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A combination of three LHCb measurements of the CKM angle γ is presented. The decays B± → D K ± and
B± → Dπ± are used, where D denotes an admixture of D0 and D0 mesons, decaying into K + K −, π+π−,
K ±π∓, K ±π∓π±π∓, K 0

S π+π−, or K 0
S K + K − final states. All measurements use a dataset corresponding

to 1.0 fb−1 of integrated luminosity. Combining results from B± → D K ± decays alone a best-fit value of
γ = 72.0◦ is found, and confidence intervals are set

γ ∈ [56.4,86.7]◦ at 68% CL,

γ ∈ [42.6,99.6]◦ at 95% CL.

The best-fit value of γ found from a combination of results from B± → Dπ± decays alone, is γ = 18.9◦,
and the confidence intervals

γ ∈ [7.4,99.2]◦ ∪ [167.9,176.4]◦ at 68% CL

are set, without constraint at 95% CL. The combination of results from B± → D K ± and B± → Dπ±
decays gives a best-fit value of γ = 72.6◦ and the confidence intervals

γ ∈ [55.4,82.3]◦ at 68% CL,

γ ∈ [40.2,92.7]◦ at 95% CL

are set. All values are expressed modulo 180◦, and are obtained taking into account the effect of D0–D0

mixing.
© 2013 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

The angle γ is defined as γ = arg[−V ud V ∗
ub/(V cd V ∗

cb)], where
V ij are the elements of the Cabibbo–Kobayashi–Maskawa (CKM)
matrix [1]. It is one of the angles of the unitarity triangle and is
to date the least well-known angle of this triangle. At the same
time it is the only angle that can be measured entirely with decays
that only involve tree diagrams, so its measurement is largely un-
affected by the theoretical uncertainty, which is O(10−6) [2]. Both
Belle and BaBar have recently published averages of their mea-
surements, each following a frequentist treatment. Belle measures
γ = (68+15

−14)
◦ [3], and BaBar measures γ = (69+17

−16)
◦ [4]. In this

work a combination of LHCb measurements is presented. World
averages have been computed by the CKMfitter and UTfit groups,
who obtain γ = (66 ± 12)◦ [5], and γ = (70.8 ± 7.8)◦ [6], using
a frequentist and Bayesian treatment, respectively. These averages

✩ © CERN for the benefit of the LHCb Collaboration.

are dominated by measurements performed at the B factories, and
part of all LHCb measurements combined in this work are already
included.

When measuring γ in tree decays, an important channel is
the B± → D K ± mode, where the symbol D denotes an admix-
ture of D0 and D0 mesons. The D meson is reconstructed in a
final state accessible to both flavour states, thus exploiting inter-
ference between the b → uc̄s and b → cūs amplitudes. Throughout
this Letter, charge conjugation applies, unless stated otherwise.
The measurements are categorised by the D meson final state:
CP eigenstates (GLW [7,8]), quasi-flavour-specific states (ADS [9,10]),
and self-conjugate three-body final states (GGSZ [11]). The small
theoretical uncertainty in the measurement of γ is obtained in
these decays because all hadronic parameters are determined from
data. The amplitude ratio rK

B = |A(B− → D0 K −)/A(B− → D0 K −)|,
plays a crucial role as the uncertainty on γ scales roughly as 1/rK

B .
It is measured to be rK

B ≈ 0.1 [3,4].
Besides the B± → D K ± channel, the B± → Dπ± decay also ex-

hibits some sensitivity to γ . The theoretical framework is fully
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Table 1
Free parameters used in the combined fit. The phase differences δKπ and δK 3π are defined in accordance with Refs. [4,3,12], they are

shifted by 180◦ with respect to the HFAG. Also, γ gains a sign for the conjugated modes, A(B+ → D0h+)/A(B+ → D0h+) = rh
B ei(δh

B +γ ) ,
with h = K ,π .

Decay Description Parameter

B± → Dh± CP-violating weak phase γ

Γ (B− → D0 K −)/Γ (B− → D0π−) Rcab

B± → Dπ± A(B− → D0π−)/A(B− → D0π−) = rπ
B ei(δπ

B −γ ) rπ
B , δπ

B

B± → D K ± A(B− → D0 K −)/A(B− → D0 K −) = rK
B ei(δK

B −γ ) rK
B , δK

B

D0 → K ±π∓ A(D0 → π− K +)/A(D0 → K −π+) = rKπ e−iδKπ rKπ , δKπ

Cabibbo-favoured rate Γ (D → Kπ)

D0 → K ±π∓π+π− amplitude ratio and effective strong phase diff. rK 3π , δK 3π

coherence factor κK 3π

Cabibbo-favoured rate Γ (D → Kπππ)

D0 → K + K − direct CP asymmetry Adir
CP (K K )

D0 → π+π− direct CP asymmetry Adir
CP (ππ)

D0–D0 mixing parameters xD , yD
analogous to the B± → D K ± case. However, the respective am-
plitude ratio rπ

B is expected to be an order of magnitude smaller
than rK

B , limiting the sensitivity. In this Letter, information from
B± → Dπ± decays is included in the combined measurement of
γ for the first time. The hadronic parameters describing the D
decays are determined from data. To better constrain these param-
eters, measurements by CLEO are included [12], that themselves
contain inputs from the Heavy Flavour Averaging Group (HFAG).

It has been shown that the determination of γ from B± → Dh±
decays, where h = π, K , is affected by D0–D0 mixing [13,10,
14–16]. It enters in two parts of the analysis: in the descrip-
tion of the B decays (e.g. through the amplitude B+ → D0 K + →
D0 K + → f K + , where f denotes the D final state), and in the
determination of the hadronic parameters that describe the D de-
cay. Since D mixing is now well established, its effect is included
in this combination; the CLEO measurement [12] also takes it
into account explicitly. The effect of D mixing on the GLW, ADS,
and GGSZ analyses is reviewed in Ref. [16]: it mostly affects the
ADS analysis of B± → Dπ± decays, due to the small expected
value of rπ

B . The ADS analysis of B± → D K ± decays receives a
shift of |�γ | � 1◦ [16]. The Dalitz-model independent GGSZ anal-
ysis of B± → D K ± is affected to a negligible extent [15,16], and
the GLW analyses of B± → Dh± are affected at most at order
of O(rK

B

√
xD

2 + yD
2) [16], where the mixing parameters xD and

yD are at the level of 10−2. Here, a D mixing measurement by
LHCb [17] is included, to further constrain xD and yD .

The effect of possible CP violation in D decays to the π+π−
and K +K − final states [18,19] has been discussed in Refs. [20–22].
This changes the interpretation of the observables of the GLW
method, which is included as described in Section 2.2.

In this combination, the strategy is to maximise a total likeli-
hood built from the product of the probability density functions
(PDFs) f i of experimental observables 	Ai

L(	α) =
∏

i

f i
(	Aobs

i

∣∣	α)
, (1)

where the 	Aobs
i are the measured values of the observables, and

	α is the set of parameters. The subscript i denotes the contribut-
ing inputs, summarised in Sections 2.2–2.4. For most of the input
measurements it is assumed that the observables follow a Gaus-
sian distribution

f i ∝ exp

(
−1

2

(	Ai(	α) − 	Aobs
i

)T
V −1

i

(	Ai(	α) − 	Aobs
i

))
, (2)

where V i is the experimental covariance matrix. In this combined
measurement the statistical uncertainties dominate the resulting
confidence intervals. Therefore it is assumed that the systematic
fluctuations are also Gaussian, so that V i = V stat

i + V syst
i . Since

not all off-diagonal entries of V syst
i have been published, they are

assumed to be zero in the nominal result. An overall systematic
uncertainty is estimated due to this assumption. Any other cor-
relations across the statistically independent input measurements
are neglected. For one pair of variables (κK 3π , δK 3π , described in
Section 2) that shows highly non-Gaussian behaviour, the exper-
imental likelihood is taken into account. Table 1 defines all free
parameters in the global fit. The amplitude ratios are defined as
those of the suppressed processes divided by the favoured ones.
Confidence intervals on γ and the most important hadronic pa-
rameters are set using a frequentist procedure. The statistical cov-
erage of this procedure is evaluated.

2. Input measurements

The LHCb Collaboration has published three analyses relevant
to this Letter based on the data corresponding to an integrated
luminosity of 1.0 fb−1 using pp collisions at a centre-of-mass en-
ergy of 7 TeV, recorded in 2011. They are a GGSZ measurement
of B± → D K ± decays, where the D meson is reconstructed in the
D → K 0

S π+π− and D → K 0
S K +K − final states [23]; a GLW/ADS

measurement of B± → D K ± and B± → Dπ± decays, where the
D meson is reconstructed in charged two-body final states [24];
and an ADS measurement of B± → D K ± and B± → Dπ± decays,
where the D meson is reconstructed in charged four-body final
states [25]. In addition, inputs from a combination of experimental
data performed by the HFAG, to constrain the effect of direct CP
violation in D decays [26], and measurements from the LHCb Col-
laboration [17] and the CLEO Collaboration [12], to constrain the
hadronic parameters of the D system, are included. Ref. [12] in-
cludes itself inputs by the HFAG.

2.1. Measurements from B± → D[→ K 0
S h+h−]K ± decays

The GGSZ method [11] proposes the use of self-conjugate three-
body D decays in the measurement of γ from B± → D K ± pro-
cesses. The variables x± and y± , defined as

x± = rK
B cos

(
δK

B ± γ
)
, (3)

y± = rK
B sin

(
δK

B ± γ
)
, (4)
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are obtained from a fit to the Dalitz plane of D → K 0
S π+π− and

D → K 0
S K +K − decays, separately for B+ and B− decays. The mea-

surement, performed by LHCb, is reported in Ref. [23]. The study
makes no model-dependent assumption on the variation of the
strong phase of the D → K 0

S h+h− amplitudes, but instead uses
measurements of this quantity from CLEO [27], as input. The re-
ported results are

x− = (0.0 ± 4.3 ± 1.5 ± 0.6) × 10−2, (5)

y− = (2.7 ± 5.2 ± 0.8 ± 2.3) × 10−2, (6)

x+ = (−10.3 ± 4.5 ± 1.8 ± 1.4) × 10−2, (7)

y+ = (−0.9 ± 3.7 ± 0.8 ± 3.0) × 10−2, (8)

where the first uncertainty is statistical, the second is system-
atic, and the third is due to the external CLEO measurement.
The non-vanishing statistical correlations are ρ(x−, y−) = −0.11,
ρ(x+, y+) = +0.17, and the relevant systematic correlations are
ρ(x−, y−) = −0.05, and ρ(x+, y+) = +0.36.

The GGSZ method can also be applied to B± → Dπ± final
states. In Ref. [23] this was not performed, since these final states
were needed to control the efficiency variation across the Dalitz
plot. The effect of D0–D0 mixing in the measurement of the x±
and y± in Eqs. (5)–(8) is suppressed, leading to a negligible effect
in the extraction of γ [15,16].

2.2. Measurements from B± → D[→ h+h−]h± decays

The D decay modes considered in the analysis of two-body D
final states [24] are D → K +K − , D → π+π− , the favoured de-
cay D → K −π+ , where the kaon charge matches that of the h±
track from the B± → Dh± decay (called Kπ in the following), and
the suppressed decay D → π−K + , where the kaon charge is op-
posite that of the h± track (called π K in the following). Building
on the initial GLW/ADS ideas [7–10], a set of 13 observables was
defined by forming ratios of decay rates, defined below, such that
many systematic uncertainties cancel. The charge-averaged ratios
of B± → D K ± and B± → Dπ± decays are

R f
K/π = Γ (B− → D[→ f ]K −) + Γ (B+ → D[→ f ]K +)

Γ (B− → D[→ f ]π−) + Γ (B+ → D[→ f ]π+)
, (9)

where f is the relevant final state. The ratios R f
K/π are related to

γ and the hadronic parameters through

R f
K/π

= Rcab
1 + (rK

B r f )
2 + 2rK

B r f κ cos(δK
B − δ f ) cosγ + M K− + M K+

1 + (rπ
B r f )

2 + 2rπ
B r f κ cos(δπ

B − δ f ) cosγ + Mπ− + Mπ+
,

(10)

for the favoured final state f = Kπ , where the coherence factor κ
in Eq. (10) (and in all following equations in this section) is unity
for two-body decays, and through

R f
K/π = Rcab

1 + (rK
B )2 + 2rK

B cos δK
B cosγ

1 + (rπ
B )2 + 2rπ

B cos δπ
B cosγ

, (11)

for f = K K , ππ . The D mixing correction terms Mh± are, at lead-
ing order in xD and yD , and neglecting CP violation in D mixing,
given by [13]

Mh± = (
κr f

((
rh

B

)2 − 1
)

sin δ f + rh
B

(
1 − r2

f

)
sin

(
δh

B ± γ
))

aD xD

− (
κr f

((
rh

B

)2 + 1
)

cos δ f + rh
B

(
1 + r2

f

)
cos(δh

B ± γ )
)
aD yD .

(12)

The D mixing corrections depend on the D decay time acceptance
and resolution in the reconstruction of B± → Dh± decays [16].
The coefficient aD parameterises their effect. It takes the value of
aD = 1 in case of an ideal, flat acceptance and negligible time res-
olution. For a realistic acceptance and resolution model present
in the GLW/ADS analysis of Ref. [24], it is estimated to be aD =
1.20 ± 0.04, where the uncertainty can be safely neglected in this
combination. For CP even final states of the D meson, the mix-
ing corrections cancel exactly in Eq. (11) (and (15)), as in this case
κ = 1, r f = 1, δ f = 0. The charge asymmetries are

A f
h = Γ (B− → D[→ f ]h−) − Γ (B+ → D[→ f ]h+)

Γ (B− → D[→ f ]h−) + Γ (B+ → D[→ f ]h+)
, (13)

which are related to γ and the hadronic parameters through

A f
h = 2rh

Br f κ sin(δh
B − δ f ) sinγ + Mh− − Mh+

1 + (rh
Br f )

2 + 2rh
Br f κ cos(δh

B − δ f ) cosγ + Mh− + Mh+
,

(14)

for the favoured final state f = Kπ , and through

A f
h = 2rh

B sin δh
B sinγ

1 + (rh
B)2 + 2rh

B cos δh
B cosγ

, (15)

for f = K K , ππ , where rh
B denotes rK

B and rπ
B . Finally, the non-

charge-averaged ratios of suppressed and favoured D final states
are

R±
h = Γ (B± → D[→ fsup]h±)

Γ (B± → D[→ f ]h±)

= r2
f + (rh

B)2 + 2rh
Br f κ cos(δh

B + δ f ± γ ) − [Mh±]sup

1 + (rh
Br f )

2 + 2rh
Br f κ cos(δh

B − δ f ± γ ) + Mh±
, (16)

where fsup = π K is the suppressed final state, and f = Kπ the
allowed one. The suppressed D mixing correction terms are given,
at leading order in xD and yD , by

[
Mh±

]
sup = (

κr f
((

rh
B

)2 − 1
)

sin δ f

+ rh
B

(
1 − r2

f

)
sin

(
δh

B ± γ
))

aD xD

+ (
κr f

((
rh

B

)2 + 1
)

cos δ f

+ rh
B

(
1 + r2

f

)
cos

(
δh

B ± γ
))

aD yD . (17)

The combination makes use of all γ -sensitive observables deter-
mined in the GLW/ADS analysis. The full set, taken from the two-
body analysis [24], is

R Kπ
K/π = 0.0774 ± 0.0012 ± 0.0018,

R K K
K/π = 0.0773 ± 0.0030 ± 0.0018,

Rππ
K/π = 0.0803 ± 0.0056 ± 0.0017,

AKπ
π = −0.0001 ± 0.0036 ± 0.0095,

AKπ
K = 0.0044 ± 0.0144 ± 0.0174,

AK K
K = 0.148 ± 0.037 ± 0.010,

Aππ
K = 0.135 ± 0.066 ± 0.010,

AK K
π = −0.020 ± 0.009 ± 0.012,

Aππ
π = −0.001 ± 0.017 ± 0.010,

R−
K = 0.0073 ± 0.0023 ± 0.0004,

R+
K = 0.0232 ± 0.0034 ± 0.0007,
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Table 2
Statistical correlations of the B± → Dh± , D → hh analysis [24].

AK K
K AK K

π Aππ
K Aππ

π AKπ
K AKπ

π Rππ
K/π R K K

K/π R Kπ
K/π R−

K R−
π R+

K R+
π

AK K
K 1 −0.029 0 0 0 0 −0.002 −0.034 −0.010 −0.001 0 0 0

AK K
π 1 0 0 0 0 0 −0.003 0 0 0 0 0

Aππ
K 1 −0.032 0 0 −0.032 −0.002 −0.004 −0.001 0 0 0

Aππ
π 1 0 0 −0.004 0 0 0 0 0 0

AKπ
K 1 −0.045 0 0 0.003 0.004 0 −0.004 −0.001

AKπ
π 1 0 0 −0.001 0.004 0.002 −0.004 −0.002

Rππ
K/π 1 0.013 0.029 0.003 0.003 0.001 0.003

R K K
K/π 1 0.053 0.005 0.005 0.002 0.004

R Kπ
K/π 1 −0.038 0.016 −0.093 0.014

R−
K 1 −0.023 0.012 0.006

R−
π 1 0.005 0.008

R+
K 1 −0.036

R+
π 1
R−
π = 0.00469 ± 0.00038 ± 0.00008,

R+
π = 0.00352 ± 0.00033 ± 0.00007,

where the first uncertainty is statistical and the second systematic.
Their statistical correlations, not previously published, are given in
Table 2.

Direct CP asymmetries in D0 → K +K − and D0 → π+π− de-
cays have been measured [18,19]. While the effect on the charge
averaged ratios R K K

K/π and Rππ
K/π is negligible [21], the observables

AK K
h and Aππ

h are modified by adding the respective direct CP

asymmetry Adir
CP to the right-hand side of Eq. (15). This is valid up

to neglecting a small weak phase in the D decay [21]. The HFAG
results on Adir

CP [26] are included in this combination

Adir
CP (K K ) = (−0.31 ± 0.24) × 10−2,

Adir
CP (ππ) = (+0.36 ± 0.25) × 10−2.

These quantities are correlated, ρ(Adir
CP (K K ), Adir

CP (ππ)) = +0.80,
and therefore they are constrained to their observed values by
means of a two-dimensional correlated Gaussian PDF. The inclu-
sion of the result on Adir

CP (K K ) − Adir
CP (ππ) [18], which is statis-

tically independent from the HFAG average, is found to have no
effect on the combination.

2.3. Measurements from B± → D[→ K ±π∓π+π−]h± decays

The D four-body decay modes considered in the analysis of
Ref. [25] are the favoured D → K −π+π−π+ , and the suppressed
D → π−K +π−π+ final states. In a similar manner to the two-
body GLW/ADS analysis, seven observables are defined as ratios
of decay rates. Their relations to γ and the hadronic parameters
are fully analogous and given by Eqs. (10), (14), and (16), with
f = Kπππ and fsup = π Kππ . The CP-violating effects are di-
luted due to the D decay proceeding through a range of resonances
that can only interfere in limited regions of the four-body phase
space. This dilution is accounted for by multiplying each inter-
ference term by a coherence factor κ = κK 3π . The D decay time
acceptance and resolution model is identical to that present in the
two-body GLW/ADS analysis of Ref. [24]. The seven observables,
taken from the four-body analysis reported in Ref. [25], are

R K 3π
K/π = 0.0765 ± 0.0017 ± 0.0026,

AK 3π
π = −0.006 ± 0.005 ± 0.010,

AK 3π
K = −0.026 ± 0.020 ± 0.018,

Table 3
Statistical correlations of the B± → Dh± , D → Kπππ analysis [25].

R K 3π
K/π AK 3π

K AK 3π
π R K 3π

K− R K 3π
K+ R K 3π

π− R K 3π
π+

R K 3π
K/π 1 0.003 0.001 −0.060 −0.024 0.017 0.021

AK 3π
K 1 −0.035 −0.007 0.006 −0.002 0.002

AK 3π
π 1 −0.006 0.008 −0.002 0.005

R K 3π
K− 1 0.043 0.006 0.029

R K 3π
K+ 1 0.022 0.025

R K 3π
π− 1 0.032

R K 3π
π+ 1

R K 3π
K− = 0.0071 ± 0.0034 ± 0.0008,

R K 3π
K+ = 0.0155 ± 0.0042 ± 0.0010,

R K 3π
π− = 0.00400 ± 0.00052 ± 0.00011,

R K 3π
π+ = 0.00316 ± 0.00046 ± 0.00011,

where the first uncertainty is statistical and the second systematic.
The statistical correlations between these variables, not previously
published, are presented in Table 3.

2.4. Measurement of the hadronic parameters of the D system from
D0 → K ±π∓ , K ±π∓π+π− decays by CLEO

The two- and four-body ADS measurements both reach their
best sensitivity when combined with knowledge of the hadronic
parameters of the D decay. These are, for the D0 → K ±π∓ de-
cays, the amplitude ratio rKπ and the strong phase difference δKπ .
The hadronic parameters of the D0 → K ±π∓π+π− decays are the
ratio rK 3π , the phase δK 3π and the coherence factor1 κK 3π . All
of these parameters are constrained by a CLEO measurement [12],
where a combined fit is performed, which includes information on
the D mixing parameters and the Cabibbo-favoured branching frac-
tions of the D decay through the following relationship

Γ (D0 → fsup)

Γ (D0 → f fav)

= r2
f

[
1 − yD

r f
κ cos δ f + xD

r f
κ sin δ f + x2

D + y2
D

2r2
f

]
, (18)

1 Note that Ref. [12] uses the symbol R K 3π to denote the coherence factor.
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Table 4
Results of the CLEO measurement [12].

Observable Central value and uncertainty

δKπ (−151.5+9.6
−9.5)◦

xD (0.96 ± 0.25) × 10−2

yD (0.81 ± 0.16) × 10−2

B(D0 → K −π+) (3.89 ± 0.05) × 10−2

B(D0 → π− K +) (1.47 ± 0.07) × 10−4

B(D0 → K −π+π−π+) (7.96 ± 0.19) × 10−2

B(D0 → π− K +π−π+) (2.65 ± 0.19) × 10−4

Table 5
Confidence intervals and best-fit values of the D K ±
combination for γ , δK

B , and rK
B .

Quantity D K ± combination

γ 72.0◦
68% CL [56.4,86.7]◦
95% CL [42.6,99.6]◦

δK
B 112◦

68% CL [96,126]◦
95% CL [80,136]◦

rK
B 0.089

68% CL [0.080,0.098]
95% CL [0.071,0.107]

where r f = rKπ (rK 3π ), δ f = δKπ (δK 3π ), and κ = 1 (κK 3π ), for
D0 → K ±π∓ (K ±π∓π+π−) decays. All of these parameters are
included in the combination, although the dependence of γ on
the D mixing parameters and the Cabibbo-favoured branching
fractions is small compared to the current statistical precision.
The central values and the uncertainties given in Table 4 are re-
produced from the analysis by the CLEO Collaboration reported
in Ref. [12]. The covariance matrix (see Table VI in Ref. [12])
is also used, though it is not reproduced here. The parameters
(δK 3π ,κK 3π ) exhibit a non-Gaussian two-dimensional likelihood
(see Fig. 2b in Ref. [12]), and this likelihood is used in the com-
bination [28]. Their central values and profile-likelihood uncertain-
ties are κK 3π = 0.33+0.26

−0.23 and δK 3π = (114+26
−23)

◦ . Correlations of
δK 3π and κK 3π to other parameters are neglected.

2.5. Measurement from D0 → K ±π∓ decays by LHCb

The D mixing parameters xD and yD are constrained in addi-
tion by an LHCb measurement of D0 → K ±π∓ decays [17]. Three
observables are defined, R D , y′

D , and x′ 2
D , that are related to the D

system parameters through the following relationships

R D = rKπ
2, (19)

y′
D = xD sin δKπ − yD cos δKπ , (20)

x′ 2
D = (xD cos δKπ + yD sin δKπ )2, (21)

where a phase shift of 180◦ was introduced to δKπ to be in ac-
cordance with the phase convention adopted in this Letter. In
Ref. [17], the measured central values of the observables are
R D = (3.52 ± 0.15) × 10−3, y′

D = (7.2 ± 2.4) × 10−3, and x′ 2
D =

(−0.09±0.13)×10−3, where the error includes both statistical and
systematic uncertainties. These observables are strongly correlated,
ρ(R D , y′

D) = −0.95, ρ(y′
D , x′ 2

D ) = −0.97, and ρ(x′ 2
D , R D) = +0.88.

They are included by means of a three-dimensional correlated
Gaussian PDF.

3. Statistical interpretation

The evaluation of this combination follows a frequentist ap-
proach. A χ2-function is defined as χ2(	α) = −2 lnL(	α), where

L(	α) is defined in Eq. (1). The best-fit point is given by the global
minimum of the χ2-function, χ2(	αmin). To evaluate the confidence
level for a given value of a certain parameter, say γ = γ0 in the
following, the value of the χ2-function at the new minimum is
considered, χ2(	α′

min(γ0)). This also defines the profile likelihood

function L̂(γ0) = exp(−χ2(	α′
min)/2). Then a test statistic is defined

as �χ2 = χ2(	α′
min) − χ2(	αmin). The p-value, or 1 − CL, is calcu-

lated by means of a Monte Carlo procedure, described in Ref. [29]
and briefly recapitulated here. For each value of γ0:

1. �χ2 is calculated;
2. a set of pseudoexperiments 	A j is generated using Eq. (1) with

parameters 	α set to 	α′
min as the PDF;

3. �χ2 ′ of the pseudoexperiment is calculated by replacing
	Aobs → 	A j and minimising with respect to 	α, once with γ
as a free parameter, and once with γ fixed to γ0;

4. 1 − CL is calculated as the fraction of pseudoexperiments
which perform worse (�χ2 < �χ2 ′) than the measured data.

This method is sometimes known as the “μ̂”, or the “plug-in”
method. Its coverage cannot be guaranteed [29] for the full pa-
rameter space, but is verified for the best-fit point. The reason is,
that at each point γ0, the nuisance parameters, i.e. the components
of 	α other than the parameter of interest, are set to their best-fit
values for this point, as opposed to computing an n-dimensional
confidence belt, which is computationally very demanding.

In case of the CLEO likelihood for κK 3π and δK 3π , it is as-
sumed that the true PDF, for any assumed true value of κK 3π and
δK 3π , can be described by a shifted version of the likelihood pro-
file. In the non-physical range, κK 3π /∈ [0,1], the likelihood profile
is not available. It is extrapolated into the non-physical range us-
ing Gaussian tails that correspond to the published uncertainties
of the central value. If H(x, y) denotes the provided likelihood
profile, with a maximum at position (x̂, ŷ), it is transformed as
f i(xobs, yobs|x, y) ∝ Hi(x − xobs + x̂, y − yobs + ŷ), with the abbre-
viation (x, y) = (κK 3π , δK 3π ).

4. Results

Three different combinations are presented. First, only the parts
corresponding to B± → D K ± decays of the two- and four-body
GLW/ADS measurements [24,25] are combined with the GGSZ [23]
measurement. Then, only the B± → Dπ± parts of the two- and
four-body GLW/ADS measurements are combined. Finally, the full
B± → Dh± combination is computed. It is difficult to disentangle
the B± → D K ± and B± → Dπ± measurements, because the ob-
served ratios of Eq. (9) necessarily contain information on both
systems. These ratios are therefore included in the B± → D K ±
combination, but not in the B± → Dπ± combination. To include
them in the B± → D K ± combination, the denominator in the sec-
ond term of Eq. (10) is assumed to equal unity, neglecting a cor-
rection smaller than 0.04, such that effects of hadronic parameters
in the B± → Dπ± system are avoided. The separate D K ± (Dπ±)
combination contains 29 (22) observables, and the full combina-
tion contains 38 observables, as 13 observables from CLEO, HFAG,
and Ref. [17] are common to both separate combinations. The re-
sults are summarised in Tables 5–7, and illustrated in Figs. 1–3.
The equations of Section 2 are invariant under the simultaneous
transformation γ → γ + 180◦ , δ → δ + 180◦ , where δ = δK

B , δπ
B . All

results on γ , δK
B , and δπ

B are expressed modulo 180◦ , and only the
solution most consistent with the average computed by CKMfitter
and UTfit is shown. Fig. 4 shows two-dimensional profile likelihood
contours of the full combination, where the discrete symmetry is
apparent in subfigures (b) and (d). The D K ± combination results in
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Fig. 1. Graphs showing 1 − CL for (a) δK
B , (b) rK

B , and (c) γ , for the D K ± combination of the two- and four-body GLW/ADS and the D K ± GGSZ measurements. The reported
numbers correspond to the best-fit values and the uncertainties are computed using the respective 68.3% CL confidence interval shown in Table 5.
Table 6
Confidence intervals and best-fit values for the Dπ± combi-
nation for γ , δπ

B , and rπ
B . The corrections to the γ intervals

for undercoverage and neglected systematic correlations, as de-
scribed in Section 5, are not yet applied.

Quantity Dπ± combination

γ 18.9◦
68% CL [8.9,80.2]◦ ∪ [169.1,175.7]◦
95% CL no constraint

δπ
B 261◦

68% CL [213,229]◦ ∪ [249,331]◦
95% CL no constraint

rπ
B 0.015

68% CL [0.006,0.056]
95% CL [0.001,0.073]

confidence intervals for γ that are symmetric and almost Gaussian
up to 95% CL. Beyond that a secondary, local minimum of χ2(	α′

min)

causes a much enlarged interval at 99% CL. The Dπ± combination
results in unexpectedly small confidence intervals at 68% CL. This
can be explained by an upward fluctuation of rπ

B , since again the
uncertainty of γ scales roughly like 1/rπ

B . The ratio rπ
B is expected

to be rπ
B ≈ |(V ∗

ub V cd)/(V ∗
cb V ud)|×|C |/|T +C | ≈ 0.006, where C and

T describe the magnitudes of the colour-suppressed and tree am-
plitudes governing B± → Dπ± decays, with their numerical values
estimated from Ref. [30]. Within the 95% CL interval, rπ

B is well
consistent with this expectation, and no constraints on γ are set.
The high value of rπ

B also affects the full combination.

5. Validation of results and systematic uncertainties

To assess the agreement between the various input measure-
ments, the probability P , that the observed dataset agrees bet-
ter with the best-fit model than a dataset generated assuming
that model, is considered. It is computed in two different ways.
A first estimation of P is obtained as the p-value of a χ2 test
on the value χ2(	αmin), assuming it follows the χ2 distribution

Table 7
Confidence intervals and best-fit values for the D K ± and Dπ±
combination for γ , rK

B , δK
B , rπ

B , and δπ
B . The corrections to the

γ intervals for undercoverage and neglected systematic corre-
lations, as described in Section 5, are not yet applied.

Quantity D K ± and Dπ± combination

γ 72.6◦
68% CL [56.7,81.7]◦
95% CL [41.2,92.3]◦

rK
B 0.089

68% CL [0.080,0.097]
95% CL [0.071,0.105]
δK

B 112◦
68% CL [96,125]◦
95% CL [79,136]◦

rπ
B 0.015

68% CL [0.006,0.027]
95% CL [0.002,0.036]
δπ

B 315◦
68% CL [269,332]
95% CL no constraint

with a number of degrees of freedom given by the difference of
the number of observables nobs and the number of fit parame-
ters nfit. A more accurate approach is to generate pseudodatasets
j at the best-fit value, and fit these datasets with all parameters
free. Then P is given as the fraction of pseudoexperiments that
satisfy (χ2

j > χ2
data). For this test, the pseudoexperiments used for

the plug-in method are re-evaluated. The fit probability based on
the χ2 distribution is well consistent with that based on the pseu-
doexperiments, as shown in Table 8.

The statistical coverage of the plug-in method is not guaran-
teed. Therefore the coverage is computed at the best-fit point for
each of the three combinations. This is done by generating pseudo-
datasets at the best-fit point, and then, for each dataset, computing
the p-value of the best-fit point using the plug-in method. The
coverage is then defined as the fraction α in which the best-fit
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Fig. 2. Graphs showing 1 − CL for (a) δπ
B , (b) rπ

B , and (c) γ , for the Dπ± combination of the two- and four-body GLW/ADS measurements. The reported numbers correspond
to the best-fit values and the uncertainties are computed using appropriate 68.3% CL confidence intervals shown in Table 6.
Table 8
Numbers of observables nobs , numbers of free parameters in the fit nfit , the mini-
mum χ2 at the best-fit point, and fit probabilities of the best-fit point for the three
combinations. The quoted uncertainties are due to the limited number of pseudo-
experiments.

Combination nobs nfit χ2
min P [%]

(χ2 distribution)
P [%]
(pseudo-
experiments)

D K ± 29 15 10.48 72.6 73.9 ± 0.2
Dπ± 22 14 6.28 61.6 61.2 ± 0.3
full 38 17 13.06 90.6 90.9 ± 0.1

value of γ has a larger p-value than η = 68.27%, η = 95.45%, and
η = 99.73%, for 1-, 2-, 3σ , respectively. The plug-in method slightly
undercovers (α < η) in the Dπ± and full combinations, as shown
in Table 9. The D K ± combination has exact coverage. The same
table also contains the coverage of the simpler interval setting ap-
proach, in which the confidence intervals are defined by �χ2 = n2,
where n = 1,2,3. The profile likelihood approach was found to sig-
nificantly undercover. For the Dπ± and full combinations, the final
plug-in confidence intervals (Tables 6, 7) are scaled up by factors
η/α, taken from Table 9.

In addition the confidence intervals were cross-checked using
a method inspired by Berger and Boos [31]. Instead of setting
the nuisance parameters 	θ to their best-fit values when com-
puting the p-value, p(γ0, θ), nBB = 50 alternative points are cho-
sen, drawn from an (nfit − 1)-dimensional uniform distribution
over a restricted region Cβ . Then, the p-value is given as pBB =
max	θ∈Cβ

p(γ0, 	θ) + β . Here, β is the probability that 	θ lies out-

side Cβ , and Cβ is chosen large enough such that β < 10−4. This
method is more conservative than the nominal plug-in method,
but is guaranteed to not undercover for nBB → ∞. The resulting
intervals are only slightly larger than the nominal ones.

For the two-body and four-body GLW/ADS analyses no informa-
tion on systematic correlations is available. Consequently, they are
assumed to be zero in the nominal combinations. Their possible

Table 9
Coverage fraction f in = Nin/N for γ at its best measured value for 1-, 2-, and 3σ
intervals, for the plug-in method and the simpler approach based on the profile
likelihood. The quoted uncertainties are due to the limited number of pseudoexper-
iments.

Combination η α (plug-in) α (profile likelihood)

D K ± 0.6827 (1σ) 0.6874 ± 0.0050 0.6508 ± 0.0051
0.9545 (2σ) 0.9543 ± 0.0023 0.9414 ± 0.0025
0.9973 (3σ) 0.9952 ± 0.0007 0.9947 ± 0.0008

Dπ± 0.6827 (1σ) 0.5945 ± 0.0053 0.5105 ± 0.0054
0.9545 (2σ) 0.9391 ± 0.0026 0.9238 ± 0.0029
0.9973 (3σ) 0.9960 ± 0.0007 0.9919 ± 0.0010

D K ± and Dπ± 0.6827 (1σ) 0.6394 ± 0.0050 0.5839 ± 0.0051
0.9545 (2σ) 0.9374 ± 0.0025 0.9112 ± 0.0030
0.9973 (3σ) 0.9929 ± 0.0009 0.9912 ± 0.0010

influence is assessed by computing the effect of a large number
of random correlation matrices on the expected confidence inter-
vals. A maximum correlation of 75% is considered in the random
matrices. The expected intervals are computed by generating pseu-
dodatasets at the best-fit points of the three combinations, and
then, for each pseudodataset, by computing its profile �χ2 curve,
and taking the average of these curves. The D K ± combination is
unaffected. The Dπ± combination, however, is affected to a large
extent, as the values of several observables are limited by system-
atic uncertainties. Conservatively, the maximum of the p-values
observed for all random correlation matrices is considered. The
nominal 1σ intervals are asymmetrically enlarged by 12% to match
the maximum. The full combination is only slightly affected. The
systematic uncertainty is fully concentrated in the lower side of
the interval. Therefore, a systematic uncertainty of 2.5◦ (5.0◦) is
added in quadrature to the lower 1σ (2σ) errors.

The linearity of the combination procedure was checked by
computing values for all observables using the best-fit point of the
full combination and the relations from Section 2. Assuming the
experimental covariances, the best-fit point was perfectly repro-
duced, and the procedure was found to be unbiased.
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Fig. 3. Graphs showing 1 − CL for (a) δK
B , (b) δπ

B , (c) rK
B , (d) rπ

B , and (e) γ , for the full D K ± and Dπ± combination. The reported numbers correspond to the best-fit values
and the uncertainties are computed using appropriate 68.3% CL confidence intervals shown in Table 7.
In summary, the D K ± combination does not require correc-
tions. In case of the Dπ± and full combinations, the intervals are
enlarged to account for both neglected systematic correlations and
undercoverage.

6. Conclusion

A combination of recent LHCb results [24,23,25] is used to mea-
sure the CKM angle γ . The decays B± → D K ± and B± → Dπ±
are used, where the D meson decays into K +K − , π+π− , K ±π∓ ,
K 0

S π+π− , K 0
S K +K − , or K ±π∓π+π∓ final states. The effect of

D0–D0 mixing is taken into account in the ADS analysis of both
B± → D K ± and B± → Dπ± decays. Using only B± → D K ± re-
sults, a best-fit value in [0,180]◦ of γ = 72.0◦ is found and confi-
dence intervals are set using a frequentist procedure

γ ∈ [56.4,86.7]◦ at 68% CL,

γ ∈ [42.6,99.6]◦ at 95% CL.

Taking the best-fit value as central value, the first interval is trans-
lated to

γ = (
72.0+14.7

−15.6

)◦ at 68% CL.

At 99% CL a second (local) minimum contributes to the interval.
When combining results from B± → Dπ± decays alone, a best-fit

value of γ = 18.9◦ is found and the following confidence intervals
are set

γ ∈ [7.4,99.2]◦ ∪ [167.9,176.4]◦ at 68% CL,

and no constraint is set at 95% CL. For the first time, information
from B± → Dπ± decays is included in a combination. When these
results are included, the best-fit value becomes γ = 72.6◦ and the
following confidence intervals are set

γ ∈ [55.4,82.3]◦ at 68% CL,

γ ∈ [40.2,92.7]◦ at 95% CL.

All quoted values are modulo 180◦ . The coverage of our frequen-
tist method was evaluated and found to be exact when combining
B± → D K ± results alone, and accurate within 4% (2%) at 1σ (2σ )
when combining B± → D K ± and B± → Dπ± results. The final in-
tervals have been scaled up to account for this undercoverage, and
to account for neglected systematic correlations.
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