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WHICH FINITE GROUPS ACT SMOOTHLY ON A GIVEN
4-MANIFOLD?

IGNASI MUNDET I RIERA AND CARLES SÁEZ–CALVO

Abstract. We prove that for any closed smooth 4-manifold X there exists a constant
C with the property that each finite subgroup G < Diff(X) has a subgroup N which
is abelian or nilpotent of class 2, and which satisfies [G : N ] ≤ C. We give sufficient
conditions on X for Diff(X) to be Jordan, meaning that there exists a constant C such
that any finite subgroup G < Diff(X) has an abelian subgroup A satisfying [G : A] ≤ C.
Some of these conditions are homotopical, such as having nonzero Euler characteristic
or nonzero signature, others are geometric, such as the absence of embedded tori of
arbitrarily large self-intersection arising as fixed point components of periodic diffeo-
morphisms. Relying on these results, we prove that: (1) the symplectomorphism group
of any closed symplectic 4-manifold is Jordan, and (2) the automorphism group of any
almost complex closed 4-manifold is Jordan.

Contents

1. Introduction 2

2. First simplifications 8

3. Abelian groups with a bound on the number of generators 9

4. Linearization of finite group actions 12

5. Surfaces and line bundles 14

6. Non-free actions 16

7. Diffeomorphisms normalizing an action of Z/p or Z/p2 20

8. Finite groups acting smoothly on 4-Manifolds with b2 = 0 23

9. Proofs of Theorems 1.1 and 1.2 32

10. Using the Atiyah–Singer G-signature theorem 41

11. Automorphisms of almost complex manifolds: proof of Theorem 1.6 42

12. Symplectomorphisms: proof of Theorem 1.7 44

Appendix A. Computing H∗((Z/pr)d;Z/n): proof of Theorem 8.4 48

References 50

Date: January 11, 2019.
Both authors have been partially supported by the (Spanish) MEC Project MTM2015-65361-P. The

second author acknowledges financial support from the Spanish Ministry of Economy and Competitive-
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1. Introduction

1.1. Main results. One of the most basic problems in the theory of finite transformation
groups is to determine which finite groups act smoothly and effectively on a given closed
manifold. This is in general a very difficult problem, and in dimension 4 it has been
solved for very few manifolds: these include S4 [3, 24], CP 2 [10, 49], flat manifolds
as the torus T 4 [15] or (for trivial reasons) the asymmetric manifolds (see [44] for the
construction of infinitely many asymmetric closed 4-manifolds).

A simpler problem is to provide restrictions on which finite groups act smoothly and
effectively on a given closed 4-manifold, with the aim of narrowing as much as possible
the list of potential finite groups of symmetries of the given manifold. One may hope that
for any fixed 4-manifold the algebraic structure of the finite groups acting effectively on
it cannot be arbitrarily complicated. This has been confirmed for manifolds with b1 = 0
in [18], where it is proved that for such manifolds any finite group acting effectively but
trivially on homology is abelian and can be generated by one or two elements (see [23]
for more precise results on the case b1 = 0 and b2 = 2). A weaker form of this result has
been extended in [29] to 4-manifolds with nonzero Euler characteristic.

In this paper we prove a theorem that materializes the previous hope for all effective
smooth actions on closed 4-manifolds. To state this theorem we recall some standard
terminology. A group G is said to be nilpotent of class at most 2 if [a, [b, c]] = 1 for every
a, b, c ∈ G. Equivalently, G/Z(G) is abelian, where Z(G) ≤ G is the center of G. For
example, any abelian group is nilpotent of class at most 2. Note that in the literature
on nilpotent Lie algebras the analogous property is sometimes called 2-step nilpotency.

Theorem 1.1. Let X be a closed smooth 4-manifold. There exists a constant C such
that every group G acting in a smooth and effective way on X has a subgroup G0 ≤ G
such that [G : G0] ≤ C and:

(1) G0 is nilpotent of class at most 2,
(2) [G0, G0] is a (possibly trivial) cyclic group,
(3) X [G0,G0] is either X or a disjoint union of embedded tori.

As a qualitative statement this theorem is as good as possible. Namely, if one replaces
”nilpotent of class at most 2” by ”abelian” then the statement is no longer true. For
example, it is false for T 2 × S2, because this manifold has non Jordan diffeomorphism
group (see below). In contrast, in dimensions lower than 4 the previous theorem does
hold with ”nilpotent of class at most 2” replaced by ”abelian” (the one dimensional case
is elementary; see [28] for dimension 2 and [50] for dimension 3).

The following result complements Theorem 1.1 by relating the algebraic structure of
nilpotent groups of class at most 2 to the geometry of their potential smooth actions
on a given oriented 4-manifold. We are interested on the following invariant of a finite
group G:

α(G) = min{[G : A] | A ≤ G abelian}.

The number α(G) may be understood as a measure of how far G is from being abelian.
In the next theorem and in a few other sections of this paper we are going to use the
following standard fact. If X is a closed, connected and oriented 4-manifold and Σ ⊂ X
is an embedded closed orientable curve, then picking an orientation of Σ we obtain a
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homology class [Σ] ∈ H2(X) whose self intersection can be identified with an integer.
This integer is independent of the orientation of Σ and will be denoted by Σ · Σ.

Theorem 1.2. Let X be a closed, connected and oriented smooth 4-manifold. There
exist a constant C and a function f : N → N (both C and f depend on X) satisfying
limn→∞ f(n) = ∞ and for every finite nilpotent group N of class at most 2 acting in
a smooth and effective way on X and satisfying α(N) ≥ C there is some g ∈ [N,N ]
satisfying:

(1) the order of g satisfies ord(g) ≥ f(α(N)),
(2) Xg is a nonempty disjoint union of embedded tori T1, . . . , Ts ⊂ X,
(3) for every i we have |Ti · Ti| ≥ C α(N).

1.2. Jordan property. The results in this paper are closely related to a question of É.
Ghys on the Jordan property of diffeomorphism groups. Recall (see [36]) that a group
G is said to be Jordan if there is some number C such that any finite subgroup G ≤ G

satisfies α(G) ≤ C. If such C exists, it is called a Jordan constant for G. If G is Jordan,
the optimal Jordan constant of G is defined to be the maximum of α(G) as G runs along
the set of the finite subgroups of G. The most basic examples of Jordan group are the
linear groups GL(n,R): this is the content of a theorem of C. Jordan (see Theorem 4.1
below).

Ghys [8] raised the question around 30 years ago of whether diffeomorphism groups
of closed manifolds are Jordan. A number of papers have been written on this question
in the last few years [6, 28, 29, 31, 50]. In dimension at most 3 any closed manifold
has Jordan diffeomorphism group [28, 50]. In contrast, in dimension 4 (and higher) one
encounters both manifolds with Jordan diffeomorphism group (for example, those with
nonzero Euler characteristic [29], or the torus T 4 [28]) and manifolds with non Jordan
diffeomorphism group [6] (for example T 2 × S2).

Remark 1.3. Given the existence of closed manifolds for which Ghys’s question has a
negative answer, one may wonder whether there exists a weakening of Jordan’s property
that is satisfied by the diffeomorphism groups of all closed manifolds. Ghys himself asked
in 2015 [9] whether for every closed smooth manifold M there exists a constant C such
that any finite subgroup G < Diff(M) has a nilpotent subgroup N ≤ G with [G : N ] ≤ C.
Theorem 1.1 implies that this is true if M is 4-dimensional, and suggests that one could
perhaps bound the nilpotency class of N as a function of the dimension of M .

It is a natural and very interesting problem to determine which closed 4-manifolds have
Jordan diffeomorphism group. The next theorem gives a partial solution to this problem
by providing necessary conditions for a 4-manifold to have non Jordan diffeomorphism
group. The statement actually applies more generally to subgroups of the group of
diffeomorphisms: this will be crucial later when considering automorphisms of geometric
structures (see Subsection 1.3 below).

Theorem 1.4. Let X be a closed connected oriented smooth 4-manifold, and let G be a
subgroup of Diff(X). If G is not Jordan then there exists a sequence (φi)i∈N of elements
of G such that:

(1) each φi has finite order ord(φi),
(2) ord(φi) → ∞ as i→ ∞,
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(3) all connected components of Xφi are embedded tori,
(4) for every C > 0 there is some i0 such that if i ≥ i0 then any connected component

Σ ⊆ Xφi satisfies |Σ · Σ| ≥ C,
(5) we may pick for each i two connected components Σ−

i ,Σ
+
i ⊆ Xφi in such a way

that the resulting homology classes [Σ±
i ] ∈ H2(X) satisfy Σ±

i · Σ±
i → ±∞ as

i→ ∞.

Proof. This is a consequence of Theorems 1.1 and 1.2, together with Lemma 10.4. �

In the next result we collect a few sufficient conditions for the diffeomorphism group
of a closed 4-manifold to be Jordan. We denote by χ(X), σ(X) the Euler characteristic
and the signature of a connected, oriented and closed manifold X .

Theorem 1.5. Let X be a connected, closed, oriented and smooth 4-manifold. If X
satisfies any of the following conditions then Diff(X) is Jordan:

(1) χ(X) 6= 0,
(2) σ(X) 6= 0,
(3) b2(X) = 0,
(4) b+2 (X) > 1 and X has some nonzero Seiberg–Witten invariant,
(5) b+2 (X) > 1 and X has some symplectic structure.

Proof. By the main result in [29], if χ(X) 6= 0 then Diff(X) is Jordan. By Theorem
10.3 if σ(X) 6= 0 then Diff(X) is Jordan. By Theorem 8.1 if b2(X) = 0 then Diff(X) is
Jordan.

Assume that b+2 (X) > 1 and that X has some nonzero Seiberg–Witten invariant, and
let us prove that Diff(X) is Jordan. If Diff(X) were not Jordan, then by Theorem 1.4
there would exist in X some embedded torus of positive self-intersection. According to
the adjunction formula for Seiberg–Witten invariants (see e.g. [13], [35, Theorem 1.1];
here we are using b+2 (X) > 1), if s is a Spinc structure on X with nonzero Seiberg–Witten
invariant then the first Chern class c1(s) ∈ H2(X ;Z) of the determinant line bundle of s
satisfies the following formula for any embedded surface Σ of positive genus and positive
self-intersection:

χ(Σ) + Σ · Σ ≤ −|〈c1(s),Σ〉|.

This formula cannot be true if Σ is an embedded torus of positive self-intersection, and
hence all Seiberg–Witten invariants of X are trivial, contradicting our hypothesis.

If X has b+2 (X) > 1 and admits a symplectic structure, then it has some non-vanishing
Seiberg–Witten invariant by Taubes’ theorem [47]. Therefore Diff(X) must be Jordan
by the previous argument. �

Hence if X is a closed 4-manifold such that Diff(X) is not Jordan, and H∗(X ;Q) is
not isomorphic to H∗(T 2 × S2;Q) as a graded vector space, then all Seiberg–Witten
invariants of X are zero.

1.3. Geometric structures. The existence of 4-manifolds whose diffeomorphism group
is not Jordan leads naturally to the consideration of Jordan’s property for subgroups of
the diffeomorphism group. The most natural examples of such subgroups are the auto-
morphism groups of geometric structures such as symplectic structures (one may consider
here the symplectomorphism group or its subgroup of Hamiltonian diffeomorphisms), or
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complex structures (see [39, 40]; this question is connected to a whole set of results
about Jordan property in the algebraic world, see [25, 37, 38, 45, 46] and the references
therein). This makes sense not only in dimension 4 but in higher dimensions. It turns
out that there exist many closed manifolds whose diffeomorphism group is not Jordan
but which admit some structure (symplectic or complex) whose automorphism group is
Jordan. The most basic example is T 2 × S2 [6, 30, 39], but there are infinitely many
higher dimensional examples [31, 32].

In this paper we address this question in dimension 4 for almost complex structures
and for symplectic structures.

The following theorem extends the main result of [39, 40] from complex structures to
almost complex structures.

Theorem 1.6. Let X be a closed and connected smooth 4-manifold, and let J be an al-
most complex structure on X. Let Aut(X, J) ⊂ Diff(X) be the group of diffeomorphisms
preserving J . Then Aut(X, J) is Jordan.

The proof of Theorem 1.6 is based on Theorem 1.4 (whose proof on its turn is based
on [34], which uses the CFSG), and hence is very different from that in [39], which is
based on the classification of compact complex surfaces.

The following theorem generalizes the results in [30] to arbitrary symplectic 4-manifolds.

Theorem 1.7. For any closed symplectic 4-manifold (X,ω) we have:

(1) Symp(X,ω) is Jordan.
(2) If X is not an S2-bundle over T 2, then a Jordan constant for Symp(X,ω) can be

chosen independently of ω.
(3) If b1(X) 6= 2, then Diff(X) is Jordan.

Remark 1.8. Regarding statement (2) in the previous theorem, note that for a Jordan
group G depending on a parameter ω the following two assertions are in general different:

(i) the optimal Jordan constant of G does not depend on ω,
(ii) one can pick a Jordan constant of G which is independent of ω.

Of course (i) is stronger than (ii), and statement (2) in Theorem 1.7 refers to (ii).

Statement (2) in Theorem 1.7 is sharp in the sense that if X is an S2-bundle over T 2

then it is impossible to find some number C which is a Jordan constant for Symp(X,ω)
for all symplectic forms ω on X . More precisely, if X = T 2 × S2, Theorems 1.1 and 1.2
in [30] imply that the optimal Jordan constant for Symp(X,ω) is equal to µ(ω)+C0(ω),
where µ(ω) = |12〈[ω], T 2〉/〈[ω], S2〉| and C0(ω) is bounded independently of ω, and if X
is the twisted S2-bundle over T 2 then the arguments in the proof of Lemma 2.1 allow to
obtain a similar estimate for the optimal Jordan constant for Symp(X,ω) for all ω.

Statement (3) in Theorem 1.7 is also sharp: this follows from [6] (see also [31]).

A similar theorem can be proved for isometry groups of closed Lorentz 4-manifolds
(see [33], which uses Theorem 1.4 in this paper). Note that isometry groups of closed
Riemannian manifolds (X, g) are always Jordan, because they are compact Lie groups
and hence they can be identified, by the Peter–Weyl theorem, with subgroups of some
linear group GL(n,R). This is no longer true for Lorentz metrics: while their isometry
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group is a finite dimensional Lie group, it may be noncompact and even have infinitely
many connected components (see the references in [33]).

1.4. Main ideas of the proofs. The proof of Theorem 1.1 follows different routes
depending on whether b2(X) is zero or not. A common ingredient in both situations
is the main result in [34]. This result is concerned with the following analogue of the
Jordan property: given positive integers C and d, a collection of finite groups C satisfies
J(C, d) if each G ∈ C has an abelian subgroup A such that [G : A] ≤ C and A can be
generated by d elements. Let T(C) be the set of all G ∈ C which fit in an exact sequence
of groups 1 → P → G→ Q→ 1 such that the orders of P and Q are both prime powers.
The main result in [34] (see Theorem 9.3 below) states that if C is closed under taking
subgroups and T(C) satisfies J(C, d) for some C and d then C satisfies J(C ′, d) for some
C ′. We remark that this result uses the classification of finite simple groups.

IfM is a closed manifold and G denotes the collection of all finite subgroups of Diff(M)
then Diff(M) is Jordan if and only if G satisfies J(C, d) for some C and d: this is a
nontrivial fact that follows from a theorem of Mann and Su (see Theorem 3.6 below).

In all the results stated in this introduction it suffices to consider connected mani-
folds, because closed manifolds have finitely many connected components. Let X be a
closed connected 4-manifold. By the main result in [30], if the Euler characteristic of
X is nonzero then Diff(X) is Jordan. Consequently, to prove Theorem 1.1 it suffices to
consider the case in which X is connected and χ(X) = 0.

Assume first that b2(X) = 0. In this case we directly prove that Diff(X) is Jordan.
This is the main result in Section 8 (see Theorem 8.1), and we next briefly explain the
structure of the proof. Let G be the collection of all finite subgroups of Diff(X), and
let P ⊆ G be the collection of p-groups (for all primes p). Since χ(X) = 0 we have
b1(X) = 1 so H1(X) ≃ Z. One can prove that if a finite group G acts on X trivially on
H1(X) then there exists a classifying map c : X → S1 for a generator of H1(X) which is
equivariant with respect to an action of G on S1 given by a character ρ : G → S1. The
latter is called the rotation morphism, and is defined in Subsection 8.1. To study groups
G acting on X trivially on H1(X) we consider separately Ker ρ and ρ(G). In particular
we prove that if G is an abelian p-group acting freely on X and ρ(G) is trivial then G
must contain a cyclic subgroup of bounded index. This is the main ingredient in the
proof that P satisfies J(C, d) for some C and d. We deduce from this that T(G) satisfies
J(C ′, d) using the main result in Section 7. Applying the main result in [34] we conclude
that Diff(X) is Jordan.

Now assume that b2(X) 6= 0. The proof of Theorem 1.1 in this case is contained in
Section 9. The main step consists in proving that the set G0 of all finite subgroups of
Diff(X) which are of the form [G,G], where G < Diff(X) is finite, satisfies the property
J(C, r) for some C and r. To prove this we apply the main result in [34] to G0, so it
suffices to prove J(C ′, r) for T(G0). For the purpose of proving Theorem 1.1 we may
assume that X is orientable (see Section 2). Choose one orientation and let [X ] denote
the fundamental class. The assumption b2(X) 6= 0, combined with Poincaré duality,
implies the existence of line bundles L1, L2 → X such that 〈c1(L1)c1(L2), [X ]〉 = 1. It

is proved in [32] that any Γ ∈ G0 has a central extension Γ̂ which acts on L1, L2 lifting
the action of Γ. If Γ is cyclic a simple trick implies that the action of Γ itself can be
lifted to L1, L2, and then the equality 〈c1(L1)c1(L2), [X ]〉 = 1 prevents the action of Γ
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on X from being free. This can be used to prove that any cyclic p-group Γ ∈ G0 has a
subgroup of bounded index with nonempty fixed point set (this is Lemma 9.1), and from
this one easily deduces that any p-group Γ ∈ G0 (cyclic or not) has an abelian subgroup
of bounded index B ≤ Γ such that at least one of these properties is true: XB 6= ∅, or
B fixes a nonorientable embedded surface in X . This then leads to the proof that G0

satisfies J(C ′, r) (Lemma 9.4).

Theorem 1.2 on its turn follows from Theorem 1.1 and from results on actions of finite
groups on line bundles over closed surfaces proved in [30] and recalled in Section 5.

In the previous sketch we have mentioned some of the sections of the paper, and
we now explain the contents of the other ones. Section 2 proves that for the purposes
of the present paper we may assume that all closed manifolds are orientable and that
all finite group actions are trivial on cohomology. Section 3 contains some auxiliary
lemmas on finite abelian p-groups with a bound on the number of generators; these
results are used in the present paper in combination with the theorem of Mann and Su.
Section 4 gathers some basic consequences of the fact that a group action that preserves
a submanifold induces an action on the normal bundle of the submanifold by vector
bundle automorphisms. These results are crucial in many of our arguments, and this
is the reason why our results can not be automatically transferred from diffeomorphism
to homeomorphism groups. The results in Section 5 refer to actions of finite groups
on line bundles over closed surfaces. Section 6 proves that if a finite abelian p-group
acts smoothly on a closed 4-manifold and no element has an isolated fixed point then the
homology of the complement of the set where the action is free is bounded independently
of p and the group action. This has some important consequences for non-free actions
of finite p-groups, which are also proved in Section 6. Section 7 proves a technical result
that in many situations allow to pass from property J(C, d) for the finite p-subgroups
of Diff(X) to property J(C ′, d) for the finite subgroups G < Diff(X) sitting in an exact
sequence of groups 1 → P → G→ Q→ 1 where both P and Q have prime power order.
The contents of Sections 8 and 9 have already been explained. Section 10 extracts some
consequences of the Atiyah–Singer G-signature theorem. Sections 11 and 12 contain
the proofs of Theorems 1.6 and 1.7 respectively. The paper finishes with an appendix
computing of the cohomology of (Z/pr)d with coefficients in Z/n (for all p, r, d, n).

1.5. Conventions and notation. We fix here some basic terminology and notation.
Suppose that a group G acts on a space X . We denote by XG the set of points x ∈ X
such that gx = x. If g ∈ G then we denote by Xg the set of points satisfying gx = x. We
say that a subspace Y ⊆ X is invariant (or G-invariant, or preserved by G) if for
any y ∈ Y and g ∈ G we have gy ∈ Y . This is a standard convention (see e.g. Bredon,
Chapter I, Section 1; or Brocker–tom Dieck Chap I, Section 4).

For any space X we denote the rational Betti numbers by bj(X) = bj(X ;Q) =
dimQHj(X ;Q). Integer coefficients will be implicitly assumed in homology and co-
homology, so we will denote H∗(X) = H∗(X ;Z), and H∗(X) = H∗(X ;Z). Following the
standard convention we denote by χ(X) the Euler characteristic of X and by σ(X) the
signature of X in case X is a closed oriented manifold.

A continuous action of a group G on a manifold X induces an action on H∗(X).
We will say that the action is cohomologically trivial (CT for short), if the induced
action on H∗(X) is trivial. If X is orientable and closed, then a CT action is orientation
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preserving. An action of G on X is effective if g · x = x for all x ∈ X implies that
g = 1. We will write that an action is CTE if it is CT and effective.

For any set S we denote by ♯S the cardinal of S.

Whenever we say that a group G can be generated by d elements we mean that there
is a collection of non necessarily distinct elements g1, . . . , gd which generate G.

All manifolds will be assumed by default to be smooth. A closed manifold means
a compact manifold without boundary.

2. First simplifications

The following is a generalization of the results in [28, Section 2.3].

Lemma 2.1. Let X be a closed connected manifold and let X ′ → X be an unramified
covering of finite degree, where X ′ is connected. If Diff(X ′) is Jordan then Diff(X) is
also Jordan. Furthermore, if there exists a constant C such that every finite subgroup
G ≤ Diff(X ′) has a nilpotent subgroup H ≤ G of class at most 2 satisfying [G : H ] ≤ C,
then the same is true for Diff(X) for a possibly different value of C.

Proof. Let x0 ∈ X be a base point. Since X is closed, its fundamental group π1(X, x0) is
finitely generated. Let k be the degree of the covering X ′ → X . Let Covk(X) be the set
of isomorphism classes of non-necessarily connected unramified coverings of X of degree
k (two coverings X ′ → X and X ′′ → X are isomorphic if there is a diffeomorphism
X ′ → X ′′ lifting the identity on X). Let Sk be the permutation group on k letters, and
consider the action of Sk on Hom(π1(X, x0), Sk) by conjugation. There is a bijection

Covk(X) → Hom(π1(X, x0), Sk)/Sk,

which sends each element of Covk(X) to its monodromy. Since π1(X, x0) is finitely
generated, Hom(π1(X, x0), Sk)/Sk is finite, so Covk(X) is also finite.

Let now [X ′] ∈ Covk(X) be the class of the covering π : X ′ → X . Let G ≤ Diff(X)
be a finite subgroup. Then G acts on Covk(X) by pullback. Let G0 ≤ G be the
stabilizer of [X ′]. Since the orbit of [X ′] in Covk(X) can be identified with G/G0, we
have [G : G0] ≤ ♯Covk(X). Define

G1 = {(g, φ) ∈ G0 ×Diff(X ′) | π ◦ φ = g ◦ π}.

We have an exact sequence:

1 → Aut(X ′)
ρ
−→ G1

q
−→ G0 → 1

where Aut(X ′) = {φ ∈ Diff(X ′) | π ◦ φ = π} are the automorphisms of the covering,
ρ(φ) = (1, φ) and q(g, φ) = g. The group Aut(X ′) is finite, hence so is G1. The map
(g, φ) 7→ φ defines an inclusion G1 →֒ Diff(X ′).

If there exists an abelian (resp. nilpotent of class at most 2) subgroup H ≤ G1

satisfying [G1 : H ] ≤ C then q(H) is also abelian (resp. nilpotent of class at most 2) and
satisfies [G0 : q(H)] ≤ C, so [G : q(H)] ≤ C♯Covk(X). This proves the Lemma. �

As a corollary, we see that in order to prove that Diff(X) is Jordan, or to see that
there is a constant C such that any finite group G ≤ Diff(X) has a nilpotent subgroup
H of class at most 2 with [G : H ] ≤ C, it is enough to show that some finite unramified
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covering of X has that property. In particular, we may assume without loss of generality
that X is orientable.

The following result is a consequence of a classical theorem of Minkowski [26] which
states that the size of any finite subgroup of GL(k,Z) is bounded above by a constant
depending only on k. For the proof see [29, Lemma 2.6].

Lemma 2.2. Let X be a closed manifold. There exists a constant C such that for
any continuous action on X of a finite group G there is a subgroup G0 ≤ G satisfying
[G : G0] ≤ C and whose action on X is CT.

This implies that it suffices for our purposes to consider smooth CTE actions of fi-
nite groups. In particular these actions are orientation preserving because here we only
consider closed manifolds (note that in [29] we consider more generally manifolds with
boundary, and for them a cohomologically trivial action need not be orientation preserv-
ing).

If a finite group G acts smoothly and preserving the orientation on an oriented 4-
manifold X then for every g ∈ G each connected component of the fixed point set Xg

has even codimension. Hence, if Xg 6= X then Xg is the union of finitely many points
and finitely many disjoint embedded closed and connected surfaces. We will use this fact
repeatedly and without explanation in the arguments that follow.

3. Abelian groups with a bound on the number of generators

In this section we collect several lemmas involving finite abelian groups and giving
estimates on different quantities as a function of the minimal number of generators of
these abelians groups. These results will be used in subsequent sections in combination
with the classical theorem of Mann and Su, that we recall in Subsection 3.3.

3.1. Arbitrary finite groups.

Lemma 3.1. For any natural numbers r, C there exists a number C ′ with the following
property. Let G be a finite group and let A ≤ G be an abelian subgroup. Suppose that
A can be generated by r elements and that [G : A] ≤ C. Let AutA(G) ≤ Aut(G) be the
group of automorphisms φ : G→ G satisfying φ(A) = A. We have:

[Aut(G) : AutA(G)] ≤ C ′.

Proof. Consider the map µ : A→ A defined as µ(a) = aC! (we use multiplicative notation
on A and later on G), and let A0 = µ(A) ≤ A. Since A can be generated by r elements,
we have [A : A0] ≤ (C!)r. Furthermore any subgroup B ≤ A satisfying [A : B] ≤ C
contains A0. Indeed, for any such B and any a ∈ A we have a[A:B] ∈ B, so aC! ∈ B. In
particular we have A0 ≤ φ(A) ∩ A for every φ ∈ Aut(G), which implies A0 ≤ φ(A). So
A1 =

⋂
φ∈Aut(G) φ(A) satisfies A0 ≤ A1 ≤ A and consequently

[A : A1] ≤ [A : A0] ≤ (C!)r.

By its definition A1 is clearly a characteristic subgroup of G (i.e., it is invariant under
the action of Aut(G) on G), so in particular it is normal.

Let S be the collection of all subsets of the quotient group G/A1. Since

♯G/A1 = [G : A1] = [G : A][A : A1] ≤ C(C!)r,
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we can bound ♯S ≤ C1 := 2C(C!)r . The action of Aut(G) on G induces an action on G/A1

(because A1 ≤ G is characteristic) which on its turn induces an action on S. Denote by
[A] ∈ S the element corresponding to A/A1 viewed as a subset of G/A1. Then AutA(G)
is the stabilizer of [A], so we have [Aut(G) : AutA(G)] ≤ ♯S ≤ C1. �

Lemma 3.2. For any natural numbers r, C there exists a number C ′ with the following
property. Let G be a finite group, let G0 E G be a normal subgroup, and let A ≤ G0

be an abelian subgroup. Suppose that [G0 : A] ≤ C and that A can be generated by r
elements. Then the normalizer NG(A) of A in G satisfies

[G : NG(A)] ≤ C ′.

Proof. Let c : G→ Aut(G0) be the morphism defined by the action of G on G0 given by
conjugation. Then NG(A) = c−1(AutA(G0)), so the lemma follows from Lemma 3.1. �

Lemma 3.3. Let 1 → Z → G
π
→ A → 1 be an exact sequence of finite groups, where

Z ≤ G is central and A is abelian. Let r be an integer such that every abelian subgroup
of G is generated by r elements. Then A is generated by [r(log2(♯Z) + 1)] elements.

Proof. For any prime p let Ap ≤ A denote the p-part (i.e., the subgroup of elements
whose order is a power of p), and let sp be the minimal number of generators of Ap. Let
Ap[p] ≤ Ap be the p-torsion. Then Ap[p] ≃ (Z/p)sp. By the Chinese remainder theorem
A can be generated by maxp sp elements, where p runs over the set of prime numbers
dividing ♯A. Hence it suffices to prove the lemma when A ≃ (Z/p)s, because the general
case can be reduced to it replacing G by π−1(Ap[p]) for every p | ♯A.

Assume for the rest of the proof that A ≃ (Z/p)s. Then A has a natural structure of s-

dimensional vector space over Z/p. Define a map Ω : A×A→ Z by Ω(a, b) = [ã, b̃], where

ã, b̃ are any lifts of a, b ∈ A to G. This map is well-defined and it is a skew-symmetric
bilinear form on A because Z is central. Hence the image of Ω, which we denote by ZΩ,
is a p-group and all its nontrivial elements have order p. That is, ZΩ ≃ (Z/p)r for some
r, so ZΩ has a natural structure of vector space over Z/p.

For any vector subspace I ⊆ A we denote I⊥ = {a ∈ A | Ω(a, i) = 1 for every i ∈ I}.
Alternatively, if we define ΩI : A→ Hom(I, ZΩ) by ΩI(a)(i) = Ω(a, i) we can identify

(1) I⊥ = KerΩI .

We say that I is isotropic if I ⊆ I⊥. A trivial example of isotropic subspace is I = 0.
If I is isotropic and there exists some γ ∈ I⊥ \ I, then I + 〈γ〉 is isotropic (because Ω
is skew-symmetric) and strictly bigger than I. Hence, any maximal isotropic subspace I
satisfies I = I⊥.

Choose a maximal isotropic subspace I ⊆ A. By (1) we have I = I⊥ = KerΩI , so

dim I = dimKerΩI ≥ dimA− dimHom(I, ZΩ) = s− dim I dimZΩ,

and consequently

dim I ≥
s

1 + dimZΩ
=

s

1 + logp ♯ZΩ
≥

s

1 + log2 ♯Z
.

Since I is isotropic, B := π−1(I) ≤ G is abelian, and it cannot be generated by less than
dim I elements (because B surjects onto I). Consequently dim I ≤ r, which, combined
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with the previous estimates, gives s ≤ dim I(1 + log2 ♯Z) ≤ r(1 + log2 ♯Z), so the proof
of the lemma is complete. �

3.2. Finite p-groups and MNAS’s.

Lemma 3.4. Let p be a prime and let B ≤ A be finite abelian p-groups. Suppose that A
can be generated by r elements. Let Aut0B(A) ≤ Aut(A) denote the automorphisms of A
whose restriction to B is the identity. Then

♯Aut0B(A) ≤ [A : B]r
2

.

Note that an analogous lemma can be proved for arbitrary finite abelian groups, but
for our purposes the case of p-groups will be sufficient.

Proof. Denote C = [A : B]. Choose generators a1, . . . , ar of A. An automorphism
φ ∈ Aut(A) is determined by the images φ(a1), . . . , φ(ar). Suppose that φ ∈ Aut0B(A)
and write φ(aj) = aj + dj (additive notation on A) for every j, with dj ∈ A. For each j
we have Caj ∈ B, so Caj = φ(Caj) = Caj +Cdj. It follows that Cdj = 0, so dj belongs
to the C-torsion A[C] ≤ A. We have ♯A[C] ≤ Cr, so the set of all possible choices for

d1, . . . , dr has at most (Cr)r = Cr2 elements. Hence, ♯Aut0B(A) ≤ Cr2 . �

Let G be a finite group, and let A be an abelian normal subgroup of G. The action of
G on itself by conjugation induces a morphism of groups

c : G/A→ Aut(A).

We will write that A is a MNAS (of G) if A is a maximal normal abelian subgroup of
G. It is well known that if G is a p-group (for any prime p) and A is a MNAS then c is
injective (see e.g. [41, §5.2.3]).

Lemma 3.5. Let G be a finite p-group and let A ≤ G be a MNAS. Suppose that A can
be generated by r elements. For every abelian subgroup B ≤ G we have

[G : A] ≤ [G : B]r
2+1.

Proof. Choose an abelian subgroup B ≤ G. Let π : G → G/A be the quotient map.
Then [G/A : π(B)] = [π(G) : π(B)] ≤ [G : B]. If b ∈ B, then c(π(b)) ∈ Aut0A∩B(A)
because B is abelian. Using the injectivity of c and Lemma 3.4 we have

♯π(B) ≤ ♯Aut0A∩B(A) ≤ [A : A ∩ B]r
2

≤ [G : B]r
2

.

Combining the inequalities we have:

[G : A] = ♯G/A = [G/A : π(B)] · ♯π(B) ≤ [G : B] · [G : B]r
2

= [G : B]r
2+1.

�

3.3. Mann–Su theorem. The following classical result due to Mann and Su will play
a prominent role in our arguments.

Theorem 3.6 (Theorem 2.5 in [17]). For any closed manifold Y there exists some integer
r ∈ Z depending only on H∗(Y ) with the property that for any prime p and any elemen-
tary p-group (Z/p)s admitting an effective action on Y we have s ≤ r. Equivalently, any
finite abelian group acting effectively on Y can be generated by r elements.
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Lemma 3.7. Given a closed manifold X and natural numbers C0, C1 there exists a
constant C with the following property. Suppose that G is a finite group sitting in an
exact sequence

1 → G0 → G→ G1 → 1

satisfying ♯G0 < C0, and suppose that there exists an abelian subgroup B ≤ G1 satisfying
[G1 : B] ≤ C1. If there exists a CTE action of G on X then there is an abelian subgroup
A ≤ G satisfying [G : A] ≤ C.

Proof. Denote by π : G→ G1 the projection. Substituting G by π−1(B) we may assume
without loss of generality that G1 is abelian. Let G′ be the centralizer of G0 inside G.
Since ♯G0 ≤ C0 we have [G : G′] ≤ C0!. Define Z = G0 ∩ G′ and G′

1 = π(G′) ≤ G1.
Clearly, [G1 : G

′
1] ≤ C0! and ♯Z ≤ C0, and we have an exact sequence

1 → Z → G′ → G′
1 → 1,

where Z is central in G′. Let r be the number given by Theorem 3.6 applied to X .
By Lemma 3.3, G′

1 can be generated by [r(log2(♯Z) + 1)] ≤ [r(log2C0 + 1)] elements.
Therefore we can apply [28, Lemma 2.2] to obtain the result. �

4. Linearization of finite group actions

The following is a classical theorem of Camille Jordan (see [11], and [5, 28] for modern
proofs).

Theorem 4.1 (Jordan). For any natural number n there exists a constant Cn such
that every finite subgroup G ≤ GL(n,C) has an abelian subgroup A ≤ G satisfying
[G : A] ≤ Cn.

The next lemma follows from the results in [2, VI.2].

Lemma 4.2. Let X be a connected 4-manifold and let G be a finite group acting smoothly
and effectively on X. Suppose that XG 6= ∅. Then, for every p ∈ XG the linearization of
the G-action at TpX defines an embedding G →֒ GL(TpX). In particular, we can identify
G with a subgroup of GL(4,R).

Combining Theorem 4.1 and Lemma 4.2 and taking C = C4 we obtain:

Lemma 4.3. There is a constant C with the following property. Let X be a connected
4-manifold and let G be a finite group acting smoothly and effectively on X with XG 6= ∅.
There exists an abelian subgroup A ≤ G such that [G : A] ≤ C.

Lemma 4.4. Let X be a connected 4-manifold and let G be a finite group acting smoothly
and effectively on X. Suppose that G preserves a connected embedded surface Σ ⊂ X.
Let N = TX|Σ/TΣ be the normal bundle of Σ.

(1) Linearizing the action along Σ we obtain an effective action of G on N by bundle
automorphisms.

(2) G sits in an exact sequence 1 → G0 → G→ GΣ → 1, where G0 fixes Σ pointwise
and is either cyclic or dyhedral, and GΣ acts effectively on Σ. If in addition X
is oriented and G acts on X preserving the orientation then G0 is cyclic.
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Proof. Since G acts smoothly on X preserving Σ, there is a naturally induced action of
G on N . Let G0 ≤ G be the subgroup of elements of G that fix Σ pointwise. Since G0

is normal in G we have an exact sequence:

1 → G0 → G→ GΣ := G/G0 → 1

Since G preserves Σ we obtain an effective action of GΣ on Σ. Take a G-invariant
Riemannian metric on X . Let x ∈ Σ be any point, and choose an orthogonal basis
e1, . . . , e4 of TxX with e1, e2 ∈ TxΣ. The pair e3, e4 is mapped to a basis of Nx via the
projection map TxX → Nx = TxX/TxΣ. Expressing the linearization of the action of G0

in terms of the basis (ei) we obtain a morphism G0 → O(4,R) which by Lemma 4.2 is
injective. The image of any element of G0 is of the form

(
Id2 0
0 M

)

where Id2 ∈ SO(2,R) is the identity and M ∈ O(2,R). This proves (1). We thus get
a monomorphism ι : G0 →֒ O(2,R) and hence G0 being finite is cyclic or dihedral. If
X is oriented and the action of G on X is orientation preserving then detM = 1, so
ι(G0) ≤ SO(2,R) and hence G0 is cyclic. This finishes the proof of (2). �

Assume for the rest of this section that X is an oriented closed 4-manifold.

Lemma 4.5. Suppose that Σ ⊂ X is a connected embedded surface and that one of the
following two assumptions holds true:

(1) there exists a finite cyclic group G with more than two elements acting smoothly
and effectively on X and fixing Σ pointwise;

(2) there exists a prime p > 2 and a finite p-group G acting smoothly and effectively
on X, preserving Σ and inducing a noneffective action on Σ.

Then Σ is orientable.

Proof. Let N be the normal bundle of Σ. Suppose that assumption (1) holds true, so
that G is cyclic. Let γ be a generator of G, and let d = ♯G > 2 be its order. Take any
point x ∈ Σ. The eigenvalues of the action of γ on the fiber Nx are primitive d-roots of
unit, which are not real because d > 2. Hence they are of the form ζ, ζ = ζ−1. These
eigenvalues are independent of x because Σ is connected. Let NC = N ⊗ C and define

N± = {w ∈ NC | γ · w = ζ±1w}.

Then NC = N+ ⊕ N− and N+ and N− are complex line bundles preserved by the
action of G on NC. Composing the inclusion N →֒ NC, v 7→ v ⊗ 1, with the projection
NC → N+ we obtain an isomorphism of real vector bundles N → N+ which can be used
to transport the complex structure on N+ to N . Hence N is orientable and since TX|Σ
is also orientable, we conclude that TΣ ≃ TX|Σ/N is orientable as well.

Now suppose that assumption (2) holds true. Let G0 be the normal subgroup of G
consisting of the elements of G fixing Σ pointwise. By Lemma 4.4, G0 acts effectively
on N by bundle automorphisms and is cyclic or dyhedral. The action of G on Σ is
not effective, so G0 is a nontrivial p-group with p > 2 and hence it has more than two
elements and cannot be dihedral, so it is cyclic. Applying the case (1) to the action of
G0 we conclude that Σ is orientable. �
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Lemma 4.6. Let Σ ⊂ X be a connected non-orientable embedded surface. There exists
a constant C > 0, depending only on X and the genus of Σ, such that any finite group
G acting smoothly and in a CTE way on X and preserving Σ has an abelian subgroup
A ≤ G satisfying [G : A] < C.

Proof. By Lemma 4.4, G sits in an exact sequence 1 → G0 → G → GΣ → 1, where G0

fixes Σ pointwise and acts effectively on the fibers of the normal bundle N , and GΣ acts
effectively on Σ. Since G acts on X preserving the orientation, G0 is cyclic. By Lemma
4.5, G0 has at most 2 elements, for otherwise Σ would be orientable. By Lemma 5.1
below, there is an abelian subgroup B ≤ GΣ satisfying [GΣ : B] ≤ C0, where C0 depends
only on the genus of Σ. According to Lemma 3.7 this implies the existence of an abelian
subgroup A ≤ G satisfying [G : A] ≤ C for some constant C depending only on C0 and
X . �

5. Surfaces and line bundles

Lemma 5.1. Let Σ be a closed connected surface. There is a constant C, depending only
on the genus of Σ, such that any finite subgroup G < Diff(Σ) has an abelian subgroup
A ≤ G satisfying [G : A] ≤ C.

Proof. By Lemma 2.1 it suffices to consider the case of orientable Σ, and this is proved
in [28, Theorem 1.3 (1)]. �

Lemma 5.2. Let Σ be a closed connected surface satisfying χ(Σ) 6= 0. There exists a
constant C, depending only on the genus of Σ, such that for every finite group G acting
smoothly on Σ there exists some point x ∈ Σ such that [G : Gx] ≤ C.

Proof. Again by Lemma 2.1 it suffices to consider the case of orientable Σ. Choose
an orientation of Σ. If the genus g of Σ is 2 or bigger then any finite group acting
effectively on Σ has at most 168(g − 1) elements (see e.g. [28, Theorem 1.3 (2)]) and
this immediately implies the lemma. Now suppose that Σ ∼= S2 and let G be a finite
group acting smoothly on Σ. The subgroup G′ ≤ G of elements which act preserving
the orientation satisfies [G : G′] ≤ 2. An orientation preserving action on a surface
has isolated fixed points, so by [29, Theorem 1.4] there exists some x ∈ Σ such that
[G′ : Gx] ≤ C, where C is independent of G. This proves the lemma. �

Lemma 5.3. Let L be an oriented rank 2 real vector bundle over a manifold Σ, and let
G be a finite group acting on L by orientation preserving vector bundle automorphisms,
lifting an arbitrary smooth action on Σ. Then L admits a G-invariant complex structure.

Proof. Choosing an arbitrary euclidean structure on L and averaging over the action of
G we obtain a G-invariant euclidean structure on L. There is a unique vector bundle
isomorphism I : L→ L lifting the identity on Σ such that for any λ ∈ L the two vectors
λ, Iλ are perpendicular and λ ∧ Iλ is compatible with the orientation of L. One checks
immediately that I is a G-invariant complex structure on L. �

Lemma 5.4. Let E → Σ be a rank 2 real vector bundle over a connected surface. Sup-
pose that the total space of E is oriented. Let Aut+(E) be the group of vector bundle
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automorphisms of E, lifting arbitrary diffeomorphisms of Σ, and preserving the orienta-
tion of E. Let G < Aut+(E) be a finite group and suppose that α ∈ G lifts the trivial
action on Σ.

(1) If Σ is not orientable then α commutes with all elements of G;
(2) if Σ is orientable then α commutes with the elements of G that act orientation

preservingly on Σ.

Proof. The case α = IdE being trivial, we may assume that α 6= IdE . Let G0 ≤ G be the
subgroup of elements lifting the identity map on Σ. We have α ∈ G0. Applying Lemma
4.4 to the zero section of E we conclude that G0 is cyclic.

Suppose that Σ is not orientable. Then by Lemma 4.5 G0 has at most two elements,
so α has order 2. Since α ∈ Aut+(E), the action of α on the fibers of E is multiplication
by −1, and this implies that α commutes with all elements of Aut+(E).

Now suppose that Σ is orientable. Then, since the total space of E is orientable, E is
also orientable. Choose an orientation of E. We may replace for our purposes the group
G by its intersection with the elements of Aut+(E) that act on Σ orientation preservingly.
These elements preserve the orientation of E as a vector bundle. By Lemma 5.3 there
is a G-invariant complex structure on E, so we can look at E as a complex line bundle.
Since α lifts the identity on Σ, its action is given by multiplication by a smooth map
f : Σ → C∗, so α(λ) = f(π(λ))λ for every λ ∈ E, where π : E → Σ is the projection.
Since α has finite order, there is some integer k such that f(x)k = 1 for every x ∈ Σ.
This implies that f is constant because Σ is connected, and this implies that α commutes
with all elements of G. �

Lemma 5.5. Let L→ T 2 be a complex line bundle and let Aut(L) ⊂ Diff(L) denote the
group of line bundle automorphisms of L, lifting arbitrary diffeomorphisms of T 2. Let
G < Aut(L) be a finite subgroup.

(1) There is an abelian subgroup A ≤ G satisfying [G : A] ≤ 12max{1, | degL|}.
(2) There is a nilpotent subgroup N ≤ G of class at most 2 such that [G : N ] ≤ 12

and [N,N ] is cyclic and acts trivially on T 2.

Proof. Let G0 ≤ G be the group of elements acting on T 2 preserving the orientation.
We have [G : G0] ≤ 2. Statement (1) follows from applying [30, Proposition 2.10] to
G0. Let us prove (2). Let ρ : Aut(L) → Diff(T 2) be defined by restricting to the
zero section. By [30, Lemma 2.5] there is an abelian subgroup B ≤ ρ(G0) satisfying
[ρ(G0) : B] ≤ 6. Hence N = ρ−1(B) satisfies [G0 : N ] ≤ 6. Now [N,N ] acts trivially on
T 2, so [[N,N ], N ] = 1 follows from (2) in Lemma 5.4. Since the action of N on the total
space of L preserves the orientation, Lemma 4.4 implies that [N,N ] is cyclic. �

Lemma 5.6. Let Σ be a closed and connected surface, and let L → Σ be a complex
line bundle. Let Aut(L) ⊂ Diff(L) denote the group of line bundle automorphisms of
L, lifting arbitrary diffeomorphisms of Σ. Suppose that at least one of the following two
conditions holds true.

(1) χ(Σ) 6= 0, or
(2) L is trivial.
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Then there is a constant C, depending only on the genus of Σ, such that any finite
subgroup G < Aut(L) has an abelian subgroup A ≤ G satisfying [G : A] ≤ C.

Proof. Suppose first that χ(Σ) 6= 0 and that G is a finite group acting effectively on L
by complex line bundle automorphisms. Then G preserves the zero section of L, which
we identify with Σ, and hence by Lemma 5.2 there exists some point x ∈ Σ satisfying
[G : Gx] ≤ C0 for some C0 depending only on the genus of Σ. Applying now Lemma 4.3
to the action of Gx on the total space of L we conclude the proof.

It suffices now to consider the case in which L is trivial and χ(Σ) = 0. By Lemma 2.1
we need only consider the case Σ ∼= T 2, which follows from (1) in Lemma 5.5. �

6. Non-free actions

In this section p denotes a prime number.

The following result is well known, see for example [32, Lemma 5.1].

Lemma 6.1. Let G be a finite p-group acting on a manifold X. Then
∑

j≥0

bj(X
G;Z/p) ≤

∑

j≥0

bj(X ;Z/p),

where bj denotes the j-th Betti number.

Lemma 6.2. Let p be an odd prime, and let U, V ∈ SO(4,R) be two commuting matrices
of order p. If Ker(U−1) 6= Ker(V−1) and both kernels are nonzero then Ker(UV−1) = 0.

Proof. Let A = Ker(U − 1) and B = Ker(V − 1). By assumption A 6= 0 6= B. Since U
and V have odd nontrivial order we necessarily have dimA = dimB = 2, and U (resp.
V ) acts as a nontrivial rotation on A⊥ (resp. B⊥). One easily checks that the only two
dimensional subspaces of R4 that are preserved by U are A and A⊥. Since U and V
commute, U preserves B, so the only possibilities are B = A (which is ruled out by our
assumptions) or B = A⊥ (and consequently B⊥ = A). Then UV preserves both A and
A⊥ and its restriction to each of them is a nontrivial rotation. Hence UV has no nonzero
fixed vector. �

6.1. The set W (X,A). Let X be a closed 4-manifold and let A be a finite abelian group
acting smoothly and effectively on X . Define the following subset of X :

W (X,A) =
⋃

a∈A\{1}

Xa.

The set W (X,A) will appear several times in our arguments, especially in situations
where no element of A has an isolated fixed point. Assuming this condition, the following
lemma gives what for us will be the most important properties of W (X,A).

Lemma 6.3. Let X be a closed, connected and oriented 4-manifold. There exists a
constant C with the following property. Let p be any prime. Suppose that A is a finite
abelian p-group acting in a smooth and CTE way on X, and that there exists no a ∈ A
for which the fixed point set Xa has an isolated point. Let W = W (X,A). Then

(1) W ⊂ X is a possibly disconnected embedded closed surface, and each connected
component of W is a connected component of Xa for some a ∈ A \ {1},
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(2) Xa is equal to the union of some connected components ofW for each a ∈ A\{1},
(3) ♯π0(W ) ≤ C, and each connected component of W has genus at most C.

Proof. Let Γ ≤ A be the p-torsion and define:

F = {(a, Z) | a ∈ Γ \ {1}, Z connected component of Xa}.

Since for every a ∈ A\ {1} there exists some r = ps such that ar has order p, and clearly
Xa ⊆ Xar , we have

(2) W =
⋃

(a,Z)∈F

Z.

By assumption, for each (a, Z) ∈ F , Z is a connected and embedded surface in X . We
claim that for every two elements (a, Z), (a′, Z ′) ∈ F either Z = Z ′ or Z∩Z ′ = ∅. Indeed,
if Z∩Z ′ 6= ∅ but Z 6= Z ′, then Z∩Z ′ is a proper submanifold of Z. Applying Lemma 6.2
to the linearisation of the action of 〈a, a′〉 at some point in Z ∩Z ′ we would then deduce
the existence of a′′ ∈ A with an isolated fixed point, contradicting our assumption. This
proves the claim, and the claim immediately implies (1).

To prove (2) take an arbitrary a ∈ A\{1} and choose as before some r such that ar has
order p. Since all connected components of Xa have dimension 2 and the same happens
with Xar , we conclude that Xa is the union of some (maybe all) connected components
of Xar . Combining this with formula (2) we deduce statement (2).

We next prove (3). Let U ⊂ X be a Γ-invariant tubular neighborhood of W and let
V = X \W . Consider the Mayer–Vietoris sequence with Z/p coefficients applied to the
covering X = U ∪ V :

· · · → Hn
Γ(U ∩ V ;Z/p) → Hn+1

Γ (X ;Z/p) →
Hn+1

Γ (U ;Z/p)
⊕

Hn+1
Γ (V ;Z/p)

→ Hn+1
Γ (U ∩ V ;Z/p) · · ·

Since the action of Γ on V (hence also on U ∩ V ) is free, we have

H∗
Γ(V ;Z/p) ≃ H∗(V/Γ;Z/p)

(and similarly for U ∩ V ). Since V/Γ and (U ∩ V )/Γ are 4-manifolds, for n > 4 we
have Hn

Γ(V ;Z/p) = Hn
Γ(U ∩ V ;Z/p) = 0. Therefore, the above exact sequence gives us

isomorphisms
H6

Γ(X ;Z/p) ≃ H6
Γ(U ;Z/p) ≃ H6

Γ(W ;Z/p)

Considering the Serre spectral sequence for the fibration XG → X , we obtain

(3) dimH6
Γ(X ;Z/p) ≤

∑

i+j=6

dimH i(X ;Z/p)⊗Hj(Γ;Z/p).

By Theorem 3.6 the p-rank of Γ is bounded above by a constant depending only on X ,
so it follows from (3) that

(4) dimH6
Γ(X ;Z/p) ≤ C ′,

where C ′ only depends on X .

Let D = maxp
∑

j≥0 bj(X ;Z/p), where p runs over the set of all primes. If a, b ∈ Γ and

Z is a connected component of Xa then bZ is a connected component of Xbab−1

= Xa.
Since, by Lemma 6.1, Xa has at most D connected components, and each connected
component of W is a connected component of Xa for some a ∈ Γ, the orbits of the
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action of Γ on π0(W ) have at mostD elements. Let Z1, . . . , Zl be a collection of connected
components of W such that W is the disjoint union of the Γ-orbits of Z1, . . . , Zl. Then

(5) l ≥
♯π0(W )

D
.

Define for each i the following two subgroups of Γ:

Γi = {a ∈ Γ | aZi = Zi},

Γi0 = {a ∈ Γ | ax = x for every x ∈ Zi}.

Remark that Γi0 is not the trivial group, since by assumption Zi is a connected component
of Xa for some a ∈ Γ \ {1}. Fix some model EΓ → BΓ for the universal principal Γ-
bundle. The inclusion

EΓ×Γi
Zi → EΓ×Γi

(ΓZi)

followed by the projection EΓ×Γi
(ΓZi) → EΓ×Γ (ΓZi) gives a homeomorphism

EΓ×Γi
Zi ∼= EΓ×Γ (ΓZi),

which induces an isomorphism

(6) H∗
Γi
(Zi;Z/p) ≃ H∗

Γ(ΓZi;Z/p).

Hence

(7) H6
Γ(X ;Z/p) ≃

l⊕

i=1

H6
Γ(ΓZi;Z/p) ≃

l⊕

i=1

H6
Γi
(Zi;Z/p).

The action of Γi on Zi descends to an action of Ji := Γi/Γi0 on Zi. We claim that Ji acts
freely on Zi. This is equivalent to the statement that if an element b ∈ Γ preserves Zi and
fixes some point of Zi then it necessarily fixes all points of Zi; this is true because Xb is
a possibly disconnected embedded surface (without isolated points, as we are assuming
at this point) and because Xb∩Zi 6= ∅ implies Zi ⊆ Xb by Lemma 6.2 (see the argument
after formula (2)). Now, an argument similar to the one that led to the isomorphism (6)
combined with Künneth implies

H6
Γi
(Zi;Z/p) ≃ H6

Γi0
(Zi/Ji;Z/p) ≃

⊕

u+v=6

Hu(BΓi0;Z/p)⊗Hv(Zi/Ji;Z/p),

where the second term is the equivariant cohomology of the trivial action of Γi0 on Zi/Ji.
The rightmost term in the previous formula contains the summand

H6(BΓi0;Z/p)⊗H0(Zi/Ji;Z/p),

which is nonzero because Γi0 is not the trivial group, and hence is of the form (Z/p)s for
some s > 0. It then follows from (7) that dimH6

Γ(X ;Z/p) ≥ l. Using (4) we get C ′ ≥ l,
so using (5) we obtain

♯π0(W ) ≤ C ′D.

Finally, if Z is a connected component of W then by (1) there exists some a ∈ A \ {1}
such that Z is a connected component of Xa. Then Lemma 6.1 implies that b0(Z;Z/p)+
b1(Z;Z/p) + b2(Z;Z/p) ≤ D, which implies that the genus of Z is bounded above by a
constant depending on X . �
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6.2. Normal abelian p-subgroups.

Lemma 6.4. Let X be a closed, connected and oriented 4-manifold. There exists a
constant C with the following property. Suppose that G is a finite group acting in a
smooth and CTE way on X, let p be any prime and let A ≤ G be a normal abelian
p-subgroup. If there exists some a ∈ A and an isolated point in Xa then there is an
abelian subgroup B ≤ G satisfying [G : B] ≤ C and XB 6= ∅.

Proof. Suppose that a ∈ A and that Xa contains an isolated point. Let S ⊂ X be the
set of isolated points of Xa. Let

D = max
p

∑

j≥0

bj(X ;Z/p),

where p runs over the set of all primes. Applying Lemma 6.1 to the action of 〈a〉 on X
we deduce that ♯S ≤ D. Take any point s ∈ S. Since A is abelian, the action of any
a′ ∈ A preserves Xa and hence S. Consequently, the stabilizer A0 of s in A satisfies
[A : A0] ≤ D. Let G0 ≤ G be the normalizer of A0. Combining Theorem 3.6 with
Lemma 3.2 we conclude that [G : G0] ≤ C1 for some constant C1 depending only on X .
Applying Lemma 6.1 to the action of A0 on X we deduce that XA0 contains at most
D isolated points. Since G0 normalizes A0, its action on X preserves the set of isolated
fixed points of A0. Hence there is a subgroup G1 ≤ G0 satisfying [G0 : G1] ≤ D and
preserving (hence, fixing) one of the isolated fixed points of A0. By Lemma 4.3, G1

contains an abelian subgroup B ≤ G1 satisfying [G1 : B] ≤ C2, where C2 is a universal
constant. It follows that [G : B] ≤ DC1C2, so we are done. �

Lemma 6.5. Let X be a closed, connected and oriented 4-manifold. There exists a
constant C with the following property. Suppose that G is a finite group acting in a
smooth and CTE way on X, let p be any prime and let A ≤ G be a normal abelian
p-subgroup. Suppose that:

(1) there is no a ∈ A such that Xa has an isolated fixed point,
(2) there exists some a ∈ A such that Xa has a connected component Z which is a

nonorientable surface;

then there is an abelian subgroup B ≤ G satisfying [G : B] ≤ C and an element b ∈ B
such that Xb has Z as one of its connected components.

Proof. Let C1 be the constant given by Lemma 6.3 and let W = W (X,A). Since A is
normal in G, the action of G on X preserves W . By (2) in Lemma 6.3, Z is a connected
component of W . By (3) in Lemma 6.3, W contains at most C1 connected components
and the genus of Z is not bigger than C1.

Let G0 ≤ G be the subgroup of elements that preserve Z. We have [G : G0] ≤ C1. By
Lemma 4.6 there is an abelian subgroup B0 ≤ G0 satisfying [G0 : B0] ≤ C2, where C2

depends only on C1 and X , hence only X . Let a ∈ A be an element whose fixed point set
contains Z as a connected component and let B = 〈a, B0〉. Let N → Z be the normal
bundle. There is a natural morphism B → Aut(N) which is injective by (1) in Lemma
4.4. Its image is contained in Aut+(N), the automorphisms preserving the orientation of
the total space of N (which is orientable because X is). By (1) in Lemma 5.4, it follows
that B is abelian. Since B0 ≤ B, we have

[G : B] ≤ [G : B0] = [G : G0][G0 : B0] ≤ C1C2,
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so the proof of the lemma is complete. �

Lemma 6.6. Let X be a closed, connected and oriented 4-manifold. There exists a
constant C with the following property. Suppose that G is a finite group acting in a
smooth and CTE way on X, let p be any prime and let A ≤ G be a normal abelian
p-subgroup. If the action of A on X is not free, then at least one of these statements
holds true:

(1) there exists an abelian subgroup G0 ≤ G such that [G : G0] ≤ C,
(2) there exists an embedded connected orientable surface Z ⊂ X of genus not bigger

than C preserved by a subgroup G0 ≤ G that satisfies [G : G0] ≤ C.

Proof. Let C1, C2, C3 be the constants given by Lemmas 6.3, 6.4 and 6.5 respectively.
Let C = max{C1, C2, C3}.

If there exists some a ∈ A such that Xa has an isolated fixed point then we can
apply Lemma 6.4 and conclude the existence of an abelian subgroup G0 ≤ G satisfying
[G : G0] ≤ C2. If there is no a ∈ A such that Xa contains an isolated point, and there is
some b ∈ A such that Xb has a connected component which is a nonorientable surface
then by Lemma 6.5 there is an abelian subgroup G0 ≤ G satisfying [G : G0] ≤ C3.

Now suppose that for every a ∈ A \ {1} the fixed point set Xa is an embedded
orientable surface. Then W :=W (X,A) is nonempty because by assumption the action
of A on X is not free. By our assumptions and Lemma 6.3, W is a possibly disconnected
embedded orientable surface, and W has at most C1 connected components. Let Z ⊆W
be any connected component. Since A is a normal subgroup of G, the action of G on X
preserves W . The subgroup G0 ≤ G preserving Z satisfies [G : G0] ≤ ♯π0(W ) ≤ C1. By
Lemma 6.3 the genus of Z is at most C1. �

7. Diffeomorphisms normalizing an action of Z/p or Z/p2

The following basic fact will be used in this section and in several other results on
free actions to be proved in Subsection 8.2: suppose that a finite group Γ acts freely
and orientation preservingly on an oriented, closed and connected 4-manifold X ; then
the Borel construction XΓ is homotopy equivalent to X/Γ, which is an orientable, closed
and connected 4-manifold; consequently,

(8) H4
Γ(X ;A) ≃ A, Hk

Γ(X ;A) = 0 if k > 4,

for every abelian group A.

Lemma 7.1. Let X be a closed, connected and oriented 4-manifold. Let Γ = (Z/p)r,
where r = 1 or 2. Suppose that Γ acts on X in a smooth and CTE way, and that there
exists an automorphism φ ∈ Aut(Γ) and a diffeomorphism ψ ∈ Diff(X) acting trivially
on H∗(X) in such a way that the diagram

Γ×X

φ×ψ
��

// X

ψ
��

Γ×X // X,
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in which the horizontal arrows are the maps defining the action of Γ on X, is commuta-
tive. If the order of φ is not divisible by p and is bigger than 4 then the action of Γ on
X is not free.

Proof. The commutative diagram in the statement of the lemma gives the following
commutative diagram involving the Borel construction of X :

XΓ
//

��

BΓ

��

XΓ
// BΓ,

in which the left (resp. right) hand side vertical arrow is induced by (φ, ψ) (resp. φ).
The previous diagram implies the existence of an automorphism of the Serre spectral
sequence with coefficients in Z/p for the fibration XΓ → BΓ which is given, at the level
of the second page, by the morphism

φ∗ ⊗ ψ∗ : Hσ(BΓ;Z/p)⊗Hτ(X ;Z/p) → Hσ(BΓ;Z/p)⊗Hτ(X ;Z/p).

Crucially, φ∗ ⊗ ψ∗ commutes with all the differentials of the spectral sequence. Since by
assumption the action of Γ on X is CTE, we have ψ∗ = id.

Suppose from now on that Γ acts freely on X . Denote the Serre spectral sequence for
the fibration XΓ → BΓ by {(Eσ,τ

u , dσ,τu )}.

We consider separately the cases r = 1 and r = 2.

Consider first the case Γ = Z/p, and suppose that φ acts on Z/p as multiplication by
some ζ ∈ (Z/p)∗. Then φ∗ acts on H1(BΓ;Z/p) = Hom(H1(BΓ),Z/p) as multiplication
by ζ . Let b : H∗(BΓ;Z/p) → H∗+1(BΓ;Z/p) be the Bockstein morphism. To compute
the action on higher cohomology groups, note that if θ ∈ H1(BΓ;Z/p) is a generator then
b(θ) is a generator of H2(BΓ;Z/p). By the naturality of b, φ∗ acts on H2(BΓ;Z/p) as
multiplication by ζ . More generally, for any natural number k and any ǫ ∈ {0, 1}, θǫ b(θ)k

is a generator of H2k+ǫ(BΓ;Z/p), which implies that the action of φ∗ on Hn(BΓ;Z/p) is
given by multiplication by ζ [(n+1)/2], where [t] denotes the integral part of t.

Now suppose that the order of ζ is bigger than 4. Then in particular the elements
1, ζ, ζ2, ζ3 ∈ (Z/p)∗ are pairwise distinct. This implies that the differentials d2, d3, d4, d5
in the spectral sequence are identically zero, because they commute with φ∗ ⊗ id. Since
Eσ,τ

2 = 0 for every τ > 4, the vanishing of d2, . . . , d5 implies that the spectral sequence
degenerates. In particular

dimH4
Γ(X ;Z/p) = dimE0,4

2 + dimE1,3
2 + dimE2,2

2 + dimE3,1
2 + dimE4,0

2

=

4∑

j=0

bj(X ;Z/p) ≥ 2,

and this contradicts (8).

We next consider the case Γ = (Z/p)2. Suppose that α, β are the eigenvalues of

φ∗ acting on H1(BΓ;Z/p) (in general α, β live in an algebraic extension Z/p of the
field Z/p, which we assume to be fixed for the arguments that follow). We want to
compute the action of φ∗ on E4,0

4 ≃ H4(BΓ;Z/p). Take any basis (θ1, θ2) ofH
1(BΓ;Z/p).
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Arguing as in our discussion about H∗(BZ/p;Z/p) and using Künneth we deduce that
(b(θ1), b(θ2), θ1θ2) is a basis of H2(BΓ;Z/p). Hence if we denote

W = H1(BΓ;Z/p)

then we can identify in a natural way (in particular, as representations of 〈φ∗〉)

H2(BΓ;Z/p) ≃W ⊗ Λ2W.

Similarly, (θ1 b(θ1), θ2 b(θ1), θ1 b(θ2), θ2 b(θ2)) is a basis of H3(BΓ;Z/p), hence

H3(BΓ;Z/p) ≃W ⊗W

canonically. Similar arguments lead to the following natural isomorphism:

H4(BΓ;Z/p) ≃ S2W ⊕W ⊗ Λ2W.

Accordingly, the eigenvalues of the action of φ∗ on H4(BΓ;Z/p) are given by

(9) α2, αβ, β2, α2β, αβ2.

Of course, it may happen that these eigenvalues are not pairwise distinct; in general,
the number of times that a given element λ ∈ Z/p appears in the list (9) is equal to the
dimension of Ker(φ∗ − λ idH4(BΓ;Z/p)).

Since dimH4
Γ(X ;Z/p) = 1 we must have dimE4,0

∞ ≤ 1. We have dimE4,0
2 = 5, hence

the dimensions of the images of the differentials

d2,12 : E2,1
2 → E4,0

2 , d1,23 : E1,2
3 → E4,0

3 , d0,34 : E0,3
4 → E4,0

4

have to add up at least 4. The weights of the action of φ on E2,1
2 , E1,2

3 , E0,3
4 are the same

as the weights of the action on H0(BΓ;Z/p) ⊕ H1(BΓ;Z/p) ⊕ H2(BΓ;Z/p), namely
1, α, β, αβ. It follows that at least 4 of the elements in (9) must belong to the set
{1, α, β, αβ}. Let us reformulate our last statement in algebraic terms. Define the
following subsets of Z2:

S = {(2, 0), (1, 1), (0, 2), (2, 1), (1, 2)}, T = {(0, 0), (1, 0), (0, 1), (1, 1)}.

We then have:

(⋆) there exists a subset S ′ ⊆ S such that S \ S ′ contains at most one element, and
a map f = (fu, fv) : S

′ → T ⊂ Z2 with the property that for every (u, v) ∈ S we
have αuβv = αfu(u,v)βfv(u,v).

Let R = {f(w)− w | w ∈ S ′} ⊂ Z2. We claim that R contains two linearly independent
elements of Z2. First note that R 6= {0} for otherwise we would have f(w) = w for
all w, which is not compatible with (⋆) because S ∩ T contains a unique element. We
also cannot have R ⊂ Zw for any w ∈ Z2, because for every w ∈ Z2 the intersection
S∩ (T +Zw) contains at most 3 elements, as one readily checks by plotting the elements
of S and T ; hence R ⊂ Zw would again contradict (⋆), so the claim is proved.

Suppose (u, v), (u′, v′) ∈ R are linearly independent, so that d := uv′ − u′v is nonzero.
Since S, T ⊂ {0, 1, 2}2, we have u, v, u′, v′ ∈ {0, 1, 2} and hence |d| ≤ 4. The equalities
αuβv = αu

′

βv
′

= 1 imply that

(10) αd = αuv
′−u′v = (αuβv)v

′

(αu
′

βv
′

)−v = 1 = (αuβv)u
′

(αu
′

βv
′

)−u = βvu
′−v′u = βd.

Consequently, the eigenvalues αd, βd of (φ∗)d ∈ Aut(H1(BΓ;Z/p)) are equal to one, so
(φ∗)d is a unipotent automorphism. The order of a unipotent automorphism of a vector
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space over Z/p is necessarily a power of p. Since the order of (φ∗)d is prime to p, it
follows that (φ∗)d is the identity. Hence φ∗ is an automorphism of H1(BΓ;Z/p) of order
at most 4. Since there is a natural isomorphism H1(BΓ;Z/p) ≃ Hom(Γ,Z/p), the fact
that (φ∗)d is trivial implies that φd ∈ Aut(Γ) is trivial, so the order of φ is at most 4. �

8. Finite groups acting smoothly on 4-Manifolds with b2 = 0

The goal of this section is to prove the following:

Theorem 8.1. Suppose that X is a closed connected 4-manifold satisfying b2(X) = 0.
Then Diff(X) is Jordan.

Let X be a closed connected 4-manifold satisfying b2(X) = 0. To prove Theorem 8.1
we only need to consider the case χ(X) = 0, for if χ(X) 6= 0 then Diff(X) is Jordan by
the main result in [29]. By Lemma 2.1 we may also assume that X is orientable, so the
Betti numbers of X are b0(X) = b4(X) = 1 and b1(X) = b3(X) = 1. Let T be the torsion
of H1(X). By the universal coefficient theorem the torsion of H2(X) is isomorphic to
T , and by Poincaré duality we have H3(X) ≃ H1(X), so the torsion of H3(X) is also
isomorphic to T . Hence we have

(11) H0(X) ≃ H1(X) ≃ H4(X) ≃ Z, H2(X) ≃ T, H3(X) ≃ Z⊕ T.

Assuming these conditions, we will prove Theorem 8.1 in Subsection 8.4 below, after
introducing a number of preliminary results. The manifold X will be fixed in the entire
section.

8.1. Rotation morphism. The following construction is used in [28]. We explain it
here in slightly more intrinsic terms. Let e : R → S1 be the map e(t) = e2πit. Fix a
generator θ ∈ H1(X).

Suppose that φ ∈ Diff(X) has finite order and acts trivially on H1(X). By the
standard averaging trick, we may then take a φ-invariant 1-form α ∈ Ω1(X) representing
θ. Take any x ∈ X , choose a path γ : [0, 1] → X from x to φ(x) (which means as usual
that γ(0) = x and γ(1) = φ(x)) and define

ρ(φ) = e

(∫

γ

α

)
∈ S1.

This is clearly independent of the choice of the path γ. It is also independent of the
choice of x. Indeed, if y ∈ X denotes another point we may take a path η from y to x
and take, as a path from y to φ(y), the concatenation of the paths η, γ, and φ ◦ η−1,
where η−1(t) = η(1− t). The resulting integral of α is equal to

∫

η

α +

∫

γ

α +

∫

φ◦η−1

α =

∫

η

α +

∫

γ

α−

∫

φ◦η

α =

∫

η

α +

∫

γ

α−

∫

η

α =

∫

γ

α,

where the second inequality follows from the assumption that α is φ-invariant. Finally,
we prove that ρ(φ) is independent of the choice of α. To see this, suppose that β is
another φ-invariant 1-form representing θ. Then β = α + df for some function f . We
claim that f is φ-invariant. Indeed, the fact that both α and β are φ-invariant implies
that φ∗df = df , so d(φ∗f − f) = 0 and hence φ∗f = f + c for some constant c. Writing
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c = φ∗f − f and evaluating at a point where f attains its maximum (resp. minimum)
we conclude that c ≤ 0 (resp. c ≥ 0), so c = 0. Now we have, by Stokes’s theorem,

∫

γ

α−

∫

γ

β =

∫

γ

df = f(φ(x))− f(x) = 0.

We now prove that if G is a finite group acting smoothly on X and trivially on H1(X)
then the map

ρ : G→ S1

is a morphism of groups. SinceG is finite we may take aG-invariant 1-form α representing
θ. Let x ∈ X be any point, let g1, g2 ∈ G, and let γ1 (resp. γ2) be a path from x to g1x
(resp. from x to g2x). The concatenation ζ of γ2 and g2γ1 is a path from x to g2g1x.
Hence ∫

ζ

α =

∫

γ2

α +

∫

g2γ1

α =

∫

γ2

α +

∫

γ1

α,

where the second equality follows from the fact that α is G-invariant. It now follows that

ρ(g2g1) = ρ(g2)ρ(g1).

Lemma 8.2. Let a finite group G act smoothly on X and trivially on H1(X), and assume
that ρ(G) = 1. Let π : Z → X be the abelian universal cover of X. There exists a smooth
action of G on Z lifting the action on X, in the sense that π(g · z) = g · π(z) for every
g ∈ G and z ∈ Z.

Proof. Fix some base point x0 ∈ X . Choose a 1-form α representing θ. We can identify

Z = {(x, γ) | x ∈ X, γ path from x0 to x}/ ∼,

where the equivalence relation ∼ identifies (x, γ) with (x′, γ′) if and only if x = x′ and∫
γ
α =

∫
γ′
α. The later equality is independent of the choice of α. Let us assume from

now on that α is G-invariant.

Choose, for every g ∈ G, a path ηg from x0 to g · x0 satisfying
∫

ηg

α = 0.

This is possible because ρ(g) = 1. Define an action of G on Z as follows. If [(x, γ)] ∈ Z
and g ∈ G then set g · [(x, γ)] = [(g · x, g♯γ)], where g♯γ = ηg ∗ (g · γ) and the symbol ∗
denotes concatenation of paths. Since α is G-invariant and

∫
ηg
α = 0, we have

∫

g♯γ

α =

∫

γ

α.

This implies that g1 · (g2 · [(x, γ)]) = g1g2 · [(x, γ)] for every g1, g2 ∈ G, which combined
with some trivial checks implies that we have defined an action of G on Z lifting the
action on X . �

Lemma 8.3. Suppose that a finite group G acts smoothly and in a CTE way on X, and
suppose also that ρ(G) = 1. For any abelian group A the differential

d0,22 : E0,1
2 = H1(X ;A) → E2,0

2 = H2(BG;A)

in the second page of the Serre spectral sequence for the fibration XG → BG with coeffi-
cients in A vanishes identically.
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Proof. Let π : Z → X be as in the previous lemma, and take a lift of the action of G on
X to an action on Z. We have a Cartesian diagram of fibrations

ZG
π

//

��

XG

��

BG BG

.

The vanishing of d0,22 follows from the naturality of the Serre spectral sequence and the
fact that H1(Z;A) = 0. �

8.2. Fixed points and the rotation morphism. Fix a prime p for the present sub-
section, and suppose that T (which, recall, is the torsion of H1(X)) has apt elements,
where a ≥ 1, t ≥ 0 are integers and p does not divide a. Let Tp be the p-part of T , i.e.,
the subgroup of elements whose order is a power of p. We have

♯Tp = pt.

The proof of the following theorem is given in the appendix.

Theorem 8.4. Let a, b be natural numbers and let c = min{a, b}. For any natural
number d, any nonnegative integer k and any prime p we have

Hk((Z/pa)d;Z/pb) ≃ (Z/pc)(
k+d−1

d−1 ),

where we consider on the coefficient group Z/pb the trivial (Z/pa)d-module structure.

By Poincaré duality, (11) implies

H0(X) ≃ H3(X) ≃ H4(X) ≃ Z

and

H1(X) ≃ Z⊕ T, H2(X) ≃ T.

Let r be an integer satisfying r > t. Then we have (see (27) in the Appendix)

Hom(T,Z/pr) ≃ Tp, Ext(T,Z/pr) ≃ Tp.

Using the universal coefficient theorem (see (25) in the Appendix) we compute

(12) H0(X ;Z/pr) ≃ H1(X ;Z/pr) ≃ H4(X ;Z/pr) ≃ Z/pr,

(13) H2(X ;Z/pr) ≃ Hom(T,Z/pr)⊕ Ext(Z⊕ T,Z/pr) ≃ Tp ⊕ Tp,

(14) H3(X ;Z/pr) ≃ Hom(Z,Z/pr)⊕ Ext(T,Z/pr) ≃ Z/pr ⊕ Tp.

Lemma 8.5. Let r be the least integer bigger than 5t/3. No smooth CTE action of
Γ := (Z/pr)2 on X satisfying ρ(Γ) = 1 is free.

Proof. Suppose that Γ acts smoothly, freely, and in a CT way on X . By (8) we have

(15) H4(XΓ;Z/p
r) ≃ Z/pr.

The entries in the second page of the Serre spectral sequence {(Eij
s , d

ij
s )} for the fibration

XΓ → BΓ with coefficients in Z/pr take the form

Ei,j
2 = H i(Γ;Hj(X ;Z/pr)),
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where Γ acts trivially on Hj(X ;Z/pr). By Theorem 8.4 and (12)–(14) the matrix
(logp ♯E

ij
2 )ij has the following entries (note that r > t):

0 0 0 0 0 0 . . .
r 2r 3r 4r 5r 6r . . .

r+ t 2(r + t) 3(r + t) 4(r + t) 5(r + t) 6(r + t) . . .
2t 4t 6t 8t 10t 12t . . .
r 2r 3r 4r 5r 6r . . .
r 2r 3r 4r 5r 6r . . .

The isomorphism (15) implies that

(16) ♯E4,0
∞ ≤ pr.

Now assume that ρ(Γ) = 1. By Lemma 8.3 we have d0,12 = 0, which implies by the
multiplicativity of the Serre spectral sequence that d2,12 = 0. Hence, the only way the
cardinal of E4,0

∗ can drop from p5r to an integer not bigger than pr is by quotienting
through the images of the differentials

d1,22 : E1,2
3 → E4,0

3 = E4,0
2 , d0,34 : E0,3

4 → E4,0
4 .

More precisely, we can estimate

♯E4,0
5 ≥ ♯E4,0

2 (♯E1,2
3 )−1(♯E0,3

4 )−1 ≥ ♯E4,0
2 (♯E1,2

2 )−1(♯E0,3
2 )−1 = p5r−4t−(r+t) = p4r−5t > pr,

where the last inequality follows from r > 5t/3. This contradicts (16), so the proof of
the lemma is complete. �

Lemma 8.6. There exists a constant C, independent of p, such that any finite abelian
p-group A acting freely and in a smooth and CT way on X and satisfying ρ(A) = 1 has
a cyclic subgroup Ac ≤ A satisfying [A : Ac] ≤ C.

Proof. For every prime q let tq be defined by ♯Tq = qtq and let rq be the least integer
bigger than 5tq/3. Let R be the number resulting from applying Theorem 3.6 to X .
Define

C := max
q
q(R−1)(rq−1).

This is a finite number, because ♯Tq is different from 1 only for finitely many primes q.

Let A be an abelian p-group acting freely, smoothly, and in a CT way on X , and
satisfying ρ(A) = 1. Choose an isomorphism

A ≃ Z/pe1 ⊕ · · · ⊕ Z/pes,

where e1 ≥ · · · ≥ es ≥ 1. By Theorem 3.6 we have s ≤ R and by Lemma 8.5 we have
ei < rp for every i ≥ 2. Define Ac to be the subgroup of A corresponding to the first
summand Z/pe1 . Then we have [A : Ac] ≤ p(R−1)(rp−1) ≤ C. �

Lemma 8.7. No smooth CTE action of Γ = (Z/pt+1)3 on X is free.

Proof. Suppose that Γ acts smoothly and in a CTE way on X . Let r = t+ 1. Consider
the Serre spectral sequence {(Eij

s , d
ij
s )} for the fibration XΓ → BΓ with coefficients in
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Z/pr. The matrix (logp ♯E
ij
2 )ij has entries

0 0 0 0 0 0 . . .
r 3r 6r 10r 15r 21r . . .

r+ t 3(r + t) 6(r + t) 10(r + t) 15(r + t) 21(r + t) . . .
2t 6t 12t 20t 30t 42t . . .
r 3r 6r 10r 15r 21r . . .
r 3r 6r 10r 15r 21r . . .

Arguing as in the previous lemma we estimate

♯E4,0
∞ = ♯E4,0

4 ≥ ♯E4,0
2 (♯E2,1

2 )−1(♯E1,2
3 )−1(♯E0,3

4 )−1

≥ ♯E4,0
2 (♯E2,1

2 )−1(♯E1,2
2 )−1(♯E0,3

2 )−1

= p15r−6r−6t−(r+t) = p8r−7t > pr,

so we have ♯H4
Γ(X ;Z/pr) > pr, which is not compatible with the action of Γ being

free. �

Lemma 8.8. Let Γ be a finite p-group sitting in a short exact sequence

1 → K → Γ
π

−→ Q→ 1

with Q cyclic. Suppose that A ≤ K is a cyclic subgroup, and that A is normal in Γ.
Assume that Γ acts smoothly and in a CT way on X and that ρ(A) = 1. If the action of
A on X is free, then there is an abelian subgroup A′ ≤ Γ containing A and satisfying

[Γ : A′] ≤ 2pt[K : A].

Proof. Take an element γ ∈ Γ such that π(γ) generates Q. Since A is normal in Γ,
conjugation defines a morphism Γ → Aut(A). Applying this to γ we obtain, as in the
proof of Lemma 7.1, a commutative diagram

A×X //

��

X

��

A×X // X,

in which the horizontal arrows are the maps defining the action of A on X , the left hand
vertical arrow sends (g, x) to (γgγ−1, γx), and the right hand side vertical arrow sends
x to γx. At the level of Borel constructions we obtain a commutative diagram

XA
//

��

BA

��

XA
// BA,

in which the right hand side vertical arrow is induced by the map

c(γ) : A→ A, c(γ)(g) = γgγ−1.

Consider the Serre spectral sequence for XA → BA with integer coefficients. The pre-
vious diagram implies the existence of an automorphism of the Serre spectral sequence
which is given, at the level of the second page, by the morphism

φ : Hσ(BA;Hτ(X)) → Hσ(BA;Hτ (X)).
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Crucially, φ commutes with all the differentials of the spectral sequence.

Since A acts trivially onH∗(X), in order to understand φ it will suffice for our purposes
to compute c(γ)∗ : Hσ(BA) → Hσ(BA). Suppose that

A ≃ Z/pa.

Then, thinking of the group structure on A in additive terms, the action of c(γ) on A is
given by multiplication by some

ζ ∈ (Z/pa)∗.

We claim thatHσ(BA) = 0 if σ is odd andHσ(BA) ≃ Z/pa if σ > 0 is even. Furthermore
if λ is a generator of H2(BA) then λk is a generator of H2k(BA). To prove these claims,
identify A with the group µpa of pa-th roots of units in S1. Taking as a model for the
classifying space of A the quotient ES1/µpa, we identify BA with the total space of a
circle bundle over BS1 whose first Chern class is pa times a generator of H2(BS1) ≃ Z.
Then the claim follows from applying the Gysin exact sequence to this bundle. As
a consequence, it suffices to understand c(γ)∗ acting on H2(BA). By the universal
coefficient theorem we have

H2(BA) = Ext1(H1(BA),Z).

We have a natural identification H1(BA) ≃ A, so c(γ)∗ acts on H1(BA) as multiplication
by ζ . Fix a surjection Z → H1(BA) and consider the resulting commutative diagram
with exact rows, and whose vertical arrows are multiplication by some integer z ∈ Z

representing ζ ∈ (Z/pa)∗:

0 // Z //

��

Z //

��

H1(BA)

��

// 0

0 // Z // Z // H1(BA) // 0

.

Applying HomZ(·,Z) and its derived functors we get a commutative diagram with exact
rows from which it is easy to conclude that c(γ)∗ acts on Ext1(H1(BA),Z) = H2(BA)
as multiplication by ζ . Consequently, c(γ)∗ acts on H4(BA) as multiplication by ζ2. In
other words, we may identify H4(BA) with A in such a way that the action of c(γ) on
H4(BA) corresponds in A with conjugation by γ2.

Suppose from now on that A acts freely on X , which implies H4
A(X) ≃ Z. From

(11) and the previous description of H∗(BA) we deduce that the left bottom corner of
the second page of the spectral sequence with integer coefficients {(Eσ,τ

u , du)} for the
fibration XA → BA is isomorphic to:

0 0 0 0 0 0
H0(BA;Z) 0 H2(BA;Z) 0 H4(BA;Z) 0

H0(BA;Z⊕ Tp) H1(BA;Tp) H2(BA;Z⊕ Tp) H3(BA;Tp) H4(BA;Z⊕ Tp) 0
H0(BA;Tp) H1(BA;Tp) H2(BA;Tp) H3(BA;Tp) H4(BA;Tp) 0
H0(BA;Z) 0 H2(BA;Z) 0 H4(BA;Z) 0
H0(BA;Z) 0 H2(BA;Z) 0 H4(BA;Z) 0

Furthermore, the action of φ is induced in each term by the action of c(γ) on BA and
the trivial action on coefficients.
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The convergence of the spectral sequence to the equivariant cohomology implies that
E4,0

∞ can be naturally identified with a subgroup of H4
A(X). Since E4,0

∞ is a quotient of
E4,0

2 ≃ H4(BA) ≃ Z/pa and H4
A(X) is torsion free, we necessarily have E4,0

∞ = 0. There
are only three differentials that can contribute to kill E4,0

2 :

d2,12 : E2,1
2 → E4,0

2 , d1,23 : E1,2
3 → E4,0

3 and d0,34 : E0,3
4 → E4,0

4 .

We have d2,12 = 0 by Lemma 8.3 and the multiplicativity of the spectral sequence. So we
can naturally identify E4,0

3 ≃ E4,0
2 ≃ H4(BA). We also have E1,2

3 ≃ E1,2
2 ≃ H1(BA;Tp).

Hence we can identify the source and target of d1,23 with

d1,23 : H1(BA;Tp) → H4(BA).

Denote by

M ⊆ H4(BA)

the image of d1,23 . We have

♯M ≤ ♯H1(BA;Tp) ≤ pt,

where the second inequality follows from the universal coefficient theorem

H1(BA;Tp) ≃ Hom(H1(BA), Tp)⊕ Ext(H0(BA), Tp) = Hom(H1(BA), Tp),

the equality ♯Tp = pt, and the fact that A is cyclic.

Next we can identify the source and target of d0,34 with

d0,34 : Ker d0,33 → H4(BA)/M.

This map has to be surjective in order for E4,0
4 to vanish. At this point we are going to

use the fact that d0,34 commutes with the action induced by φ. We can identify Ker d0,33

with a subgroup of H0(BA;Z ⊕ Tp), on which the action of φ is trivial. So in order for

d0,34 to be surjective the action on H4(BA)/M induced by φ has to be trivial.

Denote for convenience N = H4(BA). Since the action induced by φ ∈ Aut(N) on
N/M is trivial, one can define a morphism (using additive notation)

δ : N → M, δ(n) = n− φ(n).

We have Ker δ = Nφ = {n ∈ N | φ(n) = n} so

[N : Nφ] = [N : Ker δ] ≤ ♯M ≤ pt.

We have seen above that we can identify N ≃ A in such a way that φ corresponds to
the map A→ A given by a 7→ γ2aγ−2. It thus follows that

Aγ = {a ∈ A | a = γ2aγ−2}

satisfies [A : Aγ] ≤ pt. Let A′ ≤ Γ be the subgroup generated by Aγ and γ2. It follows
from the definition of Aγ that A

′ is abelian. Since π(γ) is a generator of Q we may bound

[Γ : A′] ≤ 2[K : Aγ ] ≤ 2[K : A][A : Aγ ] ≤ 2pt[K : A],

so the proof of the lemma is complete. �
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8.3. CTE actions of finite p-groups.

Lemma 8.9. There exists a constant C, independent of p, such that for any finite p-
group G and any smooth CTE action of G on X the following holds. Let A ≤ G be a
MNAS. If the action of A on X is not free, then [G : A] ≤ C.

Proof. Let C0 be the constant given by Lemma 6.6. Suppose that G and A satisfy the
hypothesis of the statement. By Lemma 6.6 there exists a subgroup G0 ≤ G satisfying
[G : G0] ≤ C0 and such that G0 is abelian or there exists an embedded connected oriented
surface Z ⊂ X preserved by G0 and of genus ≤ C0. If G0 is abelian then by Lemma 3.5
we have

[G : A] ≤ Cr2+1
0 ,

where r is the constant given by Mann–Su’s Theorem 3.6 applied to X .

Now assume that G0 is not abelian, so that we have the surface Z at our disposal.
Since Z is orientable, so is its normal bundle N → Z. We can identify the degree of N
with the self-intersection Z · Z, which is equal to 0 because b2(X) = 0. Hence Z is an
oriented embedded surface with trivial normal bundle N → Z. By Lemma 5.3, N admits
a G0-invariant complex structure. By (2) in Lemma 5.6 there is an abelian subgroup
B ≤ G0 satisfying [G0 : B] ≤ C1, where the constant C1 depends only on the genus of Z
and hence can be bounded above by a constant depending only on X . Applying again
Lemma 3.5 we conclude that

[G : A] ≤ (C0C1)
r2+1,

where r is as above, so the proof of the lemma is now complete. �

Lemma 8.10. There exists a constant C such that: for any prime p, any finite p-group
G and any smooth CTE action of G on X there is an abelian subgroup A ≤ G such that
[G : A] ≤ C.

Proof. Recall that for every prime p we denote by Tp the p-torsion of H1(X). Since
H1(X) is finitely generated, we have ♯Tp = 1 except for finitely many p’s, so

CT := max
p
♯Tp

is finite.

Let CR be the number resulting from applying Lemma 8.6 to X .

Let p be a prime. Suppose given a smooth CTE action of a finite p-group G on X and
let ρ : G→ S1 be the rotation morphism. Let G0 = Ker ρ. Let K ≤ G0 be a MNAS.

We distinguish two cases, depending on whether the action of K on X is free or not.

Suppose first of all that the action of K on X is not free. By Lemma 8.9 we have
[G0 : K] ≤ C. Let G′ ≤ G be the normalizer ofK. SinceG0 is a normal subgroup ofG, by
Theorem 3.6 and Lemma 3.2 we have [G : G′] ≤ C ′. Let A ≤ G′ be a MNAS containing
K. Then the action of A on X is not free, so by Lemma 8.9 we have [G′ : A] ≤ C ′′. It
follows that [G : A] is bounded above by a constant which depends neither on p nor on
G.

Assume, for the rest of the proof, that the action of K on X is free. By Lemma 8.6,
there is a cyclic subgroup A ≤ K satisfying [K : A] ≤ CR.
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Let Q = G0/K. Since K is a MNAS of G0, the action of G0 on K given by conjugation
induces an effective action of Q on K, which allows us to identify Q with a subgroup of
Aut(K). Let

f : AutA(K) → Aut(A)

be the restriction map (we use here and below the notation introduced in Lemma 3.1).
Since A is cyclic, Aut(A) is also cyclic. Hence S := f(Q ∩ AutA(K)) is cyclic. Let
q ∈ Q∩AutA(K) be an element such that f(q) generates S. Let Q′ = 〈q〉 ≤ Q. We have

[Q : Q′] ≤ [Q : Q ∩ AutA(K)] · ♯Ker f ≤ [Aut(K) : AutA(K)] · ♯Ker f.

Applying Lemmas 3.1 and 3.4 (and noting that Ker f = Aut0A(K)) we conclude that
there is a constant CL, depending only on X , such that

(17) [Q : Q′] ≤ CL.

Let G′
0 be the preimage of Q′ via the projection G0 → Q. We have a short exact sequence

1 → K → G′
0 → Q′ → 1,

and A is normal in G′
0 because the elements of Q′ belong to AutA(K). We may thus

apply Lemma 8.8 and conclude the existence of an abelian subgroup A′ ≤ G′
0 containing

A and satisfying

[G′
0 : A

′] ≤ 2CT [K : A] ≤ 2CTCR.

Hence

[G0 : A
′] ≤ [G0 : G

′
0][G

′
0 : A

′] ≤ 2CLCTCR.

By Lemma 8.6 there is a cyclic subgroup

A′
c ≤ A′

satisfying [A′ : A′
c] ≤ CR. Since

[G0 : A
′
c] ≤ 2CLCTC

2
R

gives an upper bound that depends only on X , applying Lemma 3.2 and Theorem 3.6
we conclude that the normalizer

G′ = NG(A
′
c)

satisfies [G : G′] ≤ CN for a constant CN depending only on X . We have a short exact
sequence

1 → G′ ∩G0 → G′ → G′/(G′ ∩G0) → 1.

The group G′/(G′ ∩ G0) can be identified with a subgroup of G/G0 ≃ ρ(G) < S1, so
G′/(G′ ∩ G0) is cyclic, and clearly A′

c ≤ G′ ∩ G0. So we can apply Lemma 8.8 to the
inclusion A′

c ≤ G′ ∩ G0 and conclude the existence of an abelian subgroup A′′ ≤ G′

satisfying

[G′ : A′′] ≤ 2CT [G
′ ∩G0 : A

′
c] ≤ 2CT [G0 : A

′
c] ≤ 4CLC

2
TC

2
R

and hence

[G : A′′] ≤ 4CLC
2
TC

2
RCN .

This finishes the proof of the lemma. �
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8.4. Proof of Theorem 8.1. Let P be the collection of all finite p-subgroups (for all
primes p) of Diff(X) which act in a CT way on X . Let T be the collection of all finite
subgroups G < Diff(X) which act in a CT way on X and such that there exist different
primes p, q, a normal Sylow p-subgroup P ≤ G and a Sylow q-subgroup Q ≤ G such
that G = PQ and both P and Q are nontrivial. By the main theorem in [34] it suffices
to prove the existence of a constant C such that any G ∈ P∪T has an abelian subgroup
A ≤ G satisfying [G : A] ≤ C.

The existence of C for elements of P is a consequence of Lemma 8.10.

Let R be the number given by Theorem 3.6 applied to X , let

CA = max{4,max{♯GL(R,Z/p) | ♯Tp 6= 1}}.

Suppose that G = PQ ∈ T, with P a normal p-subgroup of G and Q a q-subgroup of
G, p 6= q. By Lemma 8.10 there are abelian subgroups P0 ≤ P and Q0 ≤ Q satisfying
[P : P0] ≤ C and [Q : Q0] ≤ C. Let Q′

0 be the normalizer of P0 in Q0. Since Q′
0 =

Q0 ∩NG(P0), by Theorem 3.6 and Lemma 3.2, there exists a constant C ′ such that

[Q0 : Q
′
0] ≤ [G : NG(P0)] ≤ C ′.

Then G0 = P0Q
′
0 satisfies [G : G0] ≤ CC ′.

Conjugation gives a morphism c : Q′
0 → Aut(P0). Let P0[p] be the p-torsion of

P0. This is a characteristic subgroup of P0, so restriction gives a natural morphism
r : Aut(P0) → Aut(P0[p]). Since Q′

0 is a q-group and q 6= p, Ker c = Ker r ◦ c. (This
is a standard fact in finite group theory, but we sketch an argument for the reader’s
convenience: if φ ∈ Aut(P0) belongs to Ker r then we may write φ = Id+ψ using
additive notation on P0, where ψ ∈ Hom(P0, P0) satisfies ψ(x) ∈ pP0 for every x, and
hence ψ(pkP0) ≤ pk+1P0 for every k; using the binomial’s formula and induction on r we
prove that φp

r
− Id sends P0 to p

rP0, so if r is big enough then φp
r
= Id; this proves that

φ is a p-element in Aut(P0) and justifies the equality Ker c = Ker r ◦ c.)

To finish the proof we distinguish two cases.

Suppose first of all that [Q′
0 : Ker r ◦ c] > CA. We claim that in this case ♯Tp = 1.

Indeed, otherwise we would have ♯AutP0[p] ≤ ♯GL(R,Z/p) ≤ CA, which combined with
[Q′

0 : Ker r◦c] ≤ ♯AutP0[p] would lead to a contradiction. Next we claim that the action
of P0 on X is not free. If the rank of P0[p] is 1 or 2 this follows from Lemma 7.1, and if
it is ≥ 3 then it follows from Lemma 8.7. Once we know that the action of P0 is not free,
applying Lemma 8.9 we conclude that G0 has an abelian subgroup of bounded index.

Next suppose that [Q′
0 : Ker r ◦ c] ≤ CA. Then the group Q1 = Ker c = Ker r ◦ c

commutes with P0, so A = P0Q1 ≤ G is an abelian subgroup satisfying [G : A] ≤ CACC
′.

This concludes the proof of the theorem.

9. Proofs of Theorems 1.1 and 1.2

Assume for the entire present section that X is a closed, connected and oriented 4-
manifold. This is more restrictive than the situation considered in Theorem 1.1, but
Lemma 2.1 allows us to reduce the general case to this setting. If b2(X) = 0 then both
Theorems 1.1 and 1.2 follow from Theorem 8.1. Hence, we also assume in this section
that b2(X) 6= 0.
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By Lemma 2.2, both in Theorems 1.1 and 1.2 it suffices to consider CTE actions.
Indeed, for Theorem 1.2 note that if G is any finite group and G′ ≤ G is a subgroup we
have

α(G′) ≥
α(G)

[G : G′]
,

because [G : A] = [G : G′][G′ : A] for any subgroup A ≤ G′ (in particular, for any abelian
subgroup).

Let D = maxp
∑

j≥0 bj(X ;Z/p).

9.1. Commutator subgroups. Let us denote by G0 the collection of all finite groups
Γ such that there exists a finite group G acting smoothly and in a CTE way on X and
a monomorphism Γ →֒ [G,G].

Lemma 9.1. There exists a constant C with the following property. Suppose that Γ ∈ G0

is a cyclic group of prime power order and that there exists no g ∈ Γ such that Xg contains
a connected component which is a nonorientable surface. Then there exists a subgroup
Γ0 ≤ Γ satisfying [Γ : Γ0] ≤ C and XΓ0 6= ∅.

Proof. We are going to prove that C = 2D does the job.

Let G be a finite group acting smoothly in a CTE way on X and let Γ ≤ [G,G] be
a cyclic subgroup of prime power order. Since b2(X) 6= 0, Poincaré duality implies the
existence of classes α, β ∈ H2(X) such that αβ is a generator of H4(X). Let Lα, Lβ be
complex line bundles on X with first Chern classes α, β respectively. By [32, Theorem
6.5] there exists a short exact sequence

1 → S → Γ̂
π

−→ Γ → 1,

where S is a finite cyclic group, and an action of Γ̂ on Lα lifting the action of Γ on X .
Denote by

µ : Γ̂× Lα → Lα, (h, λ) 7→ h · λ

the map given by this action.

Let g ∈ Γ be a generator, let γ ∈ Γ̂ be a lift of g, and let Γ′ ≤ Γ̂ be the subgroup
generated by γ. Let S ′ = S ∩ Γ′, so that we have an exact sequence

1 → S ′ → Γ′ π
−→ Γ → 1.

Since the action of the elements in S ′ on Lα lift the trivial action on X , it is given by a
morphism of groups ξ : S ′ → S1. Since Γ′ is cyclic, we may choose an extension of ξ to
Γ′, which we denote by the same symbol ξ : Γ′ → S1. Now the map

ν : Γ′ × Lα → Lα, ν(h, λ) = ξ(h)−1µ(h, λ)

defines an action of Γ′ on Lα lifting the action of Γ on X , whose restriction to S ′ is
trivial. Consequently, this action descends to an action of Γ on Lα lifting the action of
Γ on X . Replacing Lα by Lβ we similarly obtain a lift of the action of Γ to Lβ.

Let E = Lα ⊕ Lβ. This is a rank 2 complex vector bundle with c2(E) = αβ, and the
lifts of the action of Γ to Lα and Lβ combine to give an action on E.

The argument that follows can be seen as a toy model of the proof of [32, Theorem
1.11]. The setting is more restricted in that it applies only to dimension 4, but more
general in that no almost complex structure on X is assumed to exist.
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We first prove that the action of Γ on X is not free. Arguing by contradiction, let us
assume that it is free. Then X/Γ is a closed, oriented and connected 4-manifold. Let
q : X → X/Γ be the quotient map and let pr = ♯Γ, where p is prime and r ≥ 1. Then
the image of the map q∗ : H4(X/Γ) → H4(X) is equal to the set of integral multiples of
pr αβ. Using the action of Γ on E we obtain a rank 2 complex vector bundle E0 → X/Γ
together with an isomorphism E ≃ q∗E0. By the naturality of Chern classes this implies
that αβ = c2(E) = q∗c2(E0), which contradicts the previous claim on the image of
q∗ : H4(X/Γ) → H4(X). Hence Xg 6= ∅ for every g ∈ Γ of order p.

Suppose that there exists some g ∈ Γ such that Xg contains an isolated point. Let
S ⊆ Xg be the set of isolated fixed points. By Lemma 6.1 we have ♯S ≤ D. Since Γ is
abelian, its action on X preserves S. Choose some s ∈ S and let Γ0 ≤ Γ be the stabilizer
of S. Then [Γ : Γ0] ≤ D and s ∈ XΓ0 , so XΓ0 6= ∅. Hence we are done in this case.

Assume for the remainder of the proof that there exists no g ∈ Γ such that Xg has an
isolated fixed point.

Let g ∈ Γ be an element of order p and let Y = Xg. Then Y is a nonempty embedded,
possibly disconnected surface. Let Θ ≤ Γ be the subgroup generated by g. Recall that
Hr(BΘ;Z/p) ≃ Z/p for every r ≥ 0.

In the arguments that follow we will somehow abusively denote by cΘk (V ) the image
of the k-th Chern class of an equivariant vector bundle V under the map H2k

Θ (·) →
H2k

Θ (·;Z/p) induced by the projection Z → Z/p. Let π : X → {∗} denote the projection
to a point. Since c2(E) is a generator of H4(X), we have

π∗c
Θ
2 (E) 6= 0,

where π∗ : H∗
Θ(X ;Z/p) → H∗−4

Θ ({∗};Z/p) = H∗−4(BΘ;Z/p) is the pushforward map
(see e.g. [32, §2.1], but take into account that here we use coefficients in Z/p while the
discussion in [op.cit.] uses integer coefficients). Our aim is to apply localization to relate
the nonvanishing of π∗c

Θ
2 (E) to the existence of points with big stabilizer, and for that

we need to have an invariant orientation of Y .

By assumption all connected components of Y are orientable. Let ν be the number
of connected components of Y . By Lemma 6.1 we have ν ≤ D. Let o(Y ) be the set of
orientations of Y . We have ♯o(Y ) = 2ν , and there is a natural action of Γ on o(Y ). Choose
some element o ∈ o(Y ) and let Γ0 ≤ Γ be the stabilizer of o. We have [Γ : Γ0] ≤ 2ν ≤ 2D.
If Γ0 = {1} then we are done, since clearly XΓ0 6= ∅.

Suppose from now on that Γ0 6= {1}. Then Θ ≤ Γ0. Let N → Y be the normal
bundle of the inclusion Y →֒ X , and orient it in a way compatible with the orientation
of X and with o ∈ o(Y ) . The bundle N carries a natural action of Γ0 which preserves
the orientation. Hence we may consider the equivariant Euler class eΓ0(N), which we
assume, abusively as before, to lie in H2

Γ0
(Y ;Z/p). By Lemma 5.3 we may endow N

with a Γ0-invariant complex structure compatible with the orientation. Then we have
eΓ0(N) = cΓ0

1 (N), and the same formula holds replacing Γ0 by any of its subgroups.

Let ρ : Y → {∗} be the projection to a point. Fix some monomorphism ζ : Θ → S1

and let t = c1(EΘ×ζ S
1) ∈ H2(BΘ;Z/p). By the localization formula we have

(18) π∗c
Θ
2 (E) = ρ∗

(
cΘ2 (E|Y )

cΘ1 (N)

)
.
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This follows from the properties of the pushforward map listed in [32, §2.1], together
with the fact that H4

Θ(X \Y ;Z/p) = 0, so that cΘ2 (E) can be lifted to H4
Θ(X,X \Y ;Z/p)

and hence belongs to the image of i∗ : H∗
Θ(Y ;Z/p) → H∗+2

Θ (X ;Z/p) (here i : Y →֒ X
is the inclusion). The term inside ρ∗(·) in the RHS of (18) should be understood as an
element of the localized ring H∗

Θ(Y ;Z/p)[t−1]. The invertibility of cΘ1 (N) inside this ring
is a standard fact, but the computations below give a proof of it.

The RHS of (18) can be written as a sum of contributions from each connected com-
ponent of Y . We next compute in concrete (nonequivariant) terms these contributions.

Fix some connected component Z ⊆ Y . Suppose the action of Θ on Lα|Z (resp. Lβ |Z ,
N |Z) is given by a character ζaZ : Θ → S1 (resp. ζbZ : Θ → S1, ζnZ : Θ → S1). The
integers aZ , bZ , nZ are of course well defined only up to multiples of p. With respect to
the Künneth isomorphism

H∗
Θ(Z;Z/p) ≃ H∗(Z;Z/p)⊗H∗(BΘ;Z/p)

we have cΘ1 (Lα|Z) = c1(Lα|Z) + aZt = α|Z + aZt, c
Θ
1 (Lβ |Z) = c1(Lβ|Z) + bZt = β|Z + bZt,

and cΘ1 (N |Z) = c1(N |Z) + nZt.

The fact that Θ acts effectively on N (which follows from (1) in Lemma 4.4) implies
that nZ is not divisible by p, so we may choose an integer mZ such that mZnZ ≡ 1
mod p. Then we compute in H∗

Θ(Z;Z/p)[t
−1]:

(c1(N |Z) + nZt)
−1 = mZt

−1(1− t−1mZc1(N |Z)).

Hence we have:

ρ∗
cΘ2 (E|Z)

cΘ1 (N)
= ρ∗((α|Z + aZt)(β|Z + bZt)mZt

−1(1− t−1mZc1(N |Z)))

= ρ∗(mZbZα|Z +mZaZβ|Z −m2
ZaZbZc1(N |Z))

= mZbZ〈α, [Z]〉+mZaZ〈β, [Z]〉 −m2
ZaZbZ〈c1(N |Z), [Z]〉,

where [Z] ∈ H2(Z) denotes the fundamental class. Let use denote for convenience

f(Z) := mZbZ〈α, [Z]〉+mZaZ〈β, [Z]〉 −m2
ZaZbZ〈c1(N |Z), [Z]〉.

We can now translate the fact that π∗c
Θ
2 (E) is nonzero into the following statement:

∑

Z

f(Z) is not divisible by p,

where Z runs over the set of connected components of Y .

Let us decompose Y = Y1 ⊔ · · · ⊔ Ys, where for each j there is a connected component
Z of Y such that Yj =

⋃
g∈Γ0

gZ. We claim that at least for one j we have Yj ⊆ XΓ0 .
With this claim the proof of the lemma will be complete. The claim is an immediate
consequence of the following two observations.

If Yj contains more than one connected component then
∑

Z⊂Yj
f(Z) is divisible by p.

Indeed, on the one hand for every connected component Z of Y and any g ∈ Γ0 we have
f(Z) = f(gZ), because Γ0 is abelian and Θ ≤ Γ0, and on the other hand the cardinality
of π0(Yj) divides ♯Γ0, which is a power of p.

If Yj is connected but Yj 6⊂ XΓ0 then f(Yj) is divisible by p. To see this, let us
denote Z = Yj and let Γ1 ≤ Γ0 be the subgroup of elements acting trivially on Z. Then
Ξ := Γ0/Γ1 acts on Z preserving the orientation and without isolated fixed points (this
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follows easily from the assumption that there is no g ∈ Γ such that Xg has an isolated
fixed point). Hence Ξ acts freely on Z. If we now prove that the action of Ξ on Z lifts
to actions on Lα|Z , Lβ |Z and N |Z then we will deduce that f(Z) is divisible by p, by the
same arguments that we used at the beginning of the proof to justify that the action of
Γ on X is not free. Since Γ1 acts trivially on Z, its action on Lα|Z , Lβ |Z and N |Z will be
given by characters ξα, ξβ, ν : Γ1 → S1 respectively. Using the fact that Γ0 is abelian we
deduce that these characters can be extended to characters of Γ0. Denote the extensions
by the same symbols. Then we may twist the action of Γ0 on Lα|Z , Lβ |Z and N |Z by
ξ−1
α , ξ−1

β , ν−1 respectively. The resulting new action will be trivial on Γ1, and hence will
define a lift of the action of Ξ on Z to the bundles Lα|Z , Lβ |Z and N |Z . �

Lemma 9.2. There exists a constant C such that for every prime p and any p-group
Γ ∈ G0 there exists an abelian subgroup B ≤ Γ satisfying [Γ : B] ≤ C. Furthermore, at
least one of the following statements is true.

(1) for every b ∈ B we have Xb 6= ∅;
(2) there exists some b ∈ B such that Xb has a connected component which is a

nonorientable surface of genus not bigger than C.

Proof. Let p be any prime and let Γ ∈ G0 be a p-group. Choose a MNAS A ≤ Γ. Recall
that since A ≤ Γ is a MNAS, conjugation gives a monomorphism c : Γ/A →֒ Aut(A)
(see [41, §5.2.3]).

Suppose that there exists some a ∈ A such that Xa contains an isolated fixed point.
(resp. a connected component Z which is a nonorientable surface). Then we may apply
Lemma 6.4 (resp. Lemma 6.5) and conclude the existence of an abelian subgroup B ≤ Γ
satisfying [Γ : B] ≤ C (where C depends only on X) and furthermore one of the following
statements are true:

(1) XB 6= ∅ (this happens if we are applying Lemma 6.4), or
(2) there is some b ∈ B such that Xb has Z as a connected component (this happens

if we are applying Lemma 6.5).

So we are done in this case.

Suppose from now on that the fixed point set of every a ∈ A \ {1} is a possibly
disconnected orientable embedded surface. Let C1 be the constant given by Lemma 6.3
and let W = W (X,A). Since A is normal in Γ, the action of Γ on X preserves W . By
(1) in Lemma 6.3, W ⊂ X is a possibly disconnected closed embedded surface, and each
connected component of W is a connected component of Xa for some a ∈ A. So, by our
assumption, W is orientable. By (3) in Lemma 6.3, W contains at most C1 connected
components (but beware that we have not proved that W is nonempty).

Let r be the number given by Theorem 3.6 applied to X , so that every finite abelian
group acting effectively on X can be generated by r elements.

Let C2 be the constant given by Lemma 9.1. Let pk be the biggest power of p not
bigger than C2. Let A0 ≤ A be the image of the multiplication map A → A, a 7→ pka
(we use additive notation on A). Since A can be generated by r or fewer elements, we
have

(19) [A : A0] ≤ pkr ≤ Cr
2 .
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Hence if A0 = {1} then ♯A ≤ Cr
2 , so ♯Aut(A) ≤ (Cr

2)!. Since there is a monomorphism
Γ/A→ Aut(A), we have ♯Γ ≤ Cr

2(C
r
2)!. Setting B = {1} we are done in this case.

Suppose from now on that A0 6= {1}. By Lemma 9.1 we have Xa 6= ∅ for every a ∈ A0.
Indeed, any a ∈ A0 can be written as a = pkb for some b ∈ A, so a is contained in any
subgroup F ≤ 〈b〉 satisfying [〈b〉 : F ] ≤ C2. It follows that W 6= ∅.

Since [A : A0] is bounded above by a constant depending only on X , by Lemma 3.2
and Theorem 3.6 the normalizer Γ0 ≤ Γ of A0 ≤ A satisfies

[Γ : Γ0] ≤ C3

for some constant C3 that depends only on X .

Since the action of Γ on X preserves W , so does the action of Γ0. Let Γ1 ≤ Γ0 be the
subgroup of elements preserving each connected component of W . Then

[Γ0 : Γ1] ≤ C1!.

Choose some orientation of W . The set of possible orientations of W contains 2♯π0(W ) ≤
2C1 elements, so the subgroup Γ2 ≤ Γ1 preserving the orientation of W satisfies

[Γ1 : Γ2] ≤ 2C1.

We claim that the elements of Γ2 centralize A0. Let g ∈ Γ2 and a ∈ A0. Let Z ⊆ Xa

be a connected component. Then Z is a connected component of W as well and thus g
preserves Z and acts on Z preserving the orientation, while a acts trivially on Z. This
implies that g and a commute, by (1) in Lemma 4.4 and Lemma 5.4.

Let Aut0A0
(A) ≤ AutA0

(A) denote the automorphisms of A which fix each element of
A0. From the bound (19), Lemma 3.4, and Theorem 3.6, we conclude that

♯Aut0A0
(A) ≤ C4

for some constant C4 depending only on X . Using once again the fact that A ≤ Γ is a
MNAS, we deduce that conjugation gives a monomorphism Γ2/Γ2∩A →֒ Aut(A). Since
Γ2 centralizes A0, the image of this monomorphism lies in Aut0A0

(A). Hence

[Γ2 : Γ2 ∩ A] = ♯(Γ2/Γ2 ∩A) ≤ C4.

Define B := Γ2 ∩ A0. Then we have Xb 6= ∅ for every b ∈ B and

[Γ : B] = [Γ : Γ0][Γ0 : Γ1][Γ1 : Γ2][Γ2 : Γ2 ∩ A][Γ2 ∩ A : Γ2 ∩ A0]

≤ [Γ : Γ0][Γ0 : Γ1][Γ1 : Γ2][Γ2 : Γ2 ∩A][A : A0]

≤ C3C1!2
C1C4C

r
2 .

The proof of the lemma is now complete. �

Let C and d be positive integers. Recall that a collection of finite groups C satisfies
J(C, d) if each G ∈ C has an abelian subgroup A such that [G : A] ≤ C and A can
be generated by d elements. Denote by T(C) the set of all T ∈ C such that there exist
primes p and q, a normal Sylow p-subgroup P of T , and a Sylow q-subgroup Q of T ,
such that T = PQ. Note that here Q might be trivial. The following is the main result
in [34]:
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Theorem 9.3. Let d and C0 be positive integers. Let C be a collection of finite groups
which is closed under taking subgroups and such that T(C) satisfies J(C0, d). Then there
exists a positive integer C such that C satisfies J(C, d).

Lemma 9.4. G0 satisfies the property J(C, r) for some constant C.

Proof. By Theorem 9.3 it suffices to prove the existence of a constant C0 such that T(G0)
satisfies J(C0, r).

Let Γ ∈ T(G0) and write Γ = PQ, where P ≤ Γ (resp. Q ≤ Γ) is a Sylow p-subgroup
(resp. q-subgroup), p, q are different primes, and P is a normal subgroup of Γ. By
Lemma 9.2 there is an abelian subgroup P0 ≤ P satisfying [P : P0] ≤ C1, where C1

depends only on X , and, furthermore, at least one of these statements is true:

(1) for any g ∈ P0 we have Xg 6= ∅,
(2) there is some g ∈ P0 such that Xg has a connected component which is a nonori-

entable surface.

Using again Lemma 9.2 we may pick an abelian subgroupQ′ ≤ Q satisfying [Q : Q′] ≤ C1.
Let Q0 ≤ Q′ be the normalizer of P0 in Q′. Since Q0 = Q′ ∩ NΓ(P0), by Theorem 3.6
and Lemma 3.2, there exists a constant C2 depending only on X such that

[Q′ : Q0] ≤ [Γ : NΓ(P0)] ≤ C2.

By Lemmas 6.4 and 6.5, if there exists some g ∈ P0 such that Xg has a connected
component which is an isolated point or a nonorientable surface then there exists an
abelian subgroup B ≤ P0Q0 satisfying [P0Q0 : B] ≤ C3, where C3 only depends on X .
Since [PQ : P0Q0] ≤ C2

1C2, it follows that

[Γ : B] = [PQ : B] ≤ C2
1C2C3

and we are done in this case.

Let us assume for the remainder of the proof that the fixed point set of every g ∈
P0 \ {1} is a possibly disconnected orientable embedded surface. Define W = W (X,P0).
By Lemma 6.3,W is a possibly disconnected embedded closed surface (orientable, by our
previous assumption), for each g ∈ P0 \ {1} the fixed point set Xg is equal to the union
of some connected components of W , and W has at most C4 connected components,
where C4 only depends on X . Furthermore, the genus of each connected component of
W is at most C4. Since Q0 normalizes P0, the action of Q0 on X preserves W .

Our hypothesis implies that statement (1) above holds true. Let Q1 ≤ Q0 be the
subgroup of those elements preserving each connected component of W , and acting
orientation preservingly on each connected component ofW . We have [Q0 : Q1] ≤ 2C4C4!.
We claim that if p ∈ P0 and q ∈ Q1 then p and q commute. To see this, take a connected
component Z of Xp. By (2) in Lemma 6.3, Z is a connected component of W , so Q1

preserves Z and acts on Z orientation preservingly. Then the commutativity of p and
q follows from (1) in Lemma 4.4 and from Lemma 5.4. Hence P0Q1 is abelian, and
combining our previous bounds we obtain

[Γ : P0Q1] ≤ C2
1C22

C4C4!,

so the proof of the lemma is now complete. �
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9.2. Proof of Theorem 1.1. Let X be an oriented and connected closed 4-manifold.
Let r be the number resulting from applying Theorem 3.6 to X , so that every finite
abelian group A acting effectively on X can be generated by r elements.

Let G be a finite group acting in a smooth and CTE way on X . Let Γ = [G,G]. By
Lemma 9.4 there is an abelian subgroup A ≤ Γ satisfying

[Γ : A] ≤ C1,

where C1 depends only on X . We distinguish two cases, according to whether the action
of A on X is free or not.

Suppose that A acts freely on X . Let r, CF be the constants given by Theorem 3.6
and Lemma 9.1 applied to X . If p is a prime bigger than CF and the p-part Ap ≤ A is
nontrivial, then by Lemma 9.1 the action of Ap on X has nontrivial fixed points, which
contradicts the assumption that A acts freely. Hence we may write

A ≃ Ap1 × · · · × Aps,

where p1, . . . , ps are the prime numbers in {1, . . . , CF}. By Lemma 9.1 the exponent of
Api cannot be bigger than CF , for otherwise the action of Api would not be free. This
implies that ♯Api ≤ Cr

F , and consequently

♯A ≤ Crs
F ,

so ♯Γ ≤ C1C
rs
F . Applying Lemma 3.7 to the exact sequence 1 → Γ → G → G/Γ → 1

we conclude the existence of an abelian subgroup B ≤ G such that [G : B] is bounded
above by a constant depending only on X . In this case we set G0 := B and we are done.

Assume, for the remainder of the proof, that A does not act freely on X . Let

G′ = NG(A) ≤ G

be the normalizer of A in G. By Lemma 3.2 we have

[G : G′] ≤ C2,

where C2 depends only on X . Let p be a prime such that Ap 6= 1 and the action of Ap
on X is not free. Since Ap is a characteristic subgroup of A, Ap is normal in G′.

If there is some a ∈ Ap such that Xa has an isolated fixed point then by Lemma 6.4
there is an abelian subgroup B ≤ G′ such that [G′ : B] is bounded above by a constant
depending only on X , so setting G0 := B we are done in this case.

Now assume that there is no a ∈ Ap such that Xa has an isolated fixed point. If there
is some b ∈ Ap such that Xb has a connected component which is a nonorientable surface
then by Lemma 6.5 there is an abelian subgroup B ≤ G′ such that [G′ : B] is bounded
above by a constant depending only on X , and hence setting G0 := B we are also done
in this case.

At this point we may assume that for every a ∈ Ap \{1} the fixed point set Xa ⊂ X is
a possibly empty embedded orientable surface and that the set W = W (X,Ap) defined
in Subsection 6.1 is nonempty. Let C3 be the constant given by applying Lemma 6.3 to
X (so C3 only depends on X). Then W has at most C3 connected components and the
absolute value of the genus of each of its connected components is not bigger than C3.
Furthermore, since Ap is a normal subgroup of G′ the action of G′ on X preserves W .
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We distinguish two cases according to whether χ(Z) vanishes for all connected com-
ponents Z ⊆W or not.

Suppose first that there is a connected component Z ⊆ W such that χ(Z) 6= 0. Let
G′′ ≤ G′ be the subgroup of elements preserving Z. We have [G′ : G′′] ≤ C3. From
Lemmas 4.4 and 5.6 we deduce the existence of an abelian subgroup B ≤ G′′ such that
[G′′ : B] is bounded above by a constant depending only on X . Hence, setting G0 := B
we are done.

Finally, suppose that χ(Z) = 0 for all connected components Z ⊆ W . Choose any
connected component Z ⊂ X and let G′′ ≤ G′ be the subgroup of elements preserving
Z. We have [G′ : G′′] ≤ C3 and by Lemmas 4.4 and 5.5 there exists a nilpotent subgroup
G0 ≤ G′′ of class at most 2 satisfying [G′′ : G0] ≤ 12 and, furthermore, [G0, G0] is cyclic
and acts trivially on Z. We thus have

Z ⊆ X [G0,G0] ⊆W,

so X [G0,G0] is a nonempty union of embedded tori because all connected components of
W are orientable and have zero Euler characteristic. Combining the previous estimates
we have

[G : G0] ≤ [G : G′][G′ : G′′][G′′ : G0] ≤ 12C2C3,

so the proof of the theorem is now complete.

9.3. Proof of Theorem 1.2. Suppose that N is a finite nilpotent group of class at
most 2 acting in a smooth and CTE way on X . Then [N,N ] is abelian and central in
N . The arguments in Subsection 9.2 imply the existence of a constant C1, depending
only on X , such that if α(N) ≥ C1 then the group [N,N ] does not act freely on X ,
and any nontrivial g ∈ [N,N ] whose action on X has fixed points satisfies (2) in the
statement of Theorem 1.2. Furthermore, (3) holds for any such g (with a suitable choice
of C depending only on X) thanks to (1) in Lemma 5.5.

To conclude the proof of Theorem 1.2 assume that α(N) ≥ C1 and let us prove
that there exists a nontrivial g ∈ [N,N ] which does not act freely on X and whose
order satisfies ord(g) ≥ f(α(N)) for some function f depending on X and satisfying
limn→∞ f(n) = ∞.

We may write

[N,N ] ≃ Γ1 × · · · × Γs,

where each Γi is cyclic of prime power order. By Theorem 3.6, s ≤ C2, where C2 depends
only on X . For any g ∈ [N,N ] which does not act freely on X the fixed point set Xg is
the disjoint union of some tori (because we are assuming α(N) ≥ C1), so in particular Xg

has no connected component which is a nonorientable surface. Consequently, Lemma 9.1
implies that for every i there exists some Γ′

i ≤ Γi such that XΓ′

i 6= ∅ and [Γi : Γ
′
i] ≤ C3

for some constant C3 depending only on X . Then we have

max
i
♯Γ′

i ≥
maxi ♯Γi
C3

≥
[N,N ]1/C2

C3

.

By Lemma 3.7 there exists a function h : N → N depending only on X and satisfying
limn→∞ h(n) = ∞ and ♯[N,N ] ≥ h(α(N)) (just take G = N and G0 = [N,N ], so that
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G1 = N/[N,N ] is abelian). The function f : N → N defined as

f(n) :=
h(n)1/C2

C3

depends only on X , it satisfies limn→∞ f(n) = ∞, and by the previous estimate we have
maxi ♯Γ

′
i ≥ f(α(N)), so picking some i realizing the previous maximum, any generator

g of Γ′
i satisfies ord(g) ≥ f(α(N)).

10. Using the Atiyah–Singer G-signature theorem

Theorem 10.1. Let X be a closed connected and oriented 4-manifold satisfying σ(X) 6=
0. If φ ∈ Diff(X) has finite order and acts trivially on cohomology then Xφ 6= ∅.

Proof. This is an immediate consequence of the G-signature theorem [1, Theorem 6.12]
and the fact that σ(φ,X) = σ(X) 6= 0 if φ acts trivially on cohomology. �

Theorem 10.2. Let X be a closed connected and oriented 4-manifold. Suppose that
φ ∈ Diff(X) has finite order bigger than 2 and acts trivially on cohomology, and that the
fixed point set Xφ has no isolated fixed points (so all the connected components of Xφ

are embedded surfaces). Suppose that Xφ = S1 ⊔ · · · ⊔ Sn with each Si connected, and
that the action of φ on the normal bundle of Sk is by rotation of angle θk ∈ S1. Then all
connected components of Xφ are orientable and

σ(X) =
n∑

k=1

sin−2(θk/2)Sk · Sk.

Proof. The orientability of the connected components of Xφ is guaranteed by (1) in
Lemma 4.5. If the order of φ is odd then the formula for σ(X) follows from [1, Proposition
6.18]. For the general case note that the proof of [1, Proposition 6.18] works equally well
if the order of φ is even and bigger than 2. Indeed, in this case the normal bundle N
of every connected component Y ⊆ Xφ supports an invariant almost complex structure
(by Lemma 5.3, because Y is orientable and hence so is N) and φ acts on N through
multiplication by a complex number different from ±1 (so in the notation of [1, §6] we
have Nφ(−1) = 0). �

Theorem 10.3. Let X be a closed, connected and oriented 4-manifold. If σ(X) 6= 0
then Diff(X) is Jordan.

Proof. The same argument that we used in Lemma 9.4 to prove that the family of finite
groups G0 is Jordan works in our case if we replace Lemma 9.1 by Theorem 10.1. �

The following lemma is used in the proof of Theorem 1.4.

Lemma 10.4. Let X be a closed connected and oriented 4-manifold satisfying σ(X) = 0.
There exists a real number λ > 0 with the following property. Suppose that φ ∈ Diff(X)
has finite order and acts trivially on cohomology, that the fixed point set Xφ has no
isolated fixed points, and that all connected components of Xφ (which, by assumption,
are embedded surfaces) are orientable. Write Xφ = S1 ⊔ · · · ⊔ Sn and define

µM = max
i
Si · Si, µm = min

i
Si · Si.

Then µM ≥ −λµm ≥ 0 and µm ≤ −λµM ≤ 0.



42 IGNASI MUNDET I RIERA AND CARLES SÁEZ–CALVO

Proof. We first prove that the number n of connected components ofXφ is bounded above
by a constant depending only onX : more precisely, if we defineD = maxp

∑
j≥0 bj(X ;Z/p)

then n ≤ D/2. Indeed, if φ ∈ Diff(X) satisfies the hypothesis of the lemma and its order
is equal to ps, where p is a prime and s an integer, then applying Lemma 6.1 to the
fixed point set of φs and noting that each connected component of Xφ is a connected
component of Xφs we conclude that

∑

i

∑

k

bk(Si;Z/p) ≤ D.

Since each Si contributes at least two units to the left hand side, the bound n ≤ D/2
follows.

Once we have an upper bound on the number of connected components of Xφ, the
proof is concluded combining Theorem 10.2 and the following lemma. �

Lemma 10.5. Given an integer n > 0 there exists a real number δ > 0 and an integer
k0 > 0 such that for every integer k ≥ k0 and any choice of primitive k-th roots of unity

θ1, . . . , θn ∈ S1

there is an integer a such that | sin θaj | ≥ δ for every j.

Proof. We consider the standard measure on S1 of total volume 2π. For every integer
k 6= 0 we denote by µk the set of all k-th roots of unity, and for every ǫ > 0 we denote
Aǫ = {e2πiθ | |θ| < ǫ} ⊆ S1 and Sǫ = Aǫ ∪ (−Aǫ).

Define ǫ = 1/(4(n+ 1)) and k0 = 4(n+ 1). Suppose that k ≥ k0. For every θ, θ
′ ∈ µk

the sets θS1/(2k) and θ
′S1/(2k) are disjoint. Since 1/2k ≤ 1/2k0 = ǫ/2, we have

⋃

θ∈µk∩Aǫ/2

θS1/(2k) ⊆ Aǫ.

Combining this inclusion with Vol(Aǫ) = 8πǫ = 2π/(n + 1) and Vol(θS1/(2k)) = 2π/k, it
follows that

♯µk ∩ Aǫ/2 ≤
2π/(n+ 1)

2π/k
=

k

n+ 1
.

Let [k] = {1, 2, . . . , k}. Suppose that θ1, . . . , θn are k-th primitive roots of unity.
Then for every j the map ej : [k] → µk defined as ej(a) = θaj is a bijection. Define
Cj = {a ∈ [k] | θaj ∈ Aǫ/2}. The previous estimate implies that ♯Cj ≤ k/(n + 1), and
hence the set C = C1 ∪ C2 ∪ · · · ∪ Cn satisfies ♯C < k. Therefore [k] \ C is nonempty.
Take any a ∈ [k] \ C. For every j we have θaj /∈ Aǫ/2, so

| sin θaj | ≥ δ := sin 2πǫ/2 = sin π/4(n+ 1),

so the proof of the lemma is complete. �

11. Automorphisms of almost complex manifolds: proof of Theorem 1.6

We will use the positivity of intersection of holomorphic curves in 4-dimensional almost
complex manifolds. This was first stated by Gromov in [12, 2.1.C2] and a detailed proof
was given by McDuff in [19, Theorem 2.1.1] (see page 36 in [22] for some comments on
earlier proofs). We next give a detailed statement of the result adapted to our needs,
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and for the reader’s convenience we reduce its proof (using basically the same ideas as
[19]) to results proved in full detail in the book [22].

Lemma 11.1. Let (X, J) be an almost complex 4-dimensional manifold, let Σ1,Σ2 be
closed and connected Riemann surfaces, and let φi : Σi → X, i = 1, 2, be J-holomorphic
maps. Assume that φ1 is an immersion. Let [Σi] ∈ H2(Σi) denote the fundamental class
corresponding to the canonical orientation as a Riemann surface. Then

(φ1)∗[Σ1] · (φ2)∗[Σ2] ≥ 0

unless φ1(Σ1) = φ2(Σ2).

Proof. Let I = {(x, y) ∈ Σ1 × Σ2 | φ1(x) = φ2(y)}. Let I∗ ⊆ I be the set of isolated
points. Clearly, I \ I∗ is closed in Σ1 ×Σ2, and hence is compact. Let πi : Σ1 ×Σ2 → Σi
denote the projection. Then πi(I \ I

∗) ⊆ Σi is closed for i = 1, 2.

We next prove that πi(I \ I
∗) is open for i = 1, 2. Assume that (x, y) ∈ I \ I∗ and that

(xi, yi) is a sequence in I converging to (x, y) and satisfying (xi, yi) 6= (x, y) for every i.
Choose charts f : Ω → Σ1 and g : Ω → Σ2 with f(0) = x1, g(0) = x2, where Ω ⊂ C is an
open subset containing the origin, and define u = φ1 ◦f , v = φ2 ◦g. Ignoring if necessary
some of the initial points in the sequence (xi, yi), we may assume that xi = f(zi) and
yi = g(ζi) for zi, ζi ∈ Ω. We claim that ζi 6= 0 for infinitely many indices i. Otherwise
for every i we would have yi = y and hence φ1(xi) = φ2(yi) = φ2(y) = φ1(x), which
would imply that φ−1

1 (φ1(x)) ⊃ {x1, x2, . . . } is infinite; but this, by [22, Lemma 2.4.1],
is incompatible with the assumption that Σ1 is compact and dφ1(x) 6= 0. Hence the
claim is proved. We are thus in a position to apply [22, Lemma 2.4.3] and conclude that
π1(I \ I

∗) (resp. π2(I \ I
∗)) contains x (resp. y) in its interior.

To finish the proof we distinguish two possibilities. If I \ I∗ 6= ∅ then both projections
π1(I \ I∗) and π2(I \ I∗) are nonempty. Since these projections are open and closed
and both Σ1 and Σ2 are connected, we have πi(I \ I

∗) = Σi for i = 1, 2. The equality
π1(I \I

∗) = Σ1 means that for each x ∈ Σ1 there is some y ∈ Σ2 such that φ1(x) = φ2(y),
so φ1(Σ1) ⊆ φ2(Σ2). Similarly (exchanging Σ1 and Σ2) we have φ2(Σ2) ⊆ φ1(Σ1).
Consequently in this case we have φ1(Σ1) = φ2(Σ2).

The other possibility is that I \ I∗ = ∅, so I = I∗ and hence I is finite. Then [22,
Theorem 2.6.3] implies that (φ1)∗[Σ1] · (φ2)∗[Σ2] ≥ 0. �

Let us now prove Theorem 1.6. Let (X, J) be a closed almost complex 4-manifold, and
let G = Aut(X, J) be its group of automorphisms. Assume that G is not Jordan. Then,
by Theorem 1.4 we can find some φ ∈ G of finite order such that Xφ has a connected
component T which is an embedded torus of negative self-intersection. Since φ preserves
J and has finite order, its fixed point locus is a (possibly disconnected) almost complex
submanifold. In particular T is an almost complex submanifold of (X, J) and hence can
be identified with the image of a holomorphic embedding ψ : Σ → (X, J) where Σ is a
closed connected Riemann surface of genus 1.

Let G0 ≤ G denote the subgroup of automorphisms acting trivially on H∗(X). We
claim that the elements of G0 preserve T . Indeed, if ζ ∈ G0 then applying Lemma 11.1
to ψ and ζ ◦ ψ we conclude that ζ(T ) = T because T · T < 0.

Let G ≤ G be a finite subgroup. By Lemma 2.2 the intersection G0 = G ∩ G0 satisfies
[G : G0] ≤ C for some constant C depending only on X . By our previous observation,
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every element of G0 preserves T . So, if we denote by N → T the normal bundle of
the inclusion in X then by Lemma 4.4 the action of G0 on X induces a monomorphism
G0 →֒ Aut(N). By Lemma 6.5 there is an abelian subgroup A ≤ G0 satisfying

[G0 : A] ≤ 12 |T · T |,

so we have

[G : A] ≤ 12C|T · T |.

We have thus proved that G is Jordan, contradicting our initial assumption that it was
not.

12. Symplectomorphisms: proof of Theorem 1.7

By (1), (2) and (4) in Theorem 1.5, in order to prove Theorem 1.7 it suffices to consider
the case where

(20) χ(X) = σ(X) = 0, b+2 (X) = 1.

For the latter condition note that b2(X) > 0 on any symplectic manifold, and the
vanishing of the signature implies that b2(X) = 2b+2 (X). Under these conditions we
have b2(X) = 2 and consequently (using the vanishing of χ and Poincaré duality)
b1(X) = b3(X) = 2. In particular, statement (3) in Theorem 1.7 follows from Theo-
rem 1.5.

So throughout this section (X,ω) will denote a fixed closed symplectic 4-manifold
satisfying the previous conditions (20).

Let J be any ω-compatible almost complex structure on X . We can define the canon-
ical bundle KX of X as the complex line bundle KX =

∧2 T ∗X , where the complex
structure is induced by J . We denote by

K ∈ H2(X)

the Poincaré dual of c1(KX). Since the space of ω-compatible almost complex structures
on X is contractible, K is independent of the chosen J .

We say that a class A ∈ H2(X) is representable by J-holomorphic curves if there is a
possibly disconnected closed Riemann surface Σ and a J-holomorphic map ψ : Σ → X
such that ψ∗[Σ] = A.

Lemma 12.1. Suppose that X is not an S2-bundle over T 2. Then, for every ω-compatible
almost complex structure J on X, K or 2K are representable by J-holomorphic curves.

Proof. Before we prove the lemma, let us recall some facts about Seiberg–Witten invari-
ants of symplectic manifolds with b+2 (X) = 1.

For any closed connected 4-manifold X the set of Spinc structures on X has a natural
structure of torsor over H2(X) (see e.g. [27, §3.1]). If s is a Spinc structure and β ∈
H2(X) then we denote by β · s the Spinc structure given by the action of β on s. If
(X,ω) is a symplectic manifold (which we assume in all the following discussion) then
there is a canonical Spinc structure on X , denoted by scan, with determinant line bundle
K−1
X (actually to define this structure we need to choose an almost complex structure

compatible with ω, but the outcome only depends on ω, see e.g. [27, §3.4]). This Spinc

structure allows us to identify H2(X) with the set of Spinc structures on X , by assigning
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to β ∈ H2(X) the Spinc structure β · scan. In terms of this identification we can regard
the Seiberg–Witten invariant as a map

SW : H2(X) → Z.

For closed 4-manifolds X with b+2 (X) > 1 the moduli spaces of Seiberg–Witten solu-
tions for two generic pairs of metric and perturbation (g1, η1), (g2, η2) can be connected
by a smooth cobordism1. This implies that the invariant SW is independent of the
generic metric and perturbation chosen to define it.

When b+2 (X) = 1 this is not true anymore, as there might exist generic pairs (g1, η1),
(g2, η2) whose moduli spaces cannot be connected by any smooth cobordism. More pre-
cisely, for any β ∈ H2(X) the space Sβ of all pairs (metric, perturbation) whose moduli
space of Seiberg–Witten solutions contain no reducible solution (that is, solutions (A,ψ)
with ψ = 0) has two connected components. The Seiberg–Witten moduli spaces associ-
ated to two generic elements of Sβ can be connected by a smooth cobordism if the two
elements belong to the same connected component of Sβ , but there is no reason to ex-
pect the existence of such a cobordism if they belong to different connected components.
Hence, we should consider two possibly different Seiberg–Witten invariants, one for each
connected component of Sβ.

One can prove that it is possible to label the connected components of Sβ as S+
β and

S−
β in such a way that the following holds. For any metric g on X let us denote by ωg the

unique self-dual g-harmonic 2-form of L2-norm 1 whose cohomology class belongs to the
same connected component of H2

+(X ;R) \ {0} as [ω]. Then (g,±iλωg) ∈ S±
β for λ > 0

sufficiently big. Hence we may encode the Seiberg–Witten invariants of X through two
maps

SW± : H2(X) → Z,

where SW±(β) is the invariant obtained from a generic pair belonging to S±
β . For further

details, see Section 7.4 of [43].

Define

w(β) = SW+(β)− SW−(β).

This difference w(β) can be computed by means of a wall-crossing formula. We will
just decribe the relevant formula needed for our purposes. For the general form of the
wall-crossing formulas we refer the reader to [43, Theorem 9.4]. By [43, Proposition 12.5]
(see [43, Remark 13.7]) we have

SW−(β) = SW+(c1(KX)− β)

for every β. Therefore,

(21) w(β) = SW+(β)− SW+(c1(KX)− β).

A theorem of Taubes implies that SW+(0) = 1 (see [47] and [43, Theorem 13.8]).

1Here and below generic means as usual that the Seiberg–Witten equations define a section of a
Banach vector bundle over the parameter space (connections) × (sections of the spinor bundle) which
is transverse to the zero section, so in particular the moduli space is a smooth manifold of the expected
dimension.
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For a manifold with b1(X) = 2, we can compute w(β) as follows (see [20, Definition
2.2]). Let α1, α2 be a basis of ∈ H1(X), and define a = α1 ∪ α2. Let β ∈ H2(X). Let

d(β) = −〈β,K〉+

∫

X

β2.

Then

(22) w(β) =

∫

X

a ∪ (β − c1(KX)/2) if d(β) ≥ 0,

and w(β) = 0 if d(β) < 0.

We are now ready to prove the lemma.

We claim that if SW+(β) 6= 0, then for any ω-compatible almost complex structure
J , PD(β) is representable by J-holomorphic curves. Indeed, let gJ = ω(·, J ·) be the
metric associated with ω and J . With respect to this metric, ω is self-dual and of
positive norm. The fact that SW+(β) 6= 0 means that for any perturbation η satisfying
(gJ , η) ∈ S+

β there exists some solution to the Seiberg–Witten equations with metric
gJ and perturbation η (this follows by definition for generic η and by a compactness
argument for general perturbations). Then, the existence of the J-holomorphic curve
representing PD(β) follows from [48, Theorem 1.3].

Therefore, we only need to show that SW+(c1(KX)) and SW+(2c1(KX)) cannot be
both zero.

If w(0) 6= 1, from (21) and SW+(0) = 1 we obtain SW+(c1(KX)) 6= 0, so K is
representable by J-holomorphic curves, and we are done in this case.

Suppose for the remainder of the proof that w(0) = 1. We have d(0) = 0. By the
Hirzebruch signature theorem we have K · K = 2χ(X) + 3σ(X) = 0, and this implies
d(2c1(KX)) = 0. We then compute, using (22),

w(2c1(KX)) =

∫

X

a ∪ 3c1(KX)/2 because d(2c1(KX)) = 0

= 3

∫

X

a ∪ c1(KX)/2

= −3w(0) because d(0) = 0

= −3.

Hence,

SW+(2c1(KX))− SW+(−c1(KX)) = −3.

We claim that −K is not representable by J-holomorphic curves and therefore

SW+(−c1(KX)) = 0.

Indeed, if −K were representable by J-holomorphic curves, then by the positive energy
condition of J-holomorphic curves we would have 〈[ω],−K〉 > 0. However, Theorem B
in [16] implies that in this case (X,ω) is a ruled or rational surface or a blow up of a
ruled or rational surface. Since b1(X) = b2(X) = 2, (X,ω) must be a ruled surface over
T 2. Hence, X is an S2-bundle over T 2, contradicting the assumption of the lemma.

Therefore, SW+(2c1(KX)) = −3 and consequently 2K is representable by J-holomorphic
curves, thus finishing the proof of the lemma. �
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Lemma 12.2. Suppose that X is not an S2-bundle over T 2. Let φ ∈ Symp(X,ω) be
an element of finite order acting on X in a CT way, and suppose that Xφ is a disjoint
union of embedded tori. Then, every connected component T ⊆ Xφ satisfies T · T = 0.

Proof. Choose some almost complex structure J on X which is ω-compatible and φ-
invariant (see e.g. [21, Lemma 5.5.6]). If there is some connected component T ′ ⊆ Xφ

with negative self-intersection then from Theorem 10.2 and the assumption σ(X) = 0
we conclude that there is some T ⊆ Xφ with T · T > 0.

We prove the lemma by contradiction. By the previous comment, it suffices to assume
that there is a connected component T ⊆ Xφ satisfying T · T > 0. Since dφ and J
commute, J preserves the tangent bundle of Xφ, and hence the tangent bundle of T .
In particular, T is J-holomorphic. Denote by [T ] ∈ H2(X) the fundamental class of T
corresponding to the standard orientation as a closed Riemann surface. We have

0 < T · T = [T ] · [T ] = −K · [T ],

where the second equality is given by the adjunction formula. By Lemma 12.1, K or
2K are representable by J-holomorphic curves. Let n = 1 if K is representable, and let
n = 2 if 2K is representable and K is not.

By definition there is a possibly disconnected closed Riemann surface Σ and a J-
holomorphic map ψ : Σ → X such that nK = ψ∗[Σ]. Let {Σi} be the connected
components of Σ and let Ai = ψ∗[Σi], so that nK =

∑
iAi.

We have Ai · [T ] ≥ 0 for all i. This follows from Lemma 11.1 if ψ(Σi) 6= T , and from
the assumption T · T > 0 if ψ(Σi) = T because in this case Ai is a positive multiple of
[T ]. Therefore we have

0 < n[T ] · [T ] = −nK · [T ] = −
∑

i

Ai · [T ] ≤ 0.

We have thus reached a contradiction, finishing the proof of the lemma. �

Lemma 12.3. Let X be an S2-bundle over T 2. For any symplectic form ω on X the
symplectomorphism group Symp(X,ω) is Jordan.

Proof. This is [30, Corollary 1.5]. �

12.1. Proof of statements (1) and (2) in Theorem 1.7. If X is an S2-bundle over
T 2, this follows from Lemma 12.3. Assume that (X,ω) is not an S2-bundle over T 2 and
that Symp(X,ω) is not Jordan. Then, by Theorem 1.4, there is some φ ∈ Symp(X,ω)
of finite order and acting in a CT way on X with the property that some connected
component T of Xφ is diffeomorphic to a torus and has positive self-intersection. This
contradicts Lemma 12.2, so the proof of the first statement of Theorem 1.7 is complete.

Statement (2) in Theorem 1.7 follows from combining Theorem 1.1, (4) in Theorem
1.2, and Lemma 12.2.
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Appendix A. Computing H∗((Z/pr)d;Z/n): proof of Theorem 8.4

If X and Y are topological spaces such that Hk(X) and Hk(Y ) are finitely generated
abelian groups for every k, then Künneth’s formula gives

(23) Hk(X × Y ) ≃
⊕

p+q=k

Hp(X)⊗Hq(Y )⊕
⊕

p′+q′=k+1

Tor(Hp′(X), Hq′(Y ))

(see e.g. [7, Chap. VII, Prop. 7.6]). The universal coefficient theorem gives isomorphisms

(24) Hk(X) ≃ Hom(Hk(X),Z)⊕ Ext(Hk−1(X),Z).

and

(25) Hk(X ;Z/pb) ≃ Hom(Hk(X),Z/pb)⊕ Ext(Hk−1(X),Z/pb).

Let a, b be positive integers and let c = min{a, b}. Fix a prime p and define for conve-
nience

Ga = Z/pa, Gb = Z/pb, Gc = Z/pc.

There are non canonical isomorphisms

(26) Tor(Ga, Ga) ≃ Ga, Tor(Z, Ga) = Tor(Ga,Z) = 0,

and

(27) Ext(Ga, Gb) ≃ Gc, Ext(Ga,Z) ≃ Ga, Ext(Z, Gb) = 0.

Lemma A.1. There exists a function e : Z≥0 × N → Z≥0 such that

(28) Hk(Gd
a;Gb) ≃ Ge(k,d)

c

for every (k, d) ∈ Z≥0 × N (by convention G0
c = 0).

The crucial fact here is that e(k, d) is independent of p and a, b, c.

Proof. We first prove that there exists a function f : N× N → Z≥0 such that

(29) Hk(Gd
a) ≃ Gf(k,d)

a for every k, d ∈ N, and H0(Gd
a) ≃ Z

(again we take the convention that G0
a = 0). We prove the existence of f(k, d) using

induction on d. First note that setting

f(k, 1) =

{
1 if k is even,
0 if k is odd,

formulas (29) hold for d = 1. For the inductive step we note that if BG denotes the
classifying space of a group G we have

BGd
a ≃ BGd−1

a × BGa,

so we can relate the cohomology of Gd
a (which coincides with the singular cohomology of

BGd
a) to that of Gd−1

a and Ga using (23). To be specific, using (26) we have, for every
k ∈ N and every d ≥ 2,

f(k, d) =
∑

0≤2l≤k

f(k − 2l, d− 1) +
∑

0<2l<k+1

f(k + 1− 2l, d− 1),

where l takes integer values. The first summation comes from the terms with ⊗ in
Künneth’s formula (more concretely, the summand for each value of l corresponds to
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Hk−2l(Gd−1
a )⊗H2l(Ga) ≃ Hk−2l(Gd−1

a ) ≃ G
f(k−2l,d−1)
a ) and the second summation comes

from the terms with Tor (more concretely, the summand for each l corresponds to

Tor(Hk+1−2l(Gd−1
a ), H2l(Ga)) ≃ Hk+1−2l(Gd−1

a ) ≃ f(k + 1− 2l, d− 1);

we avoid the extreme values 2l = 0 and 2l = k+1 because Tor(Ga,Z) = Tor(Z, Ga) = 0).
This proves the existence of a function f satisfying (29).

Now, using the universal coefficients theorem (24), the fact that the homology of a
finite p-group is a finite p-group in each degree > 0, and (27), we deduce that

Hk(G
d
a) ≃ Gf(k+1,d)

a for every k, d ∈ N, and H0(G
d
a) ≃ Z.

Combining this formulas with (25) it follows that

H1(Gd
a;Gb) ≃ Gf(2,d)

c

and that for every k ≥ 2 we have

Hk(Gd
a;Gb) ≃ Gf(k+1,d)

c ⊕Gf(k,d)
c ≃ Gf(k+1,d)+f(k,d)

c .

Thus setting

e(1, d) := f(2, d), e(k, d) := f(k + 1, d) + f(k, d) for every k ≥ 2

we obtain a function e : N× N → Z≥0 which satisfies (28). �

In view of the lemma, to compute the function e it suffices to consider the case a =
b = c = 1, i.e., to compute

H∗((Z/p)d;Z/p).

But this is much easier than the general case because, Z/p being a field, we may apply
Künneth’s formula for fields, which does not contain Tor terms:

Hk(X × Y ;Z/p) ≃
⊕

p+q=k

Hp(X ;Z/p)⊗Hq(Y ;Z/p)

(again, under finiteness assumptions for H∗(X ;Z/p) and H∗(Y ;Z/p) on each degree).
This formula, together with the standard computation

(30) Hk(Z/p;Z/p) ≃ Z/p for every k ≥ 0

implies the following recursion formula for d ≥ 2, which is much easier than the previous
ones:

(31) e(k, d) = e(0, d− 1) + e(1, d− 1) + · · ·+ e(k, d− 1).

It is now elementary to prove, e.g. using induction on d (with (30) at the initial step
and (31) at the induction step), that

e(k, d) =

(
k + d− 1

d− 1

)
.

The proof of the theorem is thus complete.
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