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Abstract
A search is performed for the central exclusive production of pairs of char-
monia produced in proton-proton collisions. Using data corresponding to an
integrated luminosity of 3 fb 1− collected at centre-of-mass energies of 7 and
8 TeV, J Jψ ψ and J S(2 )ψψ pairs are observed, which have been produced
in the absence of any other activity inside the LHCb acceptance that is sen-
sitive to charged particles in the pseudorapidity ranges ( 3.5, 1.5)− − and
(1.5, 5.0). Searches are also performed for pairs of P-wave charmonia and
limits are set on their production. The cross-sections for these processes, where
the dimeson system has a rapidity between 2.0 and 4.5, are measured to be
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where the upper limits are set at the 90% confidence level. The measured J Jψ ψ
and SJ (2 )ψψ cross-sections are consistent with theoretical expectations.

Keywords: QCD, diffraction, charmonia

(Some figures may appear in colour only in the online journal)

Journal of Physics G: Nuclear and Particle Physics

J. Phys. G: Nucl. Part. Phys. 41 (2014) 115002 (17pp) doi:10.1088/0954-3899/41/11/115002

1 Authors are listed at the end of the paper.

Content from this work may be used under the terms of the Creative Commons

Attribution 3.0 licence. Any further distribution of this work must maintain attribution to
the author(s) and the title of the work, journal citation and DOI.

0954-3899/14/115002+17$33.00 © CERN 2014 On behalf of the LHCb Collaboration Printed in the UK 1

http://dx.doi.org/10.1088/0954-3899/41/11/115002
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


1. Introduction

Central exclusive production (CEP), pp pXp→ , in which the protons remain intact and the
system X is produced with a rapidity gap on either side, requires the exchange of colourless
propagators, either photons or combinations of gluons that ensure a net neutral colour flow.
CEP provides an attractive laboratory in which to study quantum chromodynamics (QCD)
and the role of the pomeron, particularly when the mass of the central system is high enough
to allow perturbative calculations [1]. Furthermore, it presents an opportunity to search for
exotic states in a low-background experimental environment.

CEP has been studied at hadron colliders from the ISR to the Tevatron. At the LHC,
measurements of exclusive single J ψ photoproduction have been made by the LHCb [2] and
ALICE [3] collaborations. The CEP of vector meson pairs has been measured in ωω [4] and
ϕϕ [5, 6] channels by the WA102 and WA76 collaborations. In this paper, CEP of S-wave,

SJ J , J (2 )ψ ψ ψψ , S S(2 ) (2 )ψ ψ , and P-wave, , ,c0 c0 c1 c1 c2 c2χ χ χ χ χ χ , charmonium pairs are
examined for the first time, using a data sample corresponding to an integrated luminosity of
about 3 fb 1− , collected by the LHCb experiment.

Investigations of the cross-sections and invariant mass spectra of charmonium pairs are
sensitive to the presence of additional particles in the decay chain such as glueballs or
tetraquarks [7]. LHCb has measured the inclusive production of J ψ pairs [8] in broad
agreement with the QCD predictions, although the invariant mass distribution of the dimeson
system is shifted to higher values in data. In the inclusive case, this shift could be an
indication of double parton scattering (DPS) effects [9]. In CEP however, DPS through
photoproduction is negligible due to the peripheral nature of the collision. Thus, a comparison
of the mass spectra in inclusive and exclusive production gives further information for
understanding J ψ pair production.

The principal production mechanism for the CEP of two charmonia is through double
pomeron exchange (DPE) as shown in the left diagram of figure 1, where one t-channel gluon
participates in the hard interaction and the second (soft) gluon shields the colour charge.
Using the Durham model [10], this can be related to the gg J Jψ ψ→ process calculated in
[7, 11]. Another mechanism [12] that may lead to higher dimeson masses and an enhanced
cross-section is shown in the right diagram of figure 1.

Several theory papers consider the production of pairs of charmonia by two-photon
fusion [13–18], which is of importance in heavy-ion collisions and at high-energy e e+ −

colliders. However, in pp interactions DPE dominates. A recent work [12] gives predictions
for the DPE production of light meson pairs, which are implemented in the SUPERCHIC
generator [19]. The formalism can be extended to obtain predictions for charmonium pairs.

2. Detector and data samples

The LHCb detector [20] is a single-arm forward spectrometer covering the pseudorapidity
range 2 5η< < (forward region), primarily designed for the study of particles containing b
or c quarks. The detector includes a high-precision tracking system consisting of a silicon-
strip vertex detector (VELO) [21] surrounding the pp interaction region, a large-area silicon-
strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and
three stations of silicon-strip detectors and straw drift tubes [22] placed downstream of the
magnet. The tracking system provides a measurement of momentum with a relative
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uncertainty that varies from 0.4% at low momentum to 0.6% at 100 GeV90. The minimum
distance of a track to a primary vertex, the impact parameter, is measured with a resolution of

p(15 29 ) mT μ+ , where pT is the component of momentum transverse to the beam, in GeV.
In addition, the VELO has sensitivity to charged particles with momenta above ∼100MeV in
the pseudorapidity range 3.5 1.5η− < < − (backward region), while extending the sensitivity
of the forward region to 1.5 5η< < .

Different types of charged hadrons are distinguished using information from two ring-
imaging Cherenkov detectors [23]. Photon, electron and hadron candidates are identified by a
calorimeter system consisting of scintillating-pad (SPD) and pre-shower detectors, an elec-
tromagnetic calorimeter and a hadronic calorimeter. The SPD also provides a measure of the
charged particle multiplicity in an event. Muons are identified by a system composed of
alternating layers of iron and multiwire proportional chambers [24]. The trigger [25] consists
of a hardware stage, based on information from the calorimeter and muon systems, followed
by a software stage, which applies a full event reconstruction.

The data used in this analysis correspond to an integrated luminosity of 946 33 pb 1± −

collected in 2011 at a centre-of-mass energy s 7 TeV= and 1985 69 pb 1± − collected in
2012 at s 8 TeV= . The two datasets are combined because the overall yields are low and
the cross-sections are expected to be similar at the two energies. The J ψ and S(2 )ψ mesons
are identified through their decays to two muons, while the χc mesons are searched for in the
decay channels Jcχ ψγ→ . The protons are only marginally deflected by the peripheral
collision and remain undetected inside the beam pipe. Therefore, the signature for exclusive
charmonium pairs is an event containing four muons, at most two photons, and no other
activity. Beam-crossings with multiple proton interactions produce additional activity; in the
2011 (2012) data-taking period the average number of visible interactions per bunch crossing
was 1.4 (1.7). Requiring an exclusive signature restricts the analysis to beam crossings with a
single pp interaction.

Simulated events are used primarily to determine the detector acceptance. No generator
has implemented exclusive J ψ pair production; therefore, the dimeson system is constructed
with the mass and transverse momentum distribution observed in the data, and the rapidity
distribution as predicted for DPE processes by the Durham model [10]. Systematic uncer-
tainties associated with this procedure are discussed in section 5. The dimeson system is
forced to decay, ignoring spin and polarization effects, using the PYTHIA generator [26] and

Figure 1. Representative Feynman diagrams for pairs of charmonia produced through
double pomeron exchange. In the left, one t-channel gluon is much softer than the other
while in the right, they are similar.

90 Natural units are used throughout this paper.
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passed through a GEANT4 [27] based detector simulation, the trigger emulation and the event
reconstruction chain of the LHCb experiment.

3. Event selection and yields

The hardware trigger used in this analysis requires a single muon candidate with transverse
momentum pT > 400MeV in coincidence with a low SPD multiplicity ( 10< hits). The
software trigger used to select signal events requires two muons with p 400T > MeV.

The analysis is performed in the fiducial region where the dimeson system has a rapidity
between 2.0 and 4.5. The selection of pairs of S-wave charmonia begins by requiring four
reconstructed tracks that incorporate VELO information, for which the acceptance is about
30%. At least three tracks are required to be identified as muons. It is required that there are
no photons reconstructed in the detector and no other tracks that have VELO information.

The invariant masses of oppositely charged muon candidates is shown in the left plot of
figure 2. Accumulations of events are apparent around the J ψ and S(2 )ψ masses. Requiring

Figure 2. Left: invariant masses of pairs of oppositely charged muons in events with
exactly four tracks. Of the two possible ways of combining the muons per event, the
one with the higher value for the lower-mass pair is plotted. Right: invariant mass of
the second pair of tracks where the first pair has a mass consistent with the J ψ or

S(2 )ψ meson. When both masses are consistent with a charmonium, only the candidate
with the higher mass is displayed. The curve shows an exponential fit in the region
below 2500 MeV.

Figure 3. Invariant mass of the four-muon system in (left) J Jψ ψ and (right) SJ (2 )ψψ
events.
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that one of the masses is within 200 MeV− and 65 MeV+ of the known J ψ or S(2 )ψ mass
[28], the invariant mass of the other two tracks is shown in the right plot of figure 2. Clear
signals are observed about the J ψ and S(2 )ψ masses and candidates within 200 MeV− and

65 MeV+ of their masses are selected. There are 37 J Jψ ψ candidates, 5 SJ (2 )ψψ candi-
dates, and no S S(2 ) (2 )ψ ψ candidates. Although it is not explicitly required in the selection,
all candidates are consistent with originating from a single vertex. The invariant mass dis-
tributions of the four-muon system in J Jψ ψ and SJ (2 )ψψ events are shown in figure 3. The
shape of the J Jψ ψ mass distribution is consistent with that observed in the inclusive ana-
lysis [8].

The events selected here are produced through a different production mechanism than
those selected in the inclusive analysis of J ψ pairs, as can be appreciated by examining the
charged multiplicity distributions. The inclusive signal has an average multiplicity of 190
reconstructed tracks, with only 2 (0.2)% of events having multiplicities below 50 (20). In
contrast, figure 4 shows the number of tracks, in triggered events with a low SPD multiplicity,
for the selection of exclusive J Jψ ψ events when the requirements on no additional activity
(either extra tracks or photons) is removed. The peak at four tracks is noteworthy. A small
peak of seven events with six tracks is consistent with the expected number of exclusive

SJ (2 )ψψ events, where S(2 ) Jψ ψπ π→ + −. This is estimated from the simulation that has
been normalized to the 5 observed SJ (2 )ψψ events, where S(2 )ψ μ μ→ + −. Only one of these
events can be fully reconstructed and the invariant mass of one J ψ meson and the two tracks,
assumed to be pions, is consistent with that of the S(2 )ψ meson. The remainder of the
distribution is uniform, suggestive of DPE events in which one or both protons dissociated.
There is no indication of a contribution that increases towards higher multiplicities, as would
be expected if there was a substantial contribution coming from non-exclusive events.

The selection of pairs of P-wave charmonia proceeds as for the S-wave, but the
restriction on the number of photons is lifted. These criteria are only satisfied by two events.
One event has a single photon and the invariant mass of a reconstructed J ψ and this photon is
consistent with the c0χ mass; consequently, this event is a candidate for c0 c0χ χ production.
The other event has two photons that, when combined, have the mass of a π0 meson, and is
thus not a candidate for c cχ χ production. Both events are consistent with partially recon-

structed SJ (2 )ψψ events where S(2 ) J 0 0ψ ψπ π→ . Normalizing to the five candidate events
for SJ (2 )ψψ , the simulation estimates that 2.8 2.0 (0.5 0.5)± ± SJ (2 )ψψ events would be

Figure 4. Number of tracks passing the J Jψ ψ exclusive selection after having
removed the requirement that there be no additional charged tracks or photons. The
shaded histogram is the expected feed-down from exclusive SJ (2 )ψψ events.
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reconstructed as J Jψ ψ candidates with one (two) additional photon(s). There are no can-
didates for c1 c1χ χ or c2 c2χ χ production.

4. Backgrounds

Three background components are considered: non-resonant background; feed-down from the
exclusive production of other mesons; and inelastic production of mesons where one or both
protons dissociate.

The non-resonant background is only considered for the S-wave analysis and is calcu-
lated by fitting an exponential to the non-signal contribution in figure 2 and extrapolating
under the signal. It is estimated that there are 0.3 0.1± and 0.07 0.02± background events in
the J ψ and S(2 )ψ signal ranges, respectively.

A feed-down background is considered for the J Jψ ψ and the P-wave analyses. Given
the presence of five SJ (2 )ψψ signal events, it is expected that S X(2 ) Jψ ψ→ decays will
occasionally be reconstructed as χc mesons or J ψ mesons alone, due to the rest of the decay
products being outside the acceptance or below threshold. Normalizing to the five candidate
events for SJ (2 )ψψ , the simulation estimates that 2.9 2.0± SJ (2 )ψψ events would be
reconstructed as J Jψ ψ candidates with no additional photons, while 0.8 0.8± , 0.2 0.2±
and 0.1 0.1± would be reconstructed as ,c0 c1χ χ and c2χ mesons, respectively.

Feed-down from pairs of P-wave charmonia to give J Jψ ψ candidates is also possible.
The simulation estimates that in over 80% (70%) of c1 c1χ χ or c2 c2χ χ ( c0 c0χ χ ) decays producing
two J ψ mesons, one or more additional photons would be detected. There is only one
candidate for c0 c0χ χ but this is also consistent with feed-down from SJ (2 )ψψ events. Con-
sequently, there is no evidence for a significant χc feed-down to the J Jψ ψ selection and this
contribution is assumed to be negligible.

The separation of the samples into those events that are truly exclusive (elastic) and those
where one or both protons dissociate (inelastic) is fraught with difficulty. Therefore, the cross-
sections are quoted for the full samples that are observed to be exclusively produced inside
the LHCb acceptance, i.e. no other tracks or electromagnetic deposits are found in the
detector. Nonetheless, to compare with theoretical predictions that are usually quoted for the
elastic process without proton break-up, an attempt is made to quantify the elastic fraction in
the J Jψ ψ sample, using the distribution of squared transverse momentum and describing the
elastic and proton-dissociation components by different exponential functions. This func-
tional form is suggested by Regge theory that assumes the differential cross-section

t btd d exp ( )σ ∝ for a wide class of diffractive events, where b is a constant for a given
process, t p pT( )

2≈ − is the four-momentum transfer squared at one of the proton-pomeron
vertices, and p pT( ) is the transverse momentum of the outgoing proton labelled p( ).

In the CEP single J ψ analysis performed by the LHCb collaboration [2], the transverse
momentum of the central system, p p pT T( )≈ , the transverse momentum of the outgoing

proton from which the pomeron radiated. A fit to the pT
2 distribution showed that the elastic

contribution could be described by p pd d exp ( (6 GeV ) )T
2 2

T
2σ ∼ − − and it was estimated that

about 60% of events with p 1 GeVT
2 2< (corresponding to 40% of events without a

requirement on pT) were elastic.

In the CEP of pairs of J ψ mesons, the situation should be similar, although pd d T
2σ will

fall off more gradually as there are two proton-pomeron vertices to consider. In addition, the
dissociative background might be larger as the mass of the central system is higher and the
production process is through two pomerons, rather than a photon and a pomeron. The
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transverse momentum of the central system, p p p p p2 ·
p p p pT

2
T
2

( 1) T
2

( 2) T( 1) T( 2)= + + ⃗ ⃗ . Taking a

dependence of pexp ( (6 GeV ) )p
2

T( )
2− − at each of the proton-pomeron vertices and ignoring

possible rescattering effects leads to an expectation of p pd d exp ( (3 GeV ) )T
2 2

T
2σ ∼ − − . The

pT
2 distribution for the J Jψ ψ candidates is shown in the left plot of figure 5 and has a shape

similar to that seen in the exclusive J ψ analyses: a peaking of signal events below 1 GeV2,
and a tail to higher values, characteristic of inelastic production. A maximum likelihood fit is
performed to the sum of two exponentials,

( ) ( )( )f b b p f b b pexp 1 exp , (1)s s b bel T
2

el T
2− + − −

where b b,s b are the slopes for the signal and background and fel is the fraction of elastic
events.

Due to the small sample size, the value of bb is constrained using the distribution for
exclusive dimuon candidates whose invariant mass lies in the range 6–9 GeV. These are
selected as in the single J ψ analysis [2] but with a different invariant mass requirement. The
pT

2 distribution, shown in the right plot of figure 5, has a prominent peak in the first bin
corresponding to the electromagnetic two-photon exchange process, pp p pμ μ→ + − . The tail
to larger values is characteristic of events with proton dissociation. The region

p1.5 10 GeVT
2 2< < is fit with a single exponential, resulting in a slope

of b 0.29 0.02 GeVb
2= ± − .

Fixing bb at this value of 0.29 GeV 2− , the fit to the pT
2 distribution for the J Jψ ψ

candidates returns values of b 2.9 1.3 GeVs
2= ± − and f 0.42 0.13el = ± . An alternative fit is

made with all parameters free, returning consistent results, albeit with larger uncertainties:
b 3.1 1.7 GeVs

2= ± − , b 0.34 0.14 GeVb
2= ± − , f 0.38 0.17el = ± . It is also worth noting

that the pT
2 spectrum of these selected events is different to that of inclusively selected J ψ

pairs, which can be fit with a single exponential with a slope of 0.051 0.001 GeV 2± − .

5. Efficiency and acceptance

For dimesons in the rapidity range y2.0 4.5< < , the acceptance factor, A, defines the
fraction of events having four reconstructed tracks in the LHCb detector. This is found using
simulated events that have been generated with a smoothed form of the distribution given in

Figure 5. Transverse momentum squared distribution of candidates for exclusively
produced (left) J Jψ ψ and (right) dimuons whose invariant mass is between 6 and 9
GeV. The curves are fits to the data as described in the text.
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the left plot of figure 3, a pT
2 as given in the left plot of figure 5, and a rapidity distribution

according to the Durham model, which in the region y2.0 4.5< < , can be described by the
functional form (1 – 0.18y).

To estimate a systematic uncertainty on the acceptance, the simulated events are
reweighted with different assumptions on the mass, transverse momentum and rapidity of the
dimeson system. The mass is described instead by the theoretical shape of [7], which changes
the acceptance by less than 1%. The transverse momentum is described with the elastic shape
found in data for the exclusive single J ψ analysis [2], changing the acceptance by less than
1%. The largest effect is due to the assumption on the underlying rapidity distribution. An
alternative model is to consider the pomeron as an isoscalar photon [29] and construct the
pomeron flux from the Weizsäcker-Williams approximation for describing photon radiation.
This leads to a rapidity distribution that is approximately flat for y2.0 4.5< < and an
acceptance that changes by 6%.

The tracking efficiency also contributes to A. A systematic uncertainty of 1% per track
has been determined [30] for tracks with pseudorapidities between 2.0 and 4.5. Uncertainties
in the description of edge effects of the tracking detectors in the simulation are assessed by
comparing the pseudorapidity distributions of tracks in exclusive J ψ events [2] in simulation
and data. Differences are propagated to give an uncertainty on the determination of A for
charmonium pairs of 7%. Combining all these effects in quadrature leads to estimates of
0.35 0.03± for the acceptance of J Jψ ψ events, 0.36 0.03± for the acceptance of SJ (2 )ψψ
and S S(2 ) (2 )ψ ψ events, and 0.29 0.03± for the acceptance of any of the c cχ χ pairs.

The efficiency, ϵ, for triggering and reconstructing signal events is the product of three
quantities: triggerϵ , muidϵ and selϵ . The trigger only requires two of the four muons and con-
sequently has a high efficiency of 0.90 0.03triggerϵ = ± . This has been calculated from the
single muon trigger efficiencies calculated in [2] together with the efficiency for the SPD
multiplicity to be less than ten, which has been assessed using a rate-limited trigger that does
not have requirements on the SPD multiplicity. The efficiency to identify three or more of the
final-state decay products as muons, muidϵ , is high and the uncertainty is determined by
propagating the difference in single muon efficiencies found in simulation and in data to give

0.95 0.03muidϵ = ± . For the S-wave analysis, the selection has an efficiency
0.93 0.02selϵ = ± , which includes contributions from the requirements that no photons be

identified in the event and that the reconstructed masses be within 200 MeV− and 65 MeV+
of the J ψ or S(2 )ψ mass. The former is found from simulation, calibrated using a sample of
J ψγ candidates in data, while the latter is determined from a fit to the peak in the exclusive
J ψ analysis [2]. For the P-wave analysis, the requirement of detecting one or more photons
lowers the selection efficiency and values of 0.68 0.07, 0.77 0.04, 0.81 0.04selϵ = ± ± ±
are obtained for c0 c0χ χ , c1 c1χ χ , c2 c2χ χ , respectively, where the uncertainty takes into account
the modelling of the energy response of the calorimeter.

6. Results and discussion

The cross-section, M M1 2σ , for the production of meson pairs, M1 and M2, is given by

( ) ( ) ( )

N N

f L A M M( ) ( )
, (2)M M M M bkg

single 1 2

1 2
1 2σ

ϵ μμ γ μμ γ
=

−

→ → 
where NM M1 2 is the number of candidate meson pairs selected, Nbkg is the estimated number of
background events, L is the integrated luminosity, fsingle is the fraction of beam crossings with
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Table 1. Summary of numbers entering the cross-section calculation.

J Jψ ψ SJ (2 )ψψ S S(2 ) (2 )ψ ψ c0 c0χ χ c1 c1χ χ c2 c2χ χ

NM M1 2 37 5 0 1 0 0

Nbkg 3.2 2.0± 0.07 0.02± 0.01< 0.8 0.8± 0.2 0.2± 0.1 0.1±
A 0.35 0.03± 0.36 0.03± 0.36 0.03± 0.29 0.03± 0.29 0.03± 0.29 0.03±
ϵ 0.80 0.04± 0.80 0.04± 0.80 0.04± 0.58 0.06± 0.66 0.05± 0.69 0.05±
f Lsingle [pb ]1− 596 ± 21

(J )ψ μμ→ 0.0593 0.0006±
S( (2 ) )ψ μμ→ 0.0077 0.0008±

( J )c0χ ψγ→ 0.0117 0.0008±
( J )c1χ ψγ→ 0.344 0.015±
( J )c2χ ψγ→ 0.195 0.008±

J.
P
hys.

G
:
N
ucl.

P
art.

P
hys.

41
(2014)

115002
R

A
aijet

al
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a single interaction, and M( ( ))i μμ γ→ is the branching fraction for the meson to decay to
two muons in the case of S-wave states, and two muons and a photon for P-wave states.

The luminosity has been determined with an uncertainty of 3.5% [31]. The factor, fsingle,
accounts for the fact that the selection requirements reject signal events that are accompanied
by a visible proton-proton interaction in the same beam crossing, and is calculated as
described in [2]. The cross-section measurements for 2011 and 2012 data are consistent and
are combined to produce results at an average centre-of-mass energy of 7.6 TeV. All the
numbers entering the cross-section calculation are given in table 1, while the systematic
uncertainties of the quantities in the denominator of equation (2) are summarized in table 2.
Where zero or one candidate is observed, 90% confidence levels (CL) are calculated by
performing pseudo-experiments in which the quantities in equation (2) are varied according to
their uncertainties and pseudo-candidates are generated according to a Poisson distribution.
The upper bound at 90% CL is defined as the smallest cross-section value that in 90% of
pseudo-experiments leads to more candidate events than observed in data. The cross-sections,
at an average energy of 7.6 TeV, for the dimeson system to be in the rapidity range

y2.0 4.5< < with no other charged or neutral energy inside the LHCb acceptance are
measured to be

58 10(stat) 6(syst) pb,

63 (stat) 10(syst) pb,

237 pb,

69 nb,
45 pb,

141 pb,

S

S S

J J

J (2 )
18
27

(2 ) (2 )

c0 c0

c1 c1

c2 c2

σ
σ

σ
σ
σ
σ

= ± ±
= ±
<
<
<
<

ψ ψ

ψψ

ψ ψ

χ χ

χ χ

χ χ

−
+

where the upper limits are at 90% CL. To compare with theory, the elastic fraction is taken to
be 0.42 0.13± , as determined in section 4, to give an estimated cross-section for CEP of
J Jψ ψ of 24 9 pb± , where all the uncertainties are combined in quadrature. Using the
formalism of [12], a preliminary prediction [32] of 8 pb at s 8 TeV= has been obtained.
There is a large uncertainty of a factor two to three on this value due to the gluon parton
density function that enters with the fourth power, the choice of the gap survival factor [33],
and the value of the J ψ wave-function at the origin [7, 11, 34]. Theory and experiment are
observed to be in reasonable agreement, given the large uncertainties that currently exist
on both.

The relative sizes of the cross-sections for exclusive SJ (2 )ψψ and J Jψ ψ production,
assuming a similar elastic fraction, is

S(J (2 ))

(J J )
1.1 ,0.4

0.5σ ψψ
σ ψ ψ

= −
+

where the total uncertainty is quoted and most systematics, bar that on the branching
fractions, cancel in the ratio. This is in agreement with a theoretical estimate for this ratio of
about 0.5 [7]. The equivalent quantity measured in exclusive single charmonium production
[2] is

S( (2 ))

(J )
0.17 0.02.

σ ψ
σ ψ

= ±

No strong conclusion can be drawn on the higher relative fraction of S(2 )ψ to J ψ in double
charmonium production compared to that in single charmonium production, due to the large
uncertainty.
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The ratios of double to single J ψ production can be compared in the inclusive and
exclusive modes. The inclusive ratio was measured by LHCb [8] to be

( )5.1 1.0 0. 6 10 .J J J
inclusive 1.0

1.2 4σ σ = ± ± ×ψ ψ ψ
−
+ −

The exclusive single J ψ cross-section is calculated from the differential cross-section and
acceptance values given in tables 2 and 3 of [2] and the branching fraction to dimuons to get

11.2 0.8 nbJσ = ±ψ . A combination with the estimated exclusive elastic cross-section above
gives

(2.1 0.8) 10 ,J J J
exclusive

3σ σ = ± ×ψ ψ ψ −

the central value for which is four times higher than in the inclusive case, though again, due to
the large uncertainty, both are consistent.

7. Conclusions

A clear signal for the production of pairs of S-wave charmonia in the absence of other activity
in the LHCb acceptance is obtained. This is the first observation of the CEP of pairs of
charmonia. The small sample size affects the precision with which the elastic component can
be extracted. A fit to the pT

2 of the system of two J ψ mesons estimates that (42 13)%± of the
events that are observed to be exclusive in the LHCb detector is elastically produced while the
remainder is attributed to events in which one or both protons dissociate. The measurement
are in agreement with preliminary theoretical predictions. No signal is observed for the
production of pairs of P-wave charmonia and upper limits on the cross-sections are set.
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