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Xiao’s conjecture for general fibred surfaces
By Miguel Ángel Barja at Barcelona, Víctor González-Alonso at Hannover and

Juan Carlos Naranjo at Barcelona

Abstract. We prove that the genus g, the relative irregularity qf and the Clifford index
cf of a non-isotrivial fibration f satisfy the inequality qf � g � cf . This gives in particular a
proof of Xiao’s conjecture for fibrations whose general fibres have maximal Clifford index.

1. Introduction

In the classification of smooth algebraic surfaces it is natural to study its possible fibra-
tions over curves, trying to relate the geometry of the surface to the properties of the fibres and
the base. In this article we focus on the relations between numerical invariants of a fibration,
proving Xiao’s conjecture for fibrations whose general fibres have maximal Clifford index.

Let f W S ! B be a fibration from a compact surface S to a compact curve B (that is,
a surjective morphism with connected fibres), and let F be a general (smooth) fibre of f . The
fibration is called isotrivial if all the smooth fibres are mutually isomorphic, and it is trivial if
S is birational to B � F and the given fibration corresponds to the first projection.

We first consider the genus g ofF (also called the genus of f ) and the relative irregularity
qf D q.S/ � g.B/. Beauville showed in its appendix to [5] that

0 � qf � g;

and the equality qf D g holds if and only if f is trivial. As a consequence of the work of
Serrano [15], non-trivial isotrivial fibrations satisfy

(1) qf �
g C 1

2
:
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2 Barja, González-Alonso and Naranjo, Xiao’s conjecture for general fibred surfaces

For non-isotrivial fibrations, the only known general upper bound for qf is

(2) qf �
5g C 1

6
;

proven by Xiao in [16]. However, in his later work [17], Xiao says literally that “it is unlikely
that this inequality gives the best bound for q, since its proof is not very accurate”. By not
very accurate he might mean that his proof uses only properties of the first step of the Harder–
Narasimham filtration of the vector bundle f�!S=B , and hence the result might be improved by
taking into account the complete filtration. In fact, in the same work [17] he proves that, in the
special case in which the base is B Š P1, the upper-bound (1) holds for any non-trivial fibra-
tion, regardless whether it is isotrivial or not. In view of this result, Xiao conjectured in [18] that
the inequality (1) should hold for every non-trivial fibration, and he provided an example attain-
ing the equality. This conjecture was shown to be false by Pirola in [13], where he provided a
non-isotrivial fibration with fibres of genus g D 4 and relative irregularity qf D 3 6� 5

2
D

gC1
2

.
Recently, Albano and Pirola [1] have obtained more counterexamples with genus g D 6 and
10, all of them satisfying

qf D
g

2
C 1 D

g C 1

2
C
1

2
:

The fact that in all known counterexamples the conjecture fails by exactly 1
2

naturally leads to
the following modification.

Conjecture 1.1 (Modified Xiao’s conjecture). For any non-trivial fibration f W S ! B

one has
qf �

g

2
C 1;

or equivalently

qf �

�
g C 1

2

�
:

Note that for odd values of g, the bound in Conjecture 1.1 is equivalent to the inequality
(1) originally conjectured by Xiao. It is worth noting that the original version of the conjec-
ture has been proved for several classes of fibrations. On the one hand, in addition to the
counterexample, Pirola proves in [13] that the conjecture holds if a sort of Abel–Jacobi map
(from the base of the fibration to a primitive intermediate Jacobian) is constant. On the other
hand, already in 1998 Cai [3] proved the conjecture for fibrations whose general fibre is either
hyperelliptic or bielliptic.

In this article we prove the following theorem.

Theorem 1.2. Let f W S ! B be a fibration of genus g � 2, relative irregularity qf
and Clifford index cf . If f is non-isotrivial, then

qf � g � cf :

The Clifford index cf of f was introduced by Konno in [10, Definition 1.1] as the Clifford
index of a general fibre. It is in fact the maximum of the Clifford indexes of the smooth fibres,
which is attained over a non-empty Zariski-open subset of B . The Clifford index has a role
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in several improvements of the slope-inequality, as those obtained by Konno himself, and by
Barja and Stoppino in [2].

Note that, as soon as cf > g�1
6

, Theorem 1.2 is an improvement of Xiao’s general in-
equality (2). In the particular case of maximal Clifford index, we obtain the following corollary.

Corollary 1.3. If f is not trivial and cf is maximal, i.e., cf Db
g�1
2
c, then qf � d

gC1
2
e.

Since the set of curves with maximal Clifford index is a Zariski-open subset of the moduli
space Mg of curves of genus g, it makes sense to say that such a fibration is a general fibration.
Hence Theorem 1.2 can be interpreted as the proof of Conjecture 1.1 for general fibrations.

In order to prove Theorem 1.2, we first need the existence of a supporting divisor for
f , which is guaranteed by the more general study of families of irregular varieties carried
out by the second-named author in [9]. By a supporting divisor for f , we mean a divisor
on S whose restriction to a general fibre supports the corresponding first-order deformation
induced by f (see Definitions 2.2 and 2.7). Once this divisor is obtained, we must consider
whether its restriction to a general fibre is rigid or not. On the one hand, if it is rigid we can
conclude using a structure result also proved in [9] (see Theorem 2.9 below). This case can
also be handled in an alternative way, with more local flavor and quite similar to Xiao’s original
method. This different approach is the content of the last section of the paper. On the other
hand, if the supporting divisor moves in every fibre, we need a result on the rank of first-order
deformations of curves (Theorem 2.4). This result was stated by Ginensky as part of a more
general theorem in [8], whose original proof contains some inaccuracies. Though the part of
the proof we need can be completed and slightly shortened, we have decided to include here a
different, much shorter proof, suggested to us by Pirola.

Basic assumptions and notation. Throughout the whole article, all varieties are as-
sumed to be smooth and defined over C. If not explicitly stated otherwise, f W S ! B will
be a fibration (a surjective morphism with connected fibres) from a compact surface S to a
compact curve B . The genus of f , defined as the genus of any smooth fibre, will be denoted
by g, and assumed to be at least 2. The relative irregularity of f is by definition the difference
qf D q.S/� g.B/. According to Fujita’s decomposition theorem [6,7], qf coincides with the
rank of the trivial part of the locally free sheaf f�!S=B .

2. Preliminaries

We will use some notions about infinitesimal deformations of curves, as well as some
results on fibred surfaces developed in the previous work [9].

2.1. Infinitesimal deformations. Let C be a smooth curve of genus g � 2. A first-
order infinitesimal deformation of C is a proper flat morphism C ! � over the spectrum of
the dual numbers � D Spec CŒ��=.�2/, such that the special fibre (over 0 D Spec C.�/) is
isomorphic to C . A first-order infinitesimal deformation is determined (up to isomorphism)
by its Kodaira–Spencer class � 2 H 1.C; TC /, defined as the extension class of the sequence
defining the conormal bundle,

(3) 0! N_C=C Š T
_
�;0 ˝OC ! �1C jC ! !C ! 0;
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after choosing an isomorphism T _�;0 Š C. We will assume that the deformation is not trivial,
that is C 6Š C ��, or equivalently, � ¤ 0.

Cup-product with � gives a map

à� D [� W H 0.C; !C /! H 1.C;OC /

that coincides with the connecting homomorphism in the exact sequence of cohomology of (3).

Definition 2.1. The rank of � is

rk � D rk à� :

If C is non-hyperelliptic, the map H 1.C; TC /! Hom.H 0.C; !C /;H
1.C;OC // given

by � 7! à� is injective, hence no information is lost when considering à� instead of � . How-
ever, if C is hyperelliptic, the above map is not injective, and we may have rk � D 0 even if
� ¤ 0. This exception is a manifestation of the failure of the infinitesimal Torelli theorem for
hyperelliptic curves.

From now on, until the end of the section, D will denote an effective divisor on C of
degree d . We will also denote by r D r.D/ D h0.C;OC .D// � 1 the dimension of its
complete linear series.

Definition 2.2. The deformation � is supported on D if and only if

� 2 ker
�
H 1.C; TC /! H 1.C; TC .D//

�
;

where the map is induced by the injection of line bundles TC
CD
��! TC .D/. Furthermore, if �

is not supported on any strictly smaller effective divisor D0 < D, we say that � is minimally
supported on D.

As far as we are aware, the notion of supporting divisor was introduced in [4], while the
minimality was first considered in [8]. The use of the word “support” has two motivations.
On the one hand, � is supported on D if and only if it is the image of a Laurent tail of a
meromorphic section � 2 H 0.D; TC .D/jD/, which is obviously supported on D. On the
other hand, � is supported on D if and only if, in the bicanonical space of C , the line Ch�i
corresponds to a point in the span of D.

If D has the smallest degree among the divisors supporting � , then � is minimally sup-
ported on D, but not conversely. Indeed, � being minimally supported on D means that it is
not possible to remove some point ofD and still support � , but there is no reason forD to have
minimal degree.

One could equivalently define � to be supported on the divisor D if and only if the top
row in the following pull-back diagram is split.

(4) �D W 0 // N_
C=C

// FD //
� _

��

!C .�D/ //
� _

��

rr
0

� W 0 // N_
C=C

// �1
C jC

// !C // 0
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Indeed, the map H 1.C; TC / ! H 1.C; TC .D// is naturally identified with the pull-back of
extensions Ext1

OC
.!C ;OC /! Ext1

OC
.!C .�D/;OC /.

The following is a first relation between the rank of a deformation and the invariants of a
supporting divisor.

Lemma 2.3. Suppose � is supported on D. Then H 0.C; !C .�D// � ker à� . Hence

rk � � degD � r.D/:

Proof. The fact that �D is split implies that all the sections of !C .�D/ lift to sections
of �1

C jC
, and hence belong to the kernel of à� . The inequality is an easy consequence of

Riemann–Roch, because

rk � D g � dim ker à� � g � h0.C; !C .�D//
D g � .r.D/ � d C g/ D d � r.D/:

We will need also a lower-bound on rk � , which was first proved by Ginensky in [8]. We
include here a different (and shorter) proof, suggested to us by Pirola. Recall that the Clifford
index of any divisor D is defined as

Cliff.D/ D degD � 2r.D/:

Recall also that the Clifford index of the curve C is

Cliff.C / D min
®
Cliff.D/ j h0.C;OC .D//; h1.C;OC .D// � 2

¯
:

Theorem 2.4. If � is minimally supported on D, then

rk � � degD � 2r.D/ D Cliff.D/:

Proof. Since � is supported on D, the inclusion !C .�D/ ,! !C factors through
�D W !C .�D/ ,! �1

C jC
.

Claim: If D supports � minimally, the cokernel KD of �D is torsion-free.
Assuming the claim, the proof can be completed as follows. On the one hand, comparing

determinants, one has KD Š OC .D/, giving the exact sequence of sheaves

0! !C .�D/! �1C jC ! OC .D/! 0;

from which the inequality

(5) h0.C;�1C jC / � h
0.C; !C .�D//C h

0.C;OC .D//

follows. On the other hand, from the exact sequence of cohomology of �, one gets

(6) g � rk � D dim ker à� D h0.C;�1C jC / � 1:

Combining inequality (5) and equality (6) with Riemann–Roch, one finally obtains

g � rk � � h0.C; !C .�D//C h0.C;OC .D// � 1 D 2r.D/ � degD C g:
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Proof of the claim. We will show in fact that if KD has torsion, thenD does not support
� minimally. Indeed, if T ¤ 0 is the torsion subsheaf of KD , there is a line bundle M such
that

0!M! �1C jC !KD=T ! 0 and 0! !C .�D/!M! T ! 0:

The image of the composition � W M ,! �1
C jC
! !C contains !C .�D/ by construction.

Therefore � is injective and gives an isomorphism M Š !C .�E/ for some 0 � E < D.
Since M ,! !C factors through �1

C jC
, this contradicts the minimality of D, as wanted.

Example 2.5. There exist examples such that rk � D Cliff.D/. For instance, let C be a
general fibre of a fibration f such that qf D

g
2
C1 > gC1

2
(as those constructed in [1]), and let

� be its first-order deformation induced by f . As a consequence of the proof of Theorem 1.2,
any divisor D supporting � must be movable and will satisfy rk � D Cliff.D/. Furthermore,
such examples are not only infinitesimal deformations, but actual families of curves with the
same property. We have not been able to find more explicit examples. Although Ginensky
claims to classify these cases in [8, Theorem 2.5], we cannot follow this part of his proof.

2.2. Fibred surfaces. We now recall some results on fibred surfaces proved in the pre-
vious work [9] of the second-named author. Let f W S ! B be a fibration of genus g and
relative irregularity qf . We say that f is isotrivial if all the smooth fibres are isomorphic. For
any smooth fibre Cb , the kernel of the restriction map rb W H 0.S;�1S / ! H 0.Cb; !Cb / is
exactly f �H 0.B; !B/. Therefore, there is an injection

(7) Vf WD H
0.S;�1S /=f

�H 0.B; !B/ ,! H 0.Cb; !Cb /

which implies the inequality qf � g.

Remark 2.6. Although it is well known, we would like to sketch a proof of the equality
ker rb D f �H 0.B; !B/, using a construction that will appear again in the last section. The
ideas are actually taken from [5] and [13]. The basic fact is that the image of the Jacobian
of a smooth fibre Cb in Alb.S/ is independent of b 2 B (up to translation), and is precisely
A D ker.Alb.S/! J.B//. We have therefore an exact sequence of Abelian varieties

J.Cb/! Alb.S/! J.B/! 0;

and looking at the maps on the cotangent spaces at the origin, we obtain the exact sequence of
vector spaces

0! H 0.B; !B/
f �

��! H 0.S;�1S /
rb
�! H 0.Cb; !Cb /;

hence the wanted inclusion

Vf WD H
0.S;�1S /=f

�H 0.B; !B/ D H
0.A;�1A/ ,! H 0.Cb; !Cb /:

For any finite map � W B 0 ! B , let S 0 D CS �B B 0 be the minimal desingularization of
the fibred product, and f 0 W S 0 ! B 0 the induced fibration. The fibres of f 0 obviously have the
same genus as the fibres of f , but for the relative irregularity only the inequality qf 0 � qf can
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be proved (which might be strict). Indeed, for any b 2 B where � is not ramified, the injection
(7) factors as

Vf ! Vf 0 ,! H 0.Cb; !Cb /;

which forces the first map to be injective, and hence qf � qf 0 .
For any smooth fibre Cb , denote by �b 2 H 1.Cb; TCb / the class of the first order defor-

mation induced by f .

Definition 2.7 ([9, Definition 2.3]). Let D � S be an effective divisor. The fibration f
is supported on D if for a general b 2 B , �b is supported on DjCb .

Note that this definition is local around the smooth fibres. As a consequence, if f is
supported on D and we perform a change of base � W B 0 ! B as above, then f 0 is supported
on � 0�D � S 0 (where � 0 W S 0 ! S is the induced map between the surfaces).

The existence of supporting divisors is investigated in [9]. For our current purposes, the
most useful result is the following.

Theorem 2.8 ([9, Corollary 3.2]). If qf > gC1
2

, then after a base change B 0 ! B ,
there is a divisorD � S 0 supporting f 0 W S 0 ! B 0 and such thatD �Cb < 2g�2 for any fibre
Cb . Furthermore, if f is relatively minimal with reduced fibres, thenD �C � 2g.C /� 2�C 2

for any component C of a fibre.

The proof of this result uses adjoint images, whose definitions and main properties will
be recalled in the last section. Roughly speaking, the condition qf >

gC1
2

implies that locally
around every smooth fibre Cb there are two linearly independent holomorphic forms with van-
ishing adjoint image, and the (relative) base divisor of the linear system they span is precisely
the supporting divisor D. Furthermore, according to the forthcoming Remark 4.2, the divisor
D in Theorem 2.8 contains the components of the ramification divisor of the Albanese map of
S that are not contained in fibres.

The proof of Theorem 1.2 splits into two cases, depending on whether the restriction of
a supporting divisor to a general fibre is rigid or not. In the rigid case, there is a strong result
on the structure of the fibred surface which will be very useful:

Theorem 2.9 ([9, Theorem 2.1]). Let S be a compact surface, and f W S ! B a stable
fibration by curves of genus g and relative irregularity qf D q.S/ � g.B/ � 2. Suppose f is
supported on an effective divisor D without components contained in fibres. Suppose also that
D � C � 2g.C / � 2 � C 2 for any component C of a fibre, and that h0.Cb;OCb .DjCb // D 1

for some smooth fibre Cb . Then there is another fibration h W S ! B 0 over a curve of genus
g.B 0/ D qf . In particular, S is a covering of the product B � B 0, and both surfaces have the
same irregularity.

3. The main theorem

This section is devoted to the proof of Theorem 1.2. Recall that f W S ! B denotes a
fibration of genus g � 2, relative irregularity qf and Clifford index cf . The aim is to prove
that if f is not isotrivial, then qf � g � cf .
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8 Barja, González-Alonso and Naranjo, Xiao’s conjecture for general fibred surfaces

Proof of Theorem 1.2. Suppose, looking for a contradiction, that f W S ! B is non-
isotrivial and that qf > g � cf . In particular, since cf � b

g�1
2
c, we have qf >

gC1
2

. Hence
we can apply Theorem 2.8 and assume, after a change of base, that f still satisfies qf > g�cf
and is supported on a divisor D � S such that D � C < 2g � 2 for any fibre C . Note that the
inequality qf >

gC1
2

combined with g � qf implies that g � 2.
We consider now two cases:
Case 1: The divisor D is relatively rigid, that is h0.C;OC .D// D 1 for some smooth

fibre C D Cb . In this case, after a further base change, we can assume that the fibration is
stable and the divisor D satisfies

D � C � 2g.C / � 2 � C 2

for any component C of a fibre. We can now apply Theorem 2.9 to obtain a new fibration
h W S ! B 0 over a curve of genus g.B 0/ D qf . Let � W C ! B 0 be the restriction of h to the
smooth fibre C . Applying Riemann–Hurwitz, we obtain

2g � 2 � deg� .2qf � 2/:

At the beginning of the proof we obtained that qf >
gC1
2

, so 2qf � 2 > g � 1 and thus

2.g � 1/ > deg� .g � 1/:

It follows that deg� D 1, hence the smooth fibre is isomorphic to B 0 and f is isotrivial.
Case 2: The divisor D moves on any smooth fibre, i.e. h0.Cb;OCb .D// � 2 for every

regular value b 2 B .
After a further change of base, we may assume thatD consists of d sections of f (possi-

bly with multiplicities), and the new fibration is still supported on D. Then we can replace D
by a minimal subdivisor D0 � D such that f is still supported on D0. Since the components
of D are sections of f , this implies that for general b 2 B , the deformation �b is minimally
supported on DjCb . Note that this might not be true if the supporting divisors were not a union
of sections, as different points of DjCb lying on the same irreducible component of D may be
redundant.

If this new D is rigid on the general fibres, the proof finishes as in Case 1. Otherwise, if
h0.Cb;OCb .D// � 2 still holds for general b 2 B , we may use Theorem 2.4 to obtain

rk �b � Cliff.DjCb / D cf :

Since Vf � ker à�b D K�b , we have

qf D dimVf � dimK�b D g � rk �b � g � cf ;

contradicting our very first hypothesis.

Remark 3.1. Note that, whenever there exists a relatively rigid divisor D supporting
the fibration, the inequality qf > gC1

2
is sufficient to prove that the fibration f is isotriv-

ial (together with the structure Theorem 2.9), while the stronger inequality qf > g � cf is
used only if there is no such a D (even allowing arbitrary base changes). Hence, all possible
counterexamples to Xiao’s original conjecture must fall into this second case.
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Remark 3.2. Note that the proof of the second case is indeed strictly infinitesimal,
which might be a reason for the inequality to be weaker than expected.

Remark 3.3. Although in general our bound is better than the general one (2) proved
by Xiao, for small cf our theorem is worse. As an extremal case, if the general fibres are
hyperelliptic, cf D 0 and Theorem 1.2 has no content at all. But in this special case, the strong
inequality qf �

gC1
2

was proved by Cai in [3] using some results of Pirola [12] about rigidity
of rational curves on Kummer varieties. The same inequality has been recently proved, with
very different methods, by Lu and Zuo in [11].

4. A local approach

The proof in [9] of the above Theorem 2.9 relies on the classical result by Castelnuovo
and de Franchis on fibrations, for which the compactness of the surface is crucial. We present
here a different way, with more local flavor, to deal with the rigid case in the proof of Theorem
1.2. We devote this last section to the study of this different approach, which uses the theory of
adjoint images and the Volumetric Theorem to be recalled now. Incidentally, the adjoint images
were already a fundamental tool in the proof of Theorem 2.8, which gives a further reason to
include here a short review of them. Although the theory can be developed for varieties of
any dimension (see for example the work of Pirola an Zucconi [14]), we will recall only the
simplest case of curves, in which Collino and Pirola [4] used them for the first time and which
is enough for our objective.

Let C be a smooth curve of genus g � 2, and 0 ¤ � 2 H 1.C; TC / a non-trivial first
order deformation, corresponding to the extension

0! OC ! E ! !C ! 0:

Suppose that

K� D ker
�
H 0.C; !C /

à�D[�
����! H 1.C;OC /

�
D im

�
H 0.C;E/! H 0.C; !C /

�
has dimension at least 2, and let �1; �2 2 K� be two linearly independent 1-forms. Take
si 2 H

0.C;E/ arbitrary preimages of the �i , and let w 2 H 0.C; !C / be the 1-form corre-
sponding to s1 ^ s2 by the natural isomorphism

V2 E Š !C . The class Œw� of w modulo the
span W of ¹�1; �2º is well-defined, independently of the choice of the preimages si .

Definition 4.1. The class Œw� 2 H 0.C; !C /=W is the adjoint class of ¹�1; �2º.

Changing ¹�1; �2º by another basis of W amounts to multiply Œw� by the determinant
of the change of basis. Therefore, whether Œw� vanishes or not is an intrinsical property of
the subspace W , and not only of the chosen basis. Moreover, the Adjoint Theorem [4, Theo-
rem 1.1.8] says that if Œw� D 0, then the deformation � is supported on the base divisor of the
linear system jW j � j!C j. This is the main result used in the proof of Theorem 2.8 to obtain
supporting divisors on each fibre.
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Remark 4.2. In general, not much can be said of an arbitrary supporting divisor D,
but those provided by the Adjoint Theorem enjoy some special geometric properties. Assume
for example that there is a morphism � W C ! A from the curve to an Abelian variety A
such that W � ��H 0.A;�1A/, which is indeed the case if C is a fibre of f W S ! B ,
A D ker.Alb.S/ ! J.B//, and W is generated by sections coming from 1-forms on S (see
Remark 2.6). Then the base divisor of W , and in particular any supporting divisor deduced
from the Adjoint Theorem, contains the ramification divisor of �.

We will use another result about adjoint images: the Volumetric Theorem, which we
introduce now in the case of a family of curves. Let � W C ! U be a smooth family of curves
over an open disk U , and for every u 2 U , let �u be the induced first order deformation of
the fibre Cu. Let A be an Abelian variety, and let ˆ W C ! A � U be a morphism such that
p2 ı ˆ D � (where p2 denotes the second projection of the product A � U ), that is, a family
of morphisms �u W Cu ! A from the fibres of � onto a fixed Abelian variety A. Given a 2-
dimensional subspaceW � H 0.A;�1A/, denote byWu D ��uW � H

0.Cu; !Cu/ its pull-back
to Cu. Since the elements ofWu extend to all the fibres by construction,Wu is contained in the
kernel of à�u , so it is possible to define Œwu�, the adjoint class of Wu corresponding to some
chosen basis of W .

Theorem 4.3 (Volumetric Theorem [14, Theorem 1.5.3]). Keeping the above notations,
assume that � is not isotrivial. Suppose also that for some u0 2 U , the map �u0 W Cu0 ! A

is birational onto its image Yu0 , and that Yu0 generates A as a group. Then, for general
2-dimensional W � H 0.A;�1A/ and general u 2 U , the adjoint class Œwu� is non-zero.

It is worth noting that the construction of the adjoint image is very similar to the con-
struction used by Xiao to prove the inequality (1). In fact, the Volumetric Theorem for curves
(its original statement admits fibres of any dimension) resembles the lemma in [17]. Further-
more, the proof of this lemma could be adapted to prove the Volumetric Theorem as stated
here. However, since the latter admits any base curve (even just an open disk) and not only P1,
there would appear some technicalities to be solved.

We will now present Proposition 4.4, which gives the announced alternative proof of
Case 1 in the proof of Theorem 1.2. This proposition uses the Volumetric Theorem 4.3 instead
of Theorem 2.9, and hence applies for non-necessarily compact families. Note also that, be-
cause of the above discussion, the use of the Volumetric Theorem could be avoided by adapting
Xiao’s argument.

Proposition 4.4. Suppose that f W S ! B is a fibration where the base B is a smooth,
not necessarily compact curve. Assume that there is an Abelian varietyA of dimension a, and a
morphism ˆ W S ! A�B respecting the fibres of f and such that the image of any restriction
to a fibre �b W Cb ! A generates A. Suppose also that the deformation is supported on a
divisor D � S such that h0.Cb;OCb .DjCb // D 1 for general b 2 B . If a > gC1

2
, then f is

isotrivial.

Remark 4.5. As was already sketched in Remark 2.6, if the base B is compact, we may
takeA to be the kernel of the map induced between the Albanese varieties af WAlb.S/! J.B/,
which has dimension a D qf . Indeed, the Albanese image of S is contained in a�1

f
.B/, which
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is a fibre bundle over B with fibre A and can be trivialized after replacing B by an open disk.
The Albanese map induces then a morphismˆ as in Proposition 4.4, which gives indeed a new
proof of the first case in the proof of Theorem 1.2 above.

Remark 4.6. Moreover, if f admits a section, then there exists a global trivialization
a�1
f
.B/ Š A � B . In this case, the Albanese map composed with the projection to A gives a

map S ! A, whose ramification divisor is contained in any supporting divisor as in Theorem
2.8.

Proof of Proposition 4.4. Take any b 2 B such that Cb is smooth, and let fCb be the
image of �b W Cb ! A. Since fCb generates A, it has genus g0 � dimA D a > gC1

2
. This

implies, by Riemann–Hurwitz, that �b is birational onto its image for any regular value b 2 B .
If f is not isotrivial, the Volumetric Theorem 4.3 implies that, for a general fibreC D Cb ,

the adjoint class of a generic 2-dimensional subspace

W � V WD H 0.A;�1A/ � H
0.C; !C /

is non-zero. In the caseB is compact, V coincides with the space Vf appearing in the preceding
sections (see Remarks 2.6 and 4.5).

However, we will now show that, for every fibre, the adjoint class of every 2-dimensional
subspace of V vanishes, which finishes the proof. Fix any regular value b 2 B and denote by
C D Cb the corresponding fibre, by � D �b the infinitesimal deformation induced by f , and
by D D DjC the restriction of the global divisor. Let also K D K� be the kernel of à� . Since
� is supported on D, Lemma 2.3 gives the inclusion H 0.C; !C .�D// � K, which is in fact
an equality. Indeed, on the one hand we have

dimH 0.C; !C .�D// D g � degD

because D is rigid, while on the other hand it holds

dimK D g � rk � D g � degD

because of Lemma 2.3 and Theorem 2.4. Therefore, V � K D H 0.C; !C .�D//, as claimed.
Note that, in order to apply Theorem 2.4, we need that � is minimally supported on D. If this
were not the case, we can reduce to it after a base change, as in the second case of the proof
of Theorem 1.2. Clearly this base change does not affect the isotriviality of f , and naturally
induces a new morphism ˆ with the same properties, without changing the Abelian variety A.

Now, since � is supported on D, the upper sequence in (4) is split, giving a lifting
!C .�D/ ,! �1

S jC
such that any two elements of H 0.C; !C .�D// � H

0.C;�1
S jC

/ wedge
to zero (they are sections of the same sub-line bundle of�1

S jC
), which completes the proof.

Remark 4.7. In the above proof, to show that the images fCb are all isomorphic, it is
only necessary to use the Volumetric Theorem 4.3. The inequality a > gC1

2
is only used,

combined with Riemann–Hurwitz, to show that the maps �b are birational. Therefore, if we
drop the inequality a > gC1

2
from the hypothesis (but still keep that the deformations are

supported on rigid divisors), the same proof shows that the fibres Cb are coverings of a fixed
curve fCb .
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