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INTRODUCTION: Many complex human pheno-
types, including diseases, exhibit sex-differentiated
characteristics. These sex differences have been
variously attributed to hormones, sex chromo-
somes, genotype × sex effects, differences in
behavior, and differences in environmental
exposures; however, their mechanisms and
underlying biology remain largely unknown.
The Genotype-Tissue Expression (GTEx) proj-
ect provides an opportunity to investigate the
prevalence and genetic mechanisms of sex
differences in the human transcriptome by
surveying many tissues that have not previ-
ously been characterized in this manner.

RATIONALE: To characterize sex differences in
the human transcriptome and its regulation, and
to discover how sex and genetics interact to in-
fluence complex traits and disease, we generated
a catalog of sex differences in gene expression
and its genetic regulation across 44 human tis-
sue sources surveyed by the GTEx project (v8
data release), analyzing 16,245 RNA-sequencing
samples and genotypes of 838 adult individuals.
We report sex differences in gene expression lev-
els, tissue cell type composition, and cis expres-
sion quantitative trait loci (cis-eQTLs). To assess
their impact, we integrated these results with
gene function, transcription factor binding an-

notation, and genome-wide association study
(GWAS) summary statistics of 87 GWASs.

RESULTS: Sex effects on gene expression are
ubiquitous (13,294 sex-biased genes across all tis-
sues). However, these effects are small and large-
ly tissue-specific. Geneswith sex-differentiated
expression are not primarily driven by tissue-
specific gene expression and are involved in a di-
verse set of biological functions, such as drug and
hormone response, embryonic development and
tissue morphogenesis, fertilization, sexual repro-
duction and spermatogenesis, fat metabolism,
cancer, and immune response.WhereasX-linked
genes with higher expression in females suggest
candidates for escape from X-chromosome in-
activation, sex-biased expression of autosomal
genes suggests hormone-related transcription
factor regulation and a role for additional tran-
scription factors, as well as sex-differentiated
distribution of epigenetic marks, particularly
histone H3 Lys27 trimethylation (H3K27me3).
Sex differences in the genetic regulation of

gene expression aremuch less common (369 sex-
biased eQTLs across all tissues) and are highly
tissue-specific. We identified 58 gene-trait associ-
ations driven by genetic regulation of gene ex-
pression in a single sex. These include loci where
sex-differentiated cell type abundances mediate
genotype-phenotype associations, as well as loci
where sex may play a more direct role in the
underlying molecular mechanism of the asso-
ciation. For example, we identified a female-
specific eQTL in liver for the hexokinaseHKDC1
that influences glucosemetabolism in pregnant
females, which is subsequently reflected in the
birth weight of the offspring.

CONCLUSION: By integrating sex-aware analyses
ofGTExdatawithgene functionandtranscription
factor binding annotations, we describe tissue-
specific and tissue-shareddrivers andmechanisms
contributing to sex differences in the human
transcriptome and eQTLs. We discoveredmulti-
ple sex-differentiated genetic effects on gene
expression that colocalize with complex trait
genetic associations, thereby facilitating the
mechanistic interpretation of GWAS signals.
Because the causative tissue is unknown for
many phenotypes, analysis of the diverse GTEx
tissue collection can serve as a powerful resource
for investigations into the basis of sex-biased
traits. This work provides an extensive char-
acterization of sex differences in the human
transcriptome and its genetic regulation.▪
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Sex affects gene expression and its genetic regulation across tissues. Sex effects on gene expression were
measured in 44 GTEx human tissue sources and integrated with genotypes of 838 subjects. Sex-biased expression is
present in numerous biological pathways and is associated to sex-differentiated transcriptional regulation. Sex-biased
expression quantitative trait loci in cis (sex-biased eQTLs) are partially mediated by cellular abundances and reveal gene-
trait associations. TT, AT, and AA are genotypes for a single-nucleotide polymorphism; TF, transcription factor.
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Many complex human phenotypes exhibit sex-differentiated characteristics. However, the molecular
mechanisms underlying these differences remain largely unknown. We generated a catalog of sex
differences in gene expression and in the genetic regulation of gene expression across 44 human
tissue sources surveyed by the Genotype-Tissue Expression project (GTEx, v8 release). We
demonstrate that sex influences gene expression levels and cellular composition of tissue samples
across the human body. A total of 37% of all genes exhibit sex-biased expression in at least one
tissue. We identify cis expression quantitative trait loci (eQTLs) with sex-differentiated effects and
characterize their cellular origin. By integrating sex-biased eQTLs with genome-wide association study
data, we identify 58 gene-trait associations that are driven by genetic regulation of gene expression in
a single sex. These findings provide an extensive characterization of sex differences in the human
transcriptome and its genetic regulation.

M
any complex human phenotypes, such
as anthropometric traits (e.g., waist-
to-hip ratio), exhibit sex-differentiated
distributions; disease features such as
prevalence, progression, age of onset,

and response to treatment often differ by sex
(1–5). These sex differences have been variously
attributed to hormones, sex chromosomes,
genotype × sex effects, differences in behavior,
and differences in environmental exposures
(6), but the mechanisms and underlying biol-
ogy of the sex differences remain largely un-
known. TheGenotype-Tissue Expression (GTEx)
project (7) provides anopportunity to investigate
the prevalence and genetic mechanisms of sex
differences in transcriptomes and to identify

how sex and genetics interact to influence com-
plex traits and disease. The analyses presented
here characterize sex differences in a relatively
large population sample, including many tis-
sues that generally lack characterization. Be-
cause the causative tissue is unknown for many
diseases and disorders, analysis of this diverse
tissue set can serve as a powerful resource for
investigations into the basis of sex-differentiated
phenotypes.
We present an extensive characterization of

sex differences in the human transcriptome
across 44 tissue sources of the GTEx project
[v8 data release (8)] from 838 individuals
(557 males, 281 females), constituting a large
collection of multi-tissue bulk gene expression

and genotype data (Fig. 1) (9). We quantify and
characterize sex differences in gene expression
levels (sex-biased gene expression) and cis sex‐
biased expression quantitative trait loci (sb-
eQTLs). By incorporating the results of these
sex-aware analyses of GTEx data with gene
features and transcription factor binding an-
notation, we describe tissue-specific and tissue-
nonspecific drivers and mechanisms contributing
to sex differences in the human transcriptome
and eQTLs. By integrating data from genome-
wide association studies (GWASs), we report
multiple sex-differentiated genetic effects on
the transcriptome that colocalize with complex
trait associations, highlighting the power of
characterizing sex bias in GTEx samples for the
mechanistic interpretation of GWAS signals.

Sex effects on gene expression are ubiquitous
but small

Using GTEx v8 data (table S1), we quantified
sex-biased gene expression in each of the 44
tissue sources for all genes expressed in at least
one tissue. We considered a total of 35,431
X-linked and autosomal genes, including pro-
tein coding, long intergenic noncoding RNA
(lincRNA), and other less-characterized gene
types such as transcribed pseudogenes (9).
For each tissue, we first fit a linearmodel that
accounts for known sample and donor char-
acteristics, as well as surrogate variables that
capture hidden technical or biological factors
of expression variability, including tissue cell
type composition (fig. S1, A to C). Consequently,
we are able to identify sex-biased gene expres-
sion that does not derive from sex differences in
cell type abundances.We nextmodeled sex bias
effects across tissues. We discovered a total of
13,294 differentially expressed genes [sex-biased
genes; local false sign rate (LFSR) ≤ 0.05], with
473 to 4558 genes discovered per tissue, rep-
resenting 1.3% to 12.9% of all tested genes,
respectively (Fig. 2A, fig. S1, D to F, and table S2).
Previous studies have reported widespread
sex-biased gene expression (10–12) and de-
scribed breast as the most sex-differentiated
tissue (10, 11, 13). However, we did not observe
this in the present study after controlling for
sex differences in tissue cell type composition
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(fig. S1A). We next assessed replication of sex-
biased genes in independent gene expression
datasets for four tissues (brain cerebellum,
brain cortex, heart left ventricle, and lympho-
cytes; table S2).We observedmoderate to strong
replication (average p1 = 0.62, average effect size
Spearman’s r = 0.78). In total, 37.5% (13,294/
35,431) of the human transcriptome was differ-
entially expressed in at least one tissue. Of these,
531 genes (4%) were X-linked and 12,763 genes
(96%) were autosomal, representing 47% and
37% of all testedX-linked and autosomal genes,
respectively. Although abundant, sex effects
were mostly small (fig. S2A), particularly for
autosomal genes (9) (fig. S2B). X-linked genes
with higher expression in females (female-biased
genes) exhibited larger sex effects [median fold
change (FC) = 1.13] than either X-linked genes
with higher expression in males (male-biased
genes; median FC = 1.08) or autosomal sex-
biased genes (median FCM and FCF = 1.04; fig.

S2B), potentially as a result of escape from X-
chromosome inactivation (XCI) (14). The num-
ber of sex-biased genes and the effect sizes were
not dominated by either sex (fig. S2C).

Sex-biased gene expression is largely
tissue-specific

Sex-biased genes exhibited a skewed pattern of
tissue sharing; they were likely to be differen-
tially expressed in only a small subset of tissues
(Fig. 2B), as previously reported (10–13). Of
13,294 total sex-biased genes, 2416 (18.2%)
were differentially expressed in only a single
tissue (Fig. 2B), suggesting tissue-dependent
regulation. Only 30 genes (0.23%), 22 of which
are known constitutiveXCI escapees (table S3),
exhibited consistent sex bias across all 44 tis-
sue sources (Fig. 2B). This tissue specificity
did not simply reflect patterns of gene expres-
sion across tissues; sex-biased genes tended
to be ubiquitously expressed across tissues,

whereas sex-biased expression was limited to
one or a few tissues (9) (Fig. 2C and fig. S2D).
Themajority (8241/10,878 genes, 76%) of genes
with sex bias in two or more tissues exhibited
consistent effect direction across tissues, espe-
cially for X-linked genes (fig. S2E). Notably,
whole blood and cell lines, the most widely
studied biospecimen types, were not represent-
ative of sex-biased expression across tissues;
sex-biased genes in whole blood constituted
only 12.9% (1710/13,294) of all sex-biased genes.
Although hierarchical clustering of tissues
based on gene expression and on sex-biased
expression is highly concordant (cophenetic
correlation coefficient = 0.75) (9) (Fig. 2C and
fig. S3, A to C), the intersection between the
cluster-defining gene sets (table S4) is less
than expected by chance (P < 2.2 × 10–16, hy-
pergeometric test). For example, both gene
expression and sex-biased expression supported
a cluster of brain subregions that is clearly dif-
ferentiated from other tissues (Fig. 2C and fig.
S3, B andD). However, the cluster based on sex-
biased expression was driven by 194 genes,
whereas the transcriptome-based brain cluster
was driven by 982 genes, from which only six
were commonwith those defining the sex-based
brain cluster. Among drivers of the sex-based
liver cluster, we identified CYP450 genes—
CYP1A2, CYP3A7, CYP3A4—as previously reported
(15), but we also found genes less well char-
acterized for sex bias, such as PZP, H19, and
VWCE, which were previously shown to be sex-
differentially expressed as a result of liver-
specific sex differences in DNA methylation
(16). These results suggest that the tissue
specificity of sex-biased expression is not driven
primarily by tissue-specific gene expression.

X-linked female-biased genes accurately
predict sex and suggest tissue-specific
candidates for escape from X-chromosome
inactivation

We accurately predicted sex from gene ex-
pression, as previously explored (17), using X-
linked genes (9) (fig. S4, A to D) with gradient
boosted trees. Although the most predictive
X-linked genes (fig. S4E) are those known to
escape XCI, we identified 40 X-linked female-
biased genes predictive of sex (within the top
tertile with respect to their Shapley values) not
previously described as XCI escapees (table S3).
These results suggest further evaluation of these
genes as potential XCI escapees; we did not
directly test escape fromXCI, and female-biased
expression of X-linked genes may originate
from othermechanisms. Sex prediction from
autosomal genes was less accurate (mean ac-
curacy = 84%), less specific (mean specificity =
56%, sensitivity = 96%; fig. S4D), and required
more genes (fig. S4F) than prediction based on
X-linked genes. However, in two tissues—breast
andmuscle—autosomal genes predicted sexwith
specificity≥ 90% and sensitivity≥ 98% (fig. S4G).
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BREAST (Breast mammary tissue, 151:245)

PNCREAS (Pancreas, 116:189)

LIVER (Liver, 62:146)

ADRNLG (Adrenal gland, 94:139)

KDNCTX (Kidney cortex, 18:55)

ADPVSC (Visceral omentum, 149:320)

SNTTRM (Small intestine terminal ileum, 63:111)

WHLBLD (Whole blood, 229:441)

SKINNS (Not sun-exposed skin (suprapubic), 169:348)

LCL (EBV-transformed lymphocytes, 53:94)

SKNS (Sun-exposed skin (lower leg), 208:397)

SLVRYG (Minor salivary gland, 40:104)

THYROID (Thyroid, 196:378)

ARTAORT (Aorta, 138:249)

HRTAA (Atrial appendage, 119:253)

ARTCRN (Coronary artery, 84:129)

HRTLV (Left ventricle, 122:264)

ESPMSL (Esophagus muscularis, 162:303)

ESPMCS (Esophagus mucosa, 176:321)

ESPGEJ (Gastroesophageal junction, 110:220)

SPLEEN (Spleen, 86:141)

STMACH (Stomach, 122:202)

CLNTRN (Transverse colon, 136:232)

CLNSGM (Sigmoid colon, 113:205)

ARTTBL (Tibial artery, 187:397)

NERVET (Tibial nerve, 177:355)

LUNG (Lung, 166:349)

FIBRBLS (Cultured fibroblasts, 170:313)

ADPSBQ (Subcutaneous adipose, 194:387)

MSCLSK (Skeletal muscle, 237:469)

BRNCTXA / BRNCTXB (Cortex, 64:141 / Frontal cortex [BA9], 48:127)

BRNACC (Anterior cingulate cortex [BA24], 42:105)

BRNCDT (Caudate [basal ganglia], 52:142)

BRNNCC (Nucleus accumbens [basal ganglia], 55:147)

BRNPTM (Putamen [basal ganglia], 42:128)

BRNHPT (Hypothalamus, 47:123)

BRNAMY (Amygdala, 37:92)

BRNHPP (Hippocampus, 49:116)

BRNSNG (Substantia nigra, 33:81)

BRNCHA / BRNCHB (Cerebellum, 58:151 / Cerebellar hemisphere, 51:124)

BRNSPC (Spinal cord [cervical c-1], 48:78)

PTTARY (Pituitary, 71:166)

Fig. 1. Sample, data types, and discovery sets in the study of sex differences in GTEx v8. Tissue types
(including 11 distinct brain regions and two cell lines) are illustrated, with sample numbers from GTEx v8
genotyped donors (females:males, in parentheses) and color coding indicated for each. This study included
N = 44 tissue sources present in both sexes with ≥70 samples. Tissue sources comprised two cell lines,
40 tissues, and two additional replicates for brain cerebellum and cortex tissues. Tissue name abbreviations
are shown in bold. See (9) for specific numbers of donors used in each analysis.
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Sex-biased genes exhibit nonrandom and
tissue-specific genomic distribution
Except for the enrichment of female-biased
genes on the X chromosome, little is known
about the genome-wide distribution of sex-

biased genes. We applied a positional gene
enrichment analysis method (18) separately
for male- and female-biased genes (LFSR ≤
0.05) from each tissue (9) (fig. S5A). We dis-
covered clustering of a total of 1559 sex-biased

genes in 134 autosomal and five X-linked re-
gions (P ≤ 0.001, hypergeometric test) (Fig. 3A
and table S5). On the X chromosome, pseudo-
autosomal region PAR1 and the remainder of
the X-chromosome short arm p were enriched

Oliva et al., Science 369, eaba3066 (2020) 11 September 2020 3 of 13

2954
2438

1076
3742

4440
3649

1426
2080

2397
2203

1006
1096

2142
1943

2624
2739

2210
2192

2537
2960

3510
3262

3102
2546

3337
3087

1655
1341

1254
473

717
2108

2866
2634

1516
1420

4170
4558

2116
2773

1767
2596

2492
1710

0 1000 2000 3000 4000 5000

WHLBLD
THYROID
STMACH
SPLEEN
SNTTRM
SLVRYG

SKINS
SKINNS
PTTARY

PNCREAS
NERVET
MSCLSK

LUNG
LIVER

LCL
KDNCTX

HRTLV
HRTAA

FIBRBLS
ESPMSL
ESPMCS
ESPGEJ
CLNTRN
CLNSGM
BRNSPC
BRNSNG
BRNPTM
BRNNCC
BRNHPT
BRNHPP

BRNCTXB
BRNCTXA

BRNCHB
BRNCHA
BRNCDT
BRNAMY
BRNACC
BREAST
ARTTBL

ARTCRN
ARTAORT
ADRNLG
ADPVSC
ADPSBQ

Number of sex−biased genes (LFSR < 0.05)
A

Chr. X−linked
Autosomal

Sign F
M

2416
1628

1248
942

779
649

512
514
484

425
430

354
382

301
266

205
228

179
155
156
131
102
106
90
61
65
58
44
48
43
30
29
32
30
21
19
20
18
15
15
12
10
12
30

Number of sex−biased genesChr.Sign

44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

# 
T

is
su

es

B

PTTARY
BRNCHB
BRNCHA
BRNSPC
BRNSNG
BRNACC
BRNCTXA
BRNCTXB
BRNAMY
BRNHPP
BRNHPT
BRNPTM
BRNCDT
BRNNCC
LCL
SPLEEN
WHLBLD
LIVER
FIBRBLS
KDNCTX
SKINNS
SKINS
ESPMCS
SLVRYG
PNCREAS
MSCLSK
STMACH
SNTTRM
CLNSGM
CLNTRN
LUNG
THYROID
ADRNLG
HRTAA
HRTLV
BREAST
ADPSBQ
ADPVSC
NERVET
ESPGEJ
ESPMSL
ARTTBL
ARTAORT
ARTCRN

Spearman corr.

0 0.2 0.4 0.6 0.8 1

Avg. corr.

0.55 0.6 0.65 0.7 0.75

PTTARY
LIVER

BRNCHB
BRNCHA
BRNSPC

BRNCTXA
BRNACC

BRNCTXB
BRNNCC
BRNCDT
BRNPTM
BRNHPT
BRNSNG
BRNAMY
BRNHPP
ADPSBQ
SKINNS

SKINS
HRTAA
HRTLV

PNCREAS
ADRNLG
SPLEEN
ARTTBL

ARTAORT
ARTCRN

THYROID
KDNCTX
SLVRYG

LUNG
CLNTRN
SNTTRM
CLNSGM
ESPGEJ
ESPMSL
ESPMCS
STMACH
ADPVSC
NERVET
BREAST
MSCLSK
WHLBLD
FIBRBLS

LCL

Avg. corr.

0.1 0.2 0.3 0.4 0.5

Spearman corr.

0 0.2 0.4 0.6 0.8 1

C
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for male-biased and female-biased genes, re-
spectively (Fig. 3A, right), as previously re-
ported (14). Female-biased gene enrichment
was stronger (Spearman’s r = 0.51, P = 1.63 ×
10–15) in the younger strata of arm p (fig. S5B),
likely driven by escape from XCI (14, 19). Al-
though enriched X-chromosome regions spanned
~126 Mb, only 25% of subregions were en-
riched in at least two-thirds of the tissues.
Among autosomal sex-biased genes, we ob-
served a cluster of male-biased genes on chro-
mosome 20 that was identified in 70% (30/44)
of tissues (fig. S5C), but the majority of the
134 autosomal enriched regions were tissue-
specific, identified on average in ~7% (3/44)
of tissues (fig. S5D and table S5). These results
are compatible with tissue-variable escape from
XCI (14, 20) and with tissue-specific topolog-
ically associating domains, possibly mediated
by hormones (21). Further investigation is war-
ranted to corroborate these and other hy-
potheses, as observed patterns may originate
from a variety of mechanisms.

Promoters of sex-biased genes are enriched
for hormone-related and other transcription
factor binding sites

Wehypothesized that transcription factor (TF)
activity might drive observed patterns of dif-
ferential expression, because sex-biased gene
regulation by TFs has recently been reported
(13) and TFs contribute to evolutionary changes
in sex bias (12). We tested for enrichment of TF
binding sites (TFBSs) of 231 TFs previously
identified through chromatin immunoprecipi-
tation sequencing (22) in promoter regions
(i.e., 2 kb upstream of the transcription start
site) ofmale- and female-biased genes (9) (fig.
S5E). We discovered enrichment for TFBSs of
a total of 92 TFs (fig. S5F), two of which were
X-linked (AR, ELK1). TFBSs for 54 TFs were
enriched among female-biased genes and
60 TFs among male-biased genes, with 22 TFs
enriched among both sets of genes (table S6).
The 92 TFs include (i) known hormone-related
TFs estrogen (ESR1), androgen (AR), and glu-
cocorticoid (NR3C1) receptors, (ii) 10 TFs that
colocalize with steroid receptors, and (iii) TFs
with a nonreported or less-characterized hor-
mone association, including SP1, E2F6, NRF1,
KLF9, and SP2, the top five TFswith consistent
TFBS enrichment across tissues (9).
The strongest difference between male- and

female-biased enrichment profileswas observed

for TFBSs of SP2, SP4, NFYB, TWIST1, and
STAT5B (female-biased) andofHNF4G,NFKB1,
E2F6, HNF4A, and ETS1 (male-biased), respec-
tively, which were detected across most tissues
(Fig. 3B and table S6). In contrast, we observed
tissue specificity for enrichment of TFBSs of
several TFs, such as RFX2 and ETV4 for brain
and breast tissues, respectively (Fig. 3B and
fig. S5F). Although STAT5B and HNF4A play
known roles in sex differences in body growth
rates and liver gene expression (15), less is
known about their roles and sex biases across
all tissues. The effect of sex on most of the
remaining TFs is uncharacterized. Together,
these results suggest that hormone-related TFs
regulate sex-biased expression as expected, but
they also indicate that additional TFs play a role
in sex-biased gene expression, in some cases in a
tissue-specific manner (table S6). Notably, TFBS
enrichment is not driven by sex-biased expres-
sion of the TFs themselves (9), consistent with
the observation that sex-biased TF targeting of
genes is independent of sex-biased gene expres-
sion (13). However, this scenario cannot be dis-
carded if such differences occur at an earlier
developmental time point and translate into a
more constitutive sex-biased TF binding profile
(23). Alternatively, other mechanisms involving
TFs could be causal drivers [e.g., posttransla-
tional modifications as reported in mice (24)].

Sex-biased genes are involved in a highly
diverse set of biological functions and suggest
sex-specific deposition of epigenetic marks

To gain insight into cellular functions affected
by sex-biased genes, we performed gene set
enrichment analysis (GSEA) in each tissue,
considering the direction of the sex effect (9)
(fig. S6A and tables S7 and S8). To identify
gene sets that are enriched across multiple
tissues, we performed a meta-analysis using
Fisher’s combined probability test and iden-
tified 2134 enriched gene sets [false discov-
ery rate (FDR) ≤ 0.05; table S9]. We applied a
community detection approach to identify
common features across enriched gene sets
and defined 36 clusters (table S9). Among the
top-scoring clusters (9), we identified enrich-
ment of genes in pathways involved in drug
and hormone response, epigenetic marks, em-
bryonic development and tissuemorphogenesis,
fertilization, sexual reproduction and spermato-
genesis, fat metabolism, cancer, immune re-
sponse, and other functions (Fig. 3C and table

S9). The top-scoring cluster corresponds to
targets of polycomb repressive complex 2 (PRC2)
and trimethylation of histone H3 at Lys27

(H3K27me3), which is predominantly driven by
female-biased genes—a pattern also reported
for other epigenetic modifications (13). This
complex induces gene silencing and is involved
inXCI (25). Sex-specific deposition ofH3K27me3
marks has been previously reported, result-
ing in sex-biased gene expression in mamma-
lian placenta (26) and adult liver (27). These
differences have been hypothesized to be reg-
ulated by sex differences in the secretion of
placental glycosyltransferase OGT and pitui-
tary growth hormone. The observed associa-
tion of H3K27me3 with sex-biased expression
in the tissues of this study (table S9) has not
been previously reported. We also identified
clusters related to drug metabolism that in-
clude CYP450 genes. Sex-biased expression
of CYP450 has been reported in liver (15) and
linked to sex-differentiated growth hormone
profiles; we observed sex-biased expression in
additional tissues (fig. S6B). Sex-biased expres-
sion was also identified for clusters related to
gonad tissue functions (e.g., meiotic synapsis),
which comprise genes expressed largely in
testis (fig. S6B). It is possible that some of the
cross-tissue sex-biased expression patterns ob-
served in adult tissues are derived from gamete
formation and embryogenesis (28). Together,
these results indicate that sex-biased genes are
involved in a wide range of biological functions
and pathways, many of which have not been
previously associated with sex differences.

Sex and disease influence tissue cellular
composition

The GTEx tissue samples are mixtures of het-
erogeneous cell types, with variation among
individuals and tissues (29). In whole blood,
cell type composition differs between sexes
(30, 31), but little is known about sex dif-
ferences in composition of other tissues. Using
a t test, we examined each GTEx tissue for sex
differences in cellular composition on the basis
of estimated abundances of seven cell types
(9, 29). We discovered significant (FDR ≤ 0.05)
differences for four cell types—keratinocytes,
neutrophils, adipocytes, and epithelial cells—
in three tissues (fig. S7A and table S10). We
hypothesize that additional cell types unchar-
acterized in this study may influence the cell
type composition of GTEx tissues, particularly
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Fig. 3. Regulatory mechanisms and biological functions of sex-biased
genes. (A) Genomic position enrichment of sex-biased genes, as indicated by
male-biased (blue) and female-biased (red) genes across all chromosomes (left)
and chromosome X (right). The height of each rim represents the tissue sharing
of the significant genomic enrichment signal and ranges from 1 to 44 (number of
tissue sources). See (9) for further details. (B) Transcription factor binding site
(TFBS) enrichment in promoter regions of sex-biased genes. Of 92 enriched
TFBS profiles, the top 40 with the largest difference across all tissues in the

enrichment profile derived from male-biased and female-biased genes are
displayed. Values represent the TFBS enrichment ranking transformed to [0, 1]
per tissue and per sex; a value of 1 corresponds to the highest enrichment.
See (9) for further details. (C) Clusters (gray circles) of gene sets enriched for
genes highly expressed (blue and red balloons) in females (red) or males
(blue) across tissues. Balloon size corresponds to the P value for the across-tissue
meta-analysis of GSEA. Faint lines connecting balloons correspond to shared
leading-edge genes between gene sets. See (9) for further details.
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of immune cells, because marked sex differ-
ences in immune cell abundances have been
reported (30, 32). To investigate cellular abun-
dances in disease, we used histological anno-
tations from pathology review of GTEx tissue
samples (9). We discovered six pathological
phenotypes with altered cell type composition
(fig. S7, B to E, and table S10). Together, these
results suggest that sex is correlated with tis-
sue cellular composition, and that diseasemay
alter cellular abundances in a sex-differentiated
manner or in sex-specific pathologies.

Sex differences in the genetic regulation of gene
expression are highly tissue-specific and less
common than sex effects on gene expression

Sex-differentiated human phenotypes and dis-
ease characteristics may derive in part from
sex-differentiated genetic effects (6, 33–36),
some of which may have an impact on gene
expression. For each of 491,694 conditionally
independent cis-eQTLs identified in the sex-
combined cis-eQTL analysis of the GTEx v8
project (8), we performed sex-biased cis-eQTL
(sb-eQTL) analysis in each of 44 tissues pres-
ent in both sexes (Fig. 1). We used a linear
regression model including genotype, sex,
and covariates, and tested for significance of
a genotype × sex (G×Sex) interaction on ex-
pression (9). Notably, this approach captures
G×Sex interactions that derive both from sex
and from sex-correlated factors, including cell
type abundances or environmental factors. Al-
though the contribution of cell type heteroge-
neity to sb-eQTLs is currently unknown, we
observed sex differences in tissue cell type com-
position (fig. S7A), which may affect sb-eQTL
discovery. Hence, we characterized the impact
of cell type–specific eQTLs on sb-eQTLs (see
below). We discovered a total of 369 sb-eQTLs,
corresponding to 366 genes (sb-eGenes) (FDR≤
0.25; table S11). The majority of sb-eQTLs
were identified in breast tissue (261 sb-eQTLs),
but also in muscle (36 sb-eQTLs), skin (18 sb-
eQTLs), and adipose tissues (14 sb-eQTLs) (Fig.
4A and fig. S8, A and B). Overall, sb-eQTLs
showed strong evidence for tissue specificity
(9); only one sb-eQTL was significant in two
tissues (table S11), and only 21% displayed pat-
terns suggestive of tissue-sharing even at a
lenient significance threshold (PG×Sex ≤ 0.01).
Only 36 sb-eGenes (14%) exhibited sex-biased
expression in the discovery tissue [multivar-
iate adaptive shrinkage (MASH) LFSR ≤ 0.05;
table S12], similar to recent observations (37).
This is compatible with small sb-eQTL effects
not translating into significant sex-biased gene
expression, or with different functional mech-
anisms contributing to each sex bias type.
To provide additional support for the sb-

eQTLs, we used two approaches to assess dif-
ferential allele-specific expression (ASE)between
sexes: allelic fold change (ASE aFC) (38) and
environment ASE through generalized linear

modeling (EAGLE) (9, 39). Allele-specific ex-
pression can result from cis-regulatory genetic
effects in heterozygous individuals. Differen-
tial ASE therefore indicates condition-specific
cis effects (39), including sex specificity. We
observed that both approaches, despite lim-
ited power when restricted to heterozygous
individuals and differences in methodology,
indicate that a portion of the detected sb-
eQTLs correspond to sex differences in ASE
(fig. S8C): sb-eQTLs were enriched for sex-
biased ASE aFC (all tissues, p1 = 0.36; breast,
p1 = 0.41; fig. S8, D and E) and for EAGLE
associations (p1 = 0.13, empirical test, P ≤
0.001). Of the 243 and 163 sb-eQTLs tested by
ASE aFC and EAGLE methods, respectively, 65
(26.7%) were supported by ASE aFC (Wilcoxon
P ≤ 0.05) (fig. S7, F and G), 29 (17.8%) were
supported by significant EAGLE associations,
and 16 sb-eQTLs (10.4% of the 154 sb-eQTLs
tested by both methods) were supported by
both methods (table S11).
We were limited in our ability to replicate

sb-eQTLs because the majority of sb-eQTLs
were discovered in breast tissue, andmatching
well-powered datasets do not exist. We per-
formed internal validation, splitting GTEx
breast samples into discovery and validation
cohorts, and observed moderate replication
(mean p1 = 0.28) (9) (fig. S8H). We next as-
sessed sb-eQTL replication (considering sb-
eQTLs from breast, whole blood, and all tissues)
in independent larger (~900 subjects) whole-
blood eQTL datasets, including DGN (40) and
GAIT2 (41) cohorts (9) (table S13). We observed
weak replication (p1 = 0 to 0.12, depending
on sb-eQTL set and replication cohort). Poor
replication of sb-eQTLs has been reported
(40, 42, 43) and has been, in part, attributed
to low power (44) but also to methodological
and study design differences.
For each sb-eGene, we also performed sex-

stratified cis-eQTL analysis for each tissue,
downsampling males to match the female
sample size (9). We observed strong corre-
lation (Spearman’s rank correlation r = 0.78,
P ≤ 2.2 × 10–16) between male and female cis-
eQTL effect sizes. For 58% of sb-eQTLs,
sex-stratified cis-eQTL analysis revealed asso-
ciations in both sexes with concordant allelic
effect but different effect sizes. For example,
rs117380715-ADRA1A in adipose subcutaneous
tissue showed a stronger effect in females than
in males (bF = –0.78, PF = 4.64 × 10–18, bM =
–0.47, PM = 3.98 × 10–10) (Fig. 4B and fig. S8I).
For the remainder of the sb-eQTLs, a cis-eQTL
was detected exclusively in either females
(70, 19%) or males (84, 23%). For example,
we identified a female-specific cis-eQTL for
rs8942-C4BPB in breast (bF = 0.40, PF = 2.68 ×
10–7, bM = –0.02, PM = 0.89) (Fig. 4B and fig.
S8I). C4BPB encodes the beta unit of the C4b-
binding protein and controls activation of the
complement cascade (45). We also identified

a male-specific cis-eQTL for rs2273535-AURKA
in skeletal muscle (bM = 0.47, bF = 0.01), de-
scribed in (8). AURKA, encoding Aurora kinase
A, is a member of the serine/threonine kinase
family involved in mitotic chromosomal segre-
gation and muscle differentiation (46) and is a
known risk factor for several cancers (47). These
results demonstrate that sex-biased genetic ef-
fects on gene expression exist for a small pro-
portion of previously identified cis-eQTLs, and
that some sb-eQTLs affect genes implicated in
human phenotypes.

Sex differences in genetic regulation of gene
expression are partially mediated by cell
type–specific eQTLs

Given that the G×Sex interaction term of our
eQTL model captures interactions that derive
from sex as well as interactions with sex-
correlated factors, we next characterized the
fraction of sex-biased eQTLs that are driven
by cell type–specific eQTLs (fig. S9A). We
focused on breast, the tissue with the most
sb-eQTLs and the largest sex differences in
cellular composition (figs. S7A and S8B).
We tested 261 breast sb-eQTLs for enrichment
of cell type interacting cis-eQTLs (ieQTLs)
(9, 29). These ieQTLs correspond to cis-eQTLs
where the effect varies depending on estimated
cell type abundances (29). Breast sb-eQTLs
were strongly enriched (p1 = 0.66 and 0.89)
for ieQTL signal corresponding to adipocytes
and epithelial cells (fig. S9B). After including
an interaction term for genotype × epithelial
cell abundance estimates in the sb-eQTLmodel,
58% of breast sb-eQTLs (152/261) remained
significant, whereas for 42% of sb-eQTLs (109/
261), the genotype × sex effect was strongly
attenuated (fig. S9C and table S14). For exam-
ple, the strongest breast sb-eQTL, rs2289149-
LINC00920 (P = 4.83 × 10–11), was not significant
after incorporating the genotype × epithelial
cell abundance estimates in themodel (bG×Sex =
0.187, 95% confidence interval = [–0.004, 0.378];
fig. S9C and table S14).
To formally test the impact of cell type com-

position on sb-eQTL detection, we performed
a mediation analysis, using genotype inter-
actions with estimated epithelial cell abun-
dance as a potential mediator (9) (fig. S9D).
We discovered that 60 sb-eQTLs (23%) were
mediated by cell type abundances (average
causal mediation effects P ≤ 0.001) (Fig. 4C
and table S14). Mediation by other cell types
cannot be excluded, particularly by immune
cells: We observed that breast sb-eGenes are
enriched for immunoglobulin variable chain
genes (Fisher’s exact test, odds ratio = 12, P =
9.2 × 10–8). In all cases, the eQTL effect size is
larger in females (table S11). Because immu-
noglobulin genes are mainly expressed in B
cells and are among the most sex-discrimina-
tive genes in breast (fig. S7D), we hypothesize
that immunoglobulin sb-eQTLsmay be driven
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by greater abundances of this cell type in
female breasts. Collectively, these results in-
dicate that a large proportion of sb-eQTLs in
breast are driven by cell type–specific genetic
effects on gene expression that become appar-

ent when cell types differ between sexes,
although our analysis cannot distinguish
whether the tested cell types or others cor-
related with them (fig. S9E) are the true me-
diators of the signal.

Sex-aware eQTL-GWAS colocalization
provides insights into the genetic basis of
complex traits
To assess whether sb-eQTLs are useful as
a means of dissecting the molecular basis of
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Fig. 4. Sex-biased eQTLs (sb-eQTLs). (A) Number of
sb-eQTLs discovered per tissue. Square-root
transformation was applied to the x axis. See Fig. 1 for
tissue abbreviations. (B) Association P values of the
female-stratified (top) and male-stratified (bottom)
cis-eQTLs in the ADRA1A locus in adipose subcutaneous
tissue (upper panels; bF = –0.78, PF = 4.64 × 10–18,
bM = –0.47, PM = 3.98 × 10–10, PG×Sex = 1.05 × 10–5) and
C4BPB locus in breast mammary tissue (lower panels;
bF = 0.40, PF = 2.68 × 10–7, bM = –0.02, PM = 0.89,
PG×Sex = 7.22 × 10–5). Linkage disequilibrium between
loci is quantified by squared Pearson coefficient of
correlation (r2). Diamond-shaped point represents the
top significant eQTL variant across sex-stratified P values.
(C) sb-eQTL mediation analysis of 261 breast sb-eQTLs.
Point coordinates represent the effect size of G×Sex
(x axis) and G×Epithelial cells (y axis) derived from a linear
regression model with both interaction terms. Gray lines
represent confidence intervals of the effect sizes of G×Sex
(horizontal lines) and G×Epithelial cells (vertical lines).
Point size represents sb-eQTL significance; color corresponds
to mediation significance. See (9) for further details.
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complex trait associations, we performed co-
localization (48) between sex-stratified cis-eQTLs
and 87 GWASs, representing 74 distinct com-
plex traits, for 1089 sb-eGenes at amore relaxed
FDR (≤0.50) (9). We identified 74 colocalized
gene-trait pairs [posterior probability of shar-
ing the same causal variant (PP4) > 0.5; Fig. 5,
A to C]. Of these, 58were colocalized (PP4 > 0.5)
in one sex but not in the other—36 for females
and 22 formales—corresponding to 36 unique
genetic loci and 27 distinct traits (Fig. 5, A to
C, and table S15). For 24/36 (67%) female-
stratified and 10/22 (45%) male-stratified
cis-eQTL–trait pairs, evidence for colocaliza-
tion was also found using the male and fe-
male combined GTEx v8 cis-eQTLs (fig. S10A).
For these 34 loci that colocalized in the sex-
combined approach, we found evidence that
the colocalization signal is driven by regula-
tory effects in a single sex. The remaining 12/
36 (33%) female and 12/22 (55%) male gene-
trait colocalizations were not discovered with
the sex-combined approach.
The strongest colocalizations between a trait

and a female-stratified cis-eQTL were identi-
fied for CCDC88C and breast cancer, and for
HKDC1 and birth weight (Fig. 5, C and D). Con-
versely, the strongest colocalizations between a
trait and a male-stratified cis-eQTL were identi-
fied forDPYSL4 and percentage of body fat, and
for CLDN7 and birth weight (Fig. 5, C and E).
CCDC88C is a negative regulator of the Wnt
signaling pathway, a key mechanism in cancer
progression (49), and the CCDC88C female cis-
eQTL signal in breast colocalizes with risk of
breast cancer (Fig. 5D, left), a trait with highly
sex-differentiated incidence and presentation
(50). For breast cancer, we identified two addi-
tional female-driven (PP4F > PP4M) colocal-
ized sb-eGenes, NTN4 and CRLF3 (table S15),
previously reported as breast cancer–relevant
genes (51, 52).
We also discovered a preferential colocali-

zation of blood and immune traits with female-
stratified relative to male-stratified cis-eQTLs
(odds ratio = 2.22; P = 0.047, Fisher’s exact test).
This includes inflammatory bowel diseases,
which showa higher prevalence in femaleswith
increasing age (53), and immune cell abun-
dances in blood, which also exhibit sex differ-
ences (30, 31). Together, these results suggest
that sex-biased genetic regulation of gene ex-
pression may contribute to the etiology of dis-
eases with marked sex differences.
Moreover, we identified colocalization signal

for eQTLs and GWAS of sex-specific traits as
well as signal possibly derived from sex-specific
conditions, such as pregnancy in females and
balding patterns in males. The C9orf66 male-
stratified cis-eQTL signal in breast colocalized
with balding patterns inmales, and theHKDC1
female-stratified cis-eQTL signal in liver colo-
calized with birth weight, which is strongly
influenced by maternal factors (Fig. 5D, right)

(54). The sb-eQTL for this locus in liver was
replicated in an independent dataset (55)
(rs35696875-HKDC1 PF = 2.73 × 10–8, PM =
1.60 × 10–4, z-test P = 0.004; fig. S10B).HKDC1
encodes a member of the hexokinase protein
family and is involved in glucose metabolism.
Multiple variants in perfect or high linkage
disequilibrium with rs35696875 that cause
reduced expression ofHKDC1 have been asso-
ciated with gestational diabetes mellitus risk
(56) and glycemic traits during pregnancy (54).
Here, we confirmed that the HKDC1 female
eQTL signal in the liver colocalizes with ma-
ternal glucose levels in plasmaduringpregnancy
(PP4 = 0.92; fig. S10C). Recently, regulatory
variants spanning multiple enhancers were
found to have a coordinated allelic effect on
HKDC1 expression in hepatocyte-derived cells
(57). Estimates of hepatocyte abundance in
GTEx liver samples did not differ by sex (P =
0.30), and the rs35696875-HKDC1 sb-eQTL
showed no evidence of being a hepatocyte
ieQTL (PG×Hepatocytes = 0.11) (29). Thus, unlike
many sb-eQTLs in breast, the HKDC1 sb-eQTL
in liver did not seem to be driven by sex-
differentiated cell type abundances. TheHKDC1
sb-eQTL alternative allele is associated with
lowerHKDC1 expression, higher maternal glu-
cose levels, and increased birth weight. These
results suggest that the HKDC1 female cis-
eQTL influences glucose metabolism in the
pregnant female, which is reflected in the birth
weight of the offspring. Further investigation is
needed, however, to prove causality.
Additionally, the DPYSL4male-stratified

cis-eQTL signal in skeletal muscle colocalized
with genetic signal associated with percentage
of body fat (Fig. 5E, right). DPYSL4 is linked to
the pathophysiology of obesity and cancer:
p53-inducible DPYSL4 associates with mito-
chondrial supercomplexes and regulates energy
metabolism in adipocytes and cancer cells. Low
DPYSL4 expression is associated with poor
survival of breast cancer patients (58). Of note,
although the colocalizing signal was detected
with the male-stratified cis-eQTL signal, the
low probability of colocalization appears to be
due to the presence of an additional cis-eQTL
in females that is absent inmales. These results
suggest that characterizing sex differences in
the genetic associations of complex traits and
molecular phenotypes can prove useful to dis-
sect allelic heterogeneity.
Five colocalized sb-eGenes (CLDN7, CCDC125,

FAM53B, PLEC, and SOWAHC), corresponding
to cell type interaction cis-eQTL (cell type
ieQTL) signals, also colocalized with reported
GWAS signals (birth weight, blood cell counts,
height, platelet counts, and schizophrenia, re-
spectively) (29). For instance, the male-biased
cis-eQTL rs34958987-CLDN7 in breast (Fig. 5E,
left, and fig. S10D) was identified as an epi-
thelial cell ieQTL in breast (29). Both the sb-
eQTL and cell type ieQTL signals colocalized

with the birth weight GWAS signal (fig. S10E).
This suggests that the origin of these sex dif-
ferences in gene-trait associations may be in
sex-differentiated cell type abundances.
Finally, to assess whether sex-biased eQTL

signals are reflected in sex-biased GWAS ef-
fects, we obtained sex-stratified GWAS data
for 36 of the 58 colocalized gene-trait pairs (9)
(table S15). We identified two of 36 loci with
sex differences in GWAS effect size (FDR ≤
0.05, Bonferroni correction). These two sig-
nals correspond to RNASET2 and CELSR2
genes, which are more strongly associated to
hyperthyroidism in females and to heart at-
tack inmales, respectively. However, with the
current GWAS sample sizes, we observed that,
in general, sex-biased effects at the eQTL level
do not readily translate into sex-biased effects
at the GWAS level, in line with recent power
calculations where millions of GWAS samples
were estimated to be needed to address this
question (37).
Overall, our colocalization results identified

loci where sex-differentiated cell type abun-
dances mediate genotype-phenotype associa-
tions, and also loci where sex may play a more
direct role in the underlying molecular mech-
anismof the association, as in theHKDC1 locus.
For future studies, accounting for context or
environment (sex in the present study) in co-
localization approaches is a promising approach
to the discovery of gene-trait associations and
their underlying origins.

Discussion

We identified widespread sex-biased gene ex-
pression in all tissues, with 37% of genes ex-
hibiting sex bias in at least one tissue, but
with overall small (median FC = 1.04) sex ef-
fects. These results derive from overlapping
male and female distributions of interindividual
expression variation, indicative of differential
expression as opposed to completely dimorphic
expression. These genes represent diverse mo-
lecular and biological functions, and they in-
clude genes relevant to disease and clinical
phenotypes. As expected, the strongest sex
bias was observed for X-chromosome genes,
whereas the vast majority of sex-biased genes
were autosomal, which suggests the influence
of sex on genome-wide regulatory programs.
As reported in (59) but not well characterized
to date, we discovered that a portion of these
genes were nonrandomly distributed across
the genome, suggesting sex differences in re-
gional regulation. Integration of these results
with sex-aware analysis of epigenetic and chro-
mosome conformation capture Hi-C data
may provide mechanistic insights into these
patterns.
Although we identified a set of X-linked

geneswith sex-biased expression acrossmany
tissues, the overall sharing of sex-biased ex-
pression among tissues was strongly skewed
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toward tissue specificity, with 18.2% of sex-
biased genes discovered in only a single tis-
sue. The high tissue specificity of sex-biased
gene expression and the enrichment of TFBSs
in sex-biased gene promoters implicate specific
TFs in mediating sex-biased expression. Func-
tional experiments to assess sex-differentiated
TF binding are needed to evaluate the role of
TF function in observed patterns.
In contrast to the large impact of sex on

gene expression levels, the overall extent of sex
effects on genetic regulation in cis is much less
(369 sb-eQTLs). This observation is consistent
with an overall weaker role of sex in genetic
regulation but is also affected by differences in
power of the two analyses (60). For sb-eQTLs,
the combination of small genotype × sex inter-
action effect sizes, high interindividual expres-
sion heterogeneity, and the sex imbalance in
the GTEx collection affects the power of the
interaction test. This implies that much larger
cohorts are needed to fully characterize this
phenomenon, particularly to assess sex ef-
fects for all cis variants and genes. The rel-
atively modest number of G×Sex interactions
for a factor as impactful as sex suggests that
other, more subtle genotype-interacting envi-
ronmental factors are likely to be challenging
to identify [as noted in (39)]. The sb-eQTL
analysis is also affected by cell type heteroge-
neity within tissues. We demonstrated that a
portion of sb-eQTLs are mediated by cell type
composition, which suggests that a portion of
the sb-eQTL signal may derive from the com-
bination of cell type–specific eQTLs and sex
differences in the tissue’s cell type compo-
sition. The remaining loci for whichwe had no
evidence of cell type mediation may represent
true sex differences in genetic regulation of
these genes, but might also derive from un-
known factors confounded with sex, including
cell types that were not part of our analysis.
Thus, the full impact of cell type differences
across tissues remains to be determined.
The identification of sb-eQTLs that are un-

equivocally not derived from sex differences
in cell type abundances cannot be assessed
with analysis of sb-eQTLs in bulk tissue. We
anticipate that single-cell sb-eQTL analysis will
help to disentangle sex effects on the genetics

of gene expression that derive from sex differ-
ences in tissue composition versus those that
derive from sex chromosome status. How-
ever, this approach also has limitations due
to the removal of cells from the in situ tissue
environment—including, for example, the pres-
ence of other cell types and diverse hormonal
environments.
In efforts to understand the molecular

basis of sex differences in disease and other
phenotypes, it is important to note that the
connection between the molecular changes
observed here and complex phenotypes is
likely to be complicated by many compen-
satory and buffering effects (61). Despite ex-
tensive sex differences at the transcriptome
level, the majority of biology at all phenotype
levels is shared between males and females.
Furthermore, the sex differences observed
here are based on a snapshot of mostly older
individuals. Sex differences that occur dur-
ing different developmental stages, in specific
environments, or in specific disease states are
not well represented in our analysis. For ex-
ample, sex biases are observed in many can-
cers (1). Our results provide a resource of sex
effects in “nondiseased” tissues to compare
with those of disease cohorts. We note that
sex is highly correlated with many features
of behavior and external environments [e.g.,
smoking (62)], and disentangling sex differ-
ences driven by inherent biology versus gen-
dered environments is an important further
challenge.
Beyond gene expression, sex-biased genetic

regulationmay also contribute to higher-order
phenotypes such as complex traits and dis-
eases; colocalization analysis of sex-stratified
cis-eQTLs and sex-combined GWAS summary
statistics yielded variant-gene-trait associations
that were not detected in combined-sex cis-
eQTL colocalization analysis. In general, context-
aware colocalization analyses may help to
elucidate the origin of gene-trait associations,
as hypothesized here for HKDC1’s impact on
birth weight through alteration of glucose
metabolism in a pregnant female’s liver. We
show that sex-biased gene-trait associations
are likely attributable to either allelic heter-
ogeneity in the combined-sex cohort or genetic

effects on gene expression that are (predom-
inantly) driven by a single sex; colocalized sb-
eGenes cannot be considered as proxies of loci
harboring sex differences in the genetic ar-
chitecture of the linked trait. Because sex-aware
colocalizations can provide insights into the sex-
differentiated genetic architecture of disease, we
expect future work in this area combining sex-
stratified cis-eQTLs with summary statistics
from sex-stratified GWASs to enable us to
fully comprehend the impact of sex on human
health and disease. The extension of analytical
approaches to facilitate widespread genetic
analysis of sex chromosomes is an important
step toward these new research directions.

Methods summary

Sex-differential expression was performed with
voom-limma (63) andMASH (64) (fig. S1A). Sex-
differential effect sizes and gene expression
levels were investigated for tissue specificity
with the Tau index (65), clustered with pvclust
(66), and compared with dendextend (67)
(fig. S3A). Sex predictivity of sex-biased genes
per tissue was quantified through gradient-
boosted tree classifier models (68) (fig. S4A).
Positional gene enrichment analysis of sex-
biased genes was performed with PGE (18)
(fig. S5A). Transcription factor binding site
enrichment in promoter regions of sex-biased
genes was performed with Unibind (22) and
runLOLA (69) (fig. S5E). Gene set enrichment
analysis was performed with fgsea (70) (fig.
S6A) and results characterized with Cyto-
scape (71). Sex differences in cell type abun-
dances and their effect on histopathological
phenotypes were explored using linear re-
gression. sb-eQTL mapping was implemented
using an adaptation of FastQTL (72) (fig. S8A);
sb-eQTLs were validated using haplotype-
level allelic expression data generated with
phASER and allele-specific expression mod-
eling using EAGLE. Characterization of sex-
specific cis-eQTL effects was performed with
linear regression. Mediation of G×Sex by
G×Epithelial interactions was tested with
the mediation R package. Colocalization of
GWAS and eQTLs was performed with coloc
(48). Further details for each analysis are
provided in (9).
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Fig. 5. Colocalization of sb-eQTLs with GWAS traits. (A) Posterior probability
(PP4) of 74 colocalized gene-trait pairs where a GWAS shows evidence of
colocalization with the female-stratified and/or male-stratified cis-eQTL signal
(PP4 > 0.5). Numbers of colocalizing loci per tissue are shown in parentheses.
(B) Numbers of colocalizing loci for female and male cis-eQTLs. (C) GWAS-eQTL
colocalizing genes (PP4 > 0.5) color-labeled by eQTL tissue of origin according
to labels in (A) (x axis) are categorized by the sex where the colocalization
signal is maximized with the corresponding GWAS trait (y axis). Comparing the
colocalization PP4 values for male and female cis-eQTL signals, the estimates
can be maximum in females (red) or males (blue). (D) Genotype-phenotype
association P values of the CCDC88C (left) and HKDC1 (right) loci. For the
CCDC88C locus, panels illustrate GWAS signal for breast cancer (top) and

CCDC88C cis-eQTL signal for females (middle) and males (bottom) in breast
mammary tissue. For the HKDC1 locus, panels illustrate GWAS signal for birth
weight (top) and HKDC1 cis-eQTL signal for females (middle) and males
(bottom) in liver. (E) Genotype-phenotype association P values of the CLDN7
(left) and DPYSL4 (right) loci. For the CLDN7 locus, panels illustrate GWAS signal
for birth weight (top) and CLDN7 cis-eQTL signal for females (middle) and males
(bottom) in breast mammary tissue. For the DPYSL4 locus, panels illustrate
GWAS signal for body fat (top) and DPYSL4 cis-eQTL signal for females (middle)
and males (bottom) in muscle skeletal tissue. In (D) and (E), linkage
disequilibrium between loci is quantified by squared Pearson coefficient of
correlation (r2). Diamond-shaped point represents the top significant cis-eQTL
variant across sex-stratified P values.
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