. m : the breast thickness mask, h 0 : initial dual vector, f 0 : initial primal vector, g: sinogram data, Out: final reconstruction. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 
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.3. Reconstructed image classification 

The final step of the reconstruction for estimation of breast 

ensity and radiation dose involved in image acquisition, is the 

lassification of the reconstructed image into skin, adipose, and fi- 

roglandular tissue voxels. This is required because rather than re- 

ying on voxel attenuation values, which can be quite similar for 

ifferent types of tissue, we need correct tissue labels to compute 

he breast density and the dose absorbed by the fibroglandular tis- 

ue. Given its high contrast, the skin layer was segmented through 

 fast seeded region-growing algorithm ( Adams and Bischof, 1994 ), 

hich grows the segmented region starting from a subset of seeds 

corresponding to the voxels located on the outer edge of the skin 

ayer) by subsequently including voxels whose intensity was higher 

han or equal to the mean seed intensity value. For fibroglandu- 

ar tissue classification, we extend our previous work on breast CT 

lassification ( Caballo et al., 2018 ), and in the first step remove the

kin temporarily from the image, with the resulting representa- 

ion undergoing a well-established, automatic thresholding method 

ased on fuzzy c-means clustering ( Bezdek, 1981 ), an algorithm 

enerally adopted in the case of images with low noise content, 

ccompanied by a non-negligible degree of blurring, as is the case 

or our images. Briefly, voxels are iteratively assigned to a given 

lass (adipose or fibroglandular tissue) in an unsupervised fash- 

on, with the iteration stopping criterion aiming at maximizing the 

istance between the average voxel values of the two classes. As 

pposed to traditional cluster analysis, this method allows for a 

egree of fuzzy overlap between the classes over each iteration, 

hich helps classify the boundary voxels in each subsequent iter- 

tion. The fuzzy partition term ( Bezdek, 1981 ) was experimentally 

uned to a value of 2.0. 

. Materials and methods 

To train and evaluate the algorithm, we created two datasets 

f 3D breast phantoms from which we extracted the coronal slices 

nd their corresponding DBT projections. The first dataset consists 

f virtual 3D breast phantoms generated using a stochastic model, 
4 
hile the second is based on patient dedicated BCT (Breast Com- 

uted Tomography) images. DBT projections of these phantoms 

ere simulated using deterministic simulation methods, with the 

osterior addition of Poisson noise. The use of virtual phantoms 

ot only provided training data, but also allowed for assessing the 

ccuracy of the density and dose estimates, since ground truth is 

nown. 

Each voxel of these phantoms was indexed with a label de- 

oting the corresponding tissue type: skin, adipose tissue, fi- 

roglandular tissue, and Cooper’s ligaments. The elemental com- 

ositions of these materials were obtained from the work of 

ammerstein et al. (1979) , except for the composition of Cooper’s 

igaments, which was assumed to be identical to that of fibrog- 

andular tissue. Linear attenuation coefficients at 20 keV, a typ- 

cal average energy of the spectra in clinical DBT imaging, were 

alculated for each material using the software from Boone and 

havez (1996) . The resulting linear attenuation coefficients were 

.512 cm 

−1 for adipose tissue, 0.798 cm 

−1 for fibroglandular tis- 

ue (and Cooper’s ligaments), and 0.854 cm 

−1 for skin. 

This process was done for the virtual phantom dataset and the 

atient BCT dataset. 

.1. Virtual phantom 

We extracted 41,499 coronal slices from 50 breast phantoms 

enerated using the method of Lau et al. (2012) . This method gen- 

rates breast phantoms in two steps: first, the breast structure is 

imulated on a coarse scale by generating large compartments of 

dipose tissue Zhang et al. (2008) ; Bakic et al. (2011) . Second, finer

etail for fibroglandular tissue is added subsequently in the form 

f power-law noise ( Reiser and Nishikawa, 2010 ). The resulting im- 

ges have dimensions 10 0 0 × 30 0 and a resolution of 20 0 μm. An

xample of the simulated phantoms is shown in Fig. 2 . 

These 41,499 coronal slices were used for training and validat- 

ng the algorithm. Each breast phantom was either included in a 

raining or validation fold completely or not at all, in order to pre- 

ent data contamination and bias. 
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Fig. 2. 2D coronal breast phantom containing skin (darkest gray), adipose tissue 

(dark gray), fibroglandular tissue (light gray), and Cooper’s ligaments (black). 
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Fig. 3. (a) Coronal slice of a breast CT image, (b) the same image classified into 

skin (white), adipose (dark gray) and fibroglandular (light gray) tissue voxels, and 

(c) the classified deformed image with the technique described in Section 3.2 . 
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.2. Patient dedicated breast CT phantoms 

Patient dedicated breast CT images were acquired for an unre- 

ated, ethical-board approved patient study evaluating this imag- 

ng technology. The images were released for other research pur- 

oses after anonymization. In order to compute the density and 

he accumulated dose to the fibroglandular tissue, the patient 

reast CT images were automatically classified into four categories 

air, skin, adipose and fibroglandular tissue) using a previously 

eveloped algorithm for BCT image classification ( Caballo et al., 

018 ) (see Section 2.3 ). The classified breasts then underwent 

imulated mechanical deformation as previously described ( Fedon 

t al., 2019; García et al., 2020 ). Briefly, the breasts were con- 

erted into a finite element (FE) biomechanical model using the 

ackage iso2mesh (v.1.8; Matlab v.13a). A large number of 4-node 

etrahedral elements, between 100k and 500k, were used in order 

o minimize the numerical error during the FE analysis ( del Palo- 

ar et al., 2008 ). Nearly incompressible (Poisson ratio equal to 

.495), homogeneous and isotropic Neo-Hookean material mod- 

ls for each tissue were used to describe their mechanical behav- 

or. The Youngs modulus for fibroglandular, adipose and skin tis- 

ue were set to 4.46 kPa, 15.10 kPa, and 60.00 kPa, respectively 

 Wellman, 1999 ). The mechanical compression was then simulated 

sing the open-source package NiftySim (v.2.3.1; University Col- 

ege London) ( Johnsen et al., 2015 ), which uses a Total Explicity 

ynamic Lagrangian approach to solve the mechanical FE problem 

 Miller et al., 2007 ). 

Each breast model was compressed to the thickness recorded in 

he corresponding DICOM header of the cranio-caudal DBT view of 

hat breast, which was acquired, for clinical purposes, during the 

ame visit as the acquisition of the BCT image. 

The total phantom population includes compressed breast 

hicknesses from 3.0 cm to 5.6 cm and chest wall-to-nipple dis- 

ances from 5.8 cm to 18.0 cm with an isotropic voxel size of 

.2 mm × 0.2 mm × 0.2 mm, which is more than sufficient for 

osimetric applications ( Fedon et al., 2019 ). 

Using this method, of which an example is given in Fig. 3 , we

btained a total of 28891 deformed BCT slices extracted from 91 

ifferent patient breasts. Similar to the virtual phantoms the re- 

ulting images have dimensions of 10 0 0 × 300 pixels and a resolu- 
5 
ion of 200 μm. Given that the number of deformed BCT slices was 

ubstantially lower than that of virtual phantom slices, we pre- 

rained the model with the latter, and then fine-tuned the model 

sing the BCT slices from 46 patient BCT images. The other 45 pa- 

ient BCT image phantoms were used for testing the reconstruction 

erformance of the model and the accuracy of density and dosime- 

ry estimates. Each patient breast was either completely included 

r excluded when selecting slices for fine-tuning and testing the 

odel in order to prevent data contamination and bias. 

.3. Projection data 

Limited angle fan-beam projections were simulated for all coro- 

al phantom slices using a geometry with the center of rotation 

laced at the center of the phantom as seen in Fig. 4 . The X-

ay source was placed 65cm above the center of rotation, and the 

ource-detector distance was 70 cm. A total of 25 equally spaced 

rojections between −24 ◦ and 24 ◦ were generated, with the detec- 

or rotating with the X-ray source. The detector was a perfect pho- 

on counting system (100% efficiency) consisting of 1280 elements 

ith a resolution of 0.2mm. The forward model (2) was used for 

he simulations. 

For the virtual phantom data, we generated a series of data 

ets at 3 noise levels from the noiseless simulated projections. This 

as accomplished by setting photon count b i = 10 0 0 ·
√ 

2 
N 

with 

 = { 4 , 8 , 12 } . For each noise level, a single Poisson noise realiza-

ion was generated. For the deformed BCT phantoms, only photon 

ounts corresponding to N = 8 were used. 

Baseline reconstructions were generated for both noiseless and 

oisy data using 100 iterations of the Maximum Likelihood for 

ransmission (MLTR) algorithm ( Nuyts et al., 1998 ), using the com- 

ressed breast thickness to set the size of the reconstruction vol- 

me and with no additional regularization. 

.4. Density computation 

Breast density by mass, also called glandularity ( G ), was com- 

uted as follows: 

 = 

N g ρg 

N g ρg + N a ρa 
(4) 

here N g and N a are the number of voxels classified as fibroglan- 

ular and adipose tissue in the full image, respectively, and ρg and 

a are the corresponding density for fibroglandular and adipose 

issue, respectively, according to Hammerstein et al. (1979) . The 

rue breast density of each BCT phantom was obtained by applying 

his equation to the phantom volumes themselves. The estimated 

reast density resulting from the proposed method was obtained 

y applying the equation to the classified reconstructed images. 
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Fig. 4. Imaging geometry implemented in the Monte Carlo simulation: the X-ray source is placed at 70 cm from the detector, a 3 mm thick polyethylene terephthalate (PET) 

compression paddle was simulated and a large water cuboid was included to take into account the patient-body backscatter. The X-ray field irradiated the breast model at 

different angles (from 24 ◦ to 24 ◦). The center of rotation is placed at 65 cm from the X-ray source. Drawing is not to scale and rotation of the detector is not shown. 

Fig. 5. Example of U-Net reconstruction artifact. 

3

u

(

1

o

w

t

t

i

d

M

Table 1 

X-ray spectra used in the Monte Carlo simulation. HVL: 1st half value 

layer. 

Breast thickness (mm) Spectrum HVL (mm Al) # Cases 

30–39 W/Rh - 27 kV 0.519 2 

40–49 W/Rh - 28 kV 0.530 7 

50–59 W/Rh - 29 kV 0.538 6 

60–69 W/Rh - 30 kV 0.547 18 

70–79 W/Rh - 31 kV 0.557 12 
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.5. Dose calculation 

The mean glandular dose (MGD) estimations were performed 

sing a previously described and validated Monte Carlo code 

 Fedon et al., 2018a; 2018b ), based on the Geant4 toolkit (release 

0.05, December 2018). The Monte Carlo geometry replicates the 

ne used to generate the projections and is shown in Fig. 5 . 

As during simulation of the DBT projections above, each voxel 

as labelled with an index related to its composition: air, adipose 

issue, fibroglandular tissue, and skin, using the chemical composi- 

ions reported by Hammerstein et al. (1979) . The energy deposited 

n the fibroglandular voxels was recorded and then converted into 

ose according to the formula 

GD = 

∑ 

i E i 
M g 

(5) 
6 
here E i is the energy deposited at the interaction event i, and M g 

s the total fibroglandular breast mass. 

10 7 primary X-rays were emitted by an isotropic point source 

laced at 70 cm from the detector and collimated to irradiate the 

ntire detector. In order to replicate the tomosynthesis acquisition 

ode, a total of 25 projections were simulated from −24 ◦ to 24 ◦, 
very 2 ◦. The projection at 0 ◦ replicates the mammographic acqui- 

ition. The number of primary particles ensured a statistical un- 

ertainty on the total dose of less than 0 . 7% , evaluated using the

ethod proposed by Sempau et al. (2001) . Photoelectric interac- 

ions, and coherent and incoherent scatter were included in the 

imulations without modifying the default cut range for photons 

1 mm, corresponding to an energy of 2.45 keV and 2.88 keV for 

dipose and fibroglandular tissue, respectively). 

The X-ray spectra were modeled using the TASMICS model 

 Hernandez and Boone, 2014 ) by adjusting the thickness of the 

odeled rhodium filter to match the first half-value layer mea- 

ured with a solid state detector (RaySafe X2-MAM sensor, Billdal, 

weden) in the modelled system as shown in Table 1 . The Monte 

arlo simulations for estimating the MGD were performed twice 

or each breast; once for each of the 45 BCT phantoms, and once 

ach for the corresponding labelled DBToR reconstructions. In this 

ay, the accuracy of the resulting patient-specific dosimetry esti- 

ates could be assessed. 

.6. Comparison to current reconstructions 

The results of the DBToR reconstruction, prior to the voxel clas- 

ification for estimation of breast density and dose, were compared 

o the baseline iterative MLTR reconstruction algorithm, the LPD 
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Table 2 

Results on noise-free phantom projections, mean ± standard deviation (in 

bold best result). 

Model L 2 -loss SSIM PSNR 

MLTR 0 . 007 ± 4 . 3 × 10 −5 0 . 83 ± 4 . 2 × 10 −3 20 . 2 ± 2 . 9 × 10 −2 

LPD 0 . 014 ± 6 . 9 × 10 −3 0 . 87 ± 2 . 9 × 10 −2 19 . 3 ± 1 . 8 

U-Net 0 . 002 ± 7 . 0 × 10 −4 0 . 80 ± 1 . 4 × 10 −1 27 . 8 ± 2 . 3 

DBToR 0 . 003 ± 8 . 1 × 10 −4 0 . 91 ± 2 . 3 × 10 −2 24 . 8 ± 1 . 3 
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Fig. 6. Bland-Altman plot of the difference (DBToR - GT) of glandularity (in per- 

centage points) and matching box plot with Tukey whiskers. 

a

t  

b

a

t

a

s

h

P

U

f

m

s

U

r

e

p

c

c

a  

f

r

t  

m

lgorithm and the U-Net trained on FBP reconstructions for both 

oiseless and noisy data. 

.7. Model training and evaluation 

In total, we trained three versions of the DBToR algorithm: two 

ersions were trained on virtual phantom projections, both with- 

ut any noise and with varying levels of noise, and one version 

as pretrained on noisy virtual phantom projections and subse- 

uently finetuned on noisy deformed BCT phantoms, on the data 

escribed in Sections 3.1 and 3.2 . For comparison, we trained 

he basic LPD algorithm (achieved by removing the height mask 

rom the input) in addition to DBToR on virtual phantom pro- 

ections. Finally, we also trained U-Net baselines on FBP recon- 

tructions of DBT slices as a classical deep learning reconstruction 

aseline. In our U-Net baselines, the standard U-Net architecture 

onneberger et al. (2015) with depth 4, 32 filters in the initial dou- 

le convolution block and instance normalization layers was used. 

For the DBToR and LPD models, we used a batch size of 8 for 

he pretraining on the virtual phantoms, and for the finetuning on 

he BCT phantoms for the dosimetry application, we chose a batch 

ize of 1. For the U-net baseline, we use a batch size of 4. The

umber of iterations N iter was set to 10 5 for all models trained 

n virtual phantoms, and to 4 × 10 5 for the final model finetun- 

ng on BCT phantoms. This leads to a training time to about 48 h 

nd 24 h for the DBToR/LPD and the U-net models respectively. At 

nference stage, the DBToR reconstruction takes less than 1 s for a 

ingle coronal slice. 

We use the L 2 loss, Structural Similarity Index (SSIM) 

 Wang et al., 2004 ) and Peak Signal-to-Noise Ratio (PSNR) as per- 

ormance metrics. 

. Results 

For DBToR, LPD and U-Net trained on noise-free virtual phan- 

om data we report the corresponding L 2 loss, SSIM and PSNR 

n noise-free virtual phantom test data in Table 2 . Lower L 2 loss 

nd higher SSIM and PSNR values indicate better reconstruction 

erformance. For DBToR, LPD and the U-Net trained on noisy vir- 

ual phantom projections, we report these metrics for noise lev- 

ls N = 4 , 8 , 12 in Table 3 . In both tables, we report the mean and

tandard deviation of the metrics obtained using 3 cross-validation 

olds with 60% of the data used for training and 40% used for test- 

ng in each fold. 

The original LPD algorithm is significantly outperformed by 

BToR for all noise levels. Visual inspection of the slices produced 

y LPD revealed that the LPD often reconstructs breast regions ad- 

acent to the compression paddle very poorly for both test and 

raining data. In particular, it frequently fails to reproduce the flat- 

ess of the part of the skin surface which is in contact with the 

ompression paddle. We ruled out overfitting of LPD as the cause 

f the artifacts, since the validation metrics remained low through- 

ut the training process. While it is possible that a much larger 

ersion of LPD with more reconstruction blocks would learn to cor- 

ect these artifacts, we will see that DBToR resolves them without 
7 
ny further increase in the number of parameters. The U-Net archi- 

ecture is outperformed by DBToR for noise levels N = 4 and N = 8 ,

ut it outperforms DBToR in terms of PSNR for noise level N = 12 

nd in the noise-free case. However, U-Net yields reconstructions 

hat suffer from noticeably lower SSIM compared to DBToR, and 

 visual inspection of the volumes revealed that the U-Net also 

truggles with reconstructing the breast shape correctly, which can 

ave a strong negative effect on the dosimetry accuracy. Higher 

SNR for the U-Net can be, potentially, explained by the fact that 

-Net reconstructs the background better, which is not important 

or dose computations. Additionally, the variance in the perfor- 

ance metrics is higher for the U-Net, indicating that it is more 

ensitive to the data split. Overfitting was more pronounced for the 

-Net baseline due to the much higher parameter count (7.8M pa- 

ameters for U-Net and 872k parameters for DBToR). These consid- 

rations make DBToR a preferred candidate for our application. The 

roposed DBToR algorithm also outperforms the iterative MLTR re- 

onstruction algorithm at all noise levels and for all metrics being 

onsidered, while yielding visually more accurate reconstructions 

s well. It is also interesting to note from Table 3 that the per-

ormance of DBToR at noise level N = 4 is superior to the MLTR 

econstruction algorithm at noise level N = 12 , which corresponds 

o 8 times higher photon count. At noise level N = 12 , the perfor-

ance of MLTR is slightly below the performance of MLTR for the 
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Table 3 

Results on noisy phantom projections for different noise levels N, mean ± standard 

deviation (in bold best result) 

Model L 2 -loss SSIM PSNR 

MLTR ( N = 4 ) 0 . 0096 ± 1 . 0 × 10 −4 0 . 69 ± 9 . 0 × 10 −3 19 . 17 ± 5 . 8 × 10 −2 

LPD ( N = 4 ) 0 . 014 ± 5 . 4 × 10 −3 0 . 85 ± 2 . 4 × 10 −2 18 . 79 ± 1 . 6 

U-Net ( N = 4 ) 0 . 0085 ± 1 . 4 × 10 −3 0 . 64 ± 1 . 7 × 10 −1 20 . 96 ± 1 . 0 

DBToR ( N = 4 ) 0 . 0044 ± 9 . 1 × 10 −4 0 . 90 ± 1 . 8 × 10 −2 23 . 39 ± 9 . 6 × 10 −1 

MLTR ( N = 8 ) 0 . 0082 ± 5 . 2 × 10 −5 0 . 74 ± 7 . 2 × 10 −3 19 . 87 ± 3 . 6 × 10 −2 

LPD ( N = 8 ) 0 . 013 ± 5 . 3 × 10 −3 0 . 84 ± 3 . 0 × 10 −2 19 . 06 ± 1 . 6 

U-Net ( N = 8 ) 0 . 0043 ± 1 . 6 × 10 −3 0 . 78 ± 1 . 3 × 10 −1 24 . 13 ± 1 . 45 

DBToR ( N = 8 ) 0 . 0033 ± 6 . 3 × 10 −4 0 . 91 ± 1 . 2 × 10 −2 24 . 71 ± 8 . 0 × 10 −1 

MLTR ( N = 12 ) 0 . 0078 ± 4 . 47 × 10 −5 0 . 80 ± 5 . 5 × 10 −3 20 . 06 ± 3 . 0 × 10 −2 

LPD ( N = 12 ) 0 . 015 ± 6 . 3 × 10 −3 0 . 86 ± 2 . 7 × 10 −2 19 . 04 ± 1 . 6 

U-Net ( N = 12 ) 0 . 0034 ± 1 . 2 × 10 −3 0 . 72 ± 1 . 6 × 10 −1 25 . 58 ± 2 . 3 

DBToR ( N = 12 ) 0 . 0034 ± 9 . 4 × 10 −4 0 . 91 ± 1 . 6 × 10 −2 24 . 47 ± 1 . 6 

Fig. 7. Bland-Altman plot of the difference in dose estimates resulting from the DBToR reconstruction and the ground truth, in percentage, for both mammography (a) and 

DBT (b). The red line represents the mean, while the two blue-dashed lines represent the 95% limits of agreement. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 8. Example of fibroglandular tissue distribution for an outlier case: the ground 

truth (in white) depicts a higher amount of fibroglandular tissue in the top breast 

layer (i.e., facing the X-ray tube), while the DBToR model (in green) predicts a fi- 

broglandular distribution spread towards the anterior, and more inferior, part of the 

breast. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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Fig. 9. (a) Coronal slice of a breast CT phantom, (b) MLTR reconstruction, (c) DBToR 

reconstruction, and (d) classification of DBToR reconstruction. 
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4

d

oise-free case. At the same time, DBToR at N = 12 reaches com- 

arable level of performance to that of the DBToR on noise-free 

ata. 

For DBToR trained on noisy virtual phantom projections and 

ubsequently finetuned on deformed breast CT slices, where we 

sed noise level N = 8 only during training and finetuning, we 

ummarize the reconstruction performance in Table 4 , and in 

igs. 9 , 10 , and 11 we give examples of coronal, axial, and sagit-

al slices of the virtual breast phantom and corresponding MLTR 

econstruction, DBToR reconstruction, and DBToR classification (all 

n noisy deformed breast CT slices). We observe that DBToR out- 
8 
erforms the baseline MLTR algorithm in terms of the reported 

etrics and visual quality of the slices, particularly noticeable for 

oronal and sagittal directions. 

.1. Breast density estimation 

Fig. 6 shows a box-whisker plot of the absolute percentage 

ifference in glandularity between the DBToR estimate and the 
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Fig. 10. (a) Axial slice of a breast CT phantom, (b) MLTR reconstruction, (c) DBToR 

reconstruction, and (d) classification of DBToR reconstruction. This view is created 

from the volume assembled by stacking all coronal slices from the same case. 

Table 4 

Results on noisy BCT phantom projec- 

tions (in bold best result). 

Model L 2 -loss SSIM PSNR 

MLTR 0.006 0.82 21.45 

DBToR 0 . 0018 0 . 93 27 . 03 
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round truth (GT). It can be seen that, on average, no bias is ob- 

erved ( p-value 0.3), and that the breast density estimates are ac- 

urate to within 2%. 

.2. Mean glandular dose estimation 

The comparison between the MGD evaluated from the DBToR 

econstructions and the GT is shown in the Bland-Altman plots of 

ig. 7 , for both mammography and DBT geometries. 

As can be seen, no bias is observed in the proposed dose esti- 

ation method ( p-value 0.23), with the data points equally scat- 

ered around zero, and that the largest error in the dose estima- 

ion is less than 20%. Visual inspection of the cases that lie be- 

ond the ±2SD limits reveals that this is the consequence of dif- 

erences in the reconstructed fibroglandular distribution obtained 

ith the DBToR model compared to the GT, as shown in an exam- 

le in Fig. 8 . 

For this case, the absolute difference on the glandularity is 1 . 5% 

namely 12 . 0% for the DBToR and 13 . 5% for GT). Thus, due to a

igher amount of fibroglandular tissue closest to the X-ray source 

n the case of the GT, the radiation dose estimated by DBToR is 

ower by 13.5%. 
ig. 11. (a) Sagittal slice of a breast CT phantom, (b) MLTR reconstruction, (c) DBToR reco

he volume assembled by stacking all coronal slices of this case. 

9 
. Discussion and conclusion 

We presented a deep learning-based method for the reconstruc- 

ion of DBT, which we call DBToR. The model is both data driven 

nd model-based, since the forward and backprojection operators 

or a given DBT geometry are a part of our neural network archi- 

ecture and at the same time the model is trained to reduce the to- 

ographic artifacts of the reconstruction. As training data we used 

wo sources of data, one based on random samples with statisti- 

al properties similar to real breast volumes, and one dataset of 

atient breast CT images that have been compressed with a finite 

lement model to simulate the same breast under compression in 

 DBT system. 

Compared to LPD, in DBToR we added the compressed breast 

hickness as prior information. Since the limited angle causes a 

everely ill-posed problem, it was expected that this information 

ould be definitely required, and the experiments ( Table 2 ) con- 

rmed that the result dramatically degrades, compared to the ’full’ 

BToR, when this prior knowledge is not provided to the algo- 

ithm. Requiring this additional information does not limit the gen- 

ralizability of the method, since it is readily available in all DBT 

ystems. 

The results indicate that the proposed algorithm outperforms 

he MLTR iterative reconstruction in terms of reconstruction qual- 

ty for this application. Furthermore, the algorithm generalizes well 

ven when trained on a small dataset and is robust to noise. 

The simulated acquisitions in this work used a mono-energetic 

eam and did not include X-ray scattered radiation, so it remains 

o be seen how our new reconstruction method will handle these 

actors. In practice the effect of not modeling the spectrum will 

ikely be minimal as regular filtered backprojection reconstructions 

lso do not account for these physical effects and apply a series 

f precorrection steps to the projection data instead, such as the 

eam hardening correction described by Herman (1979) . We fore- 

ee using the same approach to extend our method to work in clin- 

cal data. 

We have shown that the method achieves robust and accurate 

redictions of breast density, which is an important metric relat- 

ng to masking and cancer risk. As opposed to current density es- 

imation methods based on mammography and DBT projections, 

hich require assumptions and modeling of the image acquisition 

rocess, the use of the images produced by DBToR allows for a di- 

ect estimation of the amount of dense tissue present in the vol- 

me, resulting in estimates to within 3%. Accurate determination 

f breast density opens up further opportunities for personalized 

isk-based screening. As is crucial for an accurate dosimetric esti- 

ate, the location in the vertical direction of the dense tissue is 

lso estimated with accuracy, resulting in a state-of-the-art dosi- 

etric estimate. It is known that current model dose estimates in- 

roduce an average bias of 30%, and can misrepresent the actual 

atient-specific dose by up to 120% ( Dance et al., 2005; Sechopou- 

os et al., 2012; Hernandez et al., 2015 ). In comparison, the results 
nstruction, and (d) classification of DBToR reconstruction. This view is created from 
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btained here achieve errors below 20% with no systematic bias. 

rue patient-specific dosimetry could be used, for the first time, to 

ather dose registries, especially for screening, ensuring the opti- 

al use of this imaging technology, and allowing for continuous 

onitoring of dose trends and providing valuable data for addi- 

ional optimization and development of existing and new imaging 

echnologies. 

The main limitation of the current work is that it works on 

 slice by slice basis rather than on a full 3D volume. With this 

implification we were able to concentrate on the network struc- 

ure rather than on the logistics of handling the enormous datasets 

eeded to train a 3D model. 

The logical next step for our algorithm is an extension to fully 

D data instead of 2D slices. From there on, we could extend the 

odel-based parts of the deep learning network instead of start- 

ng from precorrected projection data, as in current filtered back- 

rojection methods, by including a polychromatic X-ray spectrum, 

-ray scatter, and other relevant factors in the forward model. 

t could also be valuable to optimize the network output specif- 

cally for artificial intelligence reading by training the compos- 

te network in an end-to-end fashion. Finally, the reconstruction 

f a diagnostic-quality volume, for interpretation by radiologists, 

ith the potential for the higher vertical resolution obtained here, 

ould be a valuable improvement for clinical performance. 

To conclude, we created a deep learning based reconstruction 

or DBT that was able to achieve accurate predictions of breast 

ensity and from there an accurate calculation of patient specific 

GD. 
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