THE POSITIVE DIMENSIONAL FIBRES OF THE PRYM MAP

JUAN-CARLOS NARANJO

The fibres of positive dimension of the Prym map are characterized.

Let C be an irreducible complex smooth curve of genus g. Let $\pi : \tilde{C} \longrightarrow C$ be a connected unramified double covering of C.

The *Prym variety* associated to the covering is, by definition, the component of the origin of the Kernel of the norm map

$$P(\tilde{C}, C) = \operatorname{Ker}(Nm_{\pi})^0 \subset J\tilde{C}.$$

It is a principally polarized abelian variety (p.p.a.v.) of dimension $g(\tilde{C}) - g = g - 1$.

One defines the Prym map

$$P_g: \begin{array}{cc} \mathcal{R}_g & \longrightarrow & \mathcal{A}_{g-1} \\ (\tilde{C} \xrightarrow{\pi} C) & \longmapsto P(\tilde{C}, C), \end{array}$$

where \mathcal{R}_g is the coarse moduli space of the coverings π as above and \mathcal{A}_{g-1} stands for the coarse moduli space of p.p.a.v.'s of dimension g-1.

It is well-known that this map is generically injective for $g \ge 7$ (Friedman-Smith, Kanev). On the other hand this map is never injective; this is a consequence of the tetragonal construction due to Donagi (see [**Do1**] for a description of the construction). This fact is already implicit in the results of Mumford ([**M**]):

The coarse moduli space \mathcal{RH}_g of unramified double coverings of smooth hyperelliptic curves of genus g has $\left[\frac{g-1}{2}\right] + 1$ irreducible components $\mathcal{RH}_{g,t}$, $t = 0, ..., \left[\frac{g-1}{2}\right]$. For an element $(\tilde{C}, C) \in \mathcal{RH}_{g,t}$ there exist two hyperelliptic curves

$$p_1: C_1 \longrightarrow \mathbb{P}^1, \quad p_2: C_2 \longrightarrow \mathbb{P}^1$$

of genus $g(C_1) = t \le g - t - 1 = g(C_2)$ such that

a) $\tilde{C} = C_1 \times_{\mathbb{P}^1} C_2$ and

b) $C = \tilde{C}/(\sigma_1 \circ \sigma_2)$, where σ_1 (resp. σ_2) is the involution on \tilde{C} attached to the branched covering $\tilde{C} \longrightarrow C_1$ (resp. $\tilde{C} \longrightarrow C_2$).

Mumford proves (loc. cit. p. 346) that one has an isomorphism of p.p.a.v.

$$P(\tilde{C}, C) \cong JC_1 \times JC_2.$$

Consequently the fibres of the restriction of P_g to \mathcal{RH}_g have positive dimension. In fact $P_g(\mathcal{RH}_{g,t})$ is contained in the product $\mathcal{JH}_t \times \mathcal{JH}_{g-t-1}$, where \mathcal{JH}_s stands for the locus of Jacobians of hyperelliptic curves of genus s. Thus

$$\dim \mathcal{RH}_{g,t} = 2g - 1 > \dim \mathcal{JH}_t \times \mathcal{JH}_{g-t-1} = \begin{cases} 2g - 4 & \text{if } t \neq 0\\ 2g - 3 & \text{if } t = 0. \end{cases}$$

On the other hand positive dimensional fibres also appear for some coverings of bi-elliptic curves (a curve is called bi-elliptic if it can be represented as a ramified double covering of an elliptic curve).

In this note we characterize the fibres of positive dimension of the Prym map. To state our theorem we need some notation: let \mathcal{RB}_g be the coarse moduli space of the unramified double coverings $\pi: \tilde{C} \longrightarrow C$ such that C is a smooth bi-elliptic curve of genus g. This variety has $\left[\frac{g-1}{2}\right] + 2$ irreducible components

$$\mathcal{RB}_g = \left(igcup_{t=0}^{[rac{g-1}{2}]}\mathcal{RB}_{g,t}
ight) \cup \mathcal{RB}'_g$$

(see $[\mathbf{N}]$ for more details).

We obtain:

Theorem. Assume $g \ge 13$. A fibre of P_g is positive dimensional at (\tilde{C}, C) if and only if C is either hyperelliptic or

$$(\tilde{C}, C) \in \bigcup_{t \ge 1} \mathcal{RB}_{g,t}.$$

Proof. If C is hyperelliptic we apply the results of Mumford. On the other hand, all the irreducible components of the fibres of $P_{g|\mathcal{RB}_{g,t}}$ are positive dimensional for $t \geq 1$ (see [**N**, §20]). This finishes one implication.

The first step to see the opposite implication is to prove that the curve C is tetragonal (i.e. there exists a g_4^1 on C).

Let $\eta \in JC$ be the two-torsion point characterizing the covering and denote by L the line bundle $\omega_C \otimes \eta$. It is easy to check that L is very ample if C is non-tetragonal. Let Φ_L be the projective embedding of C defined by L.

As in Beauville ([**B**, p. 379]), we replace \mathcal{R}_g and \mathcal{A}_{g-1} by the corresponding functors. Then, the Prym map defines a morphism of functors Pr_g . Our

224

hypothesis on the fibre of P_g implies that the cotangent map to Pr_g at (\hat{C}, C) is not surjective. By loc. cit. Prop. (7.5), this map can be shown as the cup-product map

$$S^2H^0(C,L) \longrightarrow H^0(C,L^{\otimes 2})$$

followed by the isomorphism induced in cohomology by $L^{\otimes 2} \cong \omega^{\otimes 2}$. Hence, the non-surjectivity implies that $\Phi_L(C)$ is not a projectively normal curve.

We recall Theorem 1 in $[\mathbf{G-L}]$: If L is very ample and

$$\deg(L) \ge 2g + 1 - 2h^1(L) - \operatorname{Cliff}(C),$$

then $\Phi_L(C)$ is projectively normal (where $\operatorname{Cliff}(C)$ is the Clifford index of C).

Since $h^1(L) = 0$ and $\deg(L) = 2g - 2$ one obtains $\operatorname{Cliff}(C) \leq 2$. By using Clifford's Theorem and [Ma, Propositions 7 and 8], it follows that the curve either possess a g_4^1 or is plane curve of degree six. The second case contradicts $g \geq 13$.

Thus C is tetragonal. Since $g \ge 13$ the results in [**De**] can be applied: either the fibre is finite (generically, three elements) or we are in one of the following three possibilities: C is either hyperelliptic or bi-elliptic or trigonal.

Assume that C is bi-elliptic. Theorems (9.4), (10.9) and (10.10) in [N] states that $P_g^{-1}(P(\tilde{C},C))$ consists of two points for every $(\tilde{C},C) \in \mathcal{RB}_{g,0} \cup \mathcal{RB}'_g$, hence

$$(\tilde{C}, C) \in \bigcup_{t \ge 1} \mathcal{RB}_{g,t}$$

To finish the proof we have to rule out the case: C trigonal. In [**R**], Recillas (cf. also [**Do2**]) establishes an isomorphism

$$\tau: \mathcal{RT}_g \xrightarrow{\cong} \mathcal{M}_{g-1}^{tet,0},$$

where \mathcal{RT}_g is the coarse moduli space of unramified double coverings of trigonal curves and $\mathcal{M}_{g-1}^{tet,0}$ is the moduli space of pairs (X, g_4^1) of tetragonal curves X and a base-point-free tetragonal linear series on X not containing divisors of the form 2x + 2y. This map satisfies that

$$au(\tilde{C},C) = (X,g_4^1) \Longrightarrow P(\tilde{C},C) \cong JX \quad (\text{as p.p.a.v.})$$

Let us fix (\tilde{C}, C) as above and let $(\tilde{D}, D) \in \mathcal{R}_g$ such that $P(\tilde{D}, D) \cong P(\tilde{C}, C) \cong JX$. Since C is not hyperelliptic, then the singular locus of the theta divisor of $P(\tilde{D}, D)$ has codimension 3 by [M, p. 344]. In loc. cit. a list of the Prym varieties with such property appear. We obtain that D is either trigonal or bi-elliptic. Since $P(\tilde{D}, D)$ is the Jacobian of a curve the bi-elliptic case contradicts [S].

Hence it suffices to prove that all the fibres of the restriction of P_g to \mathcal{RT}_g are zero dimensional. This follows from the bijection τ . Indeed, a curve Xof genus $g \geq 12$ has at most one base-point-free g_4^1 without divisors of the form 2x + 2y; otherwise there exists a map $f: X \longrightarrow \mathbb{P}^1 \times \mathbb{P}^1$ and then either the genus is ≤ 9 or X is bi-elliptic. By [**T**, Lemma (4.3)] the linear series of degree 4 and dimension 1 on a bi-elliptic curve come from g_2^1 linear series on the elliptic curve, thus divisors of the forbidden form appear.

Now the classical Torelli Theorem says that

$$\mathcal{M}_{g-1}^{tet,0} \longrightarrow \mathcal{A}_{g-1}$$
$$(X, g_4^1) \longmapsto JX$$

is injective. Composing with τ we are done.

Remark. Note that if one drops the hypothesis on the genus, at least one gets that the Clifford index of C is ≤ 2 .

References

- [B] A. Beauville, Variétés de Prym et Jacobiennes Intermédiaires, Ann. Sci. E.N.S., 10 (1977), 309-391.
- [De] O. Debarre, Sur les variétés de Prym des courbes tétragonales, Ann. Sci. E.N.S., 21 (1988), 545-559.
- [Do1] R. Donagi, The tetragonal construction, Bull. Amer. Math. Soc., 4 (1981), 181-185.
- [Do2] R. Donagi, The fibres of the Prym map, Preprint 1992.
- [G-L] M. Green and R. Lazarsfeld, On projective normality of complete linear systems on an algebraic curve, Invent. Math., 83 (1985), 73-90.
 - [M] D. Mumford, Prym varieties, I, in Contributions to Analysis, New York 1974.
- [Ma] G. Martens, Funktionen von vorgegebener Ordnung auf Komplexen Kurven, J. reine angew. Math., 320 (1980), 68-85.
 - [N] J.C. Naranjo, Prym varieties of bi-elliptic curves, J. reine angew. Math., 424 (1992), 47-106.
 - [R] S. Recillas, Jacobians of curves with g¹/₄'s are the Prym's of trigonal curves, Bol. Soc. Mat. Mexicana, 19 (1974), 9-13.
 - [S] V.V. Shokurov, Distinguishing Prymians from Jacobians, Invent. Math., 65 (1981), 209-219.
 - [T] M. Teixidor, On translation invariance for W_d^r , J. reine angew. Math., **385** (1988), 10-23.

Received March 1, 1993. The author was partially supported by the European Science Program, "Geometry of Algebraic Varieties" project, contract no. SC1-0398-C(A) and by the DGICYT no. PS90-0069.

DEPARTAMENT D'ALGEBRA I GEOMETRIA UNIVERSITAT DE BARCELONA, GRAN VIA 585 08007 BARCELONA, SPAIN *E-mail address*: naranjo@cerber.ub.es