

Final degree project

Degree in Computer Engineering

Faculty of Mathematics and Computer Science

University of Barcelona

Peer Evaluation System: A web application to
provide peer evaluation for a workshop

Qijun Jin

Director: Eloi Puertas Prats
Realized at: Department of Mathematics
 and Computer Science

Barcelona, 13 de June de 2022

Abstract

For any academic organization, the link between student and professor is the main support on which

academic knowledge is based. Students are the ones who take a set of subjects and will be evaluated

along the course. In contrast, professors are the ones who will evaluate the students by a set of criteria

for each assignment of the subject. This evaluation procedure is known as the standard way to provide

a qualification to the student where the professor is the only one who can influence the qualification.

This project is focused on the workflow of the whole evaluation period of an activity where students not

only participate in the task but also evaluate their peers to get scored after the task is finished. Its goal

is to analyze the current workshop activity on the virtual campus of the University of Barcelona (based

on Moodle) and then synthesize the core requirements of the system into the designed web application

that serves as a third-party platform that is more intuitive for both students and professors to get into.

By this, a whole sequence of the evaluation will take place at a web application which is the platform

where students can participate in the process of peer evaluation in the same task. While the professor

is responsible for evaluating both the evaluations given by the students and the attached files.

Keywords: Distributed system; Web application; UX/UI; Flask; Python; Vue; CSS; HTML; Javascript;

Peer evaluation.

Resumen

Para cualquier organización académica, el vínculo entre estudiante y profesor es el principal soporte

sobre el que se asienta el conocimiento académico. Los estudiantes son los que toman un conjunto de

materias y serán evaluados a lo largo del curso. En cambio, los profesores son los que evaluarán a los

alumnos mediante una serie de criterios para cada trabajo de la asignatura. Este procedimiento de

evaluación se conoce como la forma estándar de otorgar una calificación al estudiante donde el

profesor es el único que puede influir en la calificación.

Este proyecto se centra en el flujo de trabajo de todo el período de evaluación de una actividad en la

que los estudiantes no solo participan en la tarea, sino que también evalúan a sus compañeros para

obtener una puntuación una vez finalizada la tarea. Su objetivo es analizar la actividad actual del taller

en el campus virtual de la Universidad de Barcelona (basado en Moodle) y luego sintetizar los requisitos

básicos del sistema en la aplicación web diseñada que sirve como una plataforma de terceros más

intuitiva para tanto estudiantes como profesores para entrar.

De esta manera, toda una secuencia de la evaluación se llevará a cabo en una aplicación web que es

la plataforma donde los estudiantes pueden participar en el proceso de evaluación por pares en la

misma tarea. Mientras que el profesor es el responsable de valorar tanto las valoraciones dadas por

los alumnos como los archivos adjuntos.

Palabras claves: Sistema distribuido; Aplicación web; UX/UI; Flask; Python; Vue; CSS; HTML;

Javascript; Evaluación por pares.

Resum

Per a qualsevol organització acadèmica, la vinculació entre estudiant i professor és el principal suport

en què es fonamenta el coneixement acadèmic. Els estudiants són els que cursen un conjunt

d'assignatures i seran avaluats al llarg del curs. En canvi, els professors són els que avaluaran els

estudiants mitjançant un conjunt de criteris per a cada treball de l'assignatura. Aquest procediment

d'avaluació es coneix com la forma estàndard d'oferir una qualificació a l'estudiant on el professor és

l'únic que pot influir en la qualificació.

Aquest projecte se centra en el flux de treball de tot el període d'avaluació d'una activitat on els

estudiants no només participen en la tasca sinó que també avaluen els seus companys per obtenir una

puntuació un cop finalitzada la tasca. El seu objectiu és analitzar l'activitat actual del taller al campus

virtual de la Universitat de Barcelona (basat en Moodle) i després sintetitzar els requisits bàsics del

sistema en l'aplicació web dissenyada que serveix com a plataforma de tercers més intuïtiva per tant

estudiants com professors per entrar-hi.

D'aquesta manera, tota una seqüència de l'avaluació es durà a terme en una aplicació web que és la

plataforma on els estudiants poden participar en el procés d'avaluació entre iguals en la mateixa tasca.

Mentre que el professor és l'encarregat d'avaluar tant les avaluacions fetes pels estudiants com les

fitxes adjuntes.

Paraules claus: Sistema distribuït; Aplicació web; UX/UI; Flask; Vue; CSS; HTML; Javascript;

Avaluació per parells.

Acknowledgments

I would like to thank Dr. Eloi Puertas Prats, the tutor of this fieldwork, for all the help and support he has

given to me during the completion of my project, for encouraging me to be strong, and for the constant

availability of the meetings which guided me through the project with good results.

To all the professors and department of the Faculty of Mathematics and Computer Science of the

University of Barcelona who have made my training in the field of Computer Science possible and

taught me to work in a team and think to adapt to any situation, thus making me a valuable piece in any

situation future project.

Thank you very much to all of you.

Table of Contents

1. Introduction ... 1
1.1. Motivation ... 1
1.2. Context ... 2
1.3. State of art .. 2
1.4. Objectives ... 4
1.4.1. Main objectives ... 4
1.4.2. Specific objectives .. 4
1.4.2.1. Front-end level .. 4
1.4.2.2. Back-end level .. 5
1.5. Document structure .. 5
2. Research .. 7
2.1. Analysis .. 7
2.2. Requirements ... 9
2.2.1. Administrator requirements ... 9
2.2.2. Professor requirements .. 9
2.2.3. Student requirements ... 9
2.3. Product backlog .. 10
3. Planning .. 13
3.1. Timing ... 13
3.2. Sprints ... 14
4. Technologies .. 17
4.1. Programming languages and other languages ... 17
4.1.1. HTML (Hypertext Markup Language) ... 17
4.1.2. CSS (Cascading Style Sheets) ... 17
4.1.3. JavaScript ... 17
4.1.4. Python ... 18
4.2. Frameworks .. 18
4.2.1. Vue ... 18
4.2.2. Vuex .. 19
4.2.3. Flask ... 20
4.3. Platform .. 21
4.3.1. Heroku .. 21
4.3.2. GitHub ... 21
5. Design ... 23
5.1. Distributed application architecture ... 23
5.2. Branding ... 24
5.3. Client ... 25

5.3.1. Home page ... 25
5.3.2. Auth page ... 26
5.3.3. Student page .. 26
5.3.4. Professor page ... 28
5.3.5. Admin page ... 30
5.4. Server ... 31
5.4.1. Configuration class ... 31
5.4.2. Resources ... 31
5.4.3. RESTful API .. 32
5.4.4. Models .. 33
5.4.5. Database entities .. 35
5.4.6. Database relationships ... 39
5.4.7. Security metrics .. 40
6. Implementation ... 41
6.1. Vue Router .. 41
6.2. Stateness on the selected component .. 43
6.3. Pairing algorithm ... 44
6.4. Grading sheet ... 45
7. Deployment .. 47
8. Testing and Results .. 49
8.1. Testing .. 49
8.2. Results .. 50
9. Costs ... 51
10. Future works ... 53
10.1. Learning Tools Interoperability (LTI) ... 53
10.2. Extend session ... 54
10.3. More security metrics .. 54
11. Conclusion .. 55
12. References ... 57
13. Annex .. 61
13.1. User stories ... 61
13.2. API documentation ... 73
13.3. Web page results .. 85
13.3.1. App module ... 85
13.3.2. Auth module .. 89
13.3.3. Admin module ... 90
13.3.4. Professor module .. 91
13.3.5. Student module ... 95

Figures

Figure 1 - Workshop activity (Source: www.moodle.org) ... 2

Figure 2 - Website of peerassessment.com (Source: peerassessment.com) .. 3

Figure 3 - Website of peergrade.io (Source: www.peergrade.io) ... 3

Figure 4 - Workflow of UB's workshop from the student side ... 7

Figure 5 - Workflow of UB's workshop from professor side .. 7

Figure 6 - Workflow of the peerassessment.com application (Source: peerassessment.com) 8

Figure 7 - Workflow of the www.peergrade.io application (Source: www.peergrade.io) 8

Figure 8 - Gantt diagram of the sprints ... 15

Figure 9 - Data-flow of Vuex (Source: vuex.vuejs.org) .. 19

Figure 10 - State management of Vuex (Source: vuex.vuejs.org) .. 20

Figure 11 - Diagram of a client-server architecture (Source: www.wikipedia.com) 23

Figure 12 - Logotype of the application .. 24

Figure 13 - Sketch proposal for the home page ... 25

Figure 14 - Sketch proposal for the auth page ... 26

Figure 15 - Sketch proposal for the attach file subpage ... 27

Figure 16 - Sketch proposal for the evaluate peers subpage ... 27

Figure 17 - Sketch proposal for the review evaluations subpage ... 27

Figure 18 - Sketch proposal for the conclude task page .. 28

Figure 19 - Sketch proposal for the original set up task subpage .. 29

Figure 20 - Sketch proposal for the pair peers subpage .. 29

Figure 21 - Sketch proposal for the qualify peers subpage .. 29

Figure 22 - Sketch proposal for the retrospect task subpage ... 30

Figure 23 - Sketch proposal for the admin page .. 30

Figure 24 - Diagram of the configuration classes ... 31

Figure 25 - Diagram of the resource classes .. 33

Figure 26 - Diagram of the model classes .. 34

Figure 27 - Diagram of the database tables and relationships ... 39

Figure 28 - Code of router/index.js ... 41

Figure 29 - Code of auth/router/isAuthenticatedGuardAdmin.js ... 42

Figure 30 - Code of auth/login.vue ... 42

Figure 31 - Code of admin/router/index.js .. 42

Figure 32 - Active state on selected component .. 43

Figure 33 - Code of professor/components/Task.vue .. 43

Figure 34 - Code of professor/components/Task.vue .. 43

Figure 35 - Code of professor/components/Task.vue .. 44

Figure 36 - Code of professor/components/TaskList.vue ... 44

Figure 37 - Code of professor/components/TaskList.vue ... 44

Figure 38 - Code of resources/task_pairing.py ... 45

Figure 39 - Code of resources/task_user_mark.py .. 46

Figure 40 - Homepage of the web application .. 47

Figure 41 - Home page of the web application ... 50

Figure 42 - LTI authentication sequence (Source: www.wikipedia.com) .. 53

Tables

Table 1 - User stories ... 11

Table 2 - Time estimation by user stories ... 14

Table 3 - Sprints duration ... 15

Table 4 - Resource classes .. 32

Table 5 - Account entity .. 35

Table 6 - User entity ... 35

Table 7 - Task entity ... 36

Table 8 - Aspect entity .. 36

Table 9 - Pairing entity .. 37

Table 10 - Evaluation entity .. 37

Table 11 - Attachment entity ... 38

Table 12 - Conclusion entity ... 38

Table 13 - Mark entity ... 38

Table 14 - Testing issues ... 49

Table 15 - Project costs .. 51

 1

1. Introduction

This project is about the process of research and analysis followed by the design and development of

a web application that serves as an e-learning tool for peer evaluation [1] with the purpose to be used

by any lecturer.

The process starts with research and analysis of the current workshop on the virtual campus of the

University of Barcelona, followed by conceptualization and design proposal of the frontend and backend,

and finally leads to the implementation of the website, meeting always the requirements established by

the tutor of this project who is the product owner.

The project is structured in such a way that we first proceed to investigate the current market trends in

this type of e-learning tool, define the product backlog of the project, and the frameworks used to

develop it, as well as the technologies used behind together with the platform, to establish a well-

structured information base.

With all this data, we proceed to make design proposals from the product backlog of the project, which

include both frontend and backend. The frontend part begins by making branding for the project and is

followed by making sketches of the website, from which we get a list of components that will be

implemented. The backend part begins by defining the database of the system and is followed by

defining the endpoints of the resources that the system consumes.

Once all these features are implemented, the project will be deployed on a platform for production.

1.1. Motivation

The main reason that led me to choose this project is the large number of areas it covers. Starting with

the visual part and logical part of the frontend design which users will interact with on the webpage,

followed by the connection part for transferring data between client and server. On the server side, the

design of the whole database architecture allows the storage of the data in an appropriate way. Finally,

the deployment of the web application into production. Internally of the application, several algorithms

must be implemented to pair students and calculate the final mark of each student.

A simple approach from the beginning of the implementation already requires a lot of knowledge in

several fields such as frontend, backend, database, deployment, algorithms, and other technologies.

Moreover, the analysis of the webpage of the current workshop on the virtual campus of the University

of Barcelona, the research of the appropriate UX/UI design for an academic webpage, and the synthesis

of the whole workflow that ease the evaluation sequence have been also an important part of this project.

 2

The diversity of work involved in this project has made me wonder to understand how each element

works, think about how I could connect each element, incorporate new technology and feature into the

system, and deliver the best result for the project.

1.2. Context

The context of this application is based on the participative evaluation system of the Workshop activity

on Moodle [2], where an evaluation is a systematic determination of a subject's merit, worth and

significance, using criteria governed by a set of standards. The evaluation system that we are used to

receiving at the educational institution is that the professor qualifies the submission of the student for

an assignment. In the peer evaluation system, the point is to commit students to evaluate the

submission of other students and provide a qualification of the activity, then this score is marked as a

part of the final mark that the student will receive. While professor will also provide a mark for the review

made by students, meaning that the student must provide a justified mark. The whole procedure of the

peer evaluation system has been highly influenced by the peer review activity which is a method used

in the field of software engineering to improve the quality of work and to learn from others.

1.3. State of art

There are a few contents related to the field of this project. The websites which are more interesting to

be reviewed and inspired are:

- Workshop activity on the virtual campus of the University of Barcelona (based on Moodle): It is

an integrated tool on Moodle that allows professors to manage the peer assessment task, and

students to add submissions which are then distributed amongst their peers for assessment

based on a grading scale specified by the professor. In figure 1, there is a snapshot of the activity.

Figure 1 - Workshop activity (Source: www.moodle.org)

 3

- https://peerassessment.com: It is a platform that is aimed to automate the peer assessment

process, making it easier to hold more frequent peer assessments that return real feedback to

students so that students can improve their team skills. It helps the professor to prepare a peer

assessment for your entire class in under 5 minutes. The platform takes care of the rest by

collecting and distributing the feedback to students, plus preparing a grading sheet for the

professor. In figure 2, there is a snapshot of the website.

Figure 2 - Website of peerassessment.com (Source: peerassessment.com)

- https://www.peergrade.io: It is a platform for helping students give and receive written feedback

on written work. First, teachers set up an account and tune the settings for how and when

students can submit their work. Students can then log in and access their teacher's class, and

they can interact with other students' submissions and add comments and edits. Teachers can

then track their students' comments and their progress, and teachers can share feedback with

students. In figure 3, there is a snapshot of the website.

Figure 3 - Website of peergrade.io (Source: www.peergrade.io)

 4

1.4. Objectives

This section will describe the main objectives and the specific objectives that this project will address.

1.4.1. Main objectives

The main objective of the project is to design a webpage for academic uses which can able the

community of students to perform peer reviews and peer assessments of a task under a set of criteria

determined by the professor, in the application, the professor is also responsible to determine the state

of the workflow of the task. Both students and professors contribute to the scoring process of the

individual task delivery and task review. It will consist of designing an architecture in which all the

requirements of the end-users are satisfied and proposing a frontend design that will be intuitive for the

user to interact with. It will also cover the ideation of different technologies that can be integrated into

the software to improve the ease of using the webpage.

1.4.2. Specific objectives

To carry out this project, the following specific objectives regarding the front-end level and back-end

level must be met:

1.4.2.1. Front-end level

The front-end is the client-side of the application which includes everything that users experience

directly, therefore the design of the webpage must satisfy the following points to provide a good user

experience.

- UX/UI contents: The user interface must be clean, synthetic, and organized. While the user

experience must be intuitive and user-friendly.

- SPA: The webpage must be a single-page application that dynamically rewrites the current

webpage with the new data from the server. The aim is to make it feel like a native app by fast

transitions of components.

- Multiple roles application: The webpage must route users by their role so that different users get

to their corresponding space after logging in.

- Authentication: The webpage must be logged in via an authentication method connected with

the server.

- File management: The webpage must allow to transfer and display the file managed during the

assignment.

 5

1.4.2.2. Back-end level

The back-end is the server-side of the application which includes everything that the machine needs to

process and provide an output of the system to the user, therefore the design of the architecture behind

the system is required to meet the needs of the system.

- API: It will include the design of the endpoints that will be required for the system to manage the

basic workflow of the evaluation system.

- SQL Database: The database must follow the design principles of the SQL.

- Authentication: The data manipulation in the database must be authenticated by token.

- File management: The server must allow to save and send the file managed during the

assignment.

- Grading sheet: The grading sheet, which is the output of the system once the whole process of

peer review and peer assessment is done, must be always generatable. By this, it means that

for any uncertainty on the input of the evaluation made by the student, the system will always

output the correct result under certain criteria.

- Pairing algorithm: The algorithm of pairing must be fast and efficient.

1.5. Document structure

The content of this document is organized in the following chapters:

- Research: Analysis of the current UB virtual workshop, the definition of the requirements that

each component that the system must fulfill, and breakdown of the product backlog.

- Planning: Explanation of the methodology applied in the project and the distribution of the

different tasks in the development periods.

- Technologies: List of the technologies used in the system and justification of why they have been

chosen.

- Design: Explanation of the frontend and backend designs.

- Implementation: Explanation of the technical aspects that implement the system internally.

- Deployment: Explanation of the platform used and how the project is deployed.

- Tests and results: Exposition of the tests carried out on the system and result of the project.

- Costs: Description of the economic costs involved in the commercial development of the system.

- Future works: List of possible and future lines of improvement.

- Conclusions: The summary of the project contextualized the initial problems of the project.

- References: Citations of the source of information used to develop the project.

- Annexes: Documentation and guidelines for the use and maintenance of the system.

 6

 7

2. Research

This section details the basic features that the application must have from analyzing the three websites

mentioned at the state along with all the requirements that the project must satisfy, and the product

backlog generated from user stories.

2.1. Analysis

First, we start with the workshop on the virtual campus of the University of Barcelona that serves as a

baseline for this project. From the student’s side, it begins with the authentication where the student is

required to be authenticated to get into the system. Once the student gets into the system, by default,

the student must get into the assignment to which the workshop belongs. After getting into the workshop,

the student can see the timeline of the phases by which the workshop is set. Depending on the phases,

the student will perform the following tasks: submit the task delivery, make the peer review and

assessment, and review the peer feedback. In figure 4, we can see the workflow of the activity from

student side.

Figure 4 - Workflow of UB's workshop from the student side

From the professor’s side, it also begins with the authentication where the professor is required to be

authenticated to get into the system. Once the professor gets into the system, by default, the professor

must create the Workshop activity which is in the Set up phase, here the professor must provide detailed

grading criteria for the students to use. Since then, the students can submit work in the Submission

phase where the professor must allocate submission to decide if you yourself want to choose which

student assesses whose work (Manual allocation), or if you want Moodle to choose for you (Random

allocation). The Assessment phase allows students to review each other’s submissions and the

professor can monitor their progress by looking at the grades underneath the phases screen. Finally,

the Grading evaluation phase, Moodle calculates the final grades for submission and for assessment,

here the professor can decide whether to maintain or delete some of the grades from the students. In

figure 5, we can see the workflow of the activity from professor side.

Figure 5 - Workflow of UB's workshop from professor side

 8

Second, we are going to analyze the workflow of the https://peerassessment.com platform, at which

the professor must perform the following steps:

- Create a class and load students

- Set up and schedule an assessment

- Run the assessment

- Distribute the student report and view the instructor report

In figure 6, we can see the workflow of the application.

Figure 6 - Workflow of the peerassessment.com application (Source: peerassessment.com)

Third, we are going to analyze the workflow of the https://www.peergrade.io platform, at which both the

students and the professor must perform the following steps:

- The professor sets up an assignment: The professor starts by setting up an assignment. Then,

pick a feedback rubric from the library or create its own, select an assignment template and it is

ready to get started.

- Students submit their work: Students submit their work to the assignment. They can submit

anything such as text, files, videos, links, and even Google docs.

- Students review each other: Students give each other anonymous feedback through your rubric.

- Students engage with the feedback: Students receive feedback from their peers, and they react,

discuss, and engage with their feedback.

- The professor has a complete overview: The professor gets a complete overview of everything

that is happening in the assignment.

In figure 7, we can see the workflow of the application.

Figure 7 - Workflow of the www.peergrade.io application (Source: www.peergrade.io)

 9

2.2. Requirements

Considering the workflow of the peer evaluation system along with the management of the features that

are composed at each step. The requirements of the project have been divided by the different roles of

the users who are interacting with the system: administrator requirements, professor requirements, and

student requirements.

2.2.1. Administrator requirements

The administrator will manage the accounts that are registered in the database of the system. Therefore,

it has the following requirement:

- Management of the accounts

2.2.2. Professor requirements

The professor will manage the tasks that students will participate in for the peer evaluation. Therefore,
it has the following requirements:

- Management of the tasks

- Management of the users that can participate in the task

- Management of the aspects that compose the task

- Management of the pairings that the user (giver of the evaluation) will be evaluating pairing_user

(receiver of the evaluation) in the task

- Management of the scoring for the students in the task

- Obtainment of the student’s submitted task delivery

- Obtainment of the final grading sheet of the task

2.2.3. Student requirements

The student will perform the peer evaluation of the task. Therefore, it has the following requirements:

- Submit the task delivery
- Obtainment of the peer’s submitted task delivery

- Evaluate the peer’s submitted task delivery
- Review the peer’s evaluations
- Conclude the task

 10

2.3. Product backlog

From the requirements listed in the previous section, the user stories to be implemented have been

defined for the product backlog.

User stories are informal representations of the requirements of a software project. They are used in

Agile development methodologies such as Scrum because of their ability to provide a quick response

to changing requirements.

The below user stories will be expressed in the following sections: an identifier, a role, an action, and

an outcome. First, we have the identifier that serves to unambiguously distinguish a user story. Then

the set of role, action, and outcome constitutes the user story which is interpreted as follows: As a [role],

I want to [action], so that I can [outcome]. The detailed version of the user stories with acceptance

criteria is attached to the annex 13.1. of the project, where the acceptance criteria refer to a set of

predefined requirements that must be met to mark a user story complete.

Before listing the user stories, it is necessary to define the roles that will be in the system. There will be

three types: administrator, professor, and student. The user role will correspond to the client who

requests the server data. The administrator has the aim to manage account data, the professor has the

aim to manage all the phases of the evaluation of the tasks, and the student has the aim to perform the

peer evaluation of the task.

In table 1, we can see the user stories of the project.

User
Story

As a [role] I want to [action] So that I can [outcome]

US1 Professor,
Student

Upload a form data of the sign-
up account

Get access to the platform

US2 Administrator,
Professor,
Student

Upload a form data of the log in
account

Get into the platform

US3 Administrator,
Professor,
Student

Click the log out button Leave from the session

US4 Administrator Upload a form data of the user Create a user in the system

US5 Administrator Upload a new form data of the
user

Change the data of the user in the
system

US6 Administrator Click the remove user button Remove the user from the system

US7 Administrator Click the remove user’s
account button

Remove the account of the user
from the system

US8 Professor Upload a form data of the task Create a task space for students

 11

US9 Professor Upload a new form data of the
task

Change the data of the task in the
system

US10 Professor Click the remove task button Remove the task from the list of
tasks

US11 Professor Upload a form of student Create a student to the task

US12 Professor Upload a CSV file of students Create a list of students to the task

US13 Professor Click the remove student
button

Remove the student from the list of
assigned students to the task

US14 Professor Upload a form of the aspect Set a criteria for evaluation

US15 Professor Upload a new form data of the
aspect

Change the data of the criteria for
evaluation

US16 Professor Click the remove aspect button Remove the aspect from the list of
assigned aspects to the task

US17 Professor Upload a form of pairing Create a pairing for evaluation

US18 Professor Compute automatically the
pairings

Create a list of pairings for
evaluation

US19 Professor Click the remove pairing button Remove the pairing from the list of
pairings

US20 Professor,
Student

Click the attachment download
button

Check the peer’s task delivery

US21 Professor Click see review qualification
button

Check the result of the review
qualification

US22 Professor Upload a form of review
qualification

Create a review qualification for the
peer review

US23 Professor Click see general qualification
button

Check the result of the general
qualification

US24 Professor Upload a form of general
qualification

Create a general qualification for the
peer

US25 Professor Click grading sheet download
button

Check the grading sheet of the
students

US26 Professor Click increase / decrease state
button

Manage the state of the task

US27 Student Upload a file of attachment Be evaluated by other peers

US28 Student Upload a form of evaluation Create an evaluation for the peer

US29 Student Click see evaluation button Check the result of the evaluations
of the task

US30 Student Upload a form of conclusion Create a conclusion for the task

Table 1 - User stories

 12

 13

3. Planning

The development of this project has been carried out following the Scrum agile work methodology. This

methodology involves applying a series of best practices focused on obtaining the best possible result

from a project and based on the way highly productive teams work.

Scrum is frequently used in complex projects where the requirements are not fixed or are not very well

defined and where it is necessary to obtain results quickly. For this same reason, in Scrum, partial

deliveries of the product are made regularly, which also helps to resolve situations where the customer

is not getting what he wants.

3.1. Timing

Although in this case Scrum is not applied in full, since this project has not been done as a team, the

advantages of this methodology have been equally reflected. Mainly, the achievement of results, the

short testing periods, and a better compliance rate.

Another key point in the choice of this methodology has been its flexibility, which allows us to modify

the thread of the facts at any time, thus achieving the resolution of conflicts on the fly and in an almost

negligible way, in addition to avoiding unnecessary perfectionism.

In this case, the project has been divided into two large blocks: one dedicated to the development and

the other to the memory. Considering them as separate projects, it has been possible to use different

durations for the sprints of each one.

To distribute the user stories among all the sprints, we first estimated the approximate number of hours

that their implementation would require. In table 2, we can see the time estimation for each user story:

User Story Role Action Estimated time (hour)

US1 Professor, Student Upload a form data of the sign-up
account

10

US2 Administrator,
Professor, Student

Upload a form data of the log in
account

10

US3 Administrator,
Professor, Student

Click the log out button 3

US4 Administrator Upload a form data of the user 5

US5 Administrator Upload a new form data of the user 5

US6 Administrator Click the remove user button 3

US7 Administrator Click the remove user’s account
button

3

 14

US8 Professor Upload a form data of the task 5

US9 Professor Upload a new form data of the task 5

US10 Professor Click the remove task button 3

US11 Professor Upload a form of student 5

US12 Professor Upload a CSV file of students 35

US13 Professor Click the remove student button 3

US14 Professor Upload a form of the aspect 5

US15 Professor Upload a new form data of the aspect 5

US16 Professor Click the remove aspect button 3

US17 Professor Upload a form of pairing 5

US18 Professor Compute automatically the pairings 40

US19 Professor Click the remove pairing button 3

US20 Professor, Student Click the attachment download button 40

US21 Professor Click see review qualification button 5

US22 Professor Upload a form of review qualification 5

US23 Professor Click see general qualification button 5

US24 Professor Upload a form of general qualification 5

US25 Professor Click grading sheet download button 40

US26 Professor Click increase / decrease state button 5

US27 Student Upload a file of attachment 5

US28 Student Upload a form of evaluation 5

US29 Student Click see evaluation button 5

US30 Student Upload a form of conclusion 5

Total estimated time (hours) 281

Table 2 - Time estimation by user stories

3.2. Sprints

After this, in table 3, we can see that the user stories are packaged into modules throughout the sprints

as shown:

Sprint Objective Duration (weeks)

1 Initiation of the project 1

 15

2 Research and analysis 1

3 Project definition and requirements 1

4 Front-end design: sketches and proposal 1

5 Back-end design: system and architecture 1

6 Implementation of App module 1

7 Implementation of Auth module 2

8 Implementation of Admin module 1

9 Implementation of Professor module 5

10 Implementation of Student module 4

11 Testing and bugs solutions 1

12 Documentation 2

Total duration (weeks) 21

Table 3 - Sprints duration

In figure 8, we can see the Gantt chart that illustrates the final planned distribution of the sprints:

Figure 8 - Gantt diagram of the sprints

 16

 17

4. Technologies
This section details all the languages, technologies, and platforms that are needed to elaborate on this

project.

4.1. Programming languages and other languages

4.1.1. HTML (Hypertext Markup Language)

HTML [3] is a language used to transfer information over the network using HTTP (Hyper Text Transfer

Protocol), which defines the meaning and structure of web content. It allows web users to create and

structure sections, paragraphs, and links using elements, tags, and attributes. Besides, other

technologies are used to describe the appearance and behavior of the webpage.

The popular usage of HTML makes it a standard markup language that is recognized and interpreted

by popular web browsers and its widespread acceptance as a language for web design.

4.1.2. CSS (Cascading Style Sheets)

CSS [4] is a design language that makes a webpage look more appealing than just plain or uninspiring

pieces of text. Whereas HTML largely determines textual content, CSS determines the visual structure,

layout, and aesthetics. It is defined as a style sheet language that is fundamental for web design, and

it allows developers to adapt the presentation to different types of devices, such as small screens, and

large screens. We have used CSS to add the appearance of the webpage.

4.1.3. JavaScript

JavaScript [5] is a lightweight object-oriented programming language that is used by several websites

for scripting the webpages. It is an interpreted, full-fledged programming language, which enables

dynamic interactivity on websites when it is applied to an HTML document.

It helps the developers to build modern web applications to interact directly without reloading the page

every time, and it is commonly used to dynamically modify HTML and CSS to update a user interface.

It is widely used for web applications on both client-side and server-side. We have used JavaScript to

add the behavior of the webpage.

 18

4.1.4. Python

Python[6] is designed to be a high-level and general-purpose interpreted language, in which

instructions are executed directly without requiring that they have been previously compiled into

machine language. Besides, it provides a strong level of abstraction as far as computer details are

concerned. All these without restricting its fields of application.

Because of its simplified syntax and its emphasis on natural language, its popularity has increased in

recent years. Thanks to this, a wide variety of libraries are available for almost any purpose. The latter,

coupled with its portability, makes it the perfect language for the development of the system that is the

subject of this project since portability to multiple platforms comes as a standard.

Like any other language, Python has its drawbacks. It presents a slow speed of execution, the usage

of memory is relatively higher than in other languages, the storage of compiled code is also higher than

in other languages and it is also prone to runtime errors.

The greatest part of Python is the support of libraries that can be integrated directly into any kind of

project which makes software developers easier to implement new features.

4.2. Frameworks

4.2.1. Vue

Vue [7] is an open-source front-end framework written in JavaScript for designing user interfaces and

web applications. Unlike other monolithic frameworks, this one is intended to be used incrementally.

Its core library is only focused on the visualization layer so integration with other libraries or existing

projects are achieved with little hassle.

It is very lightweight, so not only is a high download and installation speed achieved, but also a strong

positive impact can be achieved on SEO and user experience. Combined with its lightness, Vue.js

stands out among other popular frameworks such as Angular or React for its performance.

Internally, each piece of the developed web application is structured into components, representing

encapsulated interface elements. This division of the application into components is part of an approach

called Component-Based Architecture that is also applied in Angular and React. The component

structure makes it very easy to reuse components and to integrate HTML, CSS, and JavaScript code

in a single file, making it easy to read and maintain.

Its developers also maintain very concise documentation, so its learning curve is flattened. The

community around this framework is equally large, so there are plenty of libraries, tools, and solutions

to design anything.

 19

Being a relatively new framework, the number of plugins and components that Vue.js has does not

overshadow those that both Angular and React support, for example. Its rapid evolution also

complicates tracking for developers, who are often forced to relearn the framework to keep up.

However, these reasons have not been a drawback in choosing it for front-end development. It’s easy

portability between different devices and internal features such as conditional rendering of elements or

loops, make it an ideal framework for the development of dynamic web pages and adaptive and

spectacular web applications.

The reason for using this framework and not another for the interface has been purely personal. Having

previously used it in other web applications and have obtained very good results, I have preferred it

over others that might be more capable.

4.2.2. Vuex

Vuex [8] is a state management pattern and library for Vue.js applications. It serves as a centralized

store for all the components in an application, with rules ensuring that the state can only be mutated in

a predictable way.

In figure 9, we can see the state management pattern is a self-contained app with the following parts:

- State: the source of truth that drives our app.

- View: a declarative mapping of the state.

- Actions: the possible ways the state could change in reaction to user inputs from the view.

Figure 9 - Data-flow of Vuex (Source: vuex.vuejs.org)

 20

In figure 10, we can see that Vuex is composed of state, mutations, actions, modules, and getters.

- State: the data that our components depend on and render.

- Mutations: synchronous methods to update the state in our Vuex store. These methods are used

to commit and track state changes, it’s a best practice to have actions to call mutations, which

update our state directly.

- Actions: asynchronous information that comes from our API. These methods are used to fetch

data from API and can process this data in two ways, by storing it in the state with a mutation

method or by returning a response to the component that called the action.

- Getters: a method to get data stored from the Vuex store and often used to display the data on

the webpage.

Figure 10 - State management of Vuex (Source: vuex.vuejs.org)

4.2.3. Flask

The server, an essential structure in this work, has been implemented with Flask [9], a framework

focused on web application development.

Flask is a micro-framework written in Python. It's few dependencies with external libraries characterize

it. On the one hand, is perfect because it makes it a lightweight and easy to update web framework. On

the other hand, having no built-in libraries results in more work for the programmer, either by developing

the features manually or by having to build the dependency list manually.

Also, although not by default, Flask has support for API development, which is a key element for the

system being developed. Both the client and the interface will communicate with the server through a

web API, so this support is one of the most important reasons for choosing Flask as a backend.

 21

Other features include easy deployment, support for RESTful requests, extensive documentation, and

high compatibility with many technologies.

In the long term, applications written in Flask can be easily developed, maintained, and scaled despite

being based on a minimalist framework.

4.3. Platform

4.3.1. Heroku

Containers are technologies that isolate applications along with their execution environment and

dependencies, abstracting the application from the environment in which it is executed. This abstraction

makes the deployment of applications much easier and factors such as the characteristics of the

environment do not affect the application.

Heroku [10] is a cloud application container that uses Amazon Web Services cloud services. It saves

the need to have your own servers to have the container and because it is developer-centric, the

developer must spend time managing the container.

It's also easy to scale, use, and get started, making it ideal for small, big-picture projects. Heroku also

includes a set of tools that allow you to integrate databases.

4.3.2. GitHub

It is a collaborative development platform dedicated to hosting projects using Git version control. It

provides several useful features such as bug tracking, workflow management, and continuous

integration.

During the development of a project, countless changes are made to the project's source code while

deploying or delivering it to customers. Git version control keeps track of all modifications that have

been made to the source code. Each record is generated by a commit. Each commit has a unique

identifier that identifies a change or a set of changes. By keeping a record of all commits, developers

are provided with the ability to revisit the source code before a given commit or even restore it.

GitHub [11], based on Git, incorporates some features for collaborative work. One of these features is

branches. Essentially, they are forks of the main source code, with modifications concerning it. With

this feature, multiple people can develop at the same time since the branches are independent of each

other.

 22

 23

5. Design

This section details internal system design issues in terms of architecture, resources, database models,

and security metrics.

5.1. Distributed application architecture

The model applied in this project is the so-called client-server model, as shown in the figure 11. This

type of architecture partitions the tasks or workloads between the providers of a resource or service,

called servers, and those who request the server, called clients.

Figure 11 - Diagram of a client-server architecture (Source: www.wikipedia.com)

Communication between client and server is done using a request-response message pattern. The

client sends a request to the server, which will return a response. For this to be possible, there must be

a communication protocol known and used by both parties, which defines the language, syntax, and

order of communications.

All communication protocols operate at the application layer. A server can implement an application

programming interface or API. An API is a layer of abstraction in the access to a service. By abstracting

access and restricting communications to a certain format, the exchange of information between

different platforms is simplified.

In the context of the system, students, professors, and administrators, all take the role of clients against

the implemented server. The server always responds to the requests of clients by returning data or

processing it as needed via an API.

 24

5.2. Branding

For any business, branding is an important part to create conscious and unconscious connections with

the public to influence their usage decisions. In other words, branding focuses on making a brand known

and desired and exerting a positive image in the minds and hearts of consumers. Therefore, creating a

branding name, a branding domain and a branding logotype are essential to attract the user's attention.

The branding name needs to be simple and easy to remember. For this reason, we take the simplest

naming approach as ‘Peer Evaluation System’, which means that the platform is a system where peers

can evaluate between them. The word ‘Peer’ in the naming is taken from the idea of ‘Peer Assessment’,

which is the evaluation of work by one or more people with similar competencies as the producers of

the work.

The branding domain needs to be coherent with the branding name. Therefore, the approach to

obtaining the branding domain is to synthesize the naming into shortened words that can retrieve the

meaning of the branding name. The selection of the final branding domain leads to be:

peerevaluationsystem.herokuapp.com.

The branding logomark is the symbolic icon that represents a brand. The design of this logo is a process

that has been taken for two main ideas. The center circle has the meaning of being a main peer. The

surrounding circles represent other peers of the task, three of them are connected to the task meaning

that they are chosen to evaluate between them, and three of them are not connected to the task

meaning that they are not chosen to be evaluated. The selection of the final branding logomark is the

following:

Figure 12 - Logotype of the application

 25

5.3. Client

The client-side of the system is designed to have two types of roles. The first role is the student, who

has the activity of evaluating other students. The second role is the professor, who controls all the

cycles of an evaluation.

5.3.1. Home page

As we can see in figure 13, the home page is designed to be the main entry point to a website, appearing

when a user starts a session. It is divided into several sections. At the top of it, there is a navigation bar

where users can see the branding of the application composed of a logo and a naming, the main routes

of the application, and a log-in button. Then, it is followed by a set of different sections composed of

vision and mission, main features, promotion area, and user opinions. At the bottom of it, there is a

footer where users can see the description of the application, the follow us area, the main routes, and

the contact information.

Figure 13 - Sketch proposal for the home page

 26

5.3.2. Auth page

As we can see in figure 14, the auth page is designed to be the interface where users can get access

to the system. This page is required to authenticate the user for security reasons and the need to routing

the pages. The login form will require a valid email and password that are registered previously in the

database via the Signup page. To sign up for an account, the introduced email requires to be previously

added by the professor to the task. In this way, only those accounts’ emails registered by professors

are allowed to be signed up.

Figure 14 - Sketch proposal for the auth page

5.3.3. Student page

The student page is designed to be the interface once the student gets access to the system. The initial

draft has divided the whole evaluation process into 4 phases for the student: attach, evaluate, review,

and conclude. But throughout the process of creating a proper user-centered design interface, the

involved phases are renamed into attach file, evaluate peers, review evaluations, and conclude task.

- As we can see in figure 15, the ‘attach file’ subpage is designed for the student to add a

submission of a file that will be evaluated by the professor and other students.

- As we can see in figure 16, the ‘evaluate peers’ subpage is designed for the student to add

evaluations of the attached file by other students.

- As we can see in figure 17, the ‘review evaluation’ subpage is designed for the student to review

evaluations made by other students.

- As we can see in figure 18, the ‘conclude task’ subpage is designed for the student to write a

conclusion of the overall evaluation of the task.

 27

Figure 15 - Sketch proposal for the attach file subpage

Figure 16 - Sketch proposal for the evaluate peers subpage

Figure 17 - Sketch proposal for the review evaluations subpage

 28

Figure 18 - Sketch proposal for the conclude task page

5.3.4. Professor page

The professor page is designed to be the interface once the professor gets access to the system. The

initial draft has divided the whole evaluation process into 4 phases for the professor: set up, pair, qualify,

and retrospect. But throughout the process of creating a proper user-centered design interface, the

involved phases are divided more concretely into set up task, add peers, add aspects, pair peers, qualify

peers, and retrospect task.

- As we can see in figure 19, the original ‘set up task’ subpage is design to contain the following

phases:

o The ‘set up task’ subpage is designed for the professor to add all primitive data that

composes the task.

o The ‘add peers’ subpage is designed for the professor to add users that compose the

task. It could be manually introduced or via a csv file.

o The ‘add aspects’ subpage is designed for the professor to add aspects that compose

the task.

- As we can see in figure 20, the ‘pair peers’ subpage is designed for the professor to add a pairing
of a student that will review and provide a commentary and score to the pairing student.

- As we can see in figure 21, the ‘qualify peers’ subpage is designed for the professor to add

qualifications of the attached file and reviews that are made by the student.

- As we can see in figure 22, the ‘retrospect task’ subpage is designed for the professor to review

all the conclusions that are left by the students after the evaluation session.

 29

Figure 19 - Sketch proposal for the original set up task subpage

Figure 20 - Sketch proposal for the pair peers subpage

Figure 21 - Sketch proposal for the qualify peers subpage

 30

Figure 22 - Sketch proposal for the retrospect task subpage

5.3.5. Admin page

As we can see in figure 23, the admin page is designed to be the interface once the admin gets access
to the system. The initial draft was proposed to manage users’ accounts of the system, and throughout

the process of creating a proper user-centered design interface, the initial proposal satisfies the final

requirements.

Figure 23 - Sketch proposal for the admin page

 31

5.4. Server

The server-side of the system is designed to contain a configuration class along with two modules:

resources and models. The resources are the package that contains the implementation of the RESTful

API, and the models are the package that contains the implementation of the database.

5.4.1. Configuration class

As we can see in figure 24, the configuration class, namely Config class (config.py), is essential for

loading the individual configuration of each environment. There are two classes that extend from this

class, which are used to change the database used depending on the deployment environment, namely

DevelopmentConfig and ProductionConfig. In detail, the variables are the mode of DEBUG, the path of

SQLALCHEMY_DATABASE_URI, the mode of SQLALCHEMY_TRACK_MODIFICATIONS and the

SECRET_KEY of the application.

The rest of the files are in the root directory and have no special dependencies.

Figure 24 - Diagram of the configuration classes

5.4.2. Resources

The resource module contains all the RESTful classes that are related to the operations with the object
from the database. All the classes are extended from Resources of Flask which allows us to implement

a modular API and has its own function to realize, which is described in the following table 4:

Resource class Description

Account Management of an account

Signup Register an account

Login Authenticate a user by the registered account

TaskAspect Management of an aspect of the task

TaskMarkList Obtainment of a final grading sheet of the task

 32

TaskPairingList Compute a list of pairings of the task automatically by a seed
number

TaskPairingUserPairingList Obtainment a list of pairings assigned to the pairing_user of the task

TaskState Management of the state of the task

TaskUser Management of a user of the task

TaskUserList Management of a list of users of the task

TaskUserAttachment Management of an attachment of the user of the task

TaskUserConclusion Management of a conclusion of the user of the task

TaskUserMark Management of a mark of the user of the task

TaskUserMarkReview Management of a review_mark of the user of the task

TaskUserPairingList Obtainment of a list of pairings assigned to the user of the task

TaskUserPairingUserPairing Management of a pairing of a user to a pairing_user of the task

Pairing Management of a pairing of the task

PairingAspectEvaluation Management of an evaluation of the aspect of the pairing

PairingEvaluationList Obtainment of a list of evaluations of the pairing

User Management of a user

UserList Obtainment of a list of users

UserTask Management of a task of the user

UserTaskList Obtainment of a list of tasks of the user

Table 4 - Resource classes

5.4.3. RESTful API

The API of RESTful is an application programming interface that fits within the boundaries of the REST

architecture and enables interaction with RESTful web services. It is composed of a set of architectural

principles by which web services can be designed that are primarily focused on the resources of a

system.

Each endpoint of the application obeys the REST constraints which are:

- Client-server architecture

- Statelessness

- Cacheability

- Layered system

- Code on demand

- Uniform interface

 33

and we can implement all methods that contain each concrete Resource class in the figure 25:

Figure 25 - Diagram of the resource classes

The concrete resources are extended from the flask_restful.Resource class and expose methods for
each supported HTTP method. If a resource is invoked with an unsupported HTTP method, the API will

return a response with the status 405 Method Not Allowed. Otherwise, the appropriate method is called

and passed all arguments from the URL rule used when adding the resource to an API instance. The

detailed version of the RESTful API is attached to the annex 13.2. of the project.

5.4.4. Models

The model module contains all the classes for creating a virtual object database where its methods can

be added as the developer requires. In effect, it uses object-relational mapping, known as ORM, which

is a programming technique for converting data between type systems using object-oriented

 34

programming languages. For this project, we use SQLAlchemy, a Python SQL toolkit and Object

Relational Mapper that gives application developers the full power and flexibility of SQL. It provides a

full suite of well-known enterprise-level persistence patterns, designed for efficient and high-performing

database access, adapted into a simple and Pythonic domain language.

The concrete Model classes are detailed in the figure 26:

Figure 26 - Diagram of the model classes

The methods of each model are called from Resources and are used to manipulate the data in the

database. Mainly, there are a few types of methods:

- json(): a representation of an entity object.

- save_to_db(): save an entity object to the database.

- delete_from_db(): delete an entity object from the database.

- find_by_id(<id>): find an entity object filtered by key element id.

- find_by{_<id>}({<id>}): find a set of entity objects filtered by a set of key element id.

- get_all(): get all entity objects.

- get_all{_<id>}({<id>}): get a set of entity objects filtered by a set of key element id.

- delete_all{_<id>}({<id>}): delete a set of entity objects filtered by a set of key element id.

 35

5.4.5. Database entities

We need to concrete the entities of the database before defining their relationships. Therefore, we start

with the entities of the database by defining the attributes that belong to each entity and their type. A

short description is included to justify the need for the attribute.

- Account

The Account has the purpose to authenticate the users, where all users are required to register on our

system and logged in to the system to concrete the realization of the activities. For this reason, we need

this specific database to save the data of authentication. It contains the following columns detailed in

table 5:

Account

Attribute Type Description

email String Mail address of the user

password String Password for the account. It is encrypted on the server-side

Table 5 - Account entity

- User

The User has the purpose to save all the users that are allowed to be registered and be the entity that

will interact with other entities to concrete the realization of the activities. It serves as a separate entity

from authentication data, and it has the user’s personal information. It contains the following columns

detailed in table 6:

User

Attribute Type Description

user_id Integer Unique identifier of the user

name String Name of the user

surname String Surname of the user

email String Mail address of the user registered on the account database

type Integer Type of the user [0: student, 1: professor, 2:admin]

Table 6 - User entity

- Task

The Task has the purpose to save all the primitive data that compose a task. It contains the following

columns detailed in table 7:

 36

Task

Attribute Type Description

task_id Integer Unique identifier of the task

title String Title of the task

description String Description of the task

date_attach String Deadline for students to attach file

date_evaluate String Deadline for students to evaluate others

date_review String Deadline for students to review evaluations

date_conclude String Deadline for students to conclude task

date_pair String Deadline for professor to pair students

date_qualify String Deadline for professor to qualify students

date_retrospect String Deadline for professor to retrospect task

state_value Integer The state of the task

percentage_review Float Percentage of the professor mark for review

percentage Float Percentage of the professor mark for task

Table 7 - Task entity

- Aspect

The Aspect has the purpose to save all the primitive data that compose an aspect of a task. It contains
the following columns detailed in table 8:

Aspect

Attribute Type Description

aspect_id Integer Unique identifier of the aspect

title String Title of the aspect

description String Description of the aspect

weight Integer Weight of the aspect for the evaluation

Table 8 - Aspect entity

- Pairing

The Pairing has the purpose to save the pairing that a user is paired to a pairing_user for the evaluation
of a task. Concretely, the pairing_user will be evaluated by the user. It contains the following columns

detailed in table 9:

 37

Pairing

Attribute Type Description

pairing_id Integer Unique identifier of the pairing

task_id Integer Foreign key that indicates where the pairing is belonged to

user_id Integer Foreign key that indicates the user who will give the evaluation

pairing_user_id Integer Unique identifier of the user who will be evaluated

Table 9 - Pairing entity

- Evaluation

The Evaluation has the purpose to save all the data that compose an evaluation made by a user to a

pairing_user for each task. It contains the following columns detailed in table 10:

 Evaluation

Attribute Type Description

evaluation_id Integer Unique identifier for the evaluation

pairing_id Integer Foreign key that indicates the pairing of which is evaluated

task_id Integer Foreign key of pairing that indicates where the pairing is belonged to.
(Operational reason)

user_id Integer Foreign key of pairing that indicates the user who will give the
evaluation (Operational reason)

pairing_user_id Integer Foreign key of pairing that indicates the user who will be evaluated.
(Operational reason)

aspect_id Integer Foreign key of aspect that indicates the aspect of which the user is
evaluating

commentary String Commentary for each aspect evaluated

score Integer Score for each aspect evaluated

Table 10 - Evaluation entity

- Attachment

The Attachment has the purpose to save the data of an attachment that a user will need to send for

each task to get evaluated. It contains the following columns detailed in table 11:

Attachment

Attribute Type Description

attachment_id Integer Unique identifier for the attachment

 38

task_id Integer Foreign key that indicates where the pairing is belonged to

user_id Integer Foreign key that indicates the user who will give the evaluation

attachment_file String Name of the attachment file

Table 11 - Attachment entity

- Conclusion

The Conclusion has the purpose to save the data of a conclusion that a user will make by the end of

each task. Through this, the professor can get feedback from students. It contains the following columns

detailed in table 12:

Conclusion

Attribute Type Description

conclusion_id Integer Unique identifier for the conclusion

task_id Integer Foreign key that indicates where the conclusion is belonged to

user_id Integer Foreign key that indicates the user who will give the conclusion

conclusion_text String Conclusion for the task

Table 12 - Conclusion entity

- Mark

The Mark has the purpose to save all the data that compose a mark of a user for each task. It contains

the following columns detailed in table 13:

Mark

Attribute Type Description

mark_id Integer Unique identifier for the mark

task_id Integer Foreign key that indicates where the mark is belonged to

user_id Integer Foreign key that indicates the user who will give the mark

review_mark Float Mark of the qualification from professor for review

student_mark Float Average mark of the evaluation from students

professor_mark Float Mark of the qualification from professor for task

final_mark Float Computed mark of review_mark, student_mark and professor_mark

Table 13 - Mark entity

 39

5.4.6. Database relationships

All the database models are created from SQLAlchemy which generates a SQL table for a single model

with all attributes that belong to the model. The general view of the created tables and their relationship

is detailed in figure 27:

Figure 27 - Diagram of the database tables and relationships

As we can see from the image, the main tables are user and task which are related by a tasks_in_users

for a many_to_many relationship with the Primary Key from both sides.

From the account table, the account has the attribute email as a Primary Key which is extended from

user as a Foreign Key.

 40

From the pairing table, the pairing has the attribute pairing_id as a Primary Key. The set of attributes

task_id, user_id is constrained as ForeignKeyConstraint which is extended from tasks_in_users as a

set of Foreign Keys, and the attribute pairing_user_id is extended from user as a Foreign Key. Moreover,

the set of attributes task_id, user_id, pairing_user_id is constrained as UniqueConstraint.

From the aspect table, the aspect has the attribute aspect_id as a Primary Key. The attribute task_id is

extended from task as a Foreign Key.

From the evaluation table, the evaluation has the attribute evaluation_id as a Primary Key. The set of

attributes task_id, user_id, pairing_user_id is constrained as ForeignKeyConstraint which is extended

from pairing as a set of Foreign Keys, and the attribute aspect_id is extended from aspect as a Foreign

Key. Moreover, the set of attributes pairing_id, task_id, user_id, pairing_user_id, aspect_id is

constrained as UniqueConstraint.

From the attachment table, the attachment has the attribute attachment_id as a Primary Key. The set

of attributes task_id, user_id is constrained as ForeignKeyConstraint which is extended from

tasks_in_users as a set of Foreign Keys.

From the conclusion table, the conclusion has the attribute conclusion_id as a Primary Key. The set of

attributes task_id, user_id is constrained as ForeignKeyConstraint which is extended from

tasks_in_users as a set of Foreign Keys.

From the mark table, the mark has the attribute mark_id as a Primary Key. The set of attributes task_id,

user_id is constrained as ForeignKeyConstraint which is extended from tasks_in_users as a set of

Foreign Keys.

5.4.7. Security metrics

The system implements several security measures to protect against unauthorized third-party intrusion.

The most extensive is perhaps API authentication for all requests. Except for one endpoint, all others

require authentication. When the user accesses the system, internally, the user receives a token that

serves to authenticate requests in the API as if for each request the user authenticates with his

username and password.

All tokens are associated with a user and have a limited lifetime. For user access to the system, the

duration is two hours by default, due to that we want to avoid any loss of data during the class session

which is at mot two hours. After this time, they are no longer valid, and the server does not recognize

them as authentication at the endpoints. The management of the tokens is entirely unrelated to the

client-side. This security measure is implemented on the server-side.

 41

6. Implementation

This section details the technical aspects behind the different features of the system. It will explain the

implementation of the Vue Router, the stateness of the selected component as well as the pairing

algorithm, and the calculation of the grading sheet of the task.

6.1. Vue Router

Vue Router allows the Vue application to transit from page to page on the client-side, without requesting
the server. It is one of the most powerful features of modern single-page web applications. The router

of the project is configured as shown in figure 28:

import {createRouter, createWebHashHistory} from 'vue-router'

import {appRouter} from "@/modules/app/router";
import {authRouter} from "@/modules/auth/router";
import {adminRouter} from "@/modules/admin/router";
import {ProfessorRouter} from "@/modules/professor/router"
import {StudentRouter} from "@/modules/student/router";

import isAuthenticatedGuardAdmin from "@/modules/auth/router/auth-guard-admin";
import isAuthenticatedGuardProfessor from "@/modules/auth/router/auth-guard-professor";
import isAuthenticatedGuardStudent from "@/modules/auth/router/auth-guard-student";

const routes = [
 {
 path: '/',
 ...appRouter
 },
 {
 path: '/auth',
 ...authRouter
 },
 {
 path: '/admin',
 beforeEnter: [isAuthenticatedGuardAdmin],
 ...adminRouter
 },
 {
 path: '/student',
 beforeEnter: [isAuthenticatedGuardStudent],
 ...StudentRouter
 },
 {
 path: '/professor',
 beforeEnter: [isAuthenticatedGuardProfessor],
 ...ProfessorRouter
 },
 {
 path: '/:catchAll(.*)*',
 name: "notfoundpage",
 component: () => import(/* webpackChunkName: "notfound" */ '@/modules/app/pages/NotFoundPage')
 }
]

Figure 28 - Code of router/index.js

Where the isAuthenticatedGuard<role>, as shown in figure 29, is the JavaScript file that enables the

control of the transition from the login page to the <role> page by checking the authentication of the

user. For example, in the case of the administrator, when the administrator requests to log in to the

 42

system, it dispatches the action checkAuthentication from the auth module. The action uses the token

saved on the localStorage to check if the token is valid on the server-side. If the token is not valid, then

it will not let the user get into the system.

import store from "@/store";

const isAuthenticatedGuardAdmin = async (to, from, next) => {
 const {ok, type} = await store.dispatch('auth/checkAuthentication')
 if (ok && type === 2) next()
 else next({name: 'login'})
}

export default isAuthenticatedGuardAdmin

Figure 29 - Code of auth/router/isAuthenticatedGuardAdmin.js

Once the administrator gets into the system, by default, it will push the administrator to the NoUserPage

since it is defined at the loginAccount method, as shown in figure 30.

loginAccount: async () => {
 if (userForm.value.email === '' || userForm.value.password === '') {
 new Swal({title: 'Please fill all the fields to log in', allowOutsideClick: false})
 } else {
 const {ok, data, type} = await loginUser(userForm.value)
 if (!ok) await Swal.fire('Error', data, 'error')
 else {
 if (type === 0) await router.push({name: 'no-task-student'})
 if (type === 1) await router.push({name: 'no-task-professor'})
 if (type === 2) await router.push({name: 'no-user'})
 }
 }
}

Figure 30 - Code of auth/login.vue

Only if the id is passed through the route.params, then it will push the administrator to the UserPage

with its corresponding id of the user, as shown in the figure 31.

export const adminRouter = {
 path: '/admin',
 name: 'admin',
 component: () => import(/* webpackChunkName: "admin" */ '@/modules/admin/pages/AdminPage'),
 children: [
 {
 path: '',
 name: 'no-user',
 component: () => import(/* webpackChunkName: "no-user"*/'@/modules/admin/pages/NoUserPage')
 },
 {
 path: ':id',
 name: 'user',
 component: () => import(/* webpackChunkName: "user" */'@/modules/admin/pages/UserPage'),
 props: (route) => {
 const id = Number(route.params.id)
 return isNaN(id) ? {user_id: 0} : {user_id: id}
 },
 },
]
}

Figure 31 - Code of admin/router/index.js

 43

6.2. Stateness on the selected component

To bring a better user experience when browsing the website, there are many identifiers that are saved

in the Store provided by the Vuex framework. For example, in this case, when the professor clicked on

the task, then the selected task component will be rendered with an active background color, as shown

in the figure 32.

Figure 32 - Active state on selected component

- Task component

The Task component gets two properties: the task itself and the id of the active task, as shown in

figure 33.

name: "Task",
props: {
 task: {
 type: Object,
 required: true
 },
 activeTaskId: {
 type: Number,
 required: false
 },
},

Figure 33 - Code of professor/components/Task.vue

When it is rendered, there is a condition checking that the id of the Task component is equal that the id

of the active task. If the condition is satisfied, then it will render the activeBox class, as shown in figure

34, which is defined in the style.scss file.

<template>
 <div class="task-container pointer rec-box-between"
 :class="{'activeBox': this.activeTaskId === this.task.task_id}"
 @click="navigateTask">
 <div class="fs-6 text-truncate ml-3 text-start ">
 {{ task.title }}
 </div>

 State {{ this.taskState + 1 }}

 </div>
</template>

Figure 34 - Code of professor/components/Task.vue

 44

Once the user clicks on the Task component, the component will commit the mutation setActiveTaskId

from the professor module, as shown in figure 35.

navigateTask: async () => {
 store.commit('professorModule/setActiveTaskId', props.task.task_id)
}

Figure 35 - Code of professor/components/Task.vue

- TaskList component

The TaskList component contains the Task component which is defined as an asynchronous

component, and it has an attribute that gets the state getActiveTaskId from the professor module, as

shown in figure 36.

name: "TaskList",
components: {
 Task: defineAsyncComponent(() => import('@/modules/professor/components/Task'))
},
setup() {
 const store = useStore()
 return {
 activeTaskId: computed(() => store.getters['professorModule/getActiveTaskId']())
 }
}

Figure 36 - Code of professor/components/TaskList.vue

The Task component, which is rendered by the v-for directive taking a list of tasks, as shown in figure

37, has two properties assigned: the task itself and the id of the active task, which are mentioned in the

above Task component.

<Task v-for="task in tasksByTerm"
 :key="task.task_id"
 :task="task"
 :active-task-id="this.activeTaskId">
</Task>

Figure 37 - Code of professor/components/TaskList.vue

6.3. Pairing algorithm

The pairing algorithm, used to automatically compute the pairings of users in the task, is designed to

be simple and efficient. The approach is achieved by first getting an array of users in the task, then we

apply the method random.shuffle to unsort this array and we extend the array with the pairing_number,

 45

which is a seed number that indicates the number of pairing_user to be paired for each user. Finally,

for each user, it will be paired to evaluate the next pairing_number of pairing_user, as shown in figure

38. This algorithm has the following features:

- The computation of the algorithm is cheap.

- The pairings created do not have any collision.

- The sequence is predictable, but it is supposed that no one shares his list of pairings.

users = [user.json_task() for user in UserModel.get_all() if task in user.tasks]
user_list = [u['user_id'] for u in users if u['type'] != 1]
random.shuffle(user_list)
pairing_number = data['pairing_number']

all_pairings = []
user_list.extend(user_list[:pairing_number])

for i in range(len(user_list) - pairing_number):
 for j in range(pairing_number):
 new_pairing = PairingModel(task_id, user_list[i], user_list[1 + i + j])
 new_pairing.save_to_db()

Figure 38 - Code of resources/task_pairing.py

6.4. Grading sheet

The grading of each student is composed of three types of marks: student_mark, review_mark, and

professor_mark. Both review_mark and professor_mark are the values provided by the professor, while

the student_mark must be computed by the evaluation marks provided by the peers.

Therefore, the student_mark of each student is calculated by taking the mean of the following vector,

as shown in equation 1.

Equation 1 - Average mark from student's evaluation

Where the left-hand side is the vector of the weights of the aspects divided by the mean of its, and the

right-hand side is the matrix of the evaluation marks provided by the peers for each aspect of the task.

Moreover, as shown in figure 39, if there is a set of missing values on the matrix of evaluation marks,

then it will be replaced by the row-wise mean of the evaluation marks so that the result value will not be

affected by the missing values.

 46

aspect_dim = len(aspects)
aspect_vector = np.zeros(aspect_dim)

for i in range(aspect_dim):
 aspect_vector[i] = aspects[i]['weight']

user_dim = len(ps)
eval_matrix = np.zeros((aspect_dim, user_dim))

for i in range(len(evals)):
 for u in range(len(ps)):
 for a in range(len(aspects)):
 if evals[i]['aspect_id'] == aspects[a]['aspect_id'] \
 and evals[i]['user_id'] == ps[u]['user_id']:
 eval_matrix[a][u] = evals[i]['score']

aspect_vector = aspect_vector / np.sum(aspect_vector)

if np.count_nonzero(eval_matrix) != 0:
 mask_one = np.where(eval_matrix, 0, 1)
 avg_row = np.ma.array(eval_matrix, mask=eval_matrix == 0).mean(1)
 avg_fill_mark = mask_one * avg_row[:, np.newaxis]
 student_mark = eval_matrix + avg_fill_mark
 student_mark = np.mean(np.dot(aspect_vector, student_mark))
else:
 student_mark = 0

Figure 39 - Code of resources/task_user_mark.py

 47

7. Deployment

During the development of the project, there are two environments that have been created: the

development environment and the production environment. The development environment is part of a

tiered structure of environments, where changes are deployed through different environments before

reaching a live website. It is used to validate and test the changes during the sprints. At the end of the

sprint and the release of the new version of the system, the changes are moved to the production

environment.

Both environments are hosted on Heroku, the SaaS platform used for the project. Although both have

the same operation and objectives, in terms of resources the production environment has more features,

both in terms of availability and network traffic share.

The deployments have been automated using Automatic Deploys, a feature of Heroku where every

push to the branch specified will deploy a new version of this app. In GitHub, there are using two main

branches: the development branch and the production branch. Each branch corresponds to its

environment.

During the development, the database used was SQLite, which despite depending on a single file, has

very simple management. For the final testing and production phases, both environments have been

migrated to a PostgreSQL database, which is simple to migrate by adding the add-on Heroku Postgres

on the Heroku platform and it provides a better vertical scaling.

The home page of the application, as shown in figure 40, with the following domain name:

https://peerevaluationsystem.herokuapp.com/

Figure 40 - Homepage of the web application

 48

 49

8. Testing and Results

8.1. Testing

By using the Scrum agile work methodology, a functional prototype of the system was available after

each iteration. This has allowed us to perform small usability tests during the development stages,

which, despite not being done with a finished product, have made it possible to identify errors in advance,

thus avoiding the accumulation or aggravation of errors.

From the whole set of tests, several problems have been identified and solved, the most concrete ones

are shown in the following table 14:

Issue Description Solution

The active state of the
selected element

Once the user selects an element
from the list such as a user or a task,
when the webpage is refreshed, the
active state of the selected element
disappears

Implement an attribute that stores
the unique identifier of the
selected element and keep the
session alive to avoid the
disappearance after refresh

The active accordion
between different task
is maintained

When the user changes the task, the
accordion component should reopen
always the first one, because the state
of the task blocks the locked
accordion makes it unintuitive to use

Implement the emit function from
mitt library that enables to toggle
the first accordion of each task
when the user changes the task

Too many distractions
on the color of the
buttons

There is different usage of color for
each type of button such as add,
update, remove an item

Unify the color of the action
button so that it produces less
distraction, and it looks more
minimalistic

More awareness on
the state of the task

The task displayed on both professor
task page and student task page only
contains the title of the task, which
user cannot know the current state at
first glance

Introduce a badge element from
Bootstrap that shows the current
state of the task

The range input for
displaying non-
interactive data
confuses user

Some ranged data are shown with the
range input from html that confuse
user with the interactive property of
the element

Change the read-only range data
from input component to textual
component

Disable the pre-
requirement not
satisfied button

Some buttons are display as
interactable even if the pre-
requirement is not satisfied

Make the buttons to be disabled
when the pre-requirement is not
satisfied

Update the state once
students are added
via csv file

When students are added via csv file,
the state of the webpage is not
actualized

Reload the pairings of the user
once the automatic pairings are
computed

Table 14 - Testing issues

 50

8.2. Results

The result of the web pages is shown in annex 13.3., where the pages are sectioned by their containing

module. Here will only show the home page of the application as a result which we can see in figure 41.

Figure 41 - Home page of the web application

 51

9. Costs

The costs of the project should include both software expenditure and labor costs.

At the software level, we have the cost of the Heroku deployment. At the platform, we have used the

add-on of Heroku, called Heroku Postgres, the database used in production. The fee of this add-on in

the production environment (Heroku Hobby Basic plan) has a cost 9,00 dollars per month, 8,38 euros

at the exchange rate. The fee of it in the development environment (Heroku Hobby Dev plan) is free,

so it has not generated any expenses during the development of the project.

At the labor level, we have the cost of the development hours, to estimate the time spent, I have tracked

the hours invested in programming and reading documentation from the beginning of the project by an

external application. The total hours accounted for are 358 hours. Moreover, I have also taken an online

course of 30 hours specialized in Vue which costs 109,00 euros.

For a more realistic approach, the development of this project would have been taken by a junior

software engineer, considering working in a consulting firm, the estimated cost per hour would be

around 18,00 euros. By the time that have being developing, the total estimated cost would be around

3.336,00 euros.

The estimation is intended to be generic, so they are based on data extracted from the internet. In total,

the breakdown and total development cost of the project are shown in the following table 15:

Concept Cost per unit Amount of unit Price

Heroku add-on subscription 8,38 € / month 6 month 50,28 €

Software development 18,00 € / hour 358 hours 6.444,00 €

Software specialization 12,00 € / hour 30 hours 360,00 €

Online course 109,00 € / course 1 course 109,00 €

Subtotal 5523,28 €

Total costs (tax included) 8425,57 €

Table 15 - Project costs

 52

 53

10. Future works

During the development of the system, some new ideas and improvements have emerged that could

be implemented in future versions of the system. Some of these are as follows:

10.1. Learning Tools Interoperability (LTI)

In the latest years, IMS Global Learning Consortium, an international organization that emerged in 1995

and whose aim is to promote the growth and impact of learning technologies in education and corporate

training globally, has developed an education technology specification called Learning Tools

Interoperability. This specification has the purpose to invoke and communicating the internal system

with external systems. The security of this communication has relied on an authentication mechanism

by a token. Moreover, this tool can be extended to a Learning Management System which may use LTI

to host all the contents and tools provided by the third-party systems, an external website. In this sense,

the end-user does not need to log in to the external systems separately. All the information about the

end-user and the learning context will be shared by the LMS with the external systems. The LTI

technology was strongly inspired by Facebook Application Protocol and Blackboard Proxy Tools.

The flow of the launch sequence is shown in the figure 42:

Figure 42 - LTI authentication sequence (Source: www.wikipedia.com)

It uses the OAuth mechanism to ensure information security. The first step is to select the external

learning tool using the browser of the LMS platform, once selected, the platform generates an HTML

form and a JavaScript file to insert it into the external learning tool, from the moment of inserting the

form, the external learning tool or system will establish bidirectional communication with the LMS

 54

platform, the data transmission may include grades, student progress, completed tasks. In this way, LTI

technology simplifies the registration mechanism between different e-learning tools.

For this reason, LTI has been adopted by many educational content providers and Learning

Management Systems such as Moodle, which is used by the virtual campus of the University of

Barcelona. Therefore, it would be nice to include it in this platform as a second method to authenticate

the user.

10.2. Extend session

Regarding the token expiration after two hours for each time after it is authenticated, the interface needs

to incorporate measures against inactive sessions for a better user experience of navigation. For this

reason, the client-side should implement a timer that will launch a notification 5 minutes before the

session is expired and gives him the possibility to extend it. In the case that the user is absent or does

not want to extend the session when the timer reaches its limit, the user should be logged out and

redirected to the login page.

10.3. More security metrics

As the approach to the security metrics has not been included in the main objectives of the project,

there are several vulnerabilities that should consider.

First, the password of the account does not pass any strength metrics, but for security reasons, it is

recommendable to apply strength on the password in terms of length, complexity, and unpredictability

factors, to avoid any unintentional connections from guessing or brute-force attacks.

Second, the connection from any device to the system could be authenticated in two steps. That is a

user will request to log in to the system and it will respond by sending an e-mail with a random six-digit

code of one-time usage that serves as a verification code to launch the session, and only if the

introduced code matches the one generated by the server, it will authorize the connection from the

device.

Third, the retrieve of the password via e-mail verification. That is a user will request to retrieve the

password from the system and it will respond by sending an e-mail with an URL of one-time usage with

a timeout mechanism that serves as a verification method to identify the user, and only this user is

authorized to retrieve the password.

 55

11. Conclusion

The main objective of the project was to design a webpage for academic uses which can able the

community of students to perform peer reviews and peer assessments of a task under a set of criteria

determined by the professor, where the professor is also responsible to determine the state of the

workflow of the task, and both students and professors can contribute to the scoring process of the

individual task delivery and task review. The result of the project not only meets the objectives but also

exceeds all initial expectations with an intuitive design, multi-role system, and optimized algorithms.

It has been possible to design and develop a whole system including both the front-end and the back-

end of the application along with its architecture. From the front-end of the application, it contains a

clean, intuitive, modern, and adaptable interface as well as the initial approach of being a multi-role and

single page application. From the back-end of the application, it contains the design of the SQL

database and the API management as well as the authentication feature. All this without compromising

the future lines of work along which the application can be extended.

It has been a project that has allowed me as a student to demonstrate and consolidate the capabilities

to analyze, design, and develop applications. I have also been able to learn to work with many

technologies that I have applied and integrated into the context of the application by applying

architectures and resources seen throughout the degree.

Therefore, it can be concluded that the project has been very satisfactory and interesting in all its

iterations and areas. From a personal point of view, it has given me experience and new knowledge

that I can add to technological and professional learning. Finally, and after meeting the expectations,

objectives, and requirements initially defined, this project can be considered completed with all the user

stories covered which conclude the degree and mark the end of a stage.

 56

 57

12. References

[1] J. M. Alzaid, "The Effect of Peer Assessment on the Evaluation Process of Students," 17

January 2017. [Online]. Available:

https://www.ccsenet.org/journal/index.php/ies/article/view/68537.

[2] "Workshop activity - MoodleDocs," [Online]. Available:

https://docs.moodle.org/400/en/Workshop_activity.

[3] "HTML: HyperText Markup Language | MDN," [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/HTML.

[4] "CSS: Cascading Style Sheets | MDN," [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/CSS.

[5] "JavaScript | MDN," [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/JavaScript.

[6] "Python," [Online]. Available: https://www.python.org.

[7] "Vue.js - The Progressive JavaScript Framework | Vue.js," [Online]. Available: https://vuejs.org.

[8] "Vuex," [Online]. Available: https://vuex.vuejs.org.

[9] "Flask," [Online]. Available: https://flask.palletsprojects.com/en/2.1.x/.

[10] "Cloud Application Platform | Heroku," [Online]. Available: https://www.heroku.com/home.

[11] "GitHub: Where the world builds software," [Online]. Available: https://github.com/.

[12] Au-Yeung, J. “How to download a PDF file with Vue.js? The Web Dev.” 2022, March 12. [Online].

Available: https://thewebdev.info/2022/03/12/how-to-download-a-pdf-file-with-vue-js/

[13] Bootstrap. Bootstrap. https://getbootstrap.com

[14] Ching, J. T. (2021, December 13). Manage your Python Virtual Environment with Conda -
Towards Data Science. Medium. https://towardsdatascience.com/manage-your-python-virtual-

environment-with-conda-a0d2934d5195

[15] Data Structures — Werkzeug Documentation (2.1.x). Werkzeug.

https://werkzeug.palletsprojects.com/en/2.1.x/datastructures/

[16] Download file with Vue.js and Python Flask. (2019, October 8). Stack Overflow.

https://stackoverflow.com/questions/58279650/download-file-with-vue-js-and-python-flask

[17] Flask-RESTful - Upload image. (2015, March 11). Stack Overflow.

https://stackoverflow.com/questions/28982974/flask-restful-upload-image

[18] font-awesome - Libraries - cdnjs - The #1 free and open source CDN built to make life easier for

developers. Cdnjs. https://cdnjs.com/libraries/font-awesome/5.15.3

 58

[19] Freepik | Graphic Resources for everyone. Freepik. https://www.freepik.com

[20] GeeksforGeeks. (2019, April 22). Drop shadow for PNG image using CSS.

https://www.geeksforgeeks.org/drop-shadow-for-png-image-using-css/

[21] How may I upload file in Restful Flask? (2015, July 20). Stack Overflow.

https://stackoverflow.com/questions/31514568/how-may-i-upload-file-in-restful-flask

[22] How To Upload Files With Vue. Mastering JS. https://masteringjs.io/tutorials/vue/file-upload

[23] IMS Global Learning Consortium |. LTI. https://www.imsglobal.org

[24] json — JSON encoder and decoder — Python 3.10.5 documentation. Python JSON.

https://docs.python.org/3/library/json.html

[25] npm: font-awesome. Font-Awesome. https://www.npmjs.com/package/font-awesome

[26] npm: mitt. Mitt. https://www.npmjs.com/package/mitt

[27] npm: v-calendar. V-Calendar. https://www.npmjs.com/package/v-calendar

[28] npm: vue3-simple-file-input. Vue3-Simple-File-Input. https://www.npmjs.com/package/vue3-

simple-file-input

[29] npm: vue-csv-import. Vue.Js Component to Handle CSV Uploads with Field Mapping.

https://www.npmjs.com/package/vue-csv-import

[30] npm: @vueuse/motion. (2022, March 16). @vueuse/Motion.

https://www.npmjs.com/package/@vueuse/motion

[31] NumPy. Numpy. https://numpy.org

[32] Oberlehner, M. $refs and the Vue 3 Composition API. Markus Oberlehner.

https://markus.oberlehner.net/blog/refs-and-the-vue-3-composition-api/

[33] Others-how to upload file using python flask-restful api ? (2021, March 16). Bswen.

https://bswen.com/2021/03/others-how-to-upload-file-using-flask-restful-api.html

[34] PostgreSQL: Documentation. The PostgreSQL Global Development Group.

https://www.postgresql.org/docs/

[35] Python Flask REST API File Upload Example. (2021, February 20). Roy Tutorials.

https://roytuts.com/python-flask-rest-api-file-upload/

[36] python-decouple. PyPI. https://pypi.org/project/python-decouple/

[37] Sass: Syntactically Awesome Style Sheets. Sass. https://sass-lang.com

 59

[38] SQLAlchemy - The Database Toolkit for Python. SQLAlchemy. https://www.sqlalchemy.org

[39] Stack Overflow - Where Developers Learn, Share, & Build Careers. Stack Overflow.

https://stackoverflow.com

[40] Twarog, A. (2020, September 21). How to Design a Website Prototype from a Wireframe.

freeCodeCamp.Org. https://www.freecodecamp.org/news/designing-a-website-ui-with-prototyping/

[41] Vue 3 Event Bus with Composition API. (2021, March 8). Stack Overflow.

https://stackoverflow.com/questions/66537320/vue-3-event-bus-with-composition-api

[42] Vue JS – Add Class To Element On Click Tutorial Example. (2022, May 30). Tuts Make.

https://www.tutsmake.com/vue-js-add-class-to-element-on-click-tutorial-example/

[43] Vue Js 2 Download File with Axios Example Tutorial. (2022, June 1). positronX.Io.

https://www.positronx.io/vue-js-download-file-with-axios-example-tutorial/

[44] Vue Router. Vue Router. https://router.vuejs.org

[45] Vue.js Download PDF with Axios. (2022, March 16). Shouts.Dev.

https://shouts.dev/articles/vuejs-download-pdf-with-axios

 60

 61

13. Annex

13.1. User stories

The user stories are detailed with the following structure as a template.

User Story As a [role] I want to [action] So that I can [outcome]

Route <route>

Functionalities <RESTful API method>

Pre-requirements <Pre-requirements>

AC <Acceptance criteria>

 <Launch error message>

Ending <Actions performed>

 <Launch success message>

US1 Professor,
Student

Upload a form data of the
sign-up account

Get access to the platform

Route /register

Functionalities POST

Pre-requirements The user’s email must be added previously by professor in the database

AC1 If form fields are not completed

 Launch error message: “Please fill all the fields to sign up”

AC2 If the user is not found in the database

 Launch error message: “User with ['email': {}] not found”

AC3 If user already registered in the database

 Launch error message: “Account with ['email': {}] already exists”

Ending The user gets registered in the database

 Launch success message: “The account is saved successfully”

US2 Administrator,
Professor,
Student

Upload a form data of the
log in account

Get into the platform

Route /login

Functionalities POST

Pre-requirements The user’s account must be registered previously in the database

 62

AC1 If form fields are not completed

 Launch error message: “Please fill all the fields to log in”

AC2 If the account is not found in the database

 Launch error message: “Account with ['email': {}] not found”

AC3 If the password does not match to the account in the database

 Launch error message: “Password does not match to the account with ['email':
{}]”

Ending The user gets logged in the system and is routed to its corresponding page

 N/A

US3 Administrator,
Professor,
Student

Log out of the platform Leave from the session

Route /admin, /professor, /student

Functionalities N/A

Pre-requirements The user’s account must be logged in previously in the platform

Ending The user’s session data is cleaned and is routed to ‘/login’

 N/A

US4 Administrator Upload a form data of the
user

Create a user in the system

Route /admin

Functionalities POST

Pre-requirements The administrator must be logged in to the system

AC1 If form fields are not completed

 Launch error message: “Please fill all the fields to save user”

AC2 If the user already exists in the database

 Launch error message: “User with [‘user_id’: {}] already exists”

Ending The user is added by administrator

 Launch success message: “The user is added successfully”

US5 Administrator Upload a new form data of
the user

Change the data of the user
in the system

 63

Route /admin

Functionalities PUT

Pre-requirements The administrator must be logged in to the system

AC1 If form fields are not completed

 Launch error message: “Please fill all the fields to save user”

Ending The user is updated by administrator

 Launch success message: “The user is saved successfully”

US6 Administrator Click the remove user
button

Remove the user from the
system

Route /admin

Functionalities DELETE

Pre-requirements The administrator must be logged in to the system

 The system will request the administrator to ensure deletion: “Are you sure to
delete?”

AC1 If the user is not found in the database

 Launch error message: “User with [‘user_id’: {}] not found”

Ending The user is removed from the list of users by administrator

 Launch success message: “The user is deleted successfully”

US7 Administrator Click the remove user’s
account button

Remove the account of the
user from the system

Route /admin

Functionalities DELETE

Pre-requirements The administrator must be logged in to the system

 The system will request the administrator to ensure deletion: “Are you sure to
delete?”

AC1 If the account is not found in the database

 Launch error message: “Account with [‘email’: {}] not found”

Ending The account is removed from the list of accounts by administrator

 Launch success message: “The account is deleted successfully”

 64

US8 Professor Upload a form data of the
task

Create a task space for
students

Route /professor

Functionalities POST

Pre-requirements The professor must be logged in to the system

AC1 If form fields are not completed

 Launch error message: “Please fill all the fields to save task”

AC2 If the user is not found in the database

 Launch error message: “User with [‘user_id’: {}] not found”

AC3 If the task is not found in the database

 Launch error message: “Task with [‘task_id’: {}] not found”

Ending The task is added by professor

 Launch success message: “The task is added successfully”

US9 Professor Upload a new form data of
the task

Change the data of the task
in the system

Route /professor

Functionalities PUT

Pre-requirements The professor must be logged in to the system

AC1 If form fields are not completed

 Launch error message: “Please fill all the fields to save task”

AC2 If the user is not found in the database

 Launch error message: “User with [‘user_id’: {}] not found”

AC3 If the task is not found in the database

 Launch error message: “Task with [‘task_id’: {}] not found”

Ending The task is updated by professor

 Launch success message: “The task is updated successfully”

US10 Professor Click the remove task
button

Remove the task from the
list of tasks

Route /professor

Functionalities DELETE

 65

Pre-requirements The professor must be logged in to the system

 The system will request the professor to ensure deletion: “Are you sure to
delete?”

AC1 If the user is not found in the database

 Launch error message: “User with [‘user_id’: {}] not found”

AC2 If the task is not found in the database

 Launch error message: “Task with [‘task_id’: {}] not found”

Ending The task is removed from the list of tasks by professor

 Launch success message: “The task is deleted successfully”

US11 Professor Upload a form of student Create a student to the task

Route /professor

Functionalities POST

Pre-requirements The professor must be logged in to the system

AC1 If form fields are not completed

 Launch error message: “Please fill all the fields to save user”

AC2 If the task is not found in the database

 Launch error message: “Task with [‘task_id’: {}] not found”

Ending The student is added to the task by professor

 Launch success message: “The student is added to the task successfully”

US12 Professor Upload a CSV file of
students

Create a list of students to
the task

Route /professor

Functionalities POST

Pre-requirements The professor must be logged in to the system

AC1 If input file is not chosen

 Launch error message: “Please attach a csv to add students”

AC2 If the task is not found in the database

 Launch error message: “Task with [‘task_id’: {}] not found”

Ending The list of students is added to the task by professor

 66

 Launch success message: “The list of students is added to the task
successfully”

US13 Professor Click the remove student
button

Remove the student from
the list of assigned students
to the task

Route /professor

Functionalities DELETE

Pre-requirements The professor must be logged in to the system

 The system will request the professor to ensure deletion: “Are you sure to
delete?”

AC1 If the user is not found in the database

 Launch error message: “User with [‘user_id’: {}] not found”

AC2 If the task is not found in the database

 Launch error message: “Task with [‘task_id’: {}] not found”

Ending The student is deleted from task by the professor

 Launch success message: “The student is deleted from the task successfully”

US14 Professor Upload a form of the aspect Set a criteria for evaluation

Route /professor

Functionalities POST

Pre-requirements The professor must be logged in to the system

AC1 If form fields are not complete

 Launch error message: “Please fill all the fields to save aspect”

AC2 If the task is not found in the database

 Launch error message: “Task with [‘task_id’: {}] not found”

Ending The aspect is added to the task by professor

 Launch success message: “The aspect is added to the task successfully”

US15 Professor Upload a new form data of
the aspect

Change the data of the
criteria for evaluation

Route /professor

Functionalities PUT

 67

Pre-requirements The professor must be logged in to the system

AC1 If aspect is not selected

 Launch error message: “Please select an aspect to save aspect”

AC2 If form fields are not complete

 Launch error message: “Please fill all the fields to save aspect”

AC3 If the task is not found in the database

 Launch error message: “Task with [‘task_id’: {}] not found”

Ending The aspect is updated to the task by professor

 Launch success message: “The aspect is updated to the task successfully”

US16 Professor Click the remove aspect
button

Remove the aspect from
the list of assigned aspects
to the task

Route /professor

Functionalities DELETE

Pre-requirements The professor must be logged in to the system

 The system will request the professor to ensure deletion: “Are you sure to
delete?”

AC1 If the task is not found in the database

 Launch error message: “Task with [‘task_id’: {}] not found”

AC2 If the aspect is not found in the database

 Launch error message: “Aspect with [‘aspect_id’: {}] not found”

Ending The aspect is removed from the task by professor

 Launch success message: “The aspect is deleted from the task successfully”

US17 Professor Upload a form of pairing Create a pairing for
evaluation

Route /professor

Functionalities POST

Pre-requirements The professor must be logged in to the system

 The student must be added previously by the professor to the task

AC1 If the task is not found in the database

 Launch error message: “Task with [‘task_id’: {}] not found”

 68

Ending The pairing is added to the task by professor

 Launch success message: “The pairing is added to the task successfully”

US18 Professor Compute automatically the
pairings

Create a list of pairings for
evaluation

Route /professor

Functionalities POST

Pre-requirements The professor must be logged in to the system

 The set of students must be added previously by the professor to the task

AC1 If the task is not found in the database

 Launch error message: “Task with [‘task_id’: {}] not found”

Ending A list of pairings is added to task by professor

 Launch success message: “The list of pairings is added to the task
successfully”

US19 Professor Click the remove pairing
button

Remove the pairing from
the list of pairings

Route /professor

Functionalities DELETE

Pre-requirements The professor must be logged in to the system

 The system will request the professor to ensure deletion: “Are you sure to
delete?”

AC1 If the pairing is not found in the database

 Launch error message: “Pairing with [‘pairing_id’: {}] not found”

Ending The pairing is removed from task by professor

 Launch success message: “The pairing is deleted from the task successfully”

US20 Professor,
Student

Click the attachment
download button

Check the peer’s task
delivery

Route /professor, /student

Functionalities GET

Pre-requirements The professor or the student must be logged in to the system

 Attachment must be added previously by the paired student in the database

 69

AC1 If the attachment is not found in the database

 Launch error message: “Attachment with [‘task_id’: {}, ‘user_id’: {}] not found”

Ending The attachment is downloaded by professor or student

 Launch success message: “The attachment is added to the task successfully”

US21 Professor Click see review
qualification button

Check the result of the
review qualification

Route /professor

Functionalities GET

Pre-requirements The professor must be logged in to the system

AC1 If the review mark is not found in the database

 Launch error message: “Mark with [‘task_id’: {}, ‘user_id’: {}] not found”

Ending The review mark is displayed on the website

 N/A

US22 Professor Upload a form of review
qualification

Create a review
qualification for the peer
review

Route /professor

Functionalities POST

Pre-requirements The professor must be logged in to the system

Ending The review mark is added by the professor

 Launch success message: “The review qualification is added to the student
successfully”

US23 Professor Click see general
qualification button

Check the result of the
general qualification

Route /professor

Functionalities GET

Pre-requirements The professor must be logged in to the system

AC1 If the mark is not found in the database

 Launch error message: “Mark with [‘task_id’: {}, ‘user_id’: {}] not found”

Ending The mark is displayed on the website

 70

 N/A

US24 Professor Upload a form of general
qualification

Create a general
qualification for the peer

Route /professor

Functionalities POST

Pre-requirements The professor must be logged in to the system

Ending The mark is added by the professor

 Launch success message: “The qualification is added to the student
successfully”

US25 Professor Click grading sheet
download button

Check the grading sheet of
the students

Route /professor

Functionalities GET

Pre-requirements The professor must be logged in to the system

AC1 If the marks are not found in the database

 Launch error message: “Marks with [‘task_id’: {}] not found”

Ending The output of marks is downloaded by the professor

 N/A

US26 Professor Click increase / decrease
state button

Manage the state of the
task

Route /professor

Functionalities PUT

Pre-requirements The professor must be logged in to the system

AC1 If the task is not found in the database

 Launch error message: “Task with [‘task_id’: {}] not found”

AC2 If the value of task’s state is out of range

 Launch error message: “Task with [‘task_id’: {}] state not changed”

Ending The state of the task is modified by the professor

 Launch success message: “The state of task is updated successfully”

 71

US27 Student Upload a file of attachment Be evaluated by other peers

Route /student

Functionalities POST

Pre-requirements The student must be logged in to the system

 The state of the task must be matched to the phase

 An attachment must be chosen previously by the student

Ending The attachment is added by student

 Launch success message: “The attachment is added successfully”

US28 Student Upload a form of evaluation Create an evaluation for the
peer

Route /student

Functionalities POST

Pre-requirements The student must be logged in to the system

 The state of the task must be matched to the phase

 At least one aspect must be added previously by the professor

 At least one paired student must be assigned to the student previously by the
professor

AC1 If form fields are not complete

 Launch error message: “Please fill all the fields to add evaluation”

AC2 If the evaluation already exists in the database

 Launch error message: “Evaluation with [‘pairing_id’: {}, ‘aspect_id’: {}] already
exists”

Ending The evaluation is added by student

 Launch success message: “The evaluation is added successfully”

US29 Student Click see evaluation button Check the result of the
evaluations of the task

Route /student

Functionalities GET

Pre-requirements The student must be logged in to the system

 The state of the task must be matched to the phase

Ending The evaluations by paired students are displayed on the website

 72

 N/A

US30 Student Upload a form of conclusion Create a conclusion for the
task

Route /student

Functionalities PUT

Pre-requirements The student must be logged in to the system

 The state of the task must be matched to the phase

AC1 If form field is not complete

 Launch error message: “Please fill the field to add conclusion”

Ending The conclusion is added by the student

 Launch success message: “The conclusion is added successfully”

 73

13.2. API documentation

The API documentation is detailed with the following structure as a template.

<Resource Class>

Endpoint <URL>

Description <Description>

<Method>

Roles <Roles>

Params <Params>

<Status code> <Resource>

Account

Endpoint /account

Description Management of an account

DELETE

Roles administrator

Params {“email”: <str>}

200 {“account”: {…}}

401 “Unauthorized access”

404 “Account with [‘email’: <str>] not found”

500 “An error occurred while deleting the account”

Signup

Endpoint /signup

Description Register an account

POST

Roles administrator, professor, student

Params {“email”: <str>, “password”: <str>}

201 {“account”: {…}}

401 “Unauthorized access”

 74

404 “User with [‘email’: <str>] not found”

409 "Account with [‘email’: <str>] already exists”

500 “An error occurred while inserting the account”

Login

Endpoint /login

Description Authenticate a user by the registered account

POST

Roles administrator, professor, student

Params {“email”: <str>, “password”: <str>}

200 {“account”: {…}}

400 “Password does not match to the account with [‘email’: <str>]”

404 “Account with [‘email’: <str>] not found”

TaskAspect

Endpoint /task/<int>, /task/<int>/aspect/<int>

Description Management of an aspect of the task

POST

Roles professor

Params {“title”: <str>, “description”: <str>, “weight”: <int>}

201 {“aspect”: {…}}

401 “Unauthorized access”

404 “Task with ['task_id': <int>] not found”

500 “An error occurred while inserting the aspect”

DELETE

Roles professor

200 {“aspect”: {…}}

401 “Unauthorized access”

404 “Task with [“task_id': {}] not found”

404 “Aspect with [“aspect_id': {}] not found”

500 “An error occurred while deleting the aspect”

 75

PUT

Roles professor

Params {“title”: <str>, “description”: <str>, “weight”: <int>}

200 {“aspect”: {…}}

201 {“aspect”: {…}}

401 “Unauthorized access”

404 “Task with [“task_id': <int>] not found”

500 “An error occurred while inserting the aspect”

500 “An error occurred while updating the aspect”

TaskMarkList

Endpoint /task/<int>/marks

Description Obtainment of a final grading sheet of the task

GET

Roles professor

N/A flask_csv.send_csv()

401 “Unauthorized access”

404 “Marks with ['task_id': <int>] not found”

500 “An error occurred while getting the marks”

TaskPairingList

Endpoint /task/<int>/pairings

Description Compute a list of pairings of the task automatically by a seed number

POST

Roles professor

Params {“pairing_number”: <int>}

200 {“pairings”: […]}

401 “Unauthorized access”

404 “Task with ['task_id': <int>] not found”

500 “An error occurred while inserting the pairings”

 76

TaskPairingUserPairingList

Endpoint /task/<int>/pairing_user/<int>/pairings

Description Obtainment of a list of pairings assigned to the pairing_user of the task

GET

Roles student

200 {“pairings”: […]}

401 “Unauthorized access”

TaskState

Endpoint /task/<int>/state

Description Management of the state of the task

GET

Roles professor

201 {“task”: {…}}

401 “Unauthorized access”

404 “Task with [‘task_id’: <int>] not found”

PUT

Roles professor

Params {“state_value”: <int>}

200 {“task”: {…}}

400 “Task with ['task_id’: <int>] state not changed”

401 “Unauthorized access”

404 “Task with [‘task_id’: <int>] not found”

500 “An error occurred while updating the task”

TaskUser

Endpoint /task/<int>/user/<int>

Description Management of a user of the task

DELETE

Roles professor

200 {“user”: {…}}

 77

401 “Unauthorized access”

404 “Task with [‘task_id’: <int>] not found”

404 “User with ['user_id': <int>] not found”

500 “An error occurred while deleting the user”

PUT

Roles professor

Params {“email”: <str>, “name”: <str>, “surname”: <str>, “type”: <int>}

200 {“user”: {…}}

201 {“user”: {…}}

401 “Unauthorized access”

404 “Task with [‘task_id’: <int>] not found”

404 “User with [‘user_id’: <int>, ‘email’: <str>] not matched”

404 “User with [‘user_id’: <int>, ‘email’: <str>] not found”

500 “An error occurred while inserting the user”

TaskUserList

Endpoint /task/<int>/users

Description Management of a list of users of the task

GET

Roles professor

200 {“users”: […]}

401 “Unauthorized access”

404 “Task with ['task_id': <int>] not found”

PUT

Roles professor

Params reqparse.request.data

201 {“users”: […]}

401 “Unauthorized access”

404 “Task with [‘task_id’: <int>] not found”

500 “An error occurred while inserting the users”

 78

TaskUserAttachment

Endpoint /task/<int>/user/<int>/attachment

Description Management of an attachment of the user of the task

GET

Roles professor, student

N/A send_file()

401 “Unauthorized access”

404 “Attachment with [‘task_id’: <int>, ‘user_id’: <int>] not found”

PUT

Roles student

Params {“attachment_file”: <werkzeug.datastructures.FileStorage>}

200 {“attachment”: {…}}

201 {“attachment”: {…}}

401 “Unauthorized access”

500 “An error occurred while inserting the attachment”

500 “An error occurred while updating the attachment”

TaskUserConclusion

Endpoint /task/<int>/user/<int>/conclusion

Description Management of a conclusion of the user of the task

GET

Roles professor, student

200 {“conclusion”: {…}}

401 “Unauthorized access”

PUT

Roles student

Params {“conclusion_text”: <str>}

200 {“conclusion”: {…}}

201 {“conclusion”: {…}}

401 “Unauthorized access”

500 “An error occurred while inserting the conclusion”

 79

500 “An error occurred while updating the conclusion”

TaskUserMark

Endpoint /task/<int>/user/<int>/mark

Description Management of a mark of the user of the task

GET

Roles professor

200 {“mark”: {…}}

401 “Unauthorized access”

404 “Mark with [‘task_id’: <int>, ‘user_id’: <int>] not found”

PUT

Roles professor

Params {“professor_mark”: <float>}

200 {“mark”: {…}}

201 {“mark”: {…}}

401 “Unauthorized access”

500 “An error occurred while inserting the evaluation”

500 “An error occurred while updating the evaluation”

TaskUserMarkReview

Endpoint /task/<int>/user/<int>/mark_review

Description Management of a review_mark of the user of the task

PUT

Roles professor

Params {“review_mark”: <float>}

200 {“mark”: {…}}

201 {“mark”: {…}}

401 “Unauthorized access”

500 “An error occurred while inserting the evaluation”

500 “An error occurred while updating the evaluation”

TaskUserPairingList

 80

Endpoint /task/<int>/user/<int>/pairings

Description Obtainment of a list of pairings assigned to the user of the task

GET

Roles professor, student

200 {“pairings”: […]}

401 “Unauthorized access”

TaskUserPairingUserPairing

Endpoint /task/<int>/user/<int>/pairing_user/<int>/pairing

Description Management of a pairing of a user to a pairing_user of the task

POST

Roles professor

201 {“pairing”: {…}}

401 “Unauthorized access”

409 “Pairing with [‘task_id’: <int>, ‘user_id’: <int>, ‘pairing_user_id’: <int>] already
exists”

500 “An error occurred while inserting the pairing”

Pairing

Endpoint /pairing/<int>

Description Management of a pairing of the task

DELETE

Roles professor

200 {“pairing”: {…}}

401 “Unauthorized access”

404 “Pairing with [‘pairing_id’: <int>] not found”

500 “An error occurred while deleting the pairing”

PairingAspectEvaluation

Endpoint /pairing/<int>/aspect/<int>/evaluation

Description Management of an evaluation of the aspect of the pairing

 81

POST

Roles student

Params {“commentary”: <str>, “score”: <int>}

200 {“evaluation”: {…}}

401 “Unauthorized access”

409 “Evaluation with [‘pairing_id’: <int>, ‘aspect_id’: <int>] already exists”

500 “An error occurred while inserting the evaluation”

PairingEvaluationList

Endpoint /pairing/<int>/evaluations

Description Obtainment of a list of evaluations of the pairing

GET

Roles professor, student

200 {“evaluations”: […]}

401 “Unauthorized access”

User

Endpoint /user/<int>

Description Management of a user

POST

Roles admin

Params {“email”: <str>, “name”: <str>, “surname”: <str>, “type”: <int>}

201 {“user”: {…}}

401 “Unauthorized access”}

409 “User with [‘user_id’: <int>] already exists”

500 “An error occurred while inserting the user”

DELETE

Roles admin

200 {“user”: {…}}

401 “Unauthorized access”

404 “User with [‘user_id’: <int>] not found”

 82

500 “An error occurred while deleting the user”

PUT

Roles admin

Params {“email”: <str>, “name”: <str>, “surname”: <str>, “type”: <int>}

200 {“user”: {…}}

201 {“user”: {…}}

401 “Unauthorized access”

500 “An error occurred while inserting the user”

500 “An error occurred while updating the user”

UserList

Endpoint /users

Description Obtainment of a list of users

GET

Roles admin

200 {“user”: […]}

401 “Unauthorized access”

UserTask

Endpoint /user/<int>/task/<int>

Description Management of a task of the user

POST

Roles professor

Params {“title”: <str>, “description”: <str>, “date_attach”: <str>, “date_evaluate”: <str>,
“date_review”: <str>, “date_conclude”: <str>, “date_pair”: <str>, “date_qualify”:
<str>, “date_retrospect”: <str>, “percentage_review”:<float>,
“percentage”:<float>}

201 {“task”: {…}}

401 “Unauthorized access”

404 “User with [‘user_id’: <int>] not found”

500 “An error occurred while inserting the user”

DELETE

 83

Roles professor

200 {“task”: {…}}

401 “Unauthorized access”

404 “User with [‘user_id’: <int>] not found”

404 “Task with [‘task_id’: <int>] not found”

500 “An error occurred while deleting the user”

PUT

Roles professor

Params {“title”: <str>, “description”: <str>, “date_attach”: <str>, “date_evaluate”: <str>,
“date_review”: <str>, “date_conclude”: <str>, “date_pair”: <str>, “date_qualify”:
<str>, “date_retrospect”: <str>, “percentage_review”:<float>,
“percentage”:<float>}

200 {“task”: {…}}

201 {“task”: {…}}

401 “Unauthorized access”

404 “User with [‘user_id’: <int>] not found”

404 “Task with [‘task_id’: <int>] not found”

500 “An error occurred while inserting the user”

500 “An error occurred while updating the user”

UserTaskList

Endpoint /user/<int>/tasks

Description Obtainment of a list of tasks of the user

GET

Roles professor, student

200 {“tasks”: […]}

401 “Unauthorized access”

 84

 85

13.3. Web page results

13.3.1. App module

- Home page

Home page of the application

 86

- About page

About page of the application

 87

- Workflow page

Workflow page of the application

 88

- Not found page

Not found page of the application

 89

13.3.2. Auth module

- Auth page with log in component

Auth page of the application

- Auth page with create account component

Auth page of the application

 90

13.3.3. Admin module

- Admin page (default)

Admin page of the application

- Admin user subpage

Admin user subpage of the application

 91

13.3.4. Professor module

- Professor task page (default)

Professor task page of the application

- Professor set up task subpage

Professor set up task subpage of the application

 92

- Professor add peers subpage

Professor add peers subpage of the application

- Professor add aspects subpage

Professor add aspects subpage of the application

 93

- Professor pair peers subpage

Professor pair peers subpage of the application

- Professor qualify peers subpage

Professor qualify peers subpage of the application

 94

- Professor retrospect task subpage

Professor retrospect task subpage of the application

 95

13.3.5. Student module

- Student task page (default)

Student task page of the application

- Student attach file subpage

Student attach file subpage of the application

 96

- Student evaluate peers subpage

Student evaluate peers subpage of the application

- Student review evaluations subpage

Student review evaluations subpage of the application

 97

- Conclude task subpage

Student conclude task subpage of the application

