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Abstract: A specific mosquito enzyme, 3-hydroxykynurenine transaminase (HKT), is involved in the
processing of toxic metabolic intermediates of the tryptophan metabolic pathway. The HKT enzymatic
product, xanthurenic acid, is required for Plasmodium spp. development in the mosquito vectors.
Therefore, an inhibitor of HKT may not only be a mosquitocide but also a malaria-transmission
blocker. In this work, we present a study investigating the evolution of HKT, which is a lineage-
specific duplication of an alanine glyoxylate aminotransferases (AGT) in mosquitoes. Synteny
analyses, together with the phylogenetic history of the AGT family, suggests that HKT and the
mosquito AGTs are paralogous that were formed via a duplication event in their common ancestor.
Furthermore, 41 amino acid sites with significant evidence of positive selection were identified, which
could be responsible for biochemical and functional evolution and the stability of conformational
stabilization. To get a deeper understanding of the evolution of ligands’ capacity and the ligand-
binding mechanism of HKT, the sequence and the 3D homology model of the common ancestor of
HKT and AGT in mosquitoes, ancestral mosquito AGT (AncMosqAGT), were inferred and built. The
homology model along with 3-hydroxykynurenine, kynurenine, and alanine were used in docking
experiments to predict the binding capacity and ligand-binding mode of the new substrates related to
toxic metabolites detoxification. Our study provides evidence for the dramatic biochemical evolution
of the key detoxifying enzyme and provides potential sites that could hinder the detoxification
function, which may be used in mosquito larvicide and design.

Keywords: molecular docking; in silico methods; molecular evolution; 3-hydroxykynurenine transam-
inase; alanine glyoxylate transaminase

1. Introduction

The tryptophan metabolic pathway is evolutionary conserved amongst distantly
related groups, such as bacteria, fungi, plants, or animals, showcasing its relevance in most
living organisms. Specifically, 3-hydroxykynurenine (3-HK) is an intermediate metabolite
in the tryptophan oxidation pathway. In many organisms, 3-HK is a potential endogenous
neurotoxin, being dose-sensitive to its presence, as it can stimulate the production of reactive
oxygen species, which can lead to cell death [1,2]. In insects, exogenous administration of
3-HK has drastic effects, leading to irreversible paralysis and death [3,4]. This metabolite
induces Plasmodium berghei infection in Anopheles mosquitoes by damaging the structure
of the peritrophic matrix in the midgut. Nevertheless, it has been shown that the gut
microbiota (i.e., Pseudomonas alcaligenes) in A. stephensi helps in improving the resistance
towards malaria parasites by synthesizing the enzyme kynureninase that catabolizes 3-
HK [5,6]. Although the potential toxicity of 3-HK has been highlighted in many studies, it
remains present in various physiological functions as a compound of significance. In insects,
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3-HK is also an immediate precursor of ommochromes [7,8]. Therefore, maintaining the
dynamic balance of this molecule is crucial to protect the organism from being damaged.

Mosquito-borne viral diseases infect more than 700 million people and kill about
700,000 people every year, continuing to spread worldwide and causing severe public
health problems [9]. In mosquitoes, the transamination of 3-HK to xanthurenic acid is the
major branch pathway of tryptophan metabolism [10]. They metabolize 3-HK using the
enzyme 3-hydroxykynurenine transaminase (HKT), which is a lineage-specific paralogous
of the alanine glyoxylate aminotransferases (AGTs). Interestingly, mosquitoes are unique
in having evolved two AGTs. AGTs are commonly involved in the glyoxylate metabolism
in living organisms but not in metabolizing 3-HK. In mosquitoes though, HKT is the
only enzyme that metabolizes 3-HK [11], which was first identified from Aedes aegypti
in 1997 [12]. HKT is found to catalyze the transamination of 3-HK and L-kynurenine to
xanthurenic acid and kynurenic acid, respectively. It also catalyzes the transamination
of alanine with glyoxylate as an amino group acceptor, but less efficiently [10,13]. The
detoxification function of the enzyme HKT over 3-HK makes HKT a potential insecticide
target [14–17].

Interestingly, HKT is the only AGT homolog involved in detoxification of 3-HK, and
it is only found in mosquitoes. In other insects and animals, such as mammals, kynuren-
inase and L-kynurenine aminotransferases take the responsibility of metabolizing 3-HK.
However, kynureninase is apparently absent in mosquitoes, just presenting L-kynurenine
aminotransferases, which showed high activity for metabolizing kynurenine, but they
cannot catalyze 3-HK [11]. Therefore, mosquitoes seem to deal with the detoxification of
3-HK using different genes, compared to other animals. In this particular case, the main
biochemical function of one of the paralogous of AGT in mosquitoes, HKT, has changed.
Previous studies hypothesized that the two copies of AGT genes may have originated and
evolved in mosquitoes, due to the aquatic environment in which the larvae of mosquito
dwells. The protein-rich food source of environment, resulting in a large portion of trypto-
phan being converted to 3-HK and, hence, in a greater demand for 3-HK detoxification [18].
However, little research has been done to understand the molecular biochemical evolution
of HKT or AGT homologs in general. Accordingly, the evolutionary mechanism behind it
remains unclear.

Gene duplication is one of the principal processes in which new genes arise [19,20].
These new genetic products are the basis for the functional differentiation of homologous
genes and are an important driving force in the evolution of genome and species [21].
Studying biochemical evolution of enzymes has emerged as a powerful tool for understand-
ing their functions. Here, we provide the first comprehensive analysis of the molecular
evolution of HKT and AGT genes. We found a gene-duplication event responsible for the
two AGT paralogous genes in mosquitoes, which were retained in all species examined.
Using the sequence comparison and computational analyses, we provide the first molec-
ular evidence for divergence between AGT and HKT in mosquitoes after duplication of
its common ancestral AGT homolog and suggest that positive selection after duplication
lead to functional divergence. Reconstruction and molecular docking analysis of ancestral
mosquito AGT (mosqAGT) revealed that 3-HK and kynurenine could serve as substrates
for the ancestral mosqAGT. Our finding reveals the evolutionary mechanism by which
HKT originated and provides an evolutionary example of neofunctionalization.

2. Results
2.1. HKT Phylogeny and Mosquito-Specific Duplication

To investigate the evolution of HKT gene, we search for homologous proteins by
executing a BLASTP and tBLASTn search among different taxa using the HKT amino
acid sequence of the mosquito Aedes aegypti (AaeHKT) as query. We found putative AGT
homologous in other arthropods, as well as animals belonging to other phyla, and even
in bacteria and Archaean species. We found that two AGT homologous proteins were
present in the mosquito genomes among the 18 surveyed species (Supplementary Table S1),
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whereas other lineages, excluding mosquitoes, generally contain only one homolog of
AGT. To characterize the degree of similarity of these proteins, and, therefore, predict their
homology, we performed similarity statistics on the hits with the highest similarity for
each taxon (Supplementary Figure S1). From our data, we found that the highest similarity
indices between AaeHKT and other organisms AGTs, such as other insects, mammals or
bacteria, were between 42.4–55.6%. The best hit of the mosquito A. albopictus correspond
to its HKT homolog and has the highest similarity with AaeHKT (95%). HKT and AGT
from A. aegypti are highly divergent and share only 51.4% similarity, which is lower than
the highest similarity hit between AaeHKT and AGT from beetle species, corresponding
to 55.6%.

Due to the abnormally low similarity between HKT and AGT, 67 sequences were
collected to reconstruct a phylogenetic tree to gain an initial idea of the evolutionary rela-
tionship between AGT homologs. To assess the robustness of the results, we reconstructed
the gene phylogeny of AGTs using two different model-based approaches, Maximum Like-
lihood (ML) and Bayesian methods, and found it to have nearly identical topology (Figure 1,
Supplementary Figure S2). The topology shows some congruence with the phylogenetic
species tree relationships, with AGT sequences falling in close relationship with sequences
form members of the same clade (i.e., bacteria AGT sequences forming a clade). Mosquitoes
HKT sequences together with AGT sequences from mosquitoes and other dipterans form
a monophyletic group. These results suggest a vertical inheritance of both genes from a
common mosquito ancestor, or in whole dipterans but lost in non-mosquito ones, instead
of a horizontal gene-transfer event.
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Figure 1. Evolutionary relationships among amino acid sequences of AGT. The evolutionary history
was inferred by ML analysis described in Materials and Methods. Percentage ranges of bootstrap
values of nodes were represented by circles in different colors. The tree was rooted by outgroup,
which include two Archaeal species. Taxonomically related organisms are indicated by the same
color code.
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Next, to eliminate the potential biases caused by using distantly related species,
we focused on analyzing AGT sequences from Insecta species (Figure 2, Supplementary
Figure S3). Both mosquitoes’ homologs appear as sister clades, but the one containing
sequence labeled as AGT forming a clade containing also Drosophila sequences, whereas
the one with sequences labeled as HKT forming a robust monophyletic group composed
exclusively of mosquito lineages. These results suggest that mosquito sequences labeled
as AGT might retain the ancestral AGT structure found in other insects, whereas the
second clade containing the HKT sequences has diverged considerably. The sister group
relationship between dipteran AGT and HKT clades reflects that they share a common
ancestor, and may indicate a gene-duplication event in the early evolution of mosquitoes,
or in the whole dipterans with non-mosquito lineages having lost one of the paralogs.
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Figure 2. Detail of evolutionary relationships among amino acid sequences of AGT in Insecta. The
evolutionary history was inferred by ML analysis described in Materials and Methods. Percentage
ranges of bootstrap values of node were represented by circles in different colors. The tree was rooted
by Hymenoptera AGT as outgroup, which are earlier in evolutionary history. Taxonomically related
organisms are indicated by the same color code.

2.2. Micro-Synteny Analyses

To determine the physical location of AGT and HKT genes and its distribution on
chromosomes, we conducted a syntenic analyses using the Genomicus database (Figure 3).
The direction and arrangement of upstream and downstream genes of HKT in different
species are similar, indicating that these genes have a significant syntenic relationship in
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mosquitoes. We also noticed that HKT and AGT in mosquitoes were located on different
chromosomes, but there were no other homologous genes shared in the upstream and
downstream nearby regions on the chromosome. The presence of genes in a shared syntenic
location across species is a strong indicator that they are likely orthologous, which suggests
that HKT and mosqAGT were both orthologous with other insect AGT and a single ancestral
mosqAGT was present in the common ancestor of all mosquitoes.
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Figure 3. Syntenic analysis of mosquito AGT and HKT. Using AaeHKT as query, homologues of
genomic genes located close to HKT were set within Diptera relatives. Genes were represented by an
arrow label, the direction of the arrow indicates the direction of the gene on the chromosome, the
same color markers represent same homologs, and the blank arrow represents a gene for which no
homolog was found amongst different species. Location of the gene does not represent the actual
proportion on the chromosome.

Overall, our phylogenetic and synteny analyses together identify an independent
duplication event that likely occurred during the history of mosquito evolution. Based
on the chromosome location of mosqAGT and HKT, we speculate that a duplication of
a genomic fragment occurred in the common ancestor of mosquitoes, resulting in the
incorporation of that duplicated fragment into another chromosome. Along mosquito
evolution, the newly formed HKT locus was retained, while other genes from the original
duplicated strand of the chromosome were likely pseudogenized or lost.

2.3. Gene Structure Divergence between HKT and AGT in Mosquitoes

From the moment a new copy of a gene appears, divergence between the duplicates
is the key to the preservation of new genes [21]. To reveal the divergence between HKT
and AGT sequences of mosquito after duplication, we conducted a splice-site analysis
(Figure 4). We found that both genes had different numbers of exons, with AGT having an
average of three exons, while the number in HKT varies between three and six, highlighting
divergences in the gene structure in the latter. Besides HKT from Culicinae and Aedes,
both AGT and HKT contain an exon of 95 nt length. Anophelinae species HKT sequences
contain an exon of 248 nt length, whereas Culicinae HKT contains an exon of 344 nt length.
Interestingly, we have noticed that, although Culicinae HKT was lacking of exon of 248 nt
length, the exon of 344 nt length was almost equivalent to the sum of two exons of 95 nt and
248 nt in the Anopheles HKT, suggesting that Stegomyia HKT was likely to have undergone
exon-shuffling events. More narrowly, Stegomyia HKT lost one intron, leading to fusion of
two adjacent exons. Splice-site analysis indicates that HKT and AGT experienced different
intron gain/loss events. Changes in the structure of the coding region of the new copy are
likely to affect the exon–intron structure after gene duplication, which makes functional
divergence possible between AGT and HKT in mosquitoes.
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2.4. Functional Divergence between AGT and HKT

To quantify the degree of functional divergence, we applied type I functional diver-
gence analysis using DIVERGE 3.0 (Table 1). We used different branches for the pairwise
comparison. As shown in the table, all detected functional divergence values are statistically
significant. By comparing HKT and AGT in mosquitoes with HKT and Diptera AGT, HKT
and Coleoptera AGT, HKT and Lepidoptera AGT, Dipteran AGT and Coleopteran AGT, the
coefficients of functional divergence I (θ) were 0.288 ± 0.096, 0.292 ± 0.082, 0.385 ± 0.082,
0.056 ± 0.081, 0.533 ± 0.063, and 0.349 ± 0.063, respectively. These coefficients were all
significantly > 0, indicating the functions between them have undergone significant func-
tional divergence. Moreover, the coefficients between HKT and AGT from mosquitoes are
smaller than those between HKT and other branches, suggesting a functional divergence of
HKT in mosquitoes.

Table 1. Type I functional divergence of AGTs in Insecta. The degree of functional divergence was
quantified as the divergence coefficient θ, and the p-value was used to measure the significance of
pairwise comparisons. DAGT, CAGT, and LAGT are short for Diptera AGT, Coleoptera AGT, and
Lepidoptera AGT, respectively.

Coefficient θ ± SE (p)

HKT/mosqAGT 0.288849 ± 0.096070 (p < 0.01)
HKT/DAGT 0.292432 ± 0.082008 (p < 0.01)
HKT/CAGT 0.385146 ± 0.082927 (p < 0.01)
HKT/LAGT 0.560887 ± 0.081839 (p < 0.01)

DAGT/LAGT 0.533485 ± 0.063676 (p < 0.01)
DAGT/CAGT 0.349754 ± 0.063676 (p < 0.01)
CAGT/LAGT 0.400981 ± 0.057970 (p < 0.01)
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2.5. Detection of Positive Selection in HKT Genes

In order to detect whether HKT genes evolved under positive selection, we conducted
positive selection analysis. Firstly, we executed a site model to preliminary screening for
positive selection pressure. In the site model, by comparing the M0/M3 model, the result
shows that the assumption of the M3 model was accepted, that is, it is assumed that ω
values of all sites show a simple discrete distribution trend. The comparison of M1a and
M2a models shows that there were only conservative sites and neutral sites, but no positive
selection sites. In the pairwise comparison of M7 and M8 models, the alternative hypothesis
was rejected, which suggests that the ω of all site belongs to matrix (0,1) and presents
beta distribution. Taken together, site model analysis indicated that most sites in datasets
represent purifying selection during evolution.

Additionally, the branch model was used to judge whether a specific branch was
affected by positive selection and whether its evolutionary rate was different from back-
ground branches. According to the comparison results of M0 model and free ratio model,
the alternative hypothesis was accepted, indicating that each branch was subjected to differ-
ent selective pressures. Then, we select HKT and the mosqAGT branches as the foreground
branches for two-ratio model analysis. The results show that the selection pressure of both
genes is significantly different from that of the background branch. Moreover, we noticed
that in both the free-ratio model and the two-ratio model, the ω of the HKT branch was
greater than 1, while the ω for the mosqAGT branch was less than 1, reflecting that HKT
was under positive selection pressure, and AGT in mosquitoes was subjected to convincing
purifying selection during evolution.

Finally, given that the ω of HKT is greater than 1, we used the HKT branch as the
foreground branch for the branch-site-model calculation. This part is to repeatedly verify
the branches under the positive selection pressure, as calculated by the branch model, and
find out the specific sites that were affected by positive selection. A total of 375 potential
positive selection sites were detected, with 41 of them being considered as significant
positive selection sites, with the posterior probability of these being >95%. The above
results indicate that each branch have been under different selection pressure in the process
of evolution, and the HKT branch is under strong, positive selection pressure (ω = 999).
At the same time, a large number of positive selection sites have been detected in HKT.
These sites are likely to cause divergence of HKT and mosqAGT. The refinement results are
summarized in Table 2.

2.6. Positive Selection Sites Affect Substrate Binding

As the sequence identity and biochemical function of HKT and AGT in mosquitoes
seems to have greatly diverged, this phenomenon will inevitably be reflected in the tertiary
structure of the protein. Meanwhile, we also detected many sites affected by positive
selection pressure, but the relationship and distribution of these sites in the tertiary structure
were not clear. Consequently, we obtained the crystal tertiary structure of A. aegypti HKT
from the PDB database (PDB ID 6MFB). Their crystal structure shows that the enzyme is a
dimer and belongs to the fold type I class of the PLP-enzyme family. Then, we performed a
structural similarity analysis by heuristic searches of the Protein Data Bank (PDB) with Dali
and TM-align servers, taking 6MFB as the query. Both programs identified 6MFB as the top
hit, followed by A. gambiae HKT (PDB ID: 2CH1), A. aegypti AGT (PDB ID: 2HUU), human
AGT (PDB ID 3R9A), Mus musculus AGT (PDB ID: 3KGX), and Nostoc sp. AGT (PDB ID
IVJO). Quantitative comparisons values indicated that 6MFB with the other four structures
are likely to adopt the same global protein fold (Supplementary Table S2).
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Table 2. Selection pressure analysis of mosqAGT and HKT by branch model, site model, and branch-
site model. Theω represents for dN/dS. Lnl: log likelihood; LRT: likelihood-ratio test; 2∆lnl: twice
the log-likelihood difference of the models compared. Sites labeled with * represent Bayesian posterior
probability of >90% and labeled with ** represent Bayesian posterior probability of 99%.

Site Model

Foreground
Branch Models −lnl 2∆lnl LRT Pairs LRT p-Value Estimates of

Parameters
Positive Sites

(BEB)

M0 45,733.91409

2469.602752 M0/M3 <0.01

ω = 0.07927 Not allowed

M3 44,499.11272

ω0 = 0.01224,
ω1 = 0.07281,
ω2 = 0.19935,
p0 = 0.29651,
p1 = 0.45743,
p2 = 0.24606

Not allowed

M1a 45,672.02204

0 M1a/M2a >0.05

ω0 = 0.08631,
ω1 = 1.0000,
p0 = 0.96868,

p1 = 0.0.03132

Not allowed

M2a 45,672.02204

ω0 = 0.8631,
ω1 = 1.0000,
ω2 = 1.0000,
p0 = 0.96868,
p1 = 0.01322,
p2 = 0.01810

None

M7 44,510.89475

0.002114 M7/M8 >0.05

P = 0.77106,
q = 6.60910 Not allowed

M8 44,510.8958

p0 = 0.99999,
p = 0.77108,
q = 6.60934,

p1 = 0.00001,
ω = 1.0000

None

Branch Model

Foreground
Branch Models −lnl 2∆lnl LRT Pairs LRT p-Value Estimates of

Parameters
Positive Sites

(BEB)

M0 45,733.91409

658.98236 M0/Free ratio
model <0.01

ω = 0.07927 Not allowed

Free Ratio Model 45,404.42291
ωmosqAGT = 0.3319,
ωHKT = 999.0000,

(variable ω)
Not allowed

HKT Two Ratio Model 45,723.40152 8.104116 M0/Two ratio
Model <0.01 ω0 = 0.08006,

ω1 = 999.00000 Not allowed

mosqAGT Two Ratio Model 45,728.8162 10.195778 M0/Two ratio
Model <0.01 ω0 = 0.07926,

ω1 = 0.00163 Not allowed

Branch-Site Model

Foreground
Branch Models −lnl 2∆lnl LRT Pairs LRT p-Value Estimates of

Parameters
Positive Sites

(BEB)

HKT

M0 45,659.52254

8.718492 M0/MA <0.01

ω0 = 0.08764,
ω1 = 1.00000,
ω2 = 1.00000

Not allowed

MA 45,655.1633
ω0 = 0.08847,
ω1 = 1.00,
ω2 = 999.00

9S *, 16I *, 21M *,
31K *, 35A *,
40T *, 43S *,
44N *, 45F *,
47D *, 78A *,

105A *, 124G *,
127D *, 146C **,
180A *, 185C *,
190Y *, 218I *,
221K *, 240L *,
251D *, 252E *,
254K *, 260V *,
263N *, 266F *,
267A *, 286R *,

319C **, 321M *,
339F *, 344Q **,
354A *, 355W **,

357A *, 359I *,
363S *, 364S *,

367Q *, 372Y **



Molecules 2022, 27, 4929 9 of 21

Next, we mapped positive selection into the crystal tertiary structure of A. aegypti
HKT (Figure 5A). Among the 41 putative positive selection sites, 39.0% of them are located
in the α-helix region, 43.9% in the loop regions, and 17% in the β-sheet. We found that
most of these sites were distributed around the active sites; only a few sites coincide with
active residues (Figure 5A, Supplementary Figure S4). In particular, S43 and F45 are closely
binding with N44 (Figure 5B), which is considered as a critical site to bind 3-HK and
L-kynurenine [17,22]. Some sites with a strong signature of positive selection, W355, C319,
Q344, and Y372, are immediately adjacent to or very close to R356 (Figure 5C), which
is responsible for forming a salt bridge with the carboxyl group of the ligand [17]. The
distribution of positive selection sites in these regions means the modification of ligand
binding conformation, which affects the substrates binding ability and structural stability.
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Figure 5. Distribution of positive selection sites on the three-dimensional structure of AaeHKT. The
protein backbone structure is displayed in cartoon, and the key residues are shown in stick. Residues
subject to positive selection are highlighted in blue, and residues contributed to the catalytic pocket
are wheat-colored. PLP located in the hydrophobic cavity are colored orange. (A) Full view of
positive selection sites on 3D structures. (B) Detailed view of R356 and nearby positive selection sites.
(C) Detailed view of N44 and nearby positive selection sites.

2.7. Ancestral Sequence Reconstruction of AGT in Mosquitoes

With the aim of understanding the evolutionary history of HKT, we performed an-
cestral state reconstruction analysis to infer the sequence of AGT before duplication in
mosquitoes. A total of 22 well-annotated HKT/putative HKT (puHKT) and AGT sequences
were used to infer the ancestral sequence composition. Ancestral sequence at the node
corresponding to the last common ancestor of mosquitoes was inferred and named An-
cMosqAGT (Figure 6). The inferred AncMosqAGT sequence shares 74.17% amino acid
sequence identity with modern C. quinquefasciatus AGT.
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Figure 6. Phylogeny illustrating the last common ancestor of HKT and AGT in mosquitoes. The
evolutionary history was inferred by Bayesian analysis. Black arrows point to the node of the last
common ancestor of the inferred ancestral mosquito AGT.

Next, we focused on the active residues that were possibly involved in substrate
binding. Sequence alignment suggests that some residues matched the active sites in
modern proteins (Supplementary Figure S4). Some of these sites are well-conserved in both
HKT and AGT in mosquitoes, including P5, G6, P37, W105, W165, V189, D190, V192, S214,
Q215, K216, Y267, L358, and R367. Most of them are involved in binding or maintaining the
conformation of PLP binding domain, except R367 and the P35-G36-P37 triplet, which are
considered key residues for ligand binding. Some sites are conserved only in mosqAGTs,
including G54-H55-L56, G89, and S355. Among them, G54-H55-L56 was mutated into
an S43-N44-F45 triplet in HKT, which may be involved in the recognition of 3-HK and
L-kynurenine [22]. G89 was replaced by A78 in HKT and might be involved in alanine
recognition, while S355 was replaced by Q344 in HKT and may have played an important
role in substrate recognition [17,22]. We also compared the relationship of positive selection
sites in three cases (the ancestral protein, HKT, and AGT in mosquitoes) and found that
HKT had undergone large changes. These results suggest that the common ancestral
sequence of AGT was more similar to modern AGT than to HKT.

2.8. Homology Modeling, Molecular Docking, and Dynamics Simulation of AncMosqAGT

To explore the activity of the ancestral protein, I-TASSER was used to model a three-
dimensional structure. Six templates were found with >28% identify of the whole template
chains with query sequence and >82% coverage of the threading alignment (Supplementary
Table S3). Multiple sequence alignment of templates and query reveal conserved regions in



Molecules 2022, 27, 4929 11 of 21

the primary structure (Figure 7). Five homology models were generated and ordered by C-
score. The top 1 model was used to conduct energy minimization for further analysis. The
optimized model was evaluated by SAVES sever. ERRAT shows an Overall Quality Factor
of 94.8276. 89.37% of the residues have averaged 3D-1D score ≥ 0.2. Evaluation of the
model with PROCHECK shows that 97.4% of residues are located in the most-favored and
allowed regions, while 0.6% of residues were found in the outlier regions (Supplementary
Figure S5). Superposition of the final model and templates visualizes the similar fold
between them (Supplementary Figure S6). The root-mean-square deviation (RMSD) of the
Cα atoms between the templates and the final model are between 0.50 Å–1.07 Å. These
above results indicate that the homology model is reliable.
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Figure 7. The sequence alignment of model with its templates from PDB database.

To understand the ligand capacity and the ligand-binding mechanism of AncMosqAGT,
which provide inspiration for shedding light on the key active sites of HKT, AncMosqAGT·PLP
was docked with three different substrates: 3-HK, alanine, and L-kynurenine. Remark-
ably, the three substrates were stably bound to the ancestral protein. The docking solu-
tions of 3-HK, alanine and L-kynurenine resulted in binding affinities of −5.5 kcal/mol,
−5.2 kcal/mol, and −3.6 kcal/mol, respectively. Then, three poses were selected to analyze
3D molecular interactions (Figure 8). The docking results show that R367 forms a strong
salt bridge with the carboxyl group of 3-HK, locking the ligand in the active site. The
amino group of G36 forms a hydrogen bond with the aromatic amino group of the ligand.
K216, S355, and G356 also have hydrogen-bonding interactions with 3-HK. W104 forms
a hydrophobic interaction with the ligand (Figure 8A). These bonds help stabilize the
conformation between the substrate and the protein. We also visualized the residues of
3-HK within the 4Å distance range (Figure 9). These residues are also involved in ligand
recognition in modern HKT. Similarly, in the docking result of the ancestral protein and
L-kynurenine, R367 also form a salt bridge with L-kynurenine. K216, G356, S165, W115,
and L358 form hydrogen-bonding networks, hydrophobic interactions, and π-stacking with
L-kynurenine (Figure 8B). Ala also forms a salt-bridged bond with R367 (Figure 8C). There-
fore, we reasonably consider that ancestral protein was not only capable of transamination
using alanine as an amino-group donor, but also possessed the binding properties of 3-HK
and L-kynurenine.
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Figure 8. The 3D molecular interactions between AncMosqAGT·PLP and 3-HK (A), L-kynurenine (B),
and Ala (C). Residues are shown as sticks and are different colored. Substrates are colored (orange
for carbon atom, blue for nitrogen atom, and red for oxygen atom) as are key residues that interact
with the substrate (darkblue for carbon atom, blue for nitrogen atom, and red for oxygen atom).
Interactions are displayed using different forms (yellow dashed line for salt bridge, gray dashed line
for hydrophobic interacts, blue solid line for hydrogen bonds, and green dashed lines for π-stacking.
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Figure 9. Residues in 4Å distance range from 3-HK, which is shown as stick and colored (pink for
carbon atom, blue for nitrogen atom, red for oxygen atom, and gray for hydrogen atom). Residues in
4Å distance range from 3-HK are also colored (gray for carbon atom, blue for nitrogen atom, red for
oxygen atom, and gray for hydrogen atom).

In order to test the reliability of the docked poses, the protein-ligand complex results
from docking were validated with a 100 ns molecular dynamics (MD) simulation using
Gromacs software. The docked poses remain structurally stable after 100 ns in neutral
solvated system, since the RMSD gradually stabilize with the increase in simulation time
(Figure 10). The complex of 3-HK and AncMosqAGT·PLP is consistently achieved at the
RMSD, ~0.7 nm after 75 ns. The RMSD of L-kynurenine generally maintains a stable trend
after ~65 ns, while the RMSD fluctuates slightly at 0.75 nm. The RMSD value of alanine’s
docking complex fluctuates during the simulation process, but the deviation gradually
trends to narrow after 90 ns (the fluctuation range of RMSD value is less than 0.2 nm).



Molecules 2022, 27, 4929 14 of 21
Molecules 2022, 27, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 10. Backbone RMSD of the AncMosqAGT·PLP and 3-HK (A), L-kynurenine (B), and alanine 
(C) structures during 100 ns simulation. The ordinate is RMSD (nm), and the abscissa is time (ns). 
Figure 10. Backbone RMSD of the AncMosqAGT·PLP and 3-HK (A), L-kynurenine (B), and alanine
(C) structures during 100 ns simulation. The ordinate is RMSD (nm), and the abscissa is time (ns).



Molecules 2022, 27, 4929 15 of 21

3. Discussion

In this study, we investigated the evolutionary process of HKT through computational-
biology approaches, which focused on the phylogenic relationship, selection pressure, and
the docking analysis. Our findings revealed insight into the origin of HKT, and strong
positive selection enhanced the specific functions for HKT after a gene duplication, which
sheds new light on the research of a new functional-enzyme biochemical evolution.

We have interrogated homologs of AGT in Protozoa and Metazoa; the existence
of homologues in a wide range of bacteria to humans proved that AGT was ancient and
conserved. This result is in line with our expectations because AGT belongs to PLP (vitamin
B6)-dependent enzymes, which has appeared in the early stage of biological evolution, and
functional specialization seems to have occurred in the common ancestor cells before the
divergence of Eukaryotes, Archaebacteria, and Eubacteria 1500 million years ago [23]. In
addition, we found out that 18 mosquitoes species contained two copies of AGT. Based
on the clustering in the phylogenetic tree, these second copies were confirmed as puHKT.
Thus, it appears plausible that a single duplication event occurred, leading to the present
phylogenetic distribution and their homologous relationship.

Our conserved syntenic analysis found HKT and mosqAGT in a shared syntenic lo-
cation across species, which was a strong indicator that they are likely orthologous. The
syntenic analysis, together with the above phylogenetic tree, further imply that the most
reasonable explanation of HKT emergence, that is, HKT is formed via a segmental duplica-
tion event in the common ancestor of mosquitoes. A species-specific segmental duplication
in ancestral mosquitoes between chromosomes gave rise to a duplicate chromosome frag-
ment. However, only 18 species that contain puHKT were found, and this number may
be limited by the lack of genomic data on mosquito species. Differences in the copy num-
ber in mosquito species suggest that the HKT gene has suffered extensive gene loss after
speciation.

Retention of duplicated genes is usually accompanied by structural changes in regula-
tory or coding regions, further leading to functional divergence. We found that the gene
structure of HKT was significantly different from that of AGT. In addition, we observed a
Stegomyia-specific exon-shuffling event. Exon shuffling is one of the molecular mechanisms
by which new genes are formed [24]. Exon–intron divergence between duplicate genes is
common. Structural divergence caused by intron loss/gain plays an important role in dupli-
cating genes and can result in the generation of proteins with distinct domain organization
and sequence features, leading to the changing of biochemical functions [25]. Therefore,
AGT orthologs may adapt to different functions by altering the regulatory and/or coding
regions. Furthermore, we measured functional changes of the HKT and mosqAGT after
duplication. We found that changing functional constraints occurred after duplication,
resulting in functional divergence between HKT and mosqAGT, but they were still the
closest structural ortholog and functional ortholog (Table 2, Supplementary Table S2). The
previous study had proved the divergence of the biochemical functions between HKT
and AGT in mosquitoes. Here, our study provides bioinformatics evidence of functional
divergence for the first time, which is consistent with biochemical evidence.

Given the functional differences between the duplicated AGT paralogous, we hypoth-
esized that HKT had undergone adaptive evolution and that the corresponding amino
acid substitutions would be correlated with functional diversification and that positive
selection would be detected. From our selection pressure analysis, the site model rejected
the hypothesis that sites withω > 1 existed in the dataset. We speculated that this might be
because most sites undergo purifying selection in the datasets, resulting in neutralization
of positive selection. Nonetheless, HKT shows sufficient evidence for positive selection
in the branch model and branch-site model, and mosqAGT shows evidence for purifying
selection during evolution. This result ties well with previous studies. A. culicifacies and A.
stephensi AGTs shows a negative selection pressure against protein change [26].

Bayes Empirical Bayes (BEB) implemented in the branch-sites test identified a number
of positively selected sites in HKT (Table 2). We discovered the positive selection affected
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the substrate binding and the spatial conformation of the protein, although binding sites
are not the direct targets of positive selection. Positive selection of residues positioned near
active sites may be the general mechanism of functional diversification of the enzyme family.
Moreover, mutations close to the active site are more likely to cause subtle conformational
changes in the substrate-binding pocket than mutations far away [27,28]. Future research
on insecticide targets can conduct mutational analysis of these sites to find powerful targets
that inhibit enzyme activity.

The classic model to explain the evolutionary mechanisms involved after duplication
and split into paralogous genes, championed by Susumu Ohno, proposed that these
events create redundant loci able to perform new functions (neofunctionalization) or
functions that were previously nonexistent [29]. Nevertheless, other more recent views,
such as Bergthorsson and colleagues [30], argued that situations in which paralogs retain
different parts of the ancestral function (subfunctionalization) cannot explain the origin of
de novo adaptive phenotypes. They proposed a model involving innovation, amplification,
and divergence (IAD), in which new functions were acquired prior to duplication, and
subfunctionalization occurred among subsequent duplicated genes [30,31]. Whether the
retention of HKT and AGT paralogous in mosquitoes is more consistent with IAD or Ohno
model depends on the function of AGT in species with a single copy and substrate-binding
capacity of the ancestral protein. Clearly, alanine is a native substrate of AGT. Thus, whether
the ancestral protein has ability to catalyze 3-HK and L-kynurenine had become our major
concern. Our molecular docking result showed that AncMosqAGT had broader substrates
specificity, so 3-HK and L-kynurenine were able to bind with ancestral proteins, which may
be verified by an experimental test in future. MD simulation demonstrated the docked
ligand–protein complexes were stable and reliable in binding to the active sites.

R and S-N-F triplet residues were previously considered as the critical and direct target
for possibly binding of 3-HK and L-kynurenine in modern HKT. By comparing critical
residues of deduced AncMosqAGT and modern sequences, we discovered that only R
residue was present in the ancestral protein. However, based on the molecular docking
results, ancestral protein is able to bind 3-HK and L-kynurenine. Thus, R residue appears
to take on greater responsibility for binding 3-HK and L-kynurenine.

Actually, the prominent role of conserved R residue in active sites has been repeatedly
reflected in our study. The region near R356 residue is subjected to strong positive selection
pressure. This changing of residues may affect the side-chain conformation and molecular
orientation of Arg. Molecular docking shows that R367 residue in the ancestor could
interact with the carboxyl groups of the three substrates to form salt bridges. Previous
studies have also demonstrated that R residue formed salt bridges with the carboxyl groups
of different ligands in modern protein, including 3-HK, L-kynurenine, glyoxylic, alanine,
and 3-HK analogs. R residue is highly conserved inω-aminotransferase, including modern
mosqAGT. A density functional theory (DFT) calculations study of the half-transamination
of L-alanine to the pyruvate reaction in (S)-selective Chromobacterium violaceum revealed
the dual-substrate recognition mechanism of flexible R residue. The binding with alanine
or hydrophobic amino (S)-1-phenylethylamine depended on whether the side chain of
the R residue was positioned inside or outside the active site [32]. A conserved R residue
in ω-aminotransferase from Paracoccus denitrificans led to substrate promiscuity as the
flexibility [33]. These findings suggest that R residue appears to have a vital role for
substrate recognition by HKT and AGT in mosquitoes. Although the current evidence
points to the unusual properties of the R residue, it is difficult to explain such results
without site-directed mutation experiments.

Overall, our results support the conclusion that the evolution of HKT followed the
IAD evolutionary model. The changing of the ecological niche causes the parental gene
to first have a minor side activity, namely the transaminase activity towards 3-HK and
L-kynurenine. Next, the level of minor activity increases through parental gene-duplication
event. To improve the fitness and coordination of the two genes in mosquitoes, the minor
function of one copy is amplified due to positive selection pressure. As one copy improves,
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the selection is relaxed for the remaining copy, which results in a loss of minor activity.
Therefore, the extant mosqAGT and HKT play coordinated roles in mosquitoes, and the
requirement for 3-HK detoxification at the larval stage and the requirement for 3-HK to
maintain ocular pigmentation at the pupal stage and early adult stage provide a plausible
explanation for the differential evolution of HKT and mosqAGT [18]. This is an example
of an enzyme of the glyoxylate metabolism pathway being recruited to the tryptophan
metabolism pathway by gene duplication.

4. Materials and Methods
4.1. Gene Identification and Phylogenetic Analyses

To identify AGT homologs, Tblastn and Blastp were used in NCBI (https://www.
ncbi.nlm.nih.gov/, accessed on 6 October 2021), with AaeHKT as the query sequence.
Sequences that had a query identity of >30% and an E-value of <1 × 10−10 were considered
homology proteins. Pfam [34] and CD-Search [35] were used to identify the conserved
domain. We selected amino acid sequences that were representative enough of evolutionary
relationships to perform further analysis. Multiple amino acid sequence-alignment analyses
were performed using MAFFT ver.7.313 [36], with the L-INS-i multiple alignment method
and BLOSUM80 scoring matrix. ModelFinder [37] was applied to identify the optimal
amino acid substitution model based on the Akaike Information Criterion (AIC) criterion.
Then, IQ-TREE [38] ver.1.6.8 was used to build the phylogenetic trees with a standard
bootstrap algorithm (1000 replicates) with the best fit model. Moreover, MrBayes [39] was
conducted to build Bayesian trees, and the dataset ran for two million generations with
four chains, until they reached converge at 0.05. When the phylogenetic trees inferred by
the two methods are mostly consistent, the phylogenetic relationship is considered to be
reliable. Evolview [40] server was used for visualization of the tree.

4.2. Conserved Micro-Synteny Analysis

Conserved synteny analysis is a powerful tool for establishing gene orthologous
between species and investigating the duplication event. The syntenic relationship of
AaeHKT and its up- and downstream genes, all its orthologous and paralogous copies in
all the other sequenced metazoan genomes were revealed by Genomicus version 51.01 [41]
from EnsemblMetazoa 51 database (http://metazoa.ensembl.org/index.html, accessed on
23 October 2021).

4.3. Sequence Structure Analysis

To reveal the sequence conservation and differences of AGT and HKT, the Vectorbase
release 55 (https://vectorbase.org/vectorbase/app, accessed on 24 November 2021) and
NCBI database (https://www.ncbi.nlm.nih.gov/, accessed on 24 November 2021) were
used to obtain Generic Feature Format (GFF) or Generic Feature Format 3 (GFF3) file. The
exon–intron structures were summarized by GFF/GFF3 file.

4.4. Analyses of Type I Functional Divergence

Type I functional divergence is defined as functional divergence resulting from changes
at the rate of evolution. DIVERGE version 3.0 software (http://xungulab.com/software.html,
accessed on 23 December 2021) was employed to test type I FD between different clus-
ters [42,43]. The coefficient of functional divergence (θ) is a value that measures the
functional divergence degree between two clusters according to the likelihood ratio test. θ
significantly greater than 0 indicates functional differentiation between the two clades. This
analysis involved 63 protein sequences that are the same as the dataset used in phylogenic
analysis within Insecta.

4.5. Selective Pressure Analyses

To detect the selection pressure during the evolutionary history of HKT, EasycodeML
v1.4 [44] was used to analyze the well-alignment of sequences and the phylogenetic tree
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built by the ML method as input. The sequences were aligned by the codon alignment
model in MAFFT. ModelFinder was applied to identify the best-fit nucleotide substitu-
tion model based on the Akaike Information Criterion (AIC) criterion, and IQ-Tree was
employed to build a phylogenetic tree. Branch-specific model was used to detect lineage-
specific positive selection. The site-specific model was conducted to detect particular sites
which are to be positively selected. Branch-site model was performed to detect positive
selection that affects only some sites on pre-specified lineages. Each paired model was
employed to be compared by the Likelihood Ratio Test (LRT).

4.6. Ancestral Sequence Reconstruction of the Common Ancestor of Culicdae AGT

Ancestral sequence reconstruction is a new, emerging protein-engineering strategy,
which can calculate ancient protein sequences based on extant ones. By constructing
ancestral sequences and combing experimental characterizations to solve a multitude of
paramount biological questions [45]. For obtaining a most likely historically correct ances-
tral sequence, protein sequences were collected based on two protocols: First, the selected
sequences were all experimentally verified or have a high-quality genome assembly. Sec-
ond, the selected sequences were representative enough of evolutionary relationships [46]
For collected sequences, MAFFT and Modelfinder were adopted for multiple sequence
alignment and to identify a best-fit amino acid substitution model based on the AIC cri-
terion. Then, MrBayes was performed to obtain a robust phylogenic tree. The Tribolium
castaneum AGT and Anoplophora glabripennis AGT were set as the outgroup. Finally, an-
cestral sequence reconstruction was conducted with PAMLX [47,48] using the alignment
sequences and the Bayesian tree as inputs. The ancestral sequence was extracted from the
Codeml output files.

4.7. Homology Modeling, Molecular Docking, and Molecular Dynamic Simulation

The tertiary structures of ancestral mosqAGT were predicted by I-TASSER servers [49].
LOMETS approach was used to search for templates of similar folds from the PDB library.
LOMETS is a meta-server threading approach containing multiple threading programs,
where each threading program can generate tens of thousands of template alignments [50].
The templates of the highest significance in the threading alignments were used by the
program, the significance of which were measured by the Z-score, which was defined
as the energy score in standard deviation units relative to the statistical mean of all
alignments [51]. Six templates were used to build homology models (Supplementary
Table S3). Five homology models were generated and ordered by C-score (confidence
score for estimating the quality of predicted models by I-TASSER). The top 1 model struc-
ture was selected to optimize using Swiss-PDB Viewer program [52]. Model quality
was evaluated by Verify 3D, Errat and Ramachandran plot in the SAVES sever (https:
//saves.mbi.ucla.edu/, accessed on 16 July 2022). The coordinates of the cofactor PLP and
the AncMosqAGT·PLP complex was obtained by superposing AaeHKT crystal structure
(PDB ID 6MFB) onto the newly built model. Structural homology was analyzed by Dali [53]
and TM-align [54]. The structure of substrates was obtained from NCBI Pubchem Database
(https://pubchem.ncbi.nlm.nih.gov, accessed on 16 February 2022). Ligand and receptor
were prepared with AutoDock Tools 1.5.6. (http://mgltools.scripps.edu/, accessed on
16 February 2022). AutoDock vina [55] was used for molecular docking for the substrates.
The protein structure was treated as rigid, while the ligands rotatable bonds were permitted
to rotate. A grid box (20 × 22 × 24 Å) spacing of 1.0 Å covered the entire active pocket.
PLIP (https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index, accessed on 16 Febru-
ary 2022) and Pymol (https://pymol.org/2/, accessed on 16 February 2022) was used to
visualize the docking results.

Gromacs-2021 with the CHARMM36 force field [56] was used for simulation studies
of all docked complexes. Topology and parameter files for ligands were generated by
CHARMM General Force Field (CGenFF) program [57]. TIP3P water molecules were
included and with neutralization by Cl− ions. Minimization of the solvated structure per-
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formed by the steepest descent method until maximum force reached <1000.0 kJ/mol/nm
at 300 K with constant pressure. V-rescale thermostat and Berendsen barostat [58] were set
at 300 K and pressure at 1 bar for initially equilibrating the systems with a time step of 2 fs
(NVT equilibration and NPT equilibration). Production MD simulation was run for 100 ns
after equilibration at 1 bar and 300 K. Trajectories were saved and XMGRACE was used to
analyze the results.

5. Conclusions

In the present study, we found that HKT was derived from a gene-duplication event
in the mosquito ancestor and supported the hypothesis of an IAD gene-duplication model.
This reflects an expanded requirement for detoxification of 3-HK in ancestral mosquitoes.
After duplication, the two genes have suffered distinct evolutionary pressures, leading to a
different gene structure and function. HKT experiences strong positive selection pressure,
and the affected positive selection sites significantly shape the functional properties and
expression patterns of HKT. HKT and AGT in mosquitoes have functionally diverged, but
they display common protein folding and a similar catalytic mechanism, which indicate
that they have the ability to strictly discriminate between their respective substrates. Future
studies should focus on discovering the key residues that determine the substrate specificity.
Our study reveals the molecular biochemical evolution mechanism of HKT for the first
time and provides an example of enzyme recruitment in the evolution of a new function.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27154929/s1. Figure S1: Heatmap of similarity indices
between AaeHKT and other mosquito HKTs/other organisms AGTs, and between AaeAGT and
other organisms AGTs represented as different taxa listed in the left column; Figure S2: Evolutionary
relationships among amino acid sequences of AGT; Figure S3: Detail of evolutionary relationships
among amino acid sequences of AGT in Insecta; Figure S4: Multi sequence alignment of ancestral
mosquito AGT and modern AGT; Figure S5: Ramachandran plot of newly built AncMosqAGT
model; Figure S6: Superposition of newly built AncMosqAGT model and templates; Table S1: AGT
homologous in mosquitoes; Table S2: Quantitative structure comparisons using TM-align and Dali
server; Table S3: Templates searched by I-TASSER [51,59,60].
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