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Abstract

Homologous recombination (HR) plays an essential role in the maintenance of genome sta-

bility by promoting the repair of cytotoxic DNA double strand breaks (DSBs). More recently,

the HR pathway has emerged as a core component of the response to replication stress, in

part by protecting stalled replication forks from nucleolytic degradation. In that regard, the

mammalian RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) have

been involved in both HR-mediated DNA repair and collapsed replication fork resolution.

Still, it remains largely obscure how they participate in both processes, thereby maintaining

genome stability and preventing cancer development. To gain better insight into their contri-

bution in cellulo, we mapped the proximal interactome of the classical RAD51 paralogs

using the BioID approach. Aside from identifying the well-established BCDX2 and CX3 sub-

complexes, the spliceosome machinery emerged as an integral component of our proximal

mapping, suggesting a crosstalk between this pathway and the RAD51 paralogs. Further-

more, we noticed that factors involved RNA metabolic pathways are significantly modulated

within the BioID of the classical RAD51 paralogs upon exposure to hydroxyurea (HU), point-

ing towards a direct contribution of RNA processing during replication stress. Importantly,

several members of these pathways have prognostic potential in breast cancer (BC), where
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their RNA expression correlates with poorer patient outcome. Collectively, this study uncov-

ers novel functionally relevant partners of the different RAD51 paralogs in the maintenance

of genome stability that could be used as biomarkers for the prognosis of BC.

Author summary

DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions that can compromise

genomic instability, thereby driving carcinogenesis. DNA repair by homologous recombi-

nation (HR) is critical in faithfully repairing this type of DNA damage and the RAD51

paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) have emerged as critical

regulators of this pathway. Still, it remains largely unclear how they promote HR-mediate

DNA repair. Here, we mapped their respective proximal interactome using the BioID

approach and we identified the spliceosome machinery as an integral component of our

proximal mapping. Importantly, several members of the spliceosome machinery have

prognostic potential in breast cancer (BC), where their RNA expression correlates with

poorer patient outcome.

Introduction

DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions that can be caused by

both exogenous and endogenous sources, including topological stress during DNA replication.

In fact, replication stress-induced chromosome breakages are considered the main cause of

spontaneous DSBs [1], thereby compromising genomic stability while driving carcinogenesis.

Cells have evolved a plethora of complex networks that detect, signal and ultimately repair

these threats, such as the high-fidelity homologous recombination (HR) pathway. Importantly,

germline mutations in HR genes, such as BRCA1, PALB2, BRCA2, alongside the RAD51 para-

logs RAD51B, RAD51C and RAD51D promote the development of hereditary breast and ovar-

ian cancer (HBOC) [2], highlighting the antitumorigenic role of this pathway. Moreover,

cross-talks between HR and DNA replication have been recently established [3,4], in particular

the protection and the remodeling of stalled replication forks, pointing toward a more complex

contribution of the HR pathway in the maintenance of genome stability.

HR is considered a faithful DNA repair pathway as it relies on the use of a homologous

donor sequence as a template for the resolution of DSBs [5]. HR is therefore restricted to the

S/G2 phases of the cell cycle. For HR to proceed, an extended tract of single-stranded DNA

(ssDNA) with a 3’overhang needs to be generated and coated by the replication protein A

(RPA), in a process called DNA end resection. The PALB2-BRCA2 complex subsequently pro-

motes the replacement of RPA by the recombinase RAD51 [6–8], thereby allowing the forma-

tion of a nucleoprotein filament competent for homology search of complementary sequences

and D-loop formation. Several additional players have been shown to stimulate RAD51 fila-

ment assembly, including the RAD51 paralogs RAD51B, RAD51C, RAD51D, XRCC2 and

XRCC3 [9–12]. These structurally related factors do not directly promote homology search

and strand exchange; rather, they are thought to stabilize the RAD51 nucleoprotein filament

and facilitate the core recombinase complex [13].

The classical RAD51 paralogs can form two functionally distinct heteromeric complexes:

the RAD51B-RAD51C-RAD51D-XRCC2 (BCDX2) and the RAD51C-XRCC3 (CX3) com-

plexes [14]. Biochemical characterization of the BCDX2 has shown that it can bind ssDNA
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and nicks in duplex DNA [14]. Subsequent in cellulo characterization pointed towards a role

of the BCDX2 in strand invasion and homology search [11,13]. On the other hand, the CX3

complex has been thought to contribute downstream of RAD51 recruitment in the HR path-

way [15]. Importantly, these two sub-complexes also display differential functional roles dur-

ing the response to replication stress [16]. While the BCDX2 complex restrains fork

progression and promotes fork reversal, the CX3 complex mediates efficient reversed fork

restart. Still, little remains known about the molecular insight regulating the classical RAD51

paralogs during both DNA repair by HR and the response to replication stress.

To better understand the contribution of the classical RAD51 paralogs in cellulo, we

mapped their proximal interactome under physiological and replication stress conditions

using the BioID approach [17]. Combining our mass spectrometry-based approach with pub-

licly available CRISPR chemogenic and in-house essential screens enabled us to validate a sub-

set of biological complexes associated to classical RAD51 paralogs, including the spliceosome

and RNA metabolic processes. Importantly, several members of these pathways have prognos-

tic potential in BC. Altogether, our study provides novel molecular insights into the classical

RAD51 paralogs during the maintenance of genome stability.

Experimental procedures

Cell culture and treatment

HEK293 Flp-In T-Rex (kind gift from Dr Anne-Claude Gingras, Lunenfeld-Tanenbaum

Research Institute) and RPE1-hTERT cells were cultured in Dulbecco’s Modified Eagle

medium (DMEM; Wisent) and were supplemented with 10% fetal bovine serum and 1% Peni-

cillin-Streptavidin. All cell lines were tested for mycoplasma contamination and STR DNA

authenticated. The following drug was used in this study: hydroxyurea (HU, 4mM; Sigma).

Plasmids

Human RAD51 paralogs cDNAs were obtained from Mission library clones (McGill Univer-

sity, Sigma) and corresponding BioID constructs were generated via gateway cloning into the

pDEST-BirA�-Flag-pcDNA5-FRT-TO (kind gift from Dr Anne-Claude Gingras, Lunenfeld-

Tanenbaum Research Institute) following the manufacturer protocol (Invitrogen) and were

verified by Sanger sequencing.

Generation of stable inducible cell lines

Stable inducible cell lines used for all BioID-MS experiments were generated in HEK293 Flp-

In T-REx cells following the manufacturer protocol (Invitrogen). Briefly, cells were seeded at a

density of 3.65 x 105/100mm plate in 10mL growth media. The next day, cells were transfected

with 5μg of the indicated BirA�-tagged construct and 1.25μg of the Flp-recombinase expres-

sion vector pOG44 using LipofectamineTM 2000 (Invitrogen) as recommended by the manu-

facturer. Transfected cells were subsequently transferred into 150mm plates and selected for

positive transfection by the addition of 200μg/mL hygromycin and 5μg/mL blasticidin to the

growth media. Cells were maintained under selection media for 2–3 weeks until clear colonies

appeared. Upon colony formation, cells were pooled and screened for stable expression by

western blotting after tetracycline induction and biotin labelling.

Stable cell line validation by western blot

Expression of the indicated BirA�-tagged construct and biotin labelling were performed as

described previously [18]. Stable cell lines were lyzed in in RIPA buffer (50mM Tris-HCl pH
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7.5, 150mM NaCl, 1% (v/v) NP-40, 1mM EDTA, 1mM EGTA, 0.1% SDS and 0.5% sodium

deoxcycholate, 1mM PMSF, 1 mM DTT) and proteins were separated by SDS-PAGE and

transferred onto nitrocellulose membranes. The membranes were blocked in TBS containing

5 mg/mL non-fat milk and 1% Tween 20 for 1 hour at room temperature. Blots were probed

for Flag (Sigma), α-tubulin (NEB), and streptavidin conjugated to HRP (GE Healthcare).

Sulforhodamine B (SRB) Assay

HEK293 Flp-In T-REx cells were seeded in 96-well plates at a density of 1000/cells per well.

Twenty-four hours later, cisplatin was added in a two-fold serial dilution from 50 to 0.097 μM.

Survival was assessed four days after treatment using the sulforhodamine B (SRB) colorimetric

assay. Briefly, after drug treatment cells were fixed by adding 100 μL of 10% trichloroacetic

acid (TCA, Bioshop Canada) and incubated at 4˚C for 1 hr with gentle agitation. Cells were

washed four times and plates were left air-drying overnight at room temperature. The next

day, cells were stained with 100 μL of 0.057% SRB (Sigma Aldrich) and incubated at room tem-

perature for 30 minutes. Plates were then rinsed four times using 1% acetic acid and were left

air-drying overnight. Protein content was solubilized by adding 200 μL of 10 mM Tris base

solution (pH 10.5) for 30 minutes at room temperature. Measurement of optical density (OD)

at 510 nm was conducted using a FLUOstar Optima microplate reader. Background correction

was conducted using the measurement of control wells with media. Treatments were per-

formed in triplicate, averaged, and normalized to untreated control. IC50 concentrations were

obtained using the slope’s equation for log(concentration of drug) vs normalized OD.

BioID sample preparation for mass spectrometry

2 × 150mm plates of cells were used per replicate. Induction of fusion protein expression and

biotin labelling were performed as described previously [18]. Cell pellets were lysed in RIPA

buffer and sonicated on ice at an amplitude of 30% and a rate of 3 × 10 s. bursts with 3 s. rest

in between. After sonication, 250 units of benzonase (EMD) were added to each sample, and

cell lysates were vigorously vortexed and centrifuged for 30 min at 12000 rpm at 4˚C. In the

meantime, 30μL of packed streptavidin-Sepharose beads (GE Healthcare) were washed in

RIPA buffer. After centrifugation, each lysate supernatant was added to pre-washed beads and

biotinylated proteins were captured by affinity at 4˚C on a rotator for 3 hr. Subsequently, the

beads were pelleted at 2000 rpm for 1 min and washed twice with 1mL RIPA and three times

with 50mM ammonium bicarbonate (ABC, pH 8.0). After the last wash, beads were resus-

pended in 100μL of ABC and on-bead digestion was achieved by adding 10μg of mass spec-

trometry-grade trypsin (Sigma) to the suspension for overnight incubation at 37˚C on a

rotating disc. The next day an additional 10μg of trypsin were added to each sample followed

by an additional 3hr incubation at 37˚C with rotation. Supernatants enriched with peptides

were collected by centrifugation and pooled with supernatants from two subsequent rinses

with 100μL of HPLC-grade H2O. 50% formic acid was added to the pooled samples to a final

concentration of 2% (v/v) to end digestion before centrifugation at 12000 rpm for 10 min.

Supernatants containing the peptides were transferred into new tubes and dried in a centrifu-

gal evaporator for 3 hr at high rate. Peptides were resuspended in 15μL of 5% (v/v) formic acid

and kept at -80˚C until further analysed by mass spectrometric analysis.

Mass spectrometry data analysis

Samples were injected into an Orbitrap Fusion (Thermo Fisher), and raw files were analyzed

with the search engines Mascot using the human RefSeq database (version 20170518) supple-

mented with “common contaminants” from the Max Planck Institute (http://maxquant.org/
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downloads.htm), the Global Proteome Machine (GPM; http://www.thegpm.org/crap/index.

html) and decoy sequences. The search parameters were set with trypsin specificity (two

missed cleavage sites allowed), variable modifications involved Oxidation (M) and Deamida-

tion (NQ). The mass tolerances for precursor and fragment ions were set to 15 ppm and 0.6

Da, respectively, and peptide charges of +2, +3, +4 were considered. Search results were indi-

vidually processed by PeptideProphet [19], and peptides were assembled into proteins using

parsimony rules first described in ProteinProphet [20] using the Trans-Proteomic Pipeline

(TPP). TPP settings were the following: -p 0.05 -x20 -PPM–d “DECOY”, iprophet options:

pPRIME and PeptideProphet: pP. Only proteins having at least one unique peptide and an

iProphet probability� 0.9 were considered. Prior to the bioinformatics analyses, we discarded

proteins considered as classical BioID contaminants, such as carboxylases, lysozyme, keratins,

ribosomal subunits, AHNAK, PRKDC, TOP1, HLCS, FLNB, PRKAA1, PRKAA2.

From the preys identified by our five baits, an upset plot was created with the upsetR pack-

age [21] in R. Using the ProHits-Viz online tool (prohits-viz.org), we generated a dot plot rep-

resenting the relative AvgSpec of identified subunits among the BCDX2, CX3 and the

PALB2-RAD51-RAD51C-BRCA2 complexes. Heatmaps were generated in R (r-project.org)

with the ComplexHeatmap package [22] by performing hierarchical clustering on drugs

NormZ-scores derived from published CRISPR screens [23,24] from preys identified by our

BioID assays. Similarly, we created heatmaps out of our BioID results using the log2-trans-

formed SAF (Spectral Abundance Factor) metric, a normalization method calculated by divid-

ing average spectral counts of preys by their respective protein length in amino acids. Preys

unidentified by our RAD51 baits were imputed with an average spectral count of zero. We

next calculated log2 fold changes of average spectral counts of preys identified in HU-treated

cells over untreated cells by using the following formula: log2(HU+1/Untreated+1). Overrep-

resentation analyses of GO terms, KEGG pathways and CORUM complexes were executed

with the R package gprofiler2 [25] by excluding electronic annotations and statistically correct-

ing p-values with the false discovery rate (fdr) correction method. We selected statistically sig-

nificant terms and presented the results in dotplots with the ggplot2 R package. Graphical

representations of protein–protein interaction networks were generated by importing our

BioID results in Cytoscape (v.3.9.1) (cytoscape.org). Finally, we performed a network augmen-

tation by extracting prey–prey interactions from the human BioGRID database (v.4.4.203)

[26], and from Cytoscape’s PSICQUIC Web Service client (November 2021 release) through

the IntAct, iRefIndex and UniProt databases.

CRISPR genome-wide essential screen

CRISPR-based genome-wide screen was completed as detailed in [27]. Briefly, 270 x 106 RPE-

hTERT cells stably expressing the nuclease Cas9, were transduced with TKOv1 concentrated

library virus at MOI = 0.2, ensuring a coverage of at least 600-fold for each individual sgRNA

represented in the cell population. Two days later, puromycin (15μg/ml) was added to the

media to allow for the emergence of resistant cells. At initial and end time points, cell pellets

were collected and frozen prior to genomic DNA extraction. Cell pellets were resuspended in 6

mL DNA lysis buffer (10mM Tris-Cl, 10mM EDTA, 0.5% SDS, pH 8.0) with 100μg/mL RNa-

seA, followed by incubation at 37˚C for 60 min. Proteinase K was subsequently added and

lysates were further incubated at 55˚C for two hours. Samples were then briefly homogenized

before being transferred into pre-spun 15 mL MaXtract tubes (Qiagen) mixed with an equal

volume of neutral phenol:chlorophorm:isoamyl alcohol (25:24:1) solution, shook and centri-

fuged at 1,500g for 5 min at room temperature. The aqueous phase was extracted and precipi-

tated with two volumes of ethanol and 0.2M NaCl. Air-dried pellets were resuspended in water
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and quantitated via UV absorbance spectrometry. Preparation for next-generation sequencing

(NGS) was completed as described previously [27]. Prior to analysis, FastQ NGS read files

were processed using FastQC software to assess uniformity and quality. Reads were trimmed

of NGS adapter sequences and reads were aligned to the sgRNA library index file using Bow-

tie2 to assign a matching gene-specific sgRNA. BAM files were generated using samtools and

total read count tables were subsequently generated using MAGeCK count command. DrugZ

algorithm was used to identify gene knockouts which were depleted or enriched from day 14

(D14) populations in comparison to day 0 (D0) [28].

Phylogenetic profiling of selected preys

The CladeOScope [29] was used to predict functional interactions between the RAD51 para-

logs and selected preys identified by our proximal mapping. HIRA and CHERP co-evolved

with known DNA repair genes in the Ascomycota phylum from the Fungi kingdom that eng-

lobes 323 different species. The co-evolved DNA repair genes were identified through enrich-

ment analysis of the top 50 co-evolved genes in the Ascomycota clade phylum using EnrichR

and GeneAnalytics.

Kaplan Meier and differential gene expression analyses

Kaplan-Meier plotter (kmplot.com/analysis) was used to correlate the gene expression (RNA-

seq, gene chip) of proximal interactors for the different RAD51 paralogs with breast cancer

patient outcome. Only genes showing a significant correlation (p-value<0.05) were

represented.

Experimental design

Two biological replicates were completed for each bait and each experimental condition

(untreated and HU). All BioID samples were run on the Orbitrap Fusion (Thermo Fisher) at

the same to limit batch effect and allow side-by-side comparison of the different baits.

Results

Proximal mapping of the classical RAD51 paralogs

To gain insight into the classical RAD51 paralogs in cellulo, we used the BioID labelling tech-

nique, which allows the monitoring of proximal/transient interactions [30]. Briefly, the five

classical RAD51 paralogs were fused at their N-terminus to an abortive mutant of an E.coli bio-

tin-conjugating enzyme (BirA�) (Figs 1A and S1A), and stably expressed in the human embry-

onic kidney 293 (HEK293) cell line using the Flp-In/T-REx system. These fusion proteins are

capable of biotinylating factors that come in proximity or directly interact with the classical

RAD51 paralogs (S1B Fig). We also tested the functionality of the tagged RAD51 paralogs

using the SRB assay (S1C Fig). Labelled proteins were subsequently purified by streptavidin

affinity and identified by mass spectrometry. This labelling was performed in absence of any

genotoxic stress to map the proximal interactome of the classical RAD51 paralogs at steady

state. For each bait, we identified more than 1500 unique proximal interactors (Fig 1B, S1

Table), a ~10- to a 100-fold increase compared to previous reports compiled by BioGrid [26],

highlighting the power of the BioID approach.

To ensure that our BirA�-fused constructs mapped physiological interactions, we first

focused our attention on well-described molecular complexes formed by the five classical

RAD51 paralogs: the BCDX2, the CX3 and the RAD51C-PALB2 complexes (Fig 1C). Proximal

mapping of each bait identified the different components of both BCDX2 and CX3 complexes:
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for instance, the proximal interactome of RAD51B mapped all other classical RAD51 paralogs,

except XRCC3 (Fig 1C), while XRCC3 BioID only contains RAD51C. In line with these find-

ings, we noted that PALB2 is part of the RAD51C BioID, thereby validating our approach. As

anticipated, BRCA2 was part of the proximal interactome of all classical RAD51 paralogs (Fig

1C), confirming their epistatic relationship [31]. Interestingly, we noticed that PALB2 is part

of the proximal interactomes of several classical RAD51 paralogs (Fig 1C), in particular

RAD51D, suggestive of more complex relationship between PALB2 and the different paralogs

than previously identified [32]. Altogether, these data highlight the power of the BioID

approach in mapping the proximal interactome of the classical RAD51 paralogs at steady state.
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the proximal interactomes of the classical RAD51 paralogs and their subsequent functional and clinical validations. (B) Representation of the number of preys

identified in each BioID in comparison to curated unique interactors annotated in the BioGRID database. (C) Top: schematic representing the well-established

sub-complexes formed by the classical RAD51 paralogs. Bottom: selected BioID results, shown as dot plots. The spectral counts for each indicated prey protein

are shown as AvgSpec. The circle size represents the relative abundance of preys over baits.

https://doi.org/10.1371/journal.pgen.1010495.g001
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Differential functional proximal interactomes between the BCDX2 and

CX3 complexes

The heteromeric BCDX2 and CX3 complexes have been shown to play sequential roles in the

HR pathway (Fig 2A) [13,15]. However, it remains largely unclear how they mediate their

function during this process. Thus, we intersected the BioID of the 5 classical RAD51 paralogs

and focused our attention on 97 common preys of the BCDX2 complex (S2A Fig, S2 Table).

Interestingly, this analysis identified the serine/threonine-protein kinase CHEK1, alongside

several of its previously established functional partners (e.g. MHL1, POLA1, PLK1) [33–35] as

proximal interactors of the BCDX2 complex (S2B Fig), likely reflective of the well described

role of ATR-CHEK1 signaling in the regulation of RAD51 paralogs [36,37]. Reactome analysis

of these 97 preys identified chromatin organization (p-value = 1.16x10-4), cellular senescence

(p-value = 1.13x10-3), and transcriptional regulation by TP53 (p-value = 1.53x10-3) as top

enriched pathways (Fig 2B, S3 Table), while gene ontology (GO) molecular function analysis

revealed a significant enrichment in DNA and RNA binding proteins (Fig 2C, S3 Table). How

these proximal interactors of the BCDX2 complex may participate in the maintenance of

genome stability remain elusive.

To evaluate their relevance to the HR pathway, we interrogated 3 publicly available omics

datasets where the relationship of a given human gene to this pathway has been systematically

assessed by either CRISPR or RNA interference (RNAi) technology [23,24,38]. First, we took

advantage of a dataset where CRISPR-based genome-wide dropout screens were completed in

either neoplastic (HeLa and SUM149PT) or non-transformed (RPE1-hTERT) cell lines using

the PARP inhibitor (PARPi) olaparib as a surrogate for HR deficiency [24]. CRISPR-mediated

inactivation of the BCDX2 complex or BRCA2 sensitized to olaparib in at least two cell lines

(NormZ-score<-1; Fig 2D, S3 Table). Similarly, 63 out of the 97 proximal interactors of the

BCDX2 complex significantly impacted the response to olaparib in at least one cellular back-

ground (Figs 2D and S2C and S3 Table). Of note, 22 out of 97 preys did not score in this data-

set, thereby providing a validation rate of 84%.

Our subsequent analysis focused on the 6 preys (ZNF512B, MECP2, BUD31, CHEK1,

CSTF2, PPIL2) that provided sensitivity to olaparib in, at least, two cell lines (Fig 2D, S3

Table), and evaluated their chemogenomics profile in a series of CRISPR-based screens com-

pleted in RPE1-hTERT cells against different genotoxic agents [23]. We limited our analysis to

a total of 20 CRISPR screens where the components of the BCDX2 complex were preferentially

enriched (S3 Table). Strikingly, we noticed that inactivation of the RING-type E3 ubiquitin

ligase PPIL2 correlated with an increased sensitivity to several genotoxic agents that rely on

the HR pathway for their processing and repair (Fig 2E, S3 Table), including cisplatin, camp-

tothecin (CPT), etoposide, bleomycin, and the alkylating agent methylnitrosoguanidine

(MNNG). PPIL2 has been previously shown to interact with the zinc finger protein ZNF830

[39,40], a modulator of the HR pathway [41], and our data suggest that this E3 ubiquitin ligase

may also participate in the regulation of the BCDX2 complex during DNA repair. To test this

hypothesis, we interrogated the relevance of PPIL2, alongside ZNF512B, MECP2, BUD31,

CHEK1, and CSTF2, in a publicly available dataset that tested the genetic dependencies linked

to the formation of ionizing radiation (IR)-induced RAD51 foci [42]. As control, we used the

components of the BCDX2 complex and BRCA2, which are known to impair RAD51 focus

formation (Fig 2D, S3 Table). Interestingly, depletion of our 6 predictions by RNA interference

significantly impaired the formation of IR-induced RAD51 foci in U2OS cells (Fig 2F,

S3 Table).

We extended our targeted analysis to the CX3 complex by focusing on preys that were

exclusively identified in the BioID of both RAD51C and XRCC3, thereby identifying 46
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Fig 2. Proximal mapping of the BCDX2 and CX3 complexes. (A) Schematic representing the different steps of the HR pathway and the sequential

involvement of the BCDX2 and CX3 complexes during this process. (B) Pathway enrichment analysis of the preys that are exclusive to the BCDX2 complex

using the Reactome database. Data are represented as the -log10 of the p-value (log10(p-value)) calculated for each indicated pathway by Reactome. Each dot is

proportional to the number of preys that belong to the indicated pathway. (C) GO molecular function analysis of the preys that are exclusive to the BCDX2

complex. Data are represented as the -log10 of the p-value (log10(p-value)) calculated for each indicated pathway by GO algorithm. Each dot is proportional to

the number of preys that belong to the indicated pathway. (D) Venn diagram representing the overlap of the CRISPR screens published by [24] where

sensitivity to the PARPi olaparib was tested in three different cell lines. Only the genes whose inactivation by CRISPR provided a significant sensitization to

olaparib (NormZ-score<1) are plotted. (E) Heatmap clustering representing the NormZ-scores of our selected preys alongside the classical RAD51 paralogs in

a series of CRISPR screens published by [23]. (F) Representation of the percentage of S/G2 U2OS cells transfected with the indicated siRNA and displaying

more than 9 IR-induced RAD51 foci as published in [44]. Each replicate is plotted on the x- and y-axis. (G) Heatmap clustering representing the NormZ-scores

of our selected preys alongside RAD51C and XRCC3 in a series of CRISPR screens published by [23]. (H) Heatmap clustering representing the NormZ-scores

of our selected preys alongside RAD51C and XRCC3 in a series of CRISPR screens published by [24] where sensitivity to the PARPi olaparib was tested in three

different cell lines.

https://doi.org/10.1371/journal.pgen.1010495.g002
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proximal interactors of the CX3 complex (S2A Fig, S2 Table). Chemogenomic profiling of

these preys identified a subset of 14 factors, whose inactivation by CRISPR resulted in a

response to a series of DNA damaging agents that shares similarities to XRCC3 or RAD51C

depletion (Figs 2G and S2D and S4 Table). This approach delineated C1orf112 as an exclusive

partner of the CX3 complex, in line with a recent report linking C1orf112 to DNA repair path-

ways [43]. Importantly, CRISPR-mediated inactivation of C1orf112 sensitized to olaparib in

different cellular backgrounds (e.g., RPE1-hTERT and SUM149PT; Fig 2H, S4 Table). Alto-

gether, our proximal mapping identified novel functional effectors of both BCDX2 and CX3

complexes, in keeping with their differential contribution to the HR pathway (S2E Fig).

Proximal mapping of the RAD51 paralogs identified the spliceosome as

relevant for HR

To further understand the contribution of the classical RAD51 paralogs in cellulo, we inter-

sected their respective BioID, thereby identifying 945 common proximal interactors (Fig 3A,

S5 Table). Clustering of their respective CRISPR chemogenomic profile identified 4 different

sub-groups (Fig 3B). As expected, the classical RAD51 paralogs, alongside well-established FA/

HR factors, such as BRCA2, FANCI, RAD50, BLM and POGZ, segregated in the same cluster

(cluster 1, Figs 3B and S3A). In line with these findings, pathway enrichment analyses identi-

fied DNA repair pathways and cell cycle pathways as significantly enriched in cluster 1 (Figs

3C and S3B and S6 Table), thereby validating our approach.

We extended our KEGG analysis to the different chemogenomic clusters to map the molec-

ular networks associated with the classical RAD51 paralogs (S7 Table). The spliceosome

machine (KEGG:03040) emerged as a common pathway of the chemogenomic sub-groups

(Fig 3C, S6 Table). Indeed, we noted that several splicing factors are proximal interactors of

the classical RAD51 paralogs at steady state and their targeting by CRISPR technology signifi-

cantly modulates the response to genotoxic drugs (Fig 3D), in line with phylogenetic co-evolu-

tion profiling data [44]. RAD51 paralogs are known to be essential in non-transformed human

cells [13]. Thus, we wondered whether our preys may provide a similar phenotype in RPE1-h-

TERT cells and performed a systematic mapping of “essential” genes by CRISPR technology

(S3C Fig). As expected, targeting of TP53 promotes growth of RPE1-hTERT cells while dele-

tion of RAD51C, RAD51D, XRCC3 or BRCA2 impaired cell survival in vitro (Fig 3E), validat-

ing our approach. In total, CRISPR-mediated deletion of 305 common preys decreased

RPE1-hTERT proliferation in vitro (Norm Z-score <-1.5; Fig 3E, S8 Table), including 28 out

of the 43 splicing factors that we previously identified by chemogenomic profiling. We inde-

pendently validated our observations using previous omics datasets that directly assayed DNA

repair by HR, using both the formation of IR-induced RAD51 foci and the DR-GFP assay as

read-outs (Figs 3F, 3G and S3D) [38,42]. Strikingly, depletion of all 43 splicing factors by RNA

interference significantly impaired the formation of RAD51 foci in U2OS cells (Fig 3F), and

several of them drastically decreased HR potential in the DR-GFP assay (Figs 3G and S3E).

Altogether, our data pointed towards a complex regulation of the classical RAD51 paralogs

during the maintenance of genome stability, with a key contribution of the spliceosome in this

process.

RNA metabolic processes collaborate with the RAD51 paralogs during

replication stress

The classical RAD51 paralogs have been recently implicated in the response to replication

stress [16]. This prompted us to map their proximal interactome under replication stress con-

ditions by exposing our stable HEK293 cell lines to hydroxyurea (HU), which depletes
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Fig 3. Identification of the spliceosome as a regulator of the classical RAD51 paralogs. (A) Representation of the

overlap between the BioID of the different RAD51 paralogs. (B) Heatmap clustering representing the NormZ-scores of

the common preys of the RAD51 paralogs in a series of CRISPR screens published by [23] where different genotoxic

drugs were tested in RPE1-hTERT cells. (C) Pathway enrichment analysis of the preys that are common to all classical

RAD51 paralogs using the KEGG database. Pathways are represented based on their p-value calculated by KEGG

algorithm for the 4 different clusters. Each dot is proportional to the number of preys that belong to the indicated

pathway. (D) Representation of the different spliceosome factors identified in each cluster. (E) Representation of the

CRISPR-based essential screen performed in RPE1-hTERT cells. Each common prey of the classical RAD51 paralogs is

represented by its respective NormZ-score. (F) Representation of the percentage of S/G2 U2OS cells transfected with

the indicated siRNA and displaying more than 9 IR-induced RAD51 foci as published in [44]. Each replicate is plotted

on the x- and y-axis. (G) Representation of the relative HR monitored in U2OS DR-GFP cells transfected with the

indicated siRNA as published in [38].

https://doi.org/10.1371/journal.pgen.1010495.g003
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deoxyribonucleotide pools and immediately stalls replication forks [45]. Most preys that we

identified for each classical RAD51 paralog under normal conditions were also present upon

treatment with HU (S4A Fig, S9 Table), which may reflect the lengthy labeling pulse required

for our BioID approach [46].

To better appreciate dynamics in the proximal interactome of the different RAD51 paralogs

under replicative stress conditions, we monitored stress-induced changes in the average spec-

tral count of a given prey and intersected them with previous CRISPR-mediated genome-wide

screen where each gene was evaluated for its contribution to a chronic HU treatment (Fig 4A).

In total, we identified 323 preys that were differentially present in at least one HU-BioID and

that scored significantly in HU CRISPR-based genome-wide screen [23]. As expected, several

factors that have been previously involved in replication stress, such as BRCA1, RAD18,

PIAS4, and BLM, alongside the ribonucleotide reductase RRM1, were differentially present in

the vicinity of multiple RAD51 paralogs upon HU treatment (Fig 4A, S10 Table), validating

our approach. Interestingly, we noticed that the doublecortin-like kinase DCLK1 (also known

as DCAMKL1) is enriched in our BioIDs under replication stress. Various studies have dem-

onstrated the importance of DCLK1 during the DNA damage response [47,48], and our data

suggest that DCLK1 may play a role in the regulation of the classical RAD51 paralogs during

the response to replication stress.

To better grasp how these factors may participate in the response to replication stress, we

performed a similar chemogenomic analysis as previously described, but with a focus on drugs

known to cause replication stress. Profiling of our preys of interest delineated three distinct

clusters (Fig 4B), and pathway enrichment analysis identified DNA repair (GO:0006281,

p = 2.84x10-9), and cell cycle (GO:0007049, p = 6.31x10-8), as being significantly enriched in

cluster 1 (S4B and S4C Figs, S11 and S12 Tables). In line with these findings, we noticed that

BRCA1, REV3L, RAD18 and RNASEH2B clustered in this sub-group (S4B Fig).

We hypothesized that cluster 1 may contain novel DNA repair factors relevant for the

response to replication stress. To test this hypothesis, we took advantage of the CladeOScope, a

clade-wise phylogenetic profiling tool that can predict gene function [29]. Interestingly, we

noticed that the histone chaperone HIRA co-evolved with several established DNA repair fac-

tors in the Ascomycota phylum (S4D Fig), such as MSH6, RECQL4, RECQL5, and ERCC4.

Similarly, the alternative splicing regulator CHERP co-evolved with well described HR factors

in the same phylum (e.g., MUS81, EME1, and HELQ), suggestive of a potential contribution of

both factors in the maintenance of genome stability under replication stress. In-depth analysis

of this cluster 1 identified two RNA-linked factors that have been shown to alter IR-induced

RAD51 focus formation (S4E Fig, S13 Table): a component of the mRNA decapping complex,

EDC3, and the RNA binding protein CIRBP. More generally, GO analysis of cluster 1 revealed

a significant enrichment in factors involved in the positive regulation of RNA metabolic pro-

cess (GO:0051254, p-value = 6.258x10-4) (S4B and S4C Figs, S11 Table). In fact, a total of 45

proximal interactors of the RAD51 paralogs participate in the positive regulation of RNA met-

abolic process (Fig 4C), suggestive of an important role for this pathway during replication

stress.

Proximal interactors of the RAD51 paralogs may have prognostic potential

in BC

To determine whether our approach can identify clinically relevant proximal interactors of the

classical RAD51 paralogs, we focused our attention on the spliceosome and interrogated their

RNA expression by RNA sequencing in a publicly available cohort of BC patients (n = 2976)

[49]. Interestingly, the expression of 34 out of the 43 proximal interactors linked to the

PLOS GENETICS Proximal interactome of the RAD51 paralogs at steady state and under replication stress

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010495 November 14, 2022 12 / 22

https://doi.org/10.1371/journal.pgen.1010495


A

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

No
rm

 Z
-S

co
re

C
hr

on
ic

 H
U

RAD51B

6-6 -4 -2 0 2 4
-6

-4

-2

0

2

4

6
RAD51C

6-6 -4 -2 0 2 4
-6

-4

-2

0

2

4

6

Log2FC AvgSpec
(HU/Ctrl)

RAD51D

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6
XRCC2

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6
XRCC3

CKAP2

BRCA1
RRM1

UBE2D2

PPP6R1

FBRSL1NRDE2

CUL4B

GNAS

ATAD3B

CHUK
SRCAP

PKN1SSR1

CKAP2

DCLK1PHF14

PHIP

SPRR3

RFX1

ATAD3B

UBE2M

BRCA1

CUL4B

ZMAT2
THSZ3

NAFT5

FOXK1

PKP1

DCLK1

BRCA2

CKAP2

NR2C2
RPS6KA2

PNKP

RNASEH2B

DCLK1

MAPRE1

SKIV2L
PKN1

NR2C2

CHD5
RFX1

ATAD3B

CKAP2

RRM1
BRCA1

ATP2B1
MAP2K7

DST

WDR11 FOXK2

NTMT1

B Chemogenomic Profiling
(Olivieri et al. Cell 2020)

C

Z-Score

-2
-1
0
1
2

Cluster 2Cluster 1 Cluster 3

APEX1
BLM

BRCA1
CIRBP
CKAP2
CNOT3
DDX11

DR1
GIGYF2

JUN
MAP2K7

CASZ1
CHCHD2

ELF2
H2AFZ
LIN28B
MED23

PHIP
SATB2

SMARCB1
SRSF5

SUPT6H

AKAP8L
ARID1B
ARID3A
ATAD2B

CHUK
ELL

EXOSC9
FOXK2

FUS
MTA3

MTDH
NFAT5
NSD1

PAXBP1
RIOK2

RREB1
SF3B4

SRCAP
STAT1

YY1
ZC3HAV1

ZNF318
ZNF609

Z−
Sc

or
e

-2

-1

0

1

2

Lo
g2

FC

-1

-0.5

0

0.5

1

Drugs - CRISPR screens Baits

C
lu

st
er

 1
C

lu
st

er
 2

C
lu

st
er

 3

Cluster 1 Cluster 2 Cluster 3

Regulation of RNA metabolic process
R

AD
51

B
R

AD
51

C
R

AD
51

D
XR

C
C

2
XR

C
C

3

D
uo

ca
rm

yc
in

Tr
ab

ec
te

di
n

C
al

ch
ea

m
ic

in
Fo

rm
la

de
hy

de
Ph

en
D

C
3

H
U

-c
hr

on
ic

C
PT

-1
Et

op
os

id
e

C
is

pl
at

in
-1

C
is

pl
at

in
-2

C
is

pl
at

in
-3

M
M

S
U

V
Ill

ud
in

S
M

N
N

G
D

ox
or

ub
ic

in
H

2O
2

Py
rid

os
ta

tin
IC

R
F-

18
7

C
PT

-2
KB

rO
3

C
D

43
7

G
em

ci
ta

bi
ne

H
U

-a
cu

te
BP

D
E

Pl
ad

B

BRCA1

FOXK2

CASZ1

SF3B4

ARID1B

CHUK

SUPT6H

DDX11

ARID3A

ELF2

SATB2

YY1

FUS

DR1

STAT1

ELL

MTDH

NFAT5

CIRBP

ATAD2B

JUN

SRSF5

PHIP

SRCAP

BLM

PAXBP1

RREB1ZNF609

AKAP8L

MED23

NSD1
ZNF318

CHCHD2

ZC3HAV1

CNOT3

MAP2K7

EXOSC9

CKAP2

GIGYF2

APEX1

H2AZ1

LIN28B

MTA3

SMARCB1

RIOK2
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https://doi.org/10.1371/journal.pgen.1010495.g004
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spliceosome correlated with a significant impact on the overall survival of BC patients (Fig 5A,

S14 Table), including SNRNP40 (cluster 1), SF3B2 (cluster 2), SF3B5 (cluster 3), and SNW1

(cluster 4). We extended our analysis to another publicly available BC cohort where gene

expression was analysed by microchip and linked to relapse-free survival (RFS; n = 4934) and
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overall survival (OS; n = 1880) [49]. There, the RNA expression of 32 splicing factors corre-

lated with a significant impact on the RFS of BC patients (S14 Table), while 22 of them influ-

enced the OS of BC patients.

We performed a similar analysis with members of the positive regulation of RNA metabolic

process, which delineated 31 (out of 43) potential prognostic factors in the cohort of BC

patients analyzed by RNA-seq (S5A Fig, S14 Table), including CNOT1 (cluster 1), ELF2 (clus-

ter 2), and PAXBP1 (cluster 3). Subsequent analysis in an independent BC cohort identified 35

members of the positive regulation of RNA metabolic process, whose RNA expression had a

significant impact on the RFS of BC patients, while 25 of them influenced their OS (S14

Table). Altogether, these data suggest that the spliceosome and RNA metabolism processes

may play an important role for the pathobiology of BC.

Discussion

The five classical RAD51 paralogs were first identified more than three decades ago by both DNA

sequence alignment and functional characterization in hamster cells [9,10,50]. Until recently, it

remained largely unclear how these paralogs participated in the maintenance of genome stability,

in particular the repair of DSBs by HR. Here, we systematically mapped the proximal interactome

of the five classical RAD51 paralogs using the BioID approach, providing new insight into the

molecular regulation of these factors at steady state and during replication stress.

Initial biochemical characterization delineated two main subcomplexes formed by the clas-

sical RAD51 paralogs: the BCXD2 and the CX3 complexes [14]. Our in cellulo proximal map-

ping confirmed this complex network between the different RAD51 paralogs, alongside their

close association with BRCA2. A more recent mass spectrometry-based study identified

RAD51C in complex with PALB2, which has been proposed to serve as scaffold for BRCA2

and RAD51 [32]. Our BioID approach detected this stable association but also identified a

novel complex composed of both RAD51D and PALB2. Whether this new molecular structure

cooperates with BRCA2, alike RAD51C and PALB2, in the repair of DSBs by HR remains to

be further investigated. Still, our data suggest that the classical RAD51 paralogs may form pre-

viously unidentified molecular networks in cellulo, with direct relevance for the maintenance

of genome stability. Indeed, our targeted proteomic analysis of the BCDX2 and CX3 com-

plexes identified factors that may promote different steps during DNA repair by HR, in accor-

dance with previous reports that delineated sequential roles for these sub-complexes [13,15].

Several proximal interactors of the BCDX2 complex identified in this study possess DNA and/

or RNA binding capacity and have been previously shown to regulate the response to the

PARPi olaparib [23,24], and the formation of IR-induced RAD51 foci [42], likely participating

directly, or indirectly, the well-established role of the BCDX2 in the loading of RAD51 at pro-

cessed DSBs [13,15]. On the other hand, mapping of the CX3 proximal interactome identified

a poorly characterized open reading frame, C1orf112, as an integral component of the HR

pathways as previously suggested [43].

RNA-related processes have emerged as an integral component of the DNA damage

response [51,52]. It is well established that the spliceosome machinery controls the transcrip-

tion of established DNA repair genes [53,54], alongside putative regulators of these factors

[44]. However, additional mechanisms of regulation of the DNA damage response have been

attributed to the spliceosome machinery and its associated RNA binding proteins, including

the signaling of the break, the remodeling of chromatin at DNA damage sites, DNA:RNA

hybrids stabilization, RNA-templated DNA repair and liquid-liquid phase separation. In par-

ticular, our proximal mapping identified the hnRNP FUS, which have previously shown to

play a critical role in the response to ionizing radiation and DNA repair by HR [55–57],
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suggesting that a potential crosstalk between this splicing factor and the RAD51 paralogs in

the maintenance of genome stability. Our analysis further exemplifies the non-canonical con-

tribution of RNA-based processes in the regulation of established DNA repair factors.

Our study suggest that RNA processes are tightly connected to the classical RAD51 paralogs

in the maintenance of genome stability. Critically, we show that their gene expression, alike

BRCA1, influences the prognosis of BC patients, in lines with previous reports identifying

splicing dysregulation as a driving force of BC pathobiology (reviewed in [58]). Further studies

will be required to define whether these factors predispose to the development of BC, alike sev-

eral of the classical RAD51 paralogs [2]. Altogether, our data highlight the power of the BioID

approach in the identification of novel complexes involved in the maintenance of genome sta-

bility, with direct relevance for BC.
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BirA�-Flag-tagged RAD51 paralog were tested for expression and biotinylation following

induction with tetracycline and incubation with biotin as indicated. After induction, cells were

lysed and subjected to immunoblot for streptavidin, flag and α-tubulin. (C) Quantification of
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