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Abstract 9 

Degraders have illustrated that compound-induced proximity to E3 ubiquitin ligases can prompt the 10 

ubiquitination and degradation of disease-relevant proteins. Hence, this pharmacology is becoming 11 

a promising alternative and complement to available therapeutic interventions (e.g., inhibitors). 12 

Degraders rely on protein binding instead of inhibition and, hence, they hold the promise to broaden 13 

the druggable proteome. Biophysical and structural biology approaches have been the cornerstone 14 

of understanding and rationalizing degrader-induced ternary complex formation. Computational 15 

models have now started to harness the experimental data from these approaches with the aim to 16 

identify and rationally help design new degraders. This review outlines the current experimental and 17 

computational strategies used to study ternary complex formation and degradation and highlights 18 

the importance of effective crosstalk between these approaches in the advancement of the targeted 19 

protein degradation (TPD) field. As our understanding of the molecular features that govern drug-20 

induced interactions grows, faster optimizations and superior therapeutic innovations for TPD and 21 

other proximity-inducing modalities are sure to follow. 22 

 23 

1. Introduction 24 

1.1 Targeted protein degradation  25 

Proximity-inducing pharmacology has become an important avenue of therapeutic intervention 26 

and it offers significant inroads to drug the “undruggable”. Around 90% of human proteins, including 27 

many linked to life-threatening diseases, remain intractable via traditional inhibitors[1]. Recent 28 

advances in targeted protein degradation (TPD) illustrate that compound-induced proximity between 29 

an E3 ubiquitin ligase and a protein of interest (POI) can lead to ubiquitination and protein 30 

degradation, thus becoming a promising alternative for therapeutic intervention[2-5]. To date, most 31 

work on TPD has focused on chemically rewiring the ubiquitin-proteasome system (UPS) with 32 

compounds called “degraders” (Fig. 1a)[6-8]. Chemical modulation of protein abundance and improved 33 

selectivity are valuable features of this new therapeutic modality over the classical inhibitors. 34 
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Degraders can be monovalent or multivalent (typically bivalent, although trivalent degraders have 35 

also been developed[9]), depending on the number of distinguishable targeting moieties in the 36 

compound (Fig. 1a).  37 

o Bivalent degraders are heterobifunctional molecules typically referred to as proteolysis targeting 38 

chimeras (PROTACs)[3] (Fig. 1a). They contain separate targeting moieties connected by a linker 39 

to engage both the target protein and E3 ligase. PROTACs generally have unfavorable 40 

druglikeness (their physicochemical property space falls beyond the “rule of 5”[10]). Nevertheless, 41 

an efficient in vivo effect can be achieved, and  >15 PROTACs  are currently in clinical trials[11]. 42 

o Monovalent degraders are linker-less molecules that induce the degradation of a POI by (i) gluing 43 

an E3 ligase (molecular glue –MG– degraders) (Fig. 1a) or by (ii) promoting a vulnerable target 44 

protein state that is then recognized by the proteolytic machinery of the cell (destabilizers)[6-7]. 45 

Of note, destabilizers may trigger protein degradation through autophagy rather than by the 46 

UPS[12]. Monovalent degraders can eliminate targets that are otherwise undruggable, they have 47 

advantageous drug-like properties, and they are already used in clinical practice (e.g., 48 

lenalidomide and analogs). However, their discovery and rational development are more 49 

challenging than PROTACs[6-7]. 50 

Over the past years, this growing field has moved from proof of concept to the development of 51 

degrader medicines in clinical trials. The advances in TPD have fueled interest in other proximity-52 

inducing concepts that can trigger a plethora of outcomes in proteins and other biomolecules (such 53 

as RNA).  54 

In this review, we share our thoughts on how biophysical and computational techniques, together 55 

with seminal structural information from crystallization and prediction studies, have shaped our 56 

current understanding of degrader-induced ternary complex formation and POI degradation. First, 57 

we discuss examples of useful approaches to characterize features of PROTAC and MG efficiency, 58 

leaving destabilizers outside the scope of this review. We start with biophysical techniques, followed 59 

by structural studies and computational approaches. Finally, we reflect on the utmost importance of 60 

a dynamic “conversation” and efficient integration of the data gathered by these strategies to 61 

maximize actionable information and further rationalize degrader designs.  62 

 63 

1.2 Characterization and development of degraders: Principles of Ternary Complex 64 

Formation 65 

Due to growing interest in the use of proximity-inducing agents for the treatment of disease, it has 66 
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become increasingly important to understand and characterize ternary complex formation. A ternary 67 

complex is formed by the interaction of three components. In the case of degraders, the ternary 68 

complex comprises an E3 ligase, a POI, and a degrader molecule. The formation of this complex is 69 

essential to induce ubiquitination and subsequent degradation of the POI. However, the process 70 

underlying this formation differs between the two types of degraders (PROTACs and MGs; Fig. 1b).  71 

A PROTAC molecule may first bind to either the E3 ligase or the POI before recruiting the other. In 72 

contrast, MGs typically form ternary complexes by a defined order[13]. For example, the MG may 73 

display affinity for one of the proteins involved, which alters the binding surface and promotes 74 

binding of the partner protein (e.g., FKBP12-Rapamycin-mTOR)[14].  75 

Several features are used to describe the formation and productivity of small molecule-induced 76 

 

Figure 1. Types of degraders and induced ternary complex formation. A) Multivalent degraders (left, 
bivalent PROTACs are depicted). Monovalent degraders (right) comprise: molecular glue (MG) degraders 
and destabilizers. Only MGs degraders are shown. E3 schematics in PROTACs and molecular glue 
degraders represent an E3 of the Cullin RING ligase family. POI: protein of interest. B) Left: PROTAC-
mediated ternary complex formation (and hook effect) as a function of PROTAC concentration. Right: 
MG-mediated ternary complex formation) as a function of MG concentration. POI (blue), E3 (gray).  
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ternary complexes. These include, but are not limited to, binding pose, affinity, cooperativity, 77 

stoichiometry, and residence time:  78 

(i) The binding pose is a description of how each component (E3 ligase, degrader, and POI) comes 79 

together to form a ternary complex. PROTAC linker length, the ligandable protein sites, and the ways 80 

in which the two proteins can interact with each other determine the binding pose. The pose will 81 

ultimately determine whether the POI is successfully ubiquitinated and degraded. Structural 82 

determination of the ternary complex by X-ray crystallography is often used to characterize the 83 

binding pose. In addition, computational modeling can predict the most likely arrangement of the 84 

ternary complex (see Section 4). 85 

(ii) Affinity is defined as the degree to which molecules (e.g., protein and ligand) bind to one another 86 

and it is frequently quantified by a dissociation constant (Kd); a lower Kd value indicates high affinity 87 

between the molecules. For PROTACs, each warhead has an affinity for target or E3. When the 88 

concentration of the PROTAC increases above the Kd
binary for each protein the additional PROTAC 89 

molecules preferentially form binary complexes resulting in a process known as the hook effect.  As 90 

MGs often do not display measurable affinity for one or both of the proteins, the hook effect does 91 

not apply. 92 

(iii) Cooperativity is a measure of the degree of additional affinity within the ternary complex 93 

compared with the individual binary affinities. Cooperativity, denoted α, is calculated by dividing the 94 

Kd
binary by the Kd

ternary. Cooperativity is positive when α > 1, indicating that the formation of a ternary 95 

complex is favorable due to, for example, the formation of additional interactions at the protein-96 

protein interface. A value < 1 indicates negative cooperativity, meaning that the formation of the 97 

ternary complex is unfavorable, for example, because of steric clashes. When the Kd values for the 98 

binary and ternary complexes are equal (the α value is 1), the system is said to be non-cooperative. 99 

For PROTACs, positive cooperativity can ensure selectivity, allow for the use of weak ligands, and 100 

improve degradation efficiency[15-19]. Nevertheless, non-cooperative PROTACs can also elicit potent 101 

degradation[20-21]. MG degraders depend on the formation of highly cooperative ternary complexes 102 

for their activity as they often display weak binding affinities to one or both of the proteins implicated. 103 

(iv) Generally, the  binding stoichiometry of degrader-induced ternary complexes is 1:1:1 104 

(E3:degrader:POI). The catalytic mode of action of degraders via ternary complexes allows for the 105 

dosing at substoichiometric concentrations to elicit degradation of the POI.   106 
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(v) Finally, residence time is the duration that the components are assembled into the ternary 107 

complex. Residence time is dependent on the rate of dissociation of the complex (koff)[22].For 108 

degraders, a sufficiently slow koff is required to allow time for POI ubiquitination to occur[23].  109 

A range of in vitro and in cellulo strategies have been employed to characterize the mechanism of 110 

action of degraders. These assays provide vital information such as the affinities, thermodynamics, 111 

kinetics, and binding pose governing ternary complex formation as well as the POI degradation 112 

profile. Together with structural information from crystallization and prediction studies, the data 113 

obtained from these approaches can be used  to design and validate computational models for 114 

degrader design. The degraders predicted can then be tested in vitro and in cellulo to confirm their 115 

effectiveness. The technologies most frequently used are discussed in more detail in the next 116 

sections.  117 

 118 

2. Biophysical Methods to Study Ternary Complex Formation 119 

2.1 In vitro 120 

2.1.2 Proximity-based assays: TR-FRET and AlphaScreen 121 

Time-resolved fluorescence energy transfer (TR-FRET) and amplified luminescent proximity 122 

homogeneous assays (AlphaScreen / AlphaLISA) are routinely used to characterize the formation of 123 

a ternary complex and to determine the concentration range at which these complexes are 124 

generated. Both assays measure the energy transfer between a donor and an acceptor species when 125 

in close proximity. To study ternary complex formation, the compound of interest is often titrated 126 

into a system containing a fixed concentration of the two POIs. The increasing concentration of the 127 

compound leads to a higher population of the ternary complex and subsequently a higher output 128 

signal, until a maximum is reached. For MG degraders, parameters such as EC50 and the maximum 129 

response achieved (Emax) provide information on potency and cooperativity[24]. For example, TR-FRET 130 

was used to study Helios MG degraders[24]. 131 

In the case of PROTACs, a characteristic bell-shaped curve is observed, where the concentration of 132 

the ternary complex decreases at high PROTAC concentrations as a result of the hook effect. The 133 

response curves obtained can also be used as an indication of the cooperativity of the PROTAC-134 

induced ternary complex. A more cooperative PROTAC forms a larger population of ternary 135 

complexes, resulting in a higher maximal peak intensity over a broader concentration range[15, 25]. 136 

Examples of the use of TR-FRET and AlphaScreen assays to investigate PROTAC-induced ternary 137 

complexes include the study of CRBN-recruiting PROTACs for BTK[20] and BET bromodomains[26-27] and 138 
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VHL-recruiting PROTACs of BRD7/9[21]. Recently, Du et al. (2022) used TR-FRET assays to explore the 139 

target scope of KEAP1 E3-based PROTACs[28].  140 

Proximity-based assays can also be used to gather further information about ternary complex 141 

formation, such as the values of cooperativity and binary and ternary Kd. To study MG-induced 142 

ternary complex formation, one of the POI is titrated to a fixed concentration of the other in the 143 

presence and absence of the MG. Simonetta et al. (2019) used TR-FRET to characterize small 144 

molecules that enhance the interaction between the E3 CRL1β-TrCP and mutant β-catenin[29]. They 145 

titrated a β-catenin peptide to a fixed concentration of the substrate receptor β-TrCP in the absence 146 

and presence of different concentrations of a small molecule, namely NRX-1532[29]. In the presence 147 

of ≥ 250 µM NRX-1532, the affinity for β-Catenin and CRL1β-TrCP was increased  by a factor of 10, thus 148 

indicating that maximum cooperativity (α = 10) was reached at this concentration[29]. A similar 149 

strategy has also been employed to study the ternary complex formation orchestrated by IMiDs[30], 150 

cyclin K MGs[24, 31] (Fig. 2), and aryl sulfonamides[32].  151 

To determine values for binding and cooperativity, the classic bell-shaped curve observed in direct 152 

binding assays for PROTACs is difficult to deconvolute. Therefore, competition-based proximity assays 153 

can be used. Farnaby et al. (2019) used a TR-FRET competition assay to measure the displacement of 154 

a fluorescent SMARCA2 probe by the PROTAC ACBl1 in the presence and absence of VHL (VBC)[33]. 155 

The displacement of the fluorescent probe, bound to fluorescently labeled SMARCA2, resulted in a 156 

decay in the FRET signal, which was plotted against the concentration of ACBl1 alone (binary) and 157 

ACBl1-VCB (ternary). Cooperativity was then determined by calculating the ratio of the binary and 158 

ternary Kd values[33]. 159 

Proximity-based assays (AlphaScreen and TR-FRET) are high-throughput, sensitive and homogenous  160 

techniques to directly measure ternary complex formation in vitro (FRET has also been applied in 161 

cellulo, as discussed in section 2.2.2). In TR-FRET, the donor species has a fluorescence lifetime that 162 

is considerably longer than the background fluorescence, reducing the potential compound 163 

interference[34]. However, compounds can lead to fluorophore quenching, resulting in false negative 164 

results. In AlphaScreen assays, compound interference can occur from quenching of the singlet 165 

oxygen generated upon excitation of the donor bead. TR-FRET assays typically have a narrower 166 

dynamic range, lower theoretical proximity limits and higher assay variability when compared with 167 

AlphaScreen assays[34-35]. For AlphaScreen assays, careful consideration is required to avoid prolonged 168 

exposure to ambient light and changes in temperature to avoid assay variability.  Other techniques 169 

can be used as orthogonal assays to verify the results from these proximity-based approaches and to 170 
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provide key information on the thermodynamics and kinetics of ternary complex formation. 171 

 172 

2.1.2. Fluorescence polarization 173 

Fluorescence polarization (FP) has also been employed to study ternary complex formation. FP can 174 

be used to determine the cooperativity and potency of MGs. The typical assays require titration of 175 

an unlabeled POI to a fixed concentration of a labelled binding partner in the presence and absence 176 

of the MG. This approach is similar to that followed in TR-FRET and it has frequently been applied to 177 

profile MG stabilizers for the 14-3-3 family of proteins[36-37]. A second approach involves titrating the 178 

MG to a fixed concentration of the labelled and unlabeled proteins to determine potency (EC50)[29, 37]. 179 

Competitive displacement assays using FP have also been used to deconvolute the events 180 

underpinning PROTAC-induced ternary complex formation[33, 38-39]. In these assays, displacement of a 181 

bound fluorescent probe results in a loss of polarized flourescence. To determine inhibitory values 182 

(apparent Kd) and cooperativity, the change in this parameter is plotted against the concentration of 183 

the POI that is titrated.  184 

FP has the advantage over proximity-based assays in that it requires the labeling of only one protein 185 

and its design is simpler. However, FP assays require a change in the tumbling rate of the fluorescent 186 

molecule upon binding and they are limited by the affinities than can be measured. Furthermore, 187 

compounds that have intrinsic fluorescence or lead to quenching of the fluorophore can result in 188 

false positive or negative results, respectively. Nevertheless, as a high-throughput technique, FP has 189 

been used to screen large numbers of potential MGs[36, 40].  190 
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 191 

 192 

 193 

Figure 2. Exploring and characterizing ternary complex formation. Depiction of the principal in vitro and in 
cellulo strategies used to study ternary complex formation.  The following information is provided: technique 
used, a representation of the assay design and the readout, the chemical structures of key compounds and 
key paper references. BD: bromodomain. BLI: bio-layer interferometry. Cryo-EM: cryogenic electron 
microscopy. The X-ray crystal structures of the DDB1-CRBN-pomalidomide IKZF1 complex and the VHL-MZ1-
BRD4 complex are shown (PDB: 6H0F and 5T35, respectively). AlphaLISA: amplified luminescent proximity 
homogeneous assay. FP: fluorescence polarization. MS: mass spectrometry. NanoBRET: Nano-
bioluminescent resonance energy transfer. NMR: nuclear magnetic resonance. SPR: surface plasmon 
resonance. TR-FRET: time-resolved fluorescence energy transfer. R.U.: response units. DP: dynamic 
potential. POI: protein of interest. VCB: the complex of VHL with Elongin B and C.  
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2.1.3 Isothermal Titration Calorimetry 194 

Isothermal Titration Calorimetry (ITC) is a label-free, in-solution, and direct method that can be used 195 

to study the thermodynamics of ternary complex formation. ITC can provide information on the 196 

associative and dissociative binding constants (Ka and Kd, respectively), the  binding stoichiometry (N) 197 

and changes in enthalpy (ΔH), entropy (ΔS) and Gibb´s free energy (ΔG).  198 

For MGs, the common strategy is to titrate one of the proteins in the syringe into the other (in the 199 

cell), in the presence and absence of the compounds. A reduction in the Kd value (higher affinity) is 200 

used as an indication of the stabilization of the ternary complex, and the thermodynamic profile (ΔH 201 

and ΔS) provides information as to the driving force for the formation. ITC was used to show that CR8 202 

acts as a MG for DDB1 and CDK12-Cyclin K[41] (Fig. 2). The thermodynamics revealed that a more 203 

favorable ΔH was the main contributing factor to the formation of a stable ternary complex (more 204 

negative ΔG)[41] (Fig. 2). ITC has been more readily used to study ternary complex formation induced 205 

by non-degradative MGs. A key example is given by the stabilization of 14-3-3 protein interactions by 206 

the natural product Fusicoccin A[37, 42].  207 

For the characterization of PROTACs, titration of these compounds in the syringe into the POI in the 208 

ITC cell would be expected to result in competing equilibria due to the hook effect. Therefore, for 209 

these assays the PROTAC is placed in the cell[15]. Farnaby et al. (2019) used ITC to study VHL-recruiting 210 

PROTACs for SMARCA2[33] (Fig. 2). First, the VHL (VCB) was titrated into the PROTAC to ascertain the 211 

Kd
binary. Next, VCB was titrated into a saturated SMARCA2-PROTAC complex to determine the Kdternary 212 

and subsequently the cooperativity[33] (Fig. 2). A similar strategy has been employed to study VHL 213 

Homo-PROTACs[16] and VHL-recruiting PROTACs for BRD4BD2 [18, 39]. 214 

ITC has also been used to study PROTAC selectivity and to optimize PROTAC design. Zoppi et al. (2019) 215 

used ITC for the characterization of optimized VHL-recruiting PROTACs against BRD7/9[21]. The ITC 216 

data helped explain that the limited degradation of BRD7/9 for a first-generation PROTAC was due to 217 

negative cooperativity. The thermodynamics revealed that the ternary complex was less stable than 218 

the binary complexes, predominantly because of an unfavorable ΔS contribution[21]. Based on these 219 

results, the authors synthesized second- and third-generation PROTACs that showed greater 220 

cooperativity. In addition, the most thermodynamically stable ternary complex in vitro resulted in 221 

potent and rapid degradation in cells[21].  222 

Additional ITC experiments can be conducted to provide further information about the events 223 

contributing to the induced ternary complex. These include, for example, titration of a MG into either 224 

protein to determine binary Kd values or to a complex of both proteins to determine EC50
[43].  In 225 
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addition, it is important to conduct the appropriate control titrations in ITC, for example, to eliminate 226 

the heat associated with dilution. 227 

ITC is relatively low-throughput and often requires considerable amounts of material, thereby making 228 

it unsuitable for studying large numbers of compounds.  Nevertheless, ITC can provide a detailed 229 

characterization of ternary complex formation that support in cellulo data such as degradation 230 

efficiency.  231 

2.1.4 Surface Plasmon Resonance and Bio-layer Interferometry  232 

As well as thermodynamics, the kinetics of ternary complex formation is an important consideration 233 

in the characterization and optimization of degraders[44]. Surface Plasmon Resonance (SPR) is a label-234 

free inhomogeneous technique than can be used to determine binding parameters (Ka and Kd and 235 

subsequently cooperativity), stoichiometry, and kinetics (association (kon) and dissociation (koff) rate 236 

constants).  Furthermore, it can also be used to determine the Gibb´s free energy (ΔG) as a 237 

description of the stability of the binary and ternary complexes. As SPR can be conducted at different 238 

temperatures, the enthalpic (ΔH) and entropic (ΔS) contributions can be determined by a Van´t Hoff 239 

Plot[45].  240 

Roy et al. (2019) reported the first SPR assay to measure the kinetics of ternary complex formation 241 

involving the PROTAC MZ1[38] (Fig. 2). First, MZ1 was titrated into VHL immobilized on a sensor chip. 242 

Next, the MZ1 PROTAC, pre-incubated with near-saturating concentrations of target protein, was 243 

titrated to VHL[38]. The VHL/MZ1/BRD4BD2 ternary complex had the fastest kon and the slowest koff 244 

when compared with other VHL-recruiting PROTACs for BRD4BD2, thereby explaining the significant 245 

positive cooperativity[38]. SPR was also used to quantify and compare the kinetics of VHL/PROTAC/BD2 246 

ternary complexes for each bromodomain[38]. Most importantly, the authors noted a correlation 247 

between the BET bromodomains with the shortest-lived ternary complexes (shortest half-life (t1/2)) 248 

and the slowest rate of degradation in HEK293 cells. A similar strategy has also been followed to study 249 

VHL-recruiting PROTACs against BRD4BD1 [46], SMARCA2[47] and p38[48] and CRBN-recruiting PROTACs 250 

for BTK[20].  251 

Ternary complex formation induced by non-degradative MGs has also been studied by SPR[49-50]. 252 

Guillory et al. (2020) used SPR to show that the small-molecule fragment AZ-008 increases the affinity 253 

between 14-3-3 protein and a phosphorylated peptide mimicking the C-terminus of the tumor 254 

suppressor protein, p53[49]. For this assay, 14-3-3 protein was titrated into immobilized p53 peptide 255 

in a multi-cycle format in the presence and absence of AZ-008[49]. 256 
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Recently, bio-layer interferometry (BLI) has been successfully used to study ternary complex 257 

formation[51-52]. BLI yields similar information as SPR on the affinity and kinetics of ternary complexes. 258 

However, BLI uses biosensors for protein immobilization and a ´dip and read´ technology to measure 259 

binding, rather than the continuous sample flow used in  SPR. The ´dip and read´ technology of BLI 260 

offers more user convenience and is more amenable to using cell lysates. However, BLI has reduced 261 

sensitivity when compared with SPR.  Cao et al. (2022) used BLI to characterize ternary complexes 262 

induced by different MGs (CBD, IMiDs and auxin)[52] (Fig. 2).  263 

SPR and BLI allow for thorough characterization of ternary complex formation (affinity, kinetics and 264 

thermodynamics) in a high-throughput manner and with lower sample demand than ITC. However, 265 

as these techniques require immobilization of one of the proteins being studied, careful 266 

consideration is required to avoid any impairment on binding. 267 

2.1.5 Other techniques to study binary and ternary complex formation 268 

As well as those outlined above, additional techniques have been used to study binary and ternary 269 

complex formation. These include dynamic scanning calorimetry[43, 53], size-exclusion 270 

chromatography[16, 23, 54] microscale thermophoresis (MST)[55], native mass spectrometry[56-58], and 271 

nuclear magnetic resonance (NMR)[51, 59]. These techniques serve as orthogonal assays to the main 272 

strategies such as TR-FRET and SPR, but they can also provide additional advantages. For example, 273 

native mass spectrometry allows for the study of intermediate states involved in complex formation. 274 

In addition, this technique can be used to study preferentially formed ternary complexes from 275 

multicomponent mixtures in a single experiment, making it an attractive approach for high-276 

throughput screening[56-57]. However, while native mass spectrometry allows for the assessment of 277 

the efficiency of PROTAC- or MG-induced ternary complex formation, it does not provide values for 278 

thermodynamic nor kinetic parameters.  279 

 280 

In vitro biophysical assays give useful insights into the characteristics of ternary complex formation. 281 

However, they do not provide an adequate representation of the complex cellular environment nor 282 

do they take into account factors that affect compound exposure, such as permeability, compound 283 

efflux, compound sequestration, or metabolism. Therefore, it is paramount to assess whether the 284 

formation of a ternary complex is recapitulated in cellulo. 285 

2.2 In cellulo 286 

Ternary complex formation in intact cells can be studied using technologies such as NanoBRET[21, 41, 287 
60-62] and NanoBiT[54, 63], as well as by cell imaging techniques (e.g. phase-shift live cell imaging[64-65]).  288 
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Furthermore, other approaches, namely co-immunoprecipitation[66], chemo-proteomics[31], cellular 289 

thermal shift assay (CETSA)[48, 53, 67], in-cell NMR[68], and FP[69] can be used to address target 290 

engagement in lysates or in cells.  291 

2.2.1 NanoBRET and NanoBiT 292 

Nanobioluminescent resonance energy transfer (NanoBRET) is a proximity-based assay that 293 

measures the fluorescence signal emitted from an acceptor fluorophore (e.g. HaloTag-conjugated 294 

protein labeled with 618 ligand; the HaloTag is a 33 kDa protein that can be covalently modified with 295 

a synthetic ligand such as a fluorophore)  296 

when in close proximity to the donor (Nanoluciferase-tagged protein) and in the presence of 297 

luciferase substrate[70]. As with in vitro proximity-based assays, the presence of a compound that 298 

induces ternary complex formation will result in an increase in luminescence signal as the two 299 

proteins are brought within proximity. Furthermore, monitoring BRET ratio over time can be used to 300 

follow the kinetics of ternary complex formation, and the displacement of fluorescently labeled 301 

tracers can be used to measure target engagement in live cells[60, 62]. Interestingly, Riching et al. (2018) 302 

used nanoBRET to relate the stability of PROTAC induced ternary complex formation with 303 

degradation in live cells for the VHL-MZ1-BET bromodomain systems[60]. Since then, this approach 304 

has been used to study VHL-recruiting PROTACS for BCL-XL[61] and the Cyclin K MG degrader CR8[41], 305 

among others.  306 

An orthogonal assay to NanoBRET is the NanoLuc Binary Technology (NanoBiT®). This approach uses 307 

tagging of the E3 and POI pair, each with a subunit of the nanoluciferase enzyme (NanoBiT)[71] (Fig. 308 

3). The two subunits (LgBiT and SmBiT) display low affinity (Kd = 190 µM) and therefore the interaction 309 

of the E3 and the POI drives the LgBiT-SmBiT interaction. Due to weak affinity between the sub-units, 310 

the NanoBiT system cannot detect protein-protein interactions weaker than the interaction between 311 

LgBiT and SmBiT. NanoBiT technology has been used to study VHL-recruiting PROTACs for BCR-ABL[54] 312 

and BRD4[63] and selective CRBN-recruiting PROTACs against CDK6[72] (Fig. 3), among others.  313 

2.2.2 Cell imaging 314 

Cell-imaging approaches have also been applied to study ternary complex formation in real time. 315 

These include fluorescence imaging techniques such as SPPIER[64], FLOUPPI[65], and dSTORM[73] (Fig. 316 

2). For example, separation of phase-based protein interaction reporter (SPPIER) was used to show 317 

the IMiD-induced ternary complex formation involving CRBN and IKZF1[64] (Fig. 2). Other techniques 318 

such as FRET[74-76]and PLA[77] have also been applied to examine protein-protein interactions in cells 319 

and could potentially be used to address ternary complex formation in the TPD field.  320 
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 321 

2.3 Monitoring Protein Degradation in Cells 322 

The effectiveness of a degrader is ultimately determined by its capacity to elicit the degradation of a 323 

POI. Such capacity cannot be determined solely by studying the formation of a stable ternary 324 

complex. For example, the POI must be positioned in an orientation such that lysine residues are 325 

accessible for ubiquitin transfer. Therefore, having robust methods available to study protein 326 

degradation and resynthesis of the POI in cells is vital in the assessment of degraders. 327 

A well-established method to study protein degradation is western blotting, which allows for the 328 

semi-quantitative measurement of protein levels[53]. However, this technique relies on access to 329 

specific antibodies and it has limited sensitivity. Additional immunoblotting methods (e.g. capillary 330 

electrophoresis[47], ELISA[66] and immunofluorescence[78]) and mass spectrometry[20, 24, 31, 67, 72] have 331 

improved the quantification and sensitivity of determining protein levels. A key advantage of mass 332 

spectrometry analysis over immunoblotting methods is that it allows measurements of changes 333 

across the proteome. However, all of these techniques have a relatively low-throughput. The 334 

development of a TR-FRET-based assay that uses primary antibodies targeting the POI and the E3 has 335 

improved the scalability and sensitivity of immunoblotting techniques, without the need of protein 336 

tagging[79].  337 

The development of reporter assays has allowed for the real time monitoring of protein degradation 338 

and resynthesis in cells. These approaches include fluorescent conjugates (e.g., GFP)[41, 80-82] and split 339 

luciferase tags such as Promega’s HiBiT[60]. For the HiBiT assay, the POI is fused to an 11 amino acid 340 

tag known as HiBiT that interacts with a larger subunit (Large BiT; LgBiT) and then emits luminescence 341 

in the presence of a substrate[60]. For these reporter assays, careful consideration is required to 342 

ensure that tagging does not affect the stability or function of the protein.  343 

Dose-response and time-course experiments with reporter systems provide key information, such as 344 

rates of degradation and resynthesis, the maximal degradation achieved (Dmax) and the concentration 345 

that induces half-maximal degradation (DC50)[60]. Interestingly, Kristin et al. (2018) developed a Nano-346 

BRET assay to simultaneously measure ternary complex formation and degradation[60]. For this assay, 347 

they used the HiBiT-BET protein complemented with LgBiT as an energy donor and Halo-Tag fused to 348 

an E3 ligase as the energy acceptor[60]. Among others, this approach has also been used to study VHL-349 

recruiting PROTACs for WDR5[83]. 350 

 351 

3. Structural Determination of Ternary Complexes 352 
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By providing vital information on the binding pose, structural determination of the ternary complex 353 

assists in rationalizing the observed behaviors of degraders. X-ray crystallography is the most 354 

frequently used technique for structural determination. The first degrader-induced ternary complex 355 

was solved by Gadd et al. in 2017 for VCB-MZ1-BRD4BD2 and, since then, over 20 structures have been 356 

deposited in the Protein Data Bank (PDB)[15].  Cryogenic-electron microscopy (Cryo-EM) [32, 43, 84-85] and 357 

Small Angle X-Ray Scattering (SAXS)[86] have also been used to elucidate the ternary complex 358 

formation induced by MG degraders and PROTACs. Importantly, structural information on the binary 359 

and/or ternary complexes is utilized to develop computational models and to train predictions. 360 

Approaches such as homology modeling or artificial intelligence-driven structural predictions (e.g., 361 

Alphafold[87] or RosettaFold[88]) can predict the structures of individual proteins. Other methods like 362 

Alphafold Multimer[89] can produce high-accuracy binary protein complexes. When structural 363 

information is not available, all these tools may be useful in the future to help predict degrader-364 

induced ternary complexes.  365 

 366 

4. Computational Modeling 367 

Computational modeling is a strategy that uses 3D structural data to mimic the behaviors of a given 368 

molecule, such as ligand-protein binding processes. Therefore, high-quality experimental data is 369 

fundamental. In recent decades, biophysical data have provided critical information to describe 370 

protein-ligand and protein-protein binding events, which is strongly needed for the training and 371 

improvement of modeling tools. However, the drug-induced proximity rationale has changed the 372 

binding paradigms behind these methods. New data and the modification of the current strategies 373 

have been necessary to adapt these methods to the TPD field. 374 

4.1 Key computational techniques in TPD 375 

In recent years, multiple computational methods have been developed to characterize and predict 376 

native-like ternary complexes. These techniques usually consist of complex pipelines that integrate 377 

and tune modeling tools that were originally designed for other purposes, adapting their application 378 

to TPD. In the next subsections, we will review some of the most relevant tools that have been 379 

applied, integrated, and/or adapted to model ternary complex formation and subsequent 380 

degradation of the POI. Most of the available examples focus on PROTAC-induced ternary complex 381 

and, thus, PROTACs will be our focus. 382 

4.1.1  Structure generation techniques 383 

Protein-protein docking 384 
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Accurate prediction of binary protein complexes is required to obtain truthful models of drug-induced 385 

ternary complexes. These algorithms aim to generate complexes from two individual proteins (Fig. 386 

3).  First, adequate translations and rotations are required, typically following a rigid-body approach. 387 

After this step, protein-protein docking methods rank and score the complexes generated[90-92]. 388 

Schiedel et al. (2018) pioneered the integration of protein-protein dockings with HADDOCK[93] to 389 

rationalize PROTAC-induced degradation[94]. Nowak et al. (2018) utilized Rosetta[95] to model the 390 

possible binding modes of CRBN on BRD4BD1 [25]. Rosetta has become one of the most widely used 391 

protein-protein docking techniques in TPD. Alternative tools applied in TPD include PatchDock[96-97], 392 

FRDOCK[98-99], MOE packages[100-103], ClusPro[104], and LightDock[105]. The in silico determination of 393 

ternary complexes calls for a thorough understanding of protein-protein conformations. However, 394 

resolving ligand (PROTAC) geometry is also needed to create accurate models, as discussed in the 395 

following section. 396 

Ligand/PROTAC Conformational Sampling 397 

Ligand-induced ternary complexes via bivalent molecules, such as PROTACs, involves sequential 398 

binding to the E3 or POI first, followed by subsequent binding to the other protein.  Therefore, 399 

sampling the ligand conformations is important to adapt the PROTAC to the new protein-protein 400 

poses. To this end, available methods apply different algorithms to rotate the bonds of the ligand. 401 

These rotations can be limited to avoid clashes with the protein (anchored sampling) or in solvent-402 

like conditions (free sampling) (Fig. 3). In addition, some parts of the molecule can be constrained 403 

(Fig. 4). Ligand docking can also generate ligand geometries around the protein-binding site and score 404 

them. For example, Schiedel et al. (2018) used GOLD to generate ligand poses on conformations 405 

obtained from protein-protein docking[94]. Without available protein crystals, ligand docking can 406 

provide starting orientations for the E3 and POI [100]. For instance, Zhu et al. (2022) used Glide docking 407 

from the Schrödinger Suite to dock the POI-binding moiety into the AKT binding site and used this 408 

structure as the starting point for the in silico modeling[106].   409 

Once the ligand conformations are produced, docking scoring functions can be used to evaluate the 410 

ligand energy. For instance, Weng et al. (2021) incorporated Autodock Vina to assess the binding 411 

energy of PROTAC conformations[98]. The integration of protein-protein docking with ligand 412 

conformational sampling methods can lead to the formation of potential  ternary complexes.  413 

Molecular dynamics (MD) 414 

Proteins are dynamic, a property that is particularly relevant when predicting ternary complexes. 415 

Rigid-body approaches such as docking are unable to capture the protein-ligand induced-fit effects 416 
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or apo-holo (unbound-bound) state conformational changes. Molecular dynamics (MD) can assist in 417 

solving such rigidity-related problems. MD relies on the application of Newton’s equations to 418 

introduce forces and recalculate the location of each atom in the system as a function of time (Fig. 419 

3). By iterating these steps, one can produce “movies” showing the motion of the system for a specific 420 

length of time, from a few femtoseconds to milliseconds[107].  421 

MD simulations have been widely used to develop traditional inhibitors[108] and non-degradative 422 

bivalent compounds[109-111]. Smith et al. (2019) used MD simulations to asses two distinct ternary 423 

complex conformations for two VHL-recruiting PROTACs against p38δ (SJFα and SJFδ)[48]. The 424 

comparative protein-protein interactions between models explained the  selectivity of SJFδ for p38δ 425 

over SJFα[48]. Bondeson et al. (2019) also used MD for the VHL-p38α complex after docking of the 426 

PROTAC 1, and then assessed the stability of the system[112]. Furthermore, Testa et al. (2020) used 427 

MD to evaluate two cyclic derivatives of the PROTAC MZ1[39]. These results guided the design of the 428 

macrocyclic macroPROTAC-1[39] (Fig. 2).  429 

Regarding ligand conformational sampling, Weerakoon et al. (2022) used MD simulations to study  430 

the conformational behavior of MZ1 and dBET6 and correlated the results with NMR data[113]. 431 

Interestingly, Dixon et al. (2022) modelled the entire ternary complex formation for the VHL-432 

recruiting PROTAC ACBI1, in the SMARCA2BD2 system, by integrating MD with hydrogen-deuterium 433 

exchange mass spectrometry[114]. In summary, MD has proven very useful for the refinement of 434 

primary degrader-induced ternary complex simulations yielded by rigid computational approaches. 435 

4.1.2 Analysis techniques 436 

Clustering 437 

Protein-protein docking, ligand conformational sampling, and MD generate a wide repertoire of 438 

poses. The large number of structures is sometimes impractical for further analysis steps. In this 439 

scenario, clustering can group similar structures and then select (or not) the representative entities 440 

(Fig. 3). Many computational pipelines integrate clustering analysis on top of protein-protein docking 441 

results. Clustering has also been used to analyze MD simulations[113] in order to categorize the 442 

conformational space or to get stable representative poses from the simulations[71, 106, 114-116]. 443 

Clustering provides information on structural/conformational frequencies. However, other metrics, 444 

such as potential energies, are more useful for assessing the stability of ternary complexes and ΔGs. 445 

Docking tools can provide relatively fast calculations, but methods with a higher -computational cost 446 

such as MM/GBSA (discussed below) provide more accurate estimations of free energy 447 

Estimating energies with MM/GBSA 448 
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Molecular mechanics with generalized Born and surface area solvation (MM/GBSA) is a popular 449 

method for calculating free energies in protein-ligand complexes[117-119]. This estimation is obtained 450 

by computing the energy difference between bound and unbound states.  To this end, the energy of 451 

the ligand and the protein in solvent-like conditions is subtracted from that of the protein-ligand 452 

complex.  First, the system has to be sampled using MD or Monte Carlo (MC) methods. In MC 453 

simulations, in contrast to MD, the position and conformations of the ligand are randomly sampled 454 

to explore different configurations within the binding site. Regardless of the sampling technique 455 

applied, the energy is calculated for all the relevant snapshots in the simulation and the average is 456 

used to estimate ΔGs[120] (Fig. 4). MM/GBSA is straightforward but middle-precision approach to 457 

compute binding affinities with moderate computational resources[121-122]. Due to the large number 458 

of representative conformations produced from protein-protein docking and ligand conformational 459 

sampling, the moderate cost of this technique is suitable to estimate energies and evaluate the 460 

simulated ternary complexes.  461 

ANM and normal mode analysis 462 

Techniques such as anisotropic network models (ANMs) simplify the protein structure as a network 463 

of nodes and edges. Each node in the network denotes a protein residue and the edges represent 464 

the bonds between them. Through this simplification, protein flexibility can be studied by the analysis 465 

of normal modes[123], which describes the collective motion of the residues. By tracking the changes 466 

in normal mode amplitudes over time, ANMs quantify the dynamic behavior of the protein and track 467 

large conformational changes (Fig. 3). As discussed in section 4.2.3, the addition of this flexibility 468 

permits monitoring of the distance between the E2 and the accessible lysine residues of the POI[124-469 
125] and correlation of these data with experimental degradation.   470 

 471 

 472 

 473 
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 474 

4.2 Modeling pipelines in TPD 475 

All the previous techniques can be used separately to guide the design and discovery of degraders. 476 

In recent years, more complex computational pipelines have been developed which integrate and 477 

combine these techniques to more accurately predict the formation of ternary complexes. Many of 478 

these methods have been validated by reproducing known X-ray structures. When such crystals are 479 

not available, only degradation and biophysical data can be used to explain the behavior of a given 480 

compound. We discuss below some of the most relevant pipelines used in the TPD context. 481 

4.2.1 Docking of ternary complexes 482 

The methods of Drummond et al. (2019, 2020) 483 

Drummond et al. (2019) reported one of the first in silico modeling pipelines. In that seminal article, 484 

they proposed four distinct methods to predict ternary complexes. Method 1 combined protein-485 

protein docking with sampling of the linker between two anchored warheads. During this process, 486 

one protein was docked on top of the other and the unconstrained linker bonds were randomly 487 

 

Figure 3. Schematic illustration of the key computational methods applied in TPD. Left: Depiction of the 
structure generation techniques. Right: Depiction of the analysis methods. For further information about 
individual techniques, see section 4.1.   
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sampled and re-adapted to fit the new pose (Fig. 4). Method 2 followed a similar strategy, but the 488 

PROTAC conformations were freely sampled (Fig. 3 and 4). Ternary complexes were calculated by 489 

aligning the warheads on the previous solutions and superposing the protein structures on top of 490 

them. Clashing conformations were then discarded (Fig. 4). In Method 3, one of the two PROTAC’s 491 

warheads was bound to the POI (Fig. 3). The linker conformations were sampled and the second 492 

protein was superposed onto these results (Fig. 4). As in Method 2, only non-clashing conformations 493 

were considered. Finally, Method 4 was a combination of Methods 2 and 1. It included protein-494 

protein dockings (with both warheads bound) (Fig. 3) and sampling of PROTAC conformations (as in 495 

Method 2). The docked poses were overlapped with PROTAC solutions and compatible structures 496 

were combined to form ternary complexes (Fig. 4). All methods were assessed on ternary complex 497 

crystals of the MZ PROTAC’s series of the BET family (BRD2, BRD3, BRD4) on VHL or CRBN E3s[25, 80]. 498 

Method 4 outperformed the others[101].   499 

Soon after, the authors extended Method 4 to 4B. In this version, the PROTAC was constrained to 500 

keep the bound geometries in the conformational search and a double-clustering strategy was 501 

incorporated (Fig. 4)[126]. Overall, Method 4B improved the ability to reproduce X-ray-like ternary 502 

complexes, particularly in VHL-based systems compared to CRBN-based systems. The last strategy 503 

defined by Drummond et al. (2020) was Method 5. In this version, the linker of the PROTAC spanned 504 

between the two proteins from protein-protein docking poses (Fig. 4). However, this method did not 505 

show a significant improvement over the double-clustering in Method 4B[126]. There are several 506 

examples in the literature of the successful application of these methods to guide the design of 507 

PROTACs[101, 106, 127-128].  508 

Rosetta-based pipelines 509 

As mentioned in section 4.1, one of the first computational strategies to guide PROTAC design was 510 

reported by Nowak et al. (2018)[25]. RosettaDock was applied on lenalidomide-CRBN and JQ1-BRD4BD1 511 

to then cluster the results and use structural data to determine the minimal linker length needed to 512 

produce productive ternary complexes. They prospectively correlated this data with cellular 513 

degradation in BET bromodomains on the PROTACs ZXH-2-147 and ZXH-3-26. Furthermore, they 514 

computationally rationalized the specific degradation of ZXH-3-26 to BRD4BD1 [25]. 515 

PRosettaC is another pioneering pipeline to predict ternary complexes that slowly forces the 516 

separation of the two protein-anchoring moieties[96]. At the same time, the linker conformations are 517 

randomly sampled by fitting these geometrical constraints. The distribution of accepted 518 
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conformations is used to determine the range of minimum and maximum PROTAC distances. Global 519 

docking with PatchDock and local protein-protein docking refinements with RosettaDock were then 520 

performed.  Afterward, random linker conformations connect the two PROTAC warheads. Finally, 521 

from the lowest Rosetta score conformations, the poses with the best energy in the PPI regions are 522 

selected (Fig. 5). Ternary complexes are clustered and ranked according to size.  Like the methods 523 

devise by Drummond et al., PRosettaC has been successfully used to model initial ternary complexes 524 

for further MD (and MM/GBSA rescoring) refinements[115, 125, 129-130]. 525 

In parallel to the development of the PRosettaC pipeline, Bai et al. (2021) executed Rosetta but 526 

recycling a protein-protein docking version that was originally developed for antibodies. This strategy 527 

requires an initial manually placed complex. Protein-protein docking is performed by refining the 528 

given conformation and the top-scored poses are collected for the next step. Then, the warhead 529 

portion connecting the linkers, and the linkers themselves are selected and sampled. The generated 530 

conformers are aligned with the docked moieties and low RMSD conformers are selected to build the 531 

PROTAC. Finally, the complex is refined by minimizing the Rosetta energy function. These ternary 532 

complex candidates are filtered by energy and analyzed to get the fraction of fully compatible 533 

complexes (Fig. 5). This metric aims to measure how well the PROTAC adapts to the inherent 534 

conformational constraints of the ternary complex[131]. In addition, Dixon et al. (2022) followed a 535 

comparable strategy that enhances the prediction performance of docking routines[132]. 536 

FRODOCK and the RosettaDock combination 537 

This new methodology integrates two levels of docking. The first level consists of local protein-protein 538 

docking with FRODOCK, where interacting poses are maintained. PROTAC conformations are 539 

sampled, internal ligand conformations are rescored and final PROTAC binding energies are assessed 540 

and re-ranked based on protein-protein contacts. The results are clustered, and the chosen models 541 

are then refined in the second level with RosettaDock (Fig. 4). With this pipeline,  near-native 542 

conformations were recapitulated from individual crystals, performing significantly better than 543 

PRosettaC in 14 case studies[98].  544 

4.2.2 MD-based protocols 545 

The incorporation of MD into ternary complex modeling was key to improving pipeline predictions. 546 

Li et al. (2022) proposed a novel strategy relying on MD to re-rank the ternary complexes generated 547 

by PRosettaC. They highlighted the effectivity of MM/GBSA calculations to assess the stability and 548 

cooperativity of PROTAC-induced ternary complexes (Fig. 4)[129] and correlated these data with 549 
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experimental Kd values obtained from biophysical assays. Liao et al. (2022) developed another MD-550 

based pipeline integrating protein-protein docking with ligand docking to create starting ternary 551 

complex candidates[115]. These structures are refined with MD, clustered and pre-scored with 552 

MM/GBSA, and then finally scored with the heating-accelerated pose departure (HAPOD) protocol. 553 

Additionally, HAPOD rescoring was proposed on top of PRosettaC-generated ternary complexes, 554 

facilitating the identification of near-native poses (Fig. 4)[115]. One of the most prominent examples of 555 

MD-based pipelines is the protocol described by Dixon et al. (2022)[114]. Starting from separated 556 

structures, they used HDX-MS data to approach the formation of the iso2-SMARCA2BD:VHL ternary 557 

complex by applying weighted ensemble (WE-HDX) and atomistic Hamiltonian replica-exchange MD 558 

(HREMD) simulations (Fig. 4). These millisecond-long simulations revealed the most stable states of 559 

SMARCA2BD:VHL induced by different degraders (PROTAC1, PROTAC2, and ACBI1)[114].  560 

In summary, incorporating MD into the mentioned workflows improves the quality of ternary 561 

complex models. However, the high computational cost of these techniques restricts their application 562 

to low-throughput scenarios (a small number of compounds). Faster refinement techniques (e.g., 563 

Monte Carlo methods[133-134]) may help reduce the computation expenses and enable the screening 564 

of larger numbers of degraders. These techniques use implicit solvent models to accelerate 565 

simulations, but this comes at the cost of reduced accuracy. 566 

4.2.3 Models to predict ubiquitination 567 

Protein degradation relies on the ubiquitination of the POI, which requires that the E2 has access to 568 

surface lysine residues in the POI. To accurately model the ubiquitin transferring process, recent 569 

computational methods have aimed to assemble the entire E3 multisubunit complex. This is done by 570 

aligning common subunits based on existing structures determined by X-ray crystallography or Cryo-571 

EMs (or protein-docked solutions)[124-125]. Once the macromodel is complete, different analysis 572 

strategies can be applied to identify structural patterns that are associated with ubiquitination 573 

processes (Fig. 4). For instance, Dixon et al. (2022) also correlated PROTAC-induced ubiquitination 574 

with the density of lysines in the ubiquitination zone of SMARCA2BD by superposing the E3 macro-575 

assemble on HREMD results[114]. The aforementioned examples give insights into the importance of 576 

tracking the dynamics of the E3 complex in computational models to predict PROTAC-induced 577 

ubiquitination and subsequent degradation. 578 

 579 

4.2.4 Machine learning-based pipelines 580 
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The increasing number of crystallized ternary complexes in the PDB[135] and the degradation data 581 

collected by databases such as PROTAC-DB[98, 136] have enabled the application of machine learning 582 

strategies in the TPD field. For example, Bayesian Optimization has improved the quality of modeled 583 

ternary complex poses on unbound structures[116]. Reinforcement learning algorithms have been 584 

implemented to generate PROTACs with improved pharmacokinetic properties. Deep learning has 585 

also been applied in methods such as DeepPROTACs to detect the capacity of PROTACs to induce 586 

degradation (Fig. 4)[125]. Moreover, machine-learning algorithms have been used to assess the 587 

intrinsic degradability of POIs[137], and PROTAC permeability[138-139]. 588 

5. Discussion 589 

Computational modeling is gaining momentum within the TPD field to help rationalize degrader 590 

design. This trend is evidenced by the growing number of computational pipelines reported[140]. To 591 

date, new degraders have been predominantly identified through trial-and-error (PROTACs) and 592 

serendipity (MG degraders).  593 

In this review, we have summarized the rapid evolution of computational models to help tackle the 594 

challenges posed by the identification of new proximity-inducing agents. The successful application 595 

of these methods depends on the availability of robust and high-quality structural and biophysical data. 596 

Here we have outlined the range of in vitro and in cellulo approaches used to characterize ternary 597 

complex formation and degradation. Initiatives such as the PROTAC-DB have begun to improve 598 

accessibility to such data, which will be vital for the advancement of computational strategies. 599 

Current efforts in the TPD community to standardize this type of data will greatly facilitate its use as 600 

actionable information to drive further advances (e.g., the Chemical Probes Portal offers 601 

guidelines[141]). 602 

Research into degrader efficiency has focused mainly on monitoring the degradation of the POI. As a 603 

result, an in-depth biophysical analysis of the ternary complex (e.g., kinetics and thermodynamics) is 604 

often lacking. Degradation data can be useful to train computer models and improve their 605 

predictions. However, using degradation as an output to directly extrapolate ternary complex 606 

formation can be misleading[142].  607 

The low number of ternary complexes that have been characterized biophysically and/or structurally 608 

currently restricts the power of computational methods. In this regard, CRBN- and VHL-recruiting 609 

degraders and ternary complexes involving BET proteins are overrepresented. Furthermore, current 610 

computational models have focused solely on the design of PROTACs rather than MG degraders. The 611 
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emergence of new structural and biophysical data for MG-induced ternary complex formation may 612 

expedite this process. 613 

Finally, we wish to emphasize the critical role of structural and biophysical data in helping 614 

computational models achieve accurate degrader designs and better predictions of efficiency. By 615 

leveraging these data, computational models have the potential (in the long term) to provide greater 616 

insights into the molecular features that govern small molecule-induced ternary complexes in TPD 617 

and other proximity-inducing modalities.   618 
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Figure 4. Main computational pipelines applied to PROTAC studies. For further information about individual 
pipelines, see section 4.2.   
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