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Abstract: Geryon longipes is a crab species that inhabits the muddy bottoms of the middle and lower
slopes, as well as bathyal bottoms ranging from 400 to 2000 m in depth. To assess its molecular
diversity, a fragment of 572 bp of the COI (Cytochrome Oxidase subunit I) mitochondrial gene was
sequenced in eight Western Mediterranean locations. Within the studied area, two oceanographic
fronts are present (Almeria-Oran Front and Ibiza Channel). From the 124 sequences obtained, only
7 distinct haplotypes were identified. The population distribution indicated three well-differentiated
regions: the Alboran Sea, the Gulf of Vera and the Levantine/Catalan coasts. The molecular diversity
was compared with that obtained in the same year for the same gene in Liocarcinus depurator, a crab
species that is captured on the continental shelf and upper slope (40 to 500 m). The estimates of
molecular diversity parameters for the COI gene fragment were rather similar between both species,
but the number of haplotypes was higher for L. depurator. Finally, the obtained COI sequences of G.
longipes were compared to those from other populations of the species distribution range, recovered
from the DNA repository. Only one additional, different haplotype was reported (Sicily), whereas all
the rest were common with those described in our study. Therefore, the COI gene fragment would
indicate that all the sequences analysed in the Mediterranean and NE Atlantic belong to the same
species, G. longipes.

Keywords: COI; heteroplasmy; haplotypes; diversity; gene flow; Liocarcinus depurator; oceanic fronts

1. Introduction

There was a time when evolutionary biologists tended to consider that marine organ-
isms would not have major restrictions in their mobility and dispersion since the oceans
showed no directly evident physical barriers like those present in the terrestrial environ-
ment [1]. As a result, it was assumed that marine organisms could move rather freely in
the water mass, leading to a high degree of gene flow and minimal differentiation between
populations. However, this assumption was found to be far from reality as marine currents
create oceanographic fronts that disrupt the connectivity between populations. As such,
in addition to isolation by distance, permanent and semi-permanent oceanic barriers are
now recognised as one of the primary factors contributing to population genetic differ-
entiation [2–6]. Nonetheless, the situation is markedly different for deep-sea species, as
deep current patterns are poorly understood and the environmental conditions in these
regions tend to be relatively stable, except for occasional and local high-energy processes [7].
Deep-sea fronts between water masses and geological deep-sea structures, such as moun-
tain ranges, may create isolation for benthic and epibenthic populations unless the species
exhibit epiplanktonic larval stages that allow them to surmount these barriers. Furthermore,
although knowledge of deep-sea larval stages is limited, evidence suggests that at least

Diversity 2023, 15, 534. https://doi.org/10.3390/d15040534 https://www.mdpi.com/journal/diversity

https://doi.org/10.3390/d15040534
https://doi.org/10.3390/d15040534
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diversity
https://www.mdpi.com
https://orcid.org/0000-0002-9073-4862
https://orcid.org/0000-0001-6034-2465
https://doi.org/10.3390/d15040534
https://www.mdpi.com/journal/diversity
https://www.mdpi.com/article/10.3390/d15040534?type=check_update&version=1


Diversity 2023, 15, 534 2 of 14

some species have epiplanktonic larval stages that may, depending on their developmental
stage, be affected by epipelagic fronts and currents, while later developmental stages are
located in deeper waters [8,9].

The Mediterranean Sea is an ideal marine system for studying these essential evolu-
tionary processes due to its rich biodiversity and well-characterised currents and epipelagic
oceanographic fronts [6,10–14]. Specifically, on its western basin, the Mediterranean con-
tains four oceanographic barriers of interest: Gibraltar Strait (GS), Almeria-Oran Front
(AOF), Ibiza Channel (IC) and Balearic Front (BF). In previous studies, the effect of the first
three discontinuities was analysed by using the portunid crab Liocarcinus depurator as a
model to study geographic variability of the Cytochrome Oxidase subunit I (COI) gene [15,16].
These studies identified two haplogroups, one from Atlantic-influenced waters and the
other predominant in Mediterranean waters. Additionally, it was possible to study its
spatial and temporal distribution along different populations of the Atlanto-Mediterranean
transition. The GS and AOF were found to be the primary oceanographic discontinuities
that differentiated populations with Atlantic or Mediterranean influence. Notably, the
strength of the AOF displays significant seasonal and interannual variability that affects
connectivity at the population level [17,18].

Building on this knowledge, an interesting evolutionary question arises as to whether
we would obtain similar results using a crab species living in a deep-sea environment.
L. depurator is a portunid crab dwelling on the continental shelf and upper slope muddy
bottoms in the Mediterranean Sea and NE Atlantic, where it is commonly caught as bycatch
in demersal trawl fisheries [19,20]. This species is characterised by the occurrence of a
relatively long series of epipelagic planktonic larval stages [21,22], which are affected and
transported by coastal currents [23]. This mechanism is considered the primary means
of population dispersion for the species. To make a comparison, we selected a deep-sea
species, the bathyal crab Geryon longipes (Geryonidae), which is also distributed along the
Atlantic-Mediterranean transition but differs from L. depurator in that it inhabits much
deeper muddy bottoms on the middle and lower continental slope, from around 400 m to
2000 m [24–26].

Two species are presently recognised in the genus Geryon, namely G. longipes, dis-
tributed in the Mediterranean and adjacent Atlantic waters, and G. trispinosus, present in
the Eastern Central Atlantic waters off the northern European coasts [27–30]. G. longipes
is frequently collected from the red shrimp (Aristeus antennatus) fishery, along with other
co-occurring species such as the squat lobster Munida tenuimana, polychelid lobsters, and
caridean shrimps [19,31]. G. longipes is often commercialised as a demersal trawling by-
catch of the red shrimp fishery in the Western Mediterranean ports [32]. While its larval
morphology has been described [33], information concerning the depths of its larval oc-
currence or its behaviour and dispersion is still scarce [34,35]. Concerning other geryonid
species, information on this subject is also scarce, but it shows that the first larval stages are
also epipelagic [34,36,37] and that early-stage larvae show physiological and behavioural
mechanisms that allow them to ascend in the water column, while late stages descend
into deep waters [8]. The size-depth relationship reported for juveniles and adults of the
closely related species G. trispinosus (but see below) suggests that larval settlement takes
place in deeper areas than those at which adult specimens occur [27]. Larval ecology and
behaviour may therefore be very different between the continental shelf crab L. depurator
and the deep-sea crab G. longipes.

The main aim of this research is to check for possible genetic structuration in the
western Mediterranean populations of G. longipes, taking into account the different oceano-
graphic fronts present, by analysing a fragment of the COI mitochondrial gene, equivalent
to that previously sequenced in L. depurator. For this genetic marker, its molecular diversity
was estimated in G. longipes, and the population distribution of the recorded haplotypes
was studied. Since the G. longipes samples were obtained from the same areas where
we previously analysed the samples of L. depurator [18], a comparison of the molecular
diversity and geographic distribution of haplotypes between both species in the same
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year was possible. Additionally, COI mitochondrial gene fragments from other alleged G.
longipes specimens downloaded from DNA databases were analysed for comparison, and
the geographic patterns of all described haplotypes were also analysed.

2. Materials and Methods
2.1. Samples and Sequencing

Samples of G. longipes were collected during the April and May 2016 MEDITS_ES
fishery research cruise using a standardised fisheries research bottom trawl gear [38]. The
studied populations were: West Alboran (WA), East Alboran (EA), Vera (VE), Ibiza Is. (EI),
Alicante (AC), Valencia (VA), Central Catalonia (CC) and North Catalonia (NC) (Figure 1).
The precise sampling locations and depths are described in Table 1.
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West Alboran (WA) 36.312 N 4.340 W 770 15 This study 
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Vera (VE) 36.856 N 1.759 W 714 16 This study 
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Figure 1. Sampling populations of G. longipes (red colour) in the Western Mediterranean area.
Populations are identified by the following abbreviations: West Alboran (WA), East Alboran (EA),
Vera (VE), Ibiza Is. (EI), Alicante (AC), Valencia (VA), Central Catalonia (CC) and North Catalonia
(NC). Dashed black lines identify the location of the main currents and gyres in the studied area.
Oceanographic fronts are shown as solid blue lines: Gibraltar Strait (GS), Almeria-Oran Front (AOF)
and Ibiza Channel (IC).

Table 1. Population name (with its abbreviation), latitude, longitude, depth (in meters), number of
analysed individuals and reference of all populations studied. Information from samples obtained by
other researchers is also included.

Population Latitude Longitude Depth n Reference

West Alboran (WA) 36.312 N 4.340 W 770 15 This study
East Alboran (EA) 36.581 N 2.498 W 528 14 This study

Vera (VE) 36.856 N 1.759 W 714 16 This study
Ibiza Is. (EI) 38.838 N 0.842 E 681 15 This study

Alicante (AC) 38.069 N 0.040 W 581 16 This study
Valencia (VA) 39.453 N 0.156 E 561 16 This study

Central Catalonia (CC) 41.161 N 2.358 E 665 17 This study
North Catalonia (NC) 41.391 N 3.269 E 622.5 15 This study
Nahariyya, Israel (IS) 33.050 N 34.830 E 1043 1 Tel Aviv University

Castellammare del Golfo, Sicily (CG) 35.730 N 14.050 E 605 2 Matzen da Silva et al., 2011
South coast of Portugal (SP) 36.600 N 8.030 W 752 5 Matzen da Silva et al., 2011
SW coast of Portugal (WP) 37.540 N 9.190 W 612 2 Matzen da Silva et al., 2011

NW of St. Kilda, Scotland (SC) 58.170 N 9.000 W 600 3 Matzen da Silva et al., 2011
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All studied samples were adults, mainly males (85% males and only 15% females),
with carapace lengths between 20.7 mm and 71.2 mm (mean = 50.5 ± 9.8 mm). From
each crab, a piece of muscular tissue (0.1 g) from a leg (a tissue rich in mitochondria) was
preserved in absolute alcohol on board the ship. In the laboratory, DNA was extracted using
the Qiagen Puregene® Cell Kit (2 × 108) kit. The Cytochrome Oxidase subunit I (COI) gene
fragment was amplified through the universal primers LCO1490 (forward) and HCO2198
(reverse) [39]. PCR reactions were carried out in 20 µL final volume, containing 1 µL sample
DNA and 19 µL mix: 12.5 µL H2O, 4 µL buffer X5, 1 µL MgCl2, 0.5 µL dNTPs (1 mM), 0.4 µL
primer forward (10 µM), 0.4 µL primer reverse (10 µM) and 0.2 µL Taq polymerase (Go
Taq 5 U/µL, Promega). The PCR protocol was 4 min at 94 ◦C, 30 cycles of 1 min at 94 ◦C,
1 min at 50 ◦C, 1 min at 72 ◦C, and a final extension of 7 min at 72 ◦C. The resulting PCR
products were cleaned with ExoSAP (1.2 U of Exonuclease and 1.2 U of Shrimp Alkaline
Phosphatase) in a 2:1 proportion for 15 min at 37 ◦C. Finally, the samples were dried at
80 ◦C for 15 min and sent to Serveis Científics i Tecnològics de la Universitat de Barcelona
for sequencing.

2.2. Data Analysis

A total of 124 samples were sequenced (Table 1), which were initially aligned and
trimmed to obtain a final alignment of 622 bp using the BioEdit v7.2.6.1 [40]. Only one
strand was sequenced, and the possible presence of stop codons or indels was checked.
However, these sequences were later aligned with those deposited in DNA data repositories
(13 in total) to obtain the maximum common fragment for all sequences, which had a length
of 572 bp. The description of the downloaded sequences from databases is also shown
in Table 1. The haplotype sequences obtained in the present research were deposited
in GenBank under accession numbers MK720650–MK720669 and OQ283874–OQ283977.
The accession numbers for the sequences downloaded from GenBank were: JQ305902
and JQ305903 (Castellammare del Golfo, Sicily, Italy), JQ306198–JQ306202 (South coast of
Portugal), JQ306134 and JQ306135 (SW coast of Portugal) and JQ305968–JQ305970 (NW
of St. Kilda, Scotland). The sequence from Nahariyya (Israel) was downloaded from the
BOLD database (accession number: BIM369-13.COI-5P BOLD). The number of different
haplotypes (h), the number of polymorphic sites (S), the haplotype diversity (Hd) and the
nucleotide diversity (π) were computed with the DnaSP v6.12 software [41]. A network
of haplotypes was constructed using the Median Joining network algorithm from the
Network v5.0.1.1 software [42] and a phylogenetic tree was generated using the Neighbour-
Joining method of MEGA X [43]. Moreover, with the Western Mediterranean samples, a
comparison between the genetic (GammaST) and geographic distances was carried out.
Genetic distances were computed with the DnaSP v6.12 software [41], whereas geographic
distances were obtained using the Karto v5.2 software [44], following an isobathic line at
200 m depth. The comparison between the groups of populations was carried out with an
AMOVA analysis. The genetic and geographic distance matrices were compared using a
Mantel test. Furthermore, a PCoA was carried out with the genetic distances to study the
distribution of the Western Mediterranean samples. These computations were carried out
using the R package vegan [45].

3. Results

The parameters estimating the molecular diversity for 124 sequences of the studied
populations are presented in Table 2. Neither stop codons nor indels were detected. West
Alboran and Vera presented the highest values for haplotype and nucleotide diversity,
whereas the lowest were recorded at Alicante and North of Catalonia. It is worth comparing
the molecular diversity between G. longipes and L. depurator samples in the same localities
(West Alboran, East Alboran, Alicante, Valencia and Central Catalonia) collected in 2016
(Table 3).
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Table 2. Molecular diversity of the G. longipes populations: West Alboran (WA), East Alboran (EA),
Vera (VE), Ibiza Is. (EI), Alicante (AC), Valencia (VA), Central Catalonia (CC) and North Catalonia
(NC). (n) number of sequences, (h) the number of different haplotypes, (S) the number of polymorphic
sites, (Hd) the haplotype diversity with the standard deviation and (π × 100) the nucleotide diversity
multiplied by 100 with the standard deviation.

Population n h S Hd π × 100

WA 15 4 2 0.714 ± 0.081 0.223 ± 0.020
EA 14 4 2 0.495 ± 0.151 0.146 ± 0.044
VE 16 5 5 0.708 ± 0.094 0.246 ± 0.065
EI 15 3 2 0.590 ± 0.106 0.117 ± 0.027

AC 16 2 1 0.458 ± 0.095 0.080 ± 0.017
VA 16 3 2 0.658 ± 0.075 0.137 ± 0.024
CC 17 3 2 0.699 ± 0.049 0.154 ± 0.020
NC 15 2 1 0.343 ± 0.128 0.060 ± 0.022

Table 3. Molecular diversity of the G. longipes and L. depurator populations sampled in 2016: West
Alboran (WA), East Alboran (EA), Alicante (AC), Valencia (VA) and Central Catalonia (CC). (n)
number of sequences, (h) the number of different haplotypes, (h/n) ratio of different haplotypes to
number of sequences, (Hd) the haplotype diversity with the standard deviation and (π × 100) the
nucleotide diversity multiplied by 100 with the standard deviation. G. long. and L. dep. stand for
Geryon longipes and Liocarcinus depurator, respectively. L. depurator data are from [18].

Population Species n h h/n Hd π × 100

WA
G. long. 15 4 0.267 0.714 ± 0.081 0.223 ± 0.020
L. dep. 24 11 0.458 0.815 ± 0.063 0.431 ± 0.055

EA
G. long. 14 4 0.286 0.495 ± 0.151 0.146 ± 0.044
L. dep. 23 8 0.348 0.581 ± 0.120 0.246 ± 0.075

AC
G. long. 16 2 0.125 0.458 ± 0.095 0.080 ± 0.017
L. dep. 25 7 0.280 0.633 ± 0.104 0.301 ± 0.402

VA
G. long. 16 3 0.188 0.658 ± 0.075 0.137 ± 0.024
L. dep. 41 8 0.195 0.316 ± 0.095 0.093 ± 0.039

CC
G. long. 17 3 0.176 0.699 ± 0.049 0.154 ± 0.020
L. dep. 6 2 0.333 0.333 ± 0.215 0.063 ± 0.083

TOTAL
G. long 78 5 0.064 0.734 ± 0.024 0.203 ± 0.011
L. dep. 119 24 0.202 0.592 ± 0.052 0.300 ± 0.034

The values of Hd and π are higher for L. depurator in West Alboran, East Alboran and
Alicante, and the opposite result was observed in Valencia and Central Catalonia (although
the sample size for L. depurator was rather small). Considering all five populations together,
Hd is higher in G. longipes than in L. depurator (0.734 ± 0.024 and 0.592 ± 0.052, respectively),
but not for π (0.203 ± 0.011 in G. longipes and 0.300 ± 0.034 in L. depurator). However, the
h/n ratio was always higher for L. depurator, considering the five populations separately
or together (0.064 for G. longipes and 0.202 for L. depurator). A summary of the molecular
diversity parameters, computed for all 137 G. longipes sequences (124 from the present
study and 13 from databases), is shown in Table S1. These sequences belonged to eight
haplotypes, which were named Glon_1 to Glon_8 (Table S2). They were characterised
by 6 polymorphic positions, of which 286 and 367 presented heteroplasmy in different
individuals. Positions showing heteroplasmy were not excluded from the computations.
The presence of these eight haplotypes in the studied populations is presented in Table 4.
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Table 4. Distribution of the eight haplotypes detected in G. longipes in the studied populations. The
presence of a particular haplotype is indicated by “+” and its absence by “−”. Abbreviations of
populations: WA (West Alboran), EA (East Alboran), VE (Vera), EI (Ibiza Is.), AC (Alicante), VA
(Valencia), CC (Central Catalonia), NC (North Catalonia), IS (Nahariyya, Israel), CG (Castellammare
del Golfo, Sicily), SP (South coast of Portugal), WP (SW coast of Portugal) and SC (NW of St.
Kilda, Scotland).

Population Haplotype

Glon_1 Glon_2 Glon_3 Glon_4 Glon_5 Glon_6 Glon_7 Glon_8

WA + + + − − − + −
EA + − + − − + + −
VE + − − − + + + +
EI + + − − − − + −

AC + + − − − − − −
VA + + − − − − + −
CC + + − − − − + −
NC + + − − − − − −
IS − − + − − − − −

CG − + − + − − − −
SP − + + − − − − −
WP − − + − − − − −
SC + + − − − − + −

Haplotypes Glon_1, Glon_2, Glon_3 and Glon_7 were frequent, whilst Glon_6 was
only found in two populations (East Alboran and Vera) and Glon_4, Glon_5 and Glon_8
were detected only once (the first in Castellamare del Golfo and the other two in Vera). Vera
was the population presenting more different haplotypes (five). The haplotype network
showing the similarity regarding the sequence of the eight haplotypes and their relative
abundance is presented in Figure 2.
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yellow (West Alboran), brown (East Alboran), light green (Vera), pink (Ibiza Is.), blue (Alicante), 

Figure 2. Haplotype network using the eight haplotypes detected in G. longipes. Circle sizes are
proportional to the abundance of each haplotype. Transversal small lines in branches indicate one
nucleotide change between the connected haplotypes. Colours indicate the origin of the haplotypes:
yellow (West Alboran), brown (East Alboran), light green (Vera), pink (Ibiza Is.), blue (Alicante),
purple (Valencia), light blue (Central Catalonia), red (North Catalonia), grey (Israel), dark green
(Sicily), white (West Portugal), dark blue (South Portugal) and black (Scotland).

This network was rather linear with few ramifications (only two), with Glon_1, Glon_2
and Glon_7 haplotypes being the most frequent. There was only one nucleotide change
between Glon_1 and Glon_2 and Glon_1 and Glon_7. The next frequent haplotype was
Glon_3, but it was related to Glon_7 through Glon_6. Finally, Glon_4, Glon_5 and Glon_8
were infrequent and located at the tips of the network. The neighbour-joining tree confirmed
the resemblances between the sequences of the different haplotypes (Figure 3).
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Figure 3. Phylogenetic tree for the eight different haplotypes of G. longipes. This result is due to the
fact that all the sequences are rather similar.

The distribution and abundance of the haplotypes in the Western Mediterranean pop-
ulations (Figure 4) qualitatively suggests the existence of three different geographic areas or
groups of populations: (1) the region with Atlantic water influence (West and East Alboran),
represented by the presence of Glon_3 in high frequency; (2) the Levantine/Catalan zone
with predominant Mediterranean waters (Alicante, Ibiza Is., Valencia, Central and North
Catalonia), in which Glon_1 and Glon_2 were predominant; and (3) Vera population, likely
influenced by both Atlantic and Mediterranean waters and presenting five haplotypes:
Glon_1 in a frequency similar to that observed in the Levantine/Catalan region; Glon_7,
which is found in the Atlantic and most Mediterranean populations; Glon_6, which was
also detected in East Alboran; and finally, Glon_5 and Glon_8 detected only in this popula-
tion and related with Glon_3 by two and three changes, respectively. The obtained results
by the AMOVA analysis indicated a significant differentiation between the Alboran Sea
populations and those from the Levantine/Catalan zone (p = 0.047). However, no signifi-
cant differentiation was observed between Vera and the Levantine/Catalan populations
(p = 0.217) or between Vera and the Alboran Sea populations (p = 0.667). Interestingly,
Glon_1 was detected in all studied Western Mediterranean populations but was most
abundant from Vera to North Catalonia and was also found in St. Kilda, Scotland. In all the
populations studied in this research, with the exception of Alicante and North Catalonia,
the haplotype Glon_7 was rather common and was also reported in St. Kilda. Finally,
and also concerning the haplotype distribution, it is remarkable that seven of the eight
described haplotypes were detected in our Western Mediterranean populations (Glon_1,
Glon_2, Glon_3, Glon_5, Glon_6, Glon_7 and Glon_8). Most important, all sequences from
different geographic origins belonged to any of these haplotypes (Table S2), with the only
exception of Glon_4, which was only found in Castellamare del Golfo (Sicily); however,
this population also presented Glon_2. Thus, the reported haplotypes are usually shared
between different populations.
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Figure 4. Frequencies of the haplotypes for each western Mediterranean population. Colours indicate
each haplotype: blue (Glon_1), yellow (Glon_2), dark red (Glon_3), dark green (Glon_5), light green
(Glon_6), brown (Glon_7) and purple (Glon_8). The abbreviations stand for the following populations:
WA (West Alboran), EA (East Alboran), VE (Vera), AC (Alicante), EI (Ibiza Is.), VA (Valencia), CC
(Central Catalonia) and NC (North Catalonia).

There was a significant correlation between genetic and geographic distances (Mantel
test r = 0.473, p = 0.036). The PCoA analysis allowed for a graphical representation of all
Western Mediterranean populations (Figure 5). The first and second coordinates explain
98.36% and 1.64% of the variability, respectively. Thus, the first coordinate explains almost
all variability. It separates the previously mentioned three areas: the Alboran Sea popula-
tions, Vera and the remaining populations. However, in the third group (Alicante, Ibiza Is.,
Valencia, Central and North Catalonia), populations do not follow a geographic pattern
because Alicante and North Catalonia were grouped on the far right of the graph, likely
due to the absence of Glon_7 in them.
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4. Discussion

For the 572-bp fragment of the G. longipes COI gene analysed, the observed number
of polymorphic sites (only 6) was scarce considering all 137 sequences together. Of these
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positions, 4 presented sporadic substitutions (49, 292, 424 and 496), whereas the other 2
(286 and 367) showed heteroplasmy in many individuals. This heteroplasmy could be
produced by a mixture of different mtDNA molecules from the same species in the same
individual, an introgression between different species or a simulation of heteroplasmy
generated by the presence of Numts (nuclear mitochondrial pseudogenes) [46]. It has
been described that Numts are rather common in crustaceans [47,48], and they have been
previously reported from G. longipes [49], although this was in a specimen preserved
in a museum, and, if preservation in origin has not been optimal, DNA extraction and
PCR amplification can yield anomalous results [46]. We hypothesize that in our case,
heteroplasmy is a consequence of a mixture of mtDNA molecules belonging to the same
species, as we used fresh tissue rich in mitochondria for mtDNA extraction, stop codons
have not been detected in any of our sequences, the polymorphic position for heteroplasmy
showed high variability among the analysed individuals, and both peaks (for G and A)
showed similar height in heteroplasmic individuals, which could likely indicate a current
source of species variation.

In the comparison of the same populations (West Alboran, East Alboran, Alicante,
Valencia and Central Catalonia) and for the same year (Table 3), L. depurator presented
higher molecular variability for the COI gene fragment than G. longipes. Moreover, the
global estimates of haplotype and nucleotide diversities obtained for G. longipes (Table S1)
were similar but lower than those observed in samples of L. depurator and M. intermedia
collected in the same region in other surveys [15]. Furthermore, our values of Hd and
π from G. longipes were similar to those obtained from the deep-sea red shrimp Aristeus
antennatus (0.624 ± 0.050 and 0.0017 ± 0.0002, respectively). In the latter species, the
molecular variability was estimated from both the information provided by a fragment of
the COI gene and the S16 subunit gene in 137 shrimps from the Western Mediterranean [50].
It is worth pointing out that G. longipes and A. antennatus widely co-occur on the middle
and lower continental shelves in the Mediterranean, and their habitats are therefore highly
coincident [51,52]. In summary, the levels of molecular variation detected in the sampled
populations of G. longipes would indicate that deep-sea species would present lower genetic
diversity than those present in shallower waters, in agreement with [15]. These results
provide additional and new information on the relevant topic of the role of depth as an
evolutionary factor [53,54].

The haplotype network for G. longipes (Figure 2) showed one main haplotype (Glon_1),
together with three other rather abundant haplotypes (Glon_2, Glon_3 and Glon_7), and
the four remaining haplotypes being sporadic (Glon_4, Glon_5, Glon_6 and Glon_8). The
obtained network is rather lineal, presenting only a couple of ramifications, a pattern
not found in other networks generated from the COI fragments in other decapod crus-
taceans from the study area, such as the hermit crabs Pagurus excavates (shallow-water
species) and Pagurus alatus (deep-sea species), the caridean shrimp Plesionika heterocar-
pus (deep-sea), the penaeid shrimp Parapenaeus longirostris (deep-sea), the portunid crab
Macropipus tuberculatus (deep-sea) [15], or in other decapods from European waters, such
as the crawfish Palinurus elephas (shallow-water) [4], the crabs Pachygrapsus marmoratus
(shallow-water) [55], Carcinus aestuarii (shallow-water) [56], Acanthonyx brevifrons and A.
lunulatus (both shallow-water) [57] and the deep-sea red shrimp Aristaeomorpha foliacea
(deep-sea) [58].

Although only eight different haplotypes were detected in our study, they showed a
particular distribution in the studied Mediterranean populations (Figure 4). Thus, three
areas could be defined: the Alboran Sea (West and East), Vera, and Levantine/Catalan
area (Alicante, Ibiza, Valencia, Central and North Catalonia). The Alboran Sea populations
showed a high frequency of the Glon_3 haplotype, which was absent in the rest of the stud-
ied populations. This suggests that the Glon_3 haplotype is characteristic of Atlantic waters
since it is present in both the Alboran Sea and Portuguese populations sampled, but it was
also found in Israel (Table 4). The case of Vera is particular, with five different haplotypes
and a frequency of Glon_1 close to 50%. It could be a population with waters from different
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origins—the Atlantic and Mediterranean. The remaining populations presented only two
haplotypes (Glon_1 and Glon_2), as is the case of Alicante and North Catalonia, or three
haplotypes (Glon_1, Glon_2 and Glon_7), with Glon_1 being the most common. These
three groupings are corroborated by the results of PCoA (Figure 5). However, the haplotype
distribution pattern in L. depurator for the same year was rather different. In this species,
two haplogroups (Atlantic and Mediterranean) were well defined [15–18], and their distri-
bution was likely conditioned by the gene flow mediated by the pattern of currents and the
position and intensity of the oceanic fronts [16–18]. In 2016, the haplotype distribution of L.
depurator showed a clear differentiation between the Western and Eastern Alboran, with the
Atlantic haplotype being predominant in Cadiz and West Alboran and the Mediterranean
haplotype in the remaining Mediterranean populations (East Alboran, Alicante, Valencia,
Ebro Delta and Central Catalonia). It is now well known that the molecular composition of
adult L. depurator populations depends on the larval movements in the plankton during the
previous year [15,16]. However, there is no distribution and behavioural information on
the larval behaviour of G. longipes. A fundamental question arises: whether the molecular
differentiation found in our Mediterranean samples is adaptive or not. If it is adaptive, the
observed distribution of the haplotypes should be the result of natural selection acting on
the larvae, adults or both larvae and adults. These are open questions that deserve more
research to be properly answered.

Another remarkable result is the haplotype distribution of the COI fragment in all
populations so far sequenced (Table 4). None of the common haplotypes is restricted to
particular geographic areas. Furthermore, all the sequences obtained are very similar, with
just a few nucleotide changes (Figures 2 and 3). Accordingly, all individuals analysed in
this research (137 sequences) would likely belong to the same species. The identification of
geryonid crabs based on morphological characters is relatively difficult, as Reference [59]
already pointed out, so molecular markers can produce new insights into the taxonomy of
this group [60]. From our study of the 572 bp of COI, the three sequences obtained from NE
Atlantic individuals (attributed to Geryon trispinosus) belonged to the most common haplo-
types present in Mediterranean G. longipes. This result agrees with the remarks reported by
Reference [61] and would therefore indicate that the Atlantic individuals examined in the
present study would belong to the same species present in the Mediterranean G. longipes.
However, the COI fragment used is relatively small, and other regions and additional
molecular markers would be useful to fully confirm this conclusion.

Ecologically, larval behaviour is considered the main mechanism of dispersion for
populations of benthic and epibenthic species occurring in the marine benthos [62,63]. In
particular, larval transport along systems of currents and counter-currents coupled to larval
migrations has been particularly suggested as a possible mechanism of larval dispersal
for deep-sea geryonid species [8,60]. Thus, migration of ovigerous females to the upper
distribution limits of G. trispinosus and its role as a mechanism for larval release to take
place at appropriate depth locations to minimise the larval treks to epipelagic waters have
been reported [27]. Similarly, Reference [64] showed that large-sized individuals clearly
dominated the population present at the upper distribution range of G. longipes.

Our results clearly suggest that there is a need for further comparative studies of
population biology patterns, including population genetics and behavioural aspects in
deep-sea species. These studies should assess the geographical and temporal patterns
that may help to appropriately understand deep marine habitats, providing essential
information for their management.

5. Conclusions

The estimates of molecular diversity parameters for the COI gene fragment are similar
in G. longipes and L. depurator, although molecular diversity is slightly higher in the latter
species. However, the number of haplotypes detected is different for both species. In G.
longipes, only eight haplotypes were detected considering both our sequences and those
downloaded from the databases. In the Western Mediterranean region and according
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to the haplotypes for the COI gene fragment, the G. longipes populations were clearly
distributed in three major regions: the Alboran Sea, Vera and Levantine/Catalan area. This
result can be relevant to properly defining the Marine Protected Areas and for the correct
implementation of fishery conservation and management policies. Finally, the COI gene
fragment indicated that all sequences obtained in this research and from genetic databases
belong to the same species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d15040534/s1, Table S1: Molecular diversity for all G. longipes
sequences (124 from the present study and 13 from databases). (n) number of sequences, (h) the
number of different haplotypes, (S) the number of polymorphic sites, (Hd) the haplotype diversity
with the standard deviation and (π × 100) the nucleotide diversity multiplied by 100, with the
standard deviation.; Table S2: Description of the eight haplotypes of G. longipes observed based on
their nucleotide composition at the polymorphic sites. All sequences were aligned presenting a total
length of 572 bp. Polymorphic sites are referred to as this length.
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