THE POSITIVE DIMENSIONAL FIBRES OF THE PRYM MAP

Juan-Carlos Naranjo

The fibres of positive dimension of the Prym map are characterized.

Let C be an irreducible complex smooth curve of genus g. Let $\pi: \tilde{C} \longrightarrow C$ be a connected unramified double covering of C.

The Prym variety associated to the covering is, by definition, the component of the origin of the Kernel of the norm map

$$
P(\tilde{C}, C)=\operatorname{Ker}\left(N m_{\pi}\right)^{0} \subset J \tilde{C}
$$

It is a principally polarized abelian variety (p.p.a.v.) of dimension $g(\tilde{C})-g=$ $g-1$.

One defines the Prym map

$$
\begin{aligned}
P_{g}: \mathcal{R}_{g} & \longrightarrow \mathcal{A}_{g-1} \\
(\tilde{C} \xrightarrow{\pi} C) & \longmapsto P(\tilde{C}, C),
\end{aligned}
$$

where \mathcal{R}_{g} is the coarse moduli space of the coverings π as above and \mathcal{A}_{g-1} stands for the coarse moduli space of p.p.a.v.'s of dimension $g-1$.

It is well-known that this map is generically injective for $g \geq 7$ (FriedmanSmith, Kanev). On the other hand this map is never injective; this is a consequence of the tetragonal construction due to Donagi (see [Do1] for a description of the construction). This fact is already implicit in the results of Mumford ([M]):

The coarse moduli space $\mathcal{R} \mathcal{H}_{g}$ of unramified double coverings of smooth hyperelliptic curves of genus g has $\left[\frac{g-1}{2}\right]+1$ irreducible components $\mathcal{R H}_{g, t}$, $t=0, \ldots,\left[\frac{g-1}{2}\right]$. For an element $(\tilde{C}, C) \in \mathcal{R H}_{g, t}$ there exist two hyperelliptic curves

$$
p_{1}: C_{1} \longrightarrow \mathbb{P}^{1}, \quad p_{2}: C_{2} \longrightarrow \mathbb{P}^{1}
$$

of genus $g\left(C_{1}\right)=t \leq g-t-1=g\left(C_{2}\right)$ such that
a) $\tilde{C}=C_{1} \times_{\mathbb{P}^{1}} C_{2}$ and
b) $C=\tilde{C} /\left(\sigma_{1} \circ \sigma_{2}\right)$, where σ_{1} (resp. $\left.\sigma_{2}\right)$ is the involution on \tilde{C} attached to the branched covering $\tilde{C} \longrightarrow C_{1}$ (resp. $\tilde{C} \longrightarrow C_{2}$).

Mumford proves (loc. cit. p. 346) that one has an isomorphism of p.p.a.v.

$$
P(\tilde{C}, C) \cong J C_{1} \times J C_{2}
$$

Consequently the fibres of the restriction of P_{g} to $\mathcal{R} \mathcal{H}_{g}$ have positive dimension. In fact $P_{g}\left(\mathcal{R} \mathcal{H}_{g, t}\right)$ is contained in the product $\mathcal{J} \mathcal{H}_{t} \times \mathcal{J} \mathcal{H}_{g-t-1}$, where $\mathcal{J} \mathcal{H}_{s}$ stands for the locus of Jacobians of hyperelliptic curves of genus s. Thus

$$
\operatorname{dim} \mathcal{R H}_{g, t}=2 g-1>\operatorname{dim} \mathcal{J H}_{t} \times \mathcal{J H}_{g-t-1}= \begin{cases}2 g-4 & \text { if } t \neq 0 \\ 2 g-3 & \text { if } t=0\end{cases}
$$

On the other hand positive dimensional fibres also appear for some coverings of bi-elliptic curves (a curve is called bi-elliptic if it can be represented as a ramified double covering of an elliptic curve).

In this note we characterize the fibres of positive dimension of the Prym map. To state our theorem we need some notation: let $\mathcal{R} \mathcal{B}_{g}$ be the coarse moduli space of the unramified double coverings $\pi: \tilde{C} \longrightarrow C$ such that C is a smooth bi-elliptic curve of genus g. This variety has $\left[\frac{g-1}{2}\right]+2$ irreducible components

$$
\mathcal{R} \mathcal{B}_{g}=\left(\bigcup_{t=0}^{\left[\frac{q-1}{2}\right]} \mathcal{R} \mathcal{B}_{g, t}\right) \cup \mathcal{R} \mathcal{B}_{g}^{\prime}
$$

(see [$\mathbf{N}]$ for more details).
We obtain:
Theorem. Assume $g \geq 13$. A fibre of P_{g} is positive dimensional at (\tilde{C}, C) if and only if C is either hyperelliptic or

$$
(\tilde{C}, C) \in \bigcup_{t \geq 1} \mathcal{R} \mathcal{B}_{g, t}
$$

Proof. If C is hyperelliptic we apply the results of Mumford. On the other hand, all the irreducible components of the fibres of $P_{g \mid \mathcal{R} \mathcal{B}_{g, t}}$ are positive dimensional for $t \geq 1$ (see [$\mathbf{N}, \S 20]$). This finishes one implication.

The first step to see the opposite implication is to prove that the curve C is tetragonal (i.e. there exists a g_{4}^{1} on C).

Let $\eta \in J C$ be the two-torsion point characterizing the covering and denote by L the line bundle $\omega_{C} \otimes \eta$. It is easy to check that L is very ample if C is non-tetragonal. Let Φ_{L} be the projective embedding of C defined by L.

As in Beauville ($[\mathbf{B}, \mathrm{p} .379]$), we replace \mathcal{R}_{g} and \mathcal{A}_{g-1} by the corresponding functors. Then, the Prym map defines a morphism of functors Pr $_{g}$. Our
hypothesis on the fibre of P_{g} implies that the cotangent map to $P r_{g}$ at (\tilde{C}, C) is not surjective. By loc. cit. Prop. (7.5), this map can be shown as the cup-product map

$$
S^{2} H^{0}(C, L) \longrightarrow H^{0}\left(C, L^{\otimes 2}\right)
$$

followed by the isomorphism induced in cohomology by $L^{\otimes 2} \cong \omega^{\otimes 2}$. Hence, the non-surjectivity implies that $\Phi_{L}(C)$ is not a projectively normal curve.

We recall Theorem 1 in [G-L]: If L is very ample and

$$
\operatorname{deg}(L) \geq 2 g+1-2 h^{1}(L)-\operatorname{Cliff}(C)
$$

then $\Phi_{L}(C)$ is projectively normal (where Cliff (C) is the Clifford index of $C)$.

Since $h^{1}(L)=0$ and $\operatorname{deg}(L)=2 g-2$ one obtains Cliff $(C) \leq 2$. By using Clifford's Theorem and [Ma, Propositions 7 and 8], it follows that the curve either possess a g_{4}^{1} or is plane curve of degree six. The second case contradicts $g \geq 13$.

Thus C is tetragonal. Since $g \geq 13$ the results in [De] can be applied: either the fibre is finite (generically, three elements) or we are in one of the following three possibilities: C is either hyperelliptic or bi-elliptic or trigonal.

Assume that C is bi-elliptic. Theorems (9.4), (10.9) and (10.10) in [$\mathbf{N}]$ states that $P_{g}^{-1}(P(\tilde{C}, C))$ consists of two points for every $(\tilde{C}, C) \in \mathcal{R} \mathcal{B}_{g, 0} \cup$ $\mathcal{R B}_{g}^{\prime}$, hence

$$
(\tilde{C}, C) \in \bigcup_{t \geq 1} \mathcal{R} \mathcal{B}_{g, t}
$$

To finish the proof we have to rule out the case: C trigonal. In [$\mathbf{R}]$, Recillas (cf. also [Do2]) establishes an isomorphism

$$
\tau: \mathcal{R} \mathcal{T}_{g} \xlongequal{\cong} \mathcal{M}_{g-1}^{t e t, 0}
$$

where $\mathcal{R} \mathcal{T}_{g}$ is the coarse moduli space of unramified double coverings of trigonal curves and $\mathcal{M}_{g-1}^{t e t, 0}$ is the moduli space of pairs (X, g_{4}^{1}) of tetragonal curves X and a base-point-free tetragonal linear series on X not containing divisors of the form $2 x+2 y$. This map satisfies that

$$
\tau(\tilde{C}, C)=\left(X, g_{4}^{1}\right) \Longrightarrow P(\tilde{C}, C) \cong J X \quad \text { (as p.p.a.v.). }
$$

Let us fix (\tilde{C}, C) as above and let $(\tilde{D}, D) \in \mathcal{R}_{g}$ such that $P(\tilde{D}, D) \cong$ $P(\tilde{C}, C) \cong J X$. Since C is not hyperelliptic, then the singular locus of the theta divisor of $P(\tilde{D}, D)$ has codimension 3 by [$\mathbf{M}, \mathrm{p} .344]$. In loc. cit. a list of the Prym varieties with such property appear. We obtain that D is either trigonal or bi-elliptic. Since $P(\tilde{D}, D)$ is the Jacobian of a curve the bi-elliptic case contradicts [S].

Hence it suffices to prove that all the fibres of the restriction of P_{g} to $\mathcal{R} \mathcal{T}_{g}$ are zero dimensional. This follows from the bijection τ. Indeed, a curve X of genus $g \geq 12$ has at most one base-point-free g_{4}^{1} without divisors of the form $2 x+2 y$; otherwise there exists a map $f: X \longrightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ and then either the genus is ≤ 9 or X is bi-elliptic. By [\mathbf{T}, Lemma (4.3)] the linear series of degree 4 and dimension 1 on a bi-elliptic curve come from g_{2}^{1} linear series on the elliptic curve, thus divisors of the forbidden form appear.

Now the classical Torelli Theorem says that

$$
\begin{gathered}
\mathcal{M}_{g-1}^{t e t, 0} \longrightarrow \mathcal{A}_{g-1} \\
\left(X, g_{4}^{1}\right) \longmapsto J X
\end{gathered}
$$

is injective. Composing with τ we are done.
Remark. Note that if one drops the hypothesis on the genus, at least one gets that the Clifford index of C is ≤ 2.

References

[B] A. Beauville, Variétés de Prym et Jacobiennes Intermédiaires, Ann. Sci. E.N.S., 10 (1977), 309-391.
[De] O. Debarre, Sur les variétés de Prym des courbes tétragonales, Ann. Sci. E.N.S., 21 (1988), 545-559.
[Do1] R. Donagi, The tetragonal construction, Bull. Amer. Math. Soc., 4 (1981), 181-185.
[Do2] R. Donagi, The fibres of the Prym map, Preprint 1992.
[G-L] M. Green and R. Lazarsfeld, On projective normality of complete linear systems on an algebraic curve, Invent. Math., 83 (1985), 73-90.
[M] D. Mumford, Prym varieties, I, in Contributions to Analysis, New York 1974.
[Ma] G. Martens, Funktionen von vorgegebener Ordnung auf Komplexen Kurven, J. reine angew. Math., 320 (1980), 68-85.
[N] J.C. Naranjo, Prym varieties of bi-elliptic curves, J. reine angew. Math., 424 (1992), 47-106.
[R] S. Recillas, Jacobians of curves with g_{4}^{1} 's are the Prym's of trigonal curves, Bol. Soc. Mat. Mexicana, 19 (1974), 9-13.
[S] V.V. Shokurov, Distinguishing Prymians from Jacobians, Invent. Math., 65 (1981), 209-219.
[T] M. Teixidor, On translation invariance for W_{d}^{r}, J. reine angew. Math., 385 (1988), 10-23.

Received March 1, 1993. The author was partially supported by the European Science Program, "Geometry of Algebraic Varieties" project, contract no. SC1-0398-C(A) and by the DGICYT no. PS90-0069.

Departament d'Algebra i Geometria
Universitat de Barcelona, Gran Via 585
08007 Barcelona, Spain
E-mail address: naranjo@cerber.ub.es

