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Abstract

The registration of a 3D mesh consists of, given two 3D objects, establishing a correspon-
dence vector for each vertex of one mesh with one of the second one. This process can be
used to obtain realistic simulations. Specifically, in this project, I will build the registra-
tion of pieces of clothing on realistic models of human bodies. To do so, I will implement
an unsupervised machine learning model, using Graph Convolutional Networks, which
allow working with non-euclidean data structures, such as 3D objects. This could allow
us to build in a fast and efficient way the registration of the garments.

Resum

El registre d’una malla 3D, consisteix en, donats dos objectes 3D, establir un vector de
correspondència per a cada vèrtex d’una malla amb un de la segona. Aquest procés
pot ser utilitzat per a obtenir simulacions realistes. Específicament, en aquest projecte
construiré el registre de peces de roba sobre models realistes de cossos humans. Per a això
implementaré un model d’aprenentatge automàtic no supervisat, usant xarxes neuronals
convolucionals en forma de graf, que permeten treballar amb estructures de dades no-
euclidianes, com ho són els objectes 3D. Això permet construir d’una manera ràpida i
eficient el registre de les peces.

Resumen

El registro de una malla 3D, consiste en, dados dos objetos 3D, establecer un vector de
correspondencia para cada vértice de una malla con uno de la segunda. Este proceso
puede ser usado para obtener simulaciones realistas. Específicamente, en este proyecto
construiré el registro de piezas de ropa sobre modelos realistas de cuerpos humanos.
Para ello implementaré un modelo de aprendizaje automático no supervisado, utilizando
redes neuronales convoluciones en forma de grafo, que permiten trabajar con estructuras
de datos no euclidianas, como lo son los objetos 3D. Esto permite construir de una manera
rápida y eficiente el registro de las prendas.
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Chapter 1

Introduction

1.1 Motivations

Humans have always been obsessed in understanding what is the world we live on, and
try to give explanations to what is this reality we seem to perceive.

However, even that we seem to be really far away from understanding it, we have managed
to create 3D realities that allow us to imitate the world we see, and even creating new
ones. Computers nowadays can renderize 3D objects with thousands of vertices without
any effort. This has uncountable applications, from the most artistic ones, like creating
video games and movies, to other which could potentially save lives, like medical or car
crashes simulations.

In this project, I will be working with 3D objects, and try to construct a model to build
the registration of a pair of 3D meshes. The registration of a 3D mesh consists of, given
two 3D objects, establishing a correspondence vector for each vertex of one mesh with
one of the second one. To achieve that, I will be using Graph Convolutional Neuronal
Networks(GCN). The registration process is often part of other complex machine learning
pipelines, as the CLOTH3D dataset generation, the first big scale synthetic dataset of 3D
clothed human sequences, which will also be used in this project. [1] This could have
multiple applications, as creating models for 3D animation software, or hyperrealistic
animation generation.

The currently used implementation is the non-rigid Iterative Closest Point(ICP) surface
registration [2]. This method, solves the problem analytically, and thus is slow and not
very efficient. However, in this project, I will try to implement the registration using
neuronal networks and unsupervised learning techniques. From my perspective, this
is very exciting, because, with a completely different approach, we are trying to obtain
similar results to the existing methods, and once the model is trained it should be way
faster than the current methodologies.

Neuronal networks have revolutionized the world of computer science and artificial in-
telligence. In recent years, we have seen neuronal networks completely change the way
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2 Introduction

of solving well established problems, with a radical change of mentality. Before, we were
used to solving complex problems with analytic solutions, using very slow algorithms
with high computational complexity that used brute force like techniques to find an op-
timal solution. However, now, with the so-called machine learning techniques, we have
learned that we can train models with samples of data or examples, and create techniques
to allow the model to learn how to find a local solution. For instance, we have seen the
AlphaZero chess engine, based on neuronal network models, beat the by tradition most
powerful chess engine: Stockfish, which analyses in depth the position exploring the dif-
ferent outcomes for each possible move [3]. We are also seeing in the artificial vision field
more and more solutions based in Convolutional Neuronal Networks, as image classifica-
tion or template matching.

From my perspective, this is why I found this topic so interesting, as we have recently dis-
covered the potential of neuronal networks, and for each project there are multiple indirect
applications, that we do not even imagine now. Besides, from a personal point of view,
I think that doing this project could teach me tons of concepts about machine learning
modeling and how to use some widely used machine learning libraries as tensorflow.

1.2 Objectives and challenges

This project aims to explore the challenges and possibilities to implement the surface
registration with a Graph Convolutional Network(GCN) model.

To do so, we will need to define and implement two GCN models, using unsupervised
learning techniques. To do so, I will define some loss functions, which will allow the
models to learn how to solve the problem.

The definition of these functions will be critical, as we must use the power of the GPU
parallelism to be able to train our models in a reasonable amount of time.

As well, since for each model I will be using multiple loss functions, one key aspect will
be how to balance these losses weights to be able to return the expected outputs.

After that, I will implement the training pipeline, preprocessing the dataset data to train
the models.

Then, to summarize, my main contributions to this project will be:

• Definition and implementation of the Graph Convolutional Network models.

• Implementation of the various loss functions to train the model.

• Losses coefficients balancing to train the models.

• Training pipeline definition and implementation.
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1.3 Document structure

This document will be divided in several chapters that will go through the research and
work done in this project. The different chapters will be:

• Introduction: this section, a brief introduction of the topic. It goes through all the
motivations that make this topic interesting and useful, and establishes the scope of
this project.

• State of the art: a brief explanation of the available registration solution, to give
context to why do we want to define another solution with a completely different
approach.

• Theoretical Background: an introduction to neuronal networks basic concepts, to be
able to understand how the Graph Convolutional Neuronal Network models could
be able to solve our problem.

• Methodology: detailed explanation of the design of our approach to solve the reg-
istration problem, going through all the model details and all the decisions taken to
define this solution.

• Results: contextualization of the dataset and required tools needed to generate the
results. Later, we share the results, doing a critical interpretation of them and ex-
plaining the decisions taken to generate them.

• Conclusion: finally, we analyze the whole project, going through possible improve-
ments and future work related with it, and taking some conclusions about the work
done.
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Chapter 2

State of the art

2.1 Non-Rigid ICP registration

As mentioned above, the non-rigid Iterative Closest Point(ICP) registration [2] is the cur-
rently used method for surface registration. Registering two surfaces means finding a
mapping between a template surface and a target surface that describes the position of
semantically corresponding points.

Indeed, this algorithm is very complex, and its implementation is complex and very costly
computationally. In this section, we will try to explain briefly the basis of this algorithm.

This implementation is based on the ICP algorithm, that basically, given two point clouds,
aims to find a transformation that gets the source point cloud closer to the target. To
achieve that, at first, we need to find for each point of the source, find the nearest neighbor
on the source, a process, that even it can be optimized using several techniques, shows
us the high computational demand of this method. After that, we need to estimate the
combination of rotation and translation, using a root-mean-square point to point distance
metric minimization technique, which will best align each source point to its match found
in the previous step. Then, the obtained result will be a point cloud that is closer to the
target one. Afterwards, we can repeat all this process until we obtain a point cloud closer
enough to the target. The ICP algorithm can be defined as:

• For each point in the source, find the closest on the target.

• Find the transformation that minimizes the distance between closest points.

• Set result as source garment and repeat the first step until the distance is lower than
some value.

However, the non-rigid ICP registration method, even that uses the ICP algorithm, in-
troduces a series of restrictions to improve the registration results. The non-rigid ICP
registration loops over a series of decreasing stiffness weights, and incrementally deforms
the template towards the target. This stiffness weights help the algorithm to obtain closer
point clouds but not only based on the nearest neighbor on the target garment, as it allows
vertices to move in directions not necessarily going directly for its nearest neighbor.
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6 State of the art

This stiffness term is added to the global cost function, and what it does is penalizing
differences in the transformations of neighbor vertices. This really helps to obtain better
results, as we want near vertices to be registered to similar points, and at the start of the
iterative process we could find that some neighbor vertices have very different nearest
neighbors, so we want to penalize them going into opposite ways. To achieve that, we
begin the iterative algorithm with a really high stiffness weight associated to the stiffness
cost function. In the following iterations, we start to reduce progressively the stiffness
weight, until we find a result close enough to the target point cloud. We can see an
illustration of this process on Figure 2.1.

Figure 2.1: The template surface S (green) is deformed by locally affine transformations
(Xi) onto the target surface T (red). The algorithm determines closest points (ui) for each
displaced source vertex (Xivi) and finds the optimal deformation for the stiffness used in
this iteration. This is repeated until a stable state is found. The process then continues
with a lower stiffness. Due to the stiffness constraint, the vertices do not move directly
towards the target surface, but may move parallel along it. (Image extracted from [2])

This method can generate good registration results, succeeds for a wide range of initial
conditions, and handles missing data robustly.

After understanding the basics of this method, we could easily guess that its implementa-
tion; because of its nature and the multiple costly operations performed in each iteration,
as nearest point finding and the cost function minimization, will be slow. This can clearly
be a huge restriction, because, if we want to register multiple point clouds, we are forced
to wait the necessary time to do all these operations and could cause a clear overhead in
other projects that need to use a proper registration technique.



Chapter 3

Theoretical background

3.1 Neuronal Networks

Artificial neuronal networks have generated a lot of excitement in Machine Learning re-
search and industry, thanks to many breakthrough results in speech recognition, computer
vision, text processing and many other fields. They have been proven to be an excellent
model for solving complex problems. Neuronal networks usually take long times to fully
train and adjust all the model parameters, but once this job is done, the model can provide
outputs in a practically constant time [4].

3.1.1 Biological inspiration

Indeed, Neuronal Networks try to emulate the brain behavior, which has been proven
to be very good at solving quickly very complex problems. The human nervous system
is formed by more than 86 billion neurons, which have multiple connections between
them. These are connected by the axon of the neuron, which connects to the dendrites of
other neurons, and with a chemical process called synapses, it can communicate and give
information to other neurons. We can see a representation of a neuron in Figure 3.1.

Figure 3.1: Biological neuron model

7



8 Theoretical background

Then, based on this real complex biological neuronal model, we can construct simple
mathematical models that intend to emulate the behavior of it.

3.1.2 The perceptron

The basic unit of every Neuronal Network model is the perceptron. The perceptron can
be easily described as a set of input signals x, a set of weights w and a bias b. Then, given
a vector of inputs x, we can define the output of a perceptron as:

p(x) = (
m

∑
i=1

xiwi) + b

We can represent this as in Figure 3.2.

Figure 3.2: Perceptron model image (extracted from [4])

3.1.3 Activation functions

With this simple model, we are just obtaining an output that is a linear combination of the
input values. However, most of the world data is not linear, and we want some way to be
able to introduce non-linearity to the output of our model. To do that, we can use what
we call an activation function, which enables us to adjust the range of output values that
we could obtain.

Then, given an activation function f, the output of our perceptron would be:

p(x) = f ((
m

∑
i=1

xiwi) + b)

We can use multiple activation functions, and these are some that could be useful in
different scenarios:
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• Linear activation or no activation: f (x) = x, this function does not change the
output, and it can be used in some cases when we want to obtain a huge range of
values. We can see its shape at Figure 3.3

Figure 3.3: Linear activation

• Sigmoid: f (x) = 1
1+e−x , no matter how big or small the input values are, it adjusts

the output between 0 and 1. We can see its shape at Figure 3.4.

Figure 3.4: Sigmoid activation

• Rectified linear activation (Relu): f (x) =

{
x, if x ≥ 0

0, if x < 0
, always outputs positive

values, and it is widely used as training with Relu is often faster than using others
as sigmoid. We can see its shape at Figure 3.5.

There are lots of other widely used activation functions, that can have various uses for
training machine learning models.
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Figure 3.5: Relu activation

3.1.4 Multilayer Neuronal Networks

The perceptron by itself cannot describe very complex problems, as them can only learn
linear functions.

However, we can use the concept of perceptron and build more complex networks of
perceptrons, creating multiple layers with several perceptrons connected between them,
so this way the output of one layer of neurons will be the input of the following one, as
shown in Figure 3.6.

Figure 3.6: Multilayer Neuronal Network (extracted from [4])
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3.1.5 Training the models

Once we have defined our neuronal network model, we will have a model with several
weights and biases. These parameters will totally determine which will be the output
of our model after introducing an input. Taking into account the nature of the neuronal
networks and its topology, it is very likely that the number of parameters of these models
will be very big. That is why we need to define a mechanism to automatically adjust
the model parameters. To do that, we will use several input examples, and based on the
given output and a metric that says us how good is this output, we will train the model
parameters. If we do this several times, we will see that the model is capable of learning
the problem and now knows how to give outputs that are closer to the expected ones.

Here is where the training backpropagation algorithm comes to play [5]. This algorithm
is widely used for training machine learning models. Basically, what this algorithm does
is to compute the gradient of the loss function (the function that tells how close is the
prediction to the result we want to get), with respect to the model parameters. This allows
to adjust these parameters iteratively to minimize the loss function. We will not give many
details of the actual implementation, as it is very technical, and it is practically transparent
in most machine learning frameworks as tensorflow.

3.2 Convolutional Neuronal Networks

Simple multilayer neuronal networks work well when the input data size is reasonable,
and the number of input values is small. However, there are problems that require much
bigger inputs. For instance, when dealing with images, if we had one with high definition
resolution (1920x1080x3 pixel values), and we would want to use each pixel value as an
input, we would have 6220800 input neurons. Then, if we added some layers to the model,
we will see that our model has several millions of parameters to train. This model would
be impossible to train in any reasonable amount of time.

Nevertheless, Neuronal Network models excel performing artificial vision tasks, as image
segmentation, classification and others. Then, to be able to train our models when we
input images, we can use the concept of convolution and down sampling to reduce the
dimensionality of our inputs. This way, we will be able to train a fully connected neuronal
network with the down sampled feature space generated by the convolution layers. A
convolution is a simple mathematical operation that can be used to extract some features
from images [6]. If g(x, y) is the filtered image, f (x, y) is the original image, and w is the
filter kernel and each element of the kernel is inside −a ≤ dx ≤ a and −b ≤ dy ≤ b, a
convolution can be defined as:

g(x, y) =
a

∑
dx=−a

b

∑
dx=−b

(w(dx, dy) · f (x − dx, y − dy))

When we apply these convolutions all over the image pixel by pixel using a sliding win-
dow, we can obtain very interesting results as using the correct filters we may extract some
features of the image as seen in Figure 3.7.
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Figure 3.7: Image convolved using different 3x3 kernels (extracted from [6])

Then, using this convolution concept, we can define a series of convolution layers on our
model, that use several kernels to transform the input image. We can also add some pooling
layers, that select certain values from the convolved images to reduce the dimensionality
even more. The interesting thing about this is that we do not even have to think about
what the values of the kernels should be to extract those significant features that could
give information to our fully connected layers, as we can treat the kernel values as they
were parameters of our model like the neurons weights and biases, thus, we can also train
them to learn how to recognize our problem. We can see a typical Convolutional Neuronal
Network [7] shape in Figure 3.8.

Figure 3.8: Representation of the shape of a typical Convolutional Neuronal Network
model (extracted from [7])
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3.3 Graph Convolutional Neuronal Networks

Convolutional Neuronal Networks, work with Euclidean data. That is why they excel
working with images, which are often in the R3 space. In this case, we want to work with
3D objects, which are a non-euclidean data structure, which can be defined as a graph.
That is why we will be using Graph Convolutional Networks, a Neuronal Network model
which takes advantage of some concepts of the simple Convolutional Neuronal Networks,
but can work with graph shaped data. [8] [9]

However, we can use some concepts of the Convolutional Neuronal Networks to be able to
define our graph based Neuronal Networks, that will be able to work with non-euclidean
data. As we see in Figure 3.9, indeed two-dimensional euclidean data, as images, can also
be represented as a graph. We can reuse the concept of convolution to define a model that
applies convolutions to our graph. The only difference here, is that we cannot define any
kernel to convolve our graphs, because the number of neighbors of every vertex is not
regular.

Figure 3.9: Representation of a two dimensional euclidean structure (left), versus a non-
euclidean graph (right) (extracted from [9])

Then, we could just simply define the graph convolution as the weighted sum of all adja-
cent vertices multiplied by a weight, that will be our model parameter to this convolution.
This way, we will be able to convolve any graph, no matter how many vertices does it
have and how many adjacencies every vertex has. Then, having our graph G, two sets of
weights w0 and w1, a bias b, the activation function f , and being A∗ the normalized lapla-
cian matrix that defines all the graph adjacencies, the graph convolution can be defined
as:

∀V ∈ G : convolveNeighbors(G) =
N

∑
i=0

V · (A∗)i · w1

convolve(G) = f (G · w0 + convolveNeighbors(G) + b)



14 Theoretical background

Then, we can train our models setting the w0, w1 and b as additional model trainable
parameters, and combining it with a fully connected neuronal network at the end of the
graph convolution layers.

At first, we could think that the power of the graph convolutions is limited, as we can only
convolve using the nearest neighbors of each vertex. However, if we use multiple layers,
indeed the values of vertices further away from the local neighborhood have an influence
in the result, so with multiple graph convolutional layers we will be able to detect global
and local patterns that will help our model to detect and solve problems.



Chapter 4

Methodology

4.1 Model design

To build a Graph Convolutional Network model that learns how to build the 3D garment
registration, I will need to define a model and a training pipeline.

To do that, we will propose two different models, a stretching model, and a registration
model. In our case, we are loading garment samples from a dataset, which have a partic-
ular shape and position, that could be more or less arbitrary. To solve our problem, we
are actually interested in the topology of our garment, and we do not really care what
is the initial state of the garment. For instance, we could have multiple 3D models, that
represent the same piece of clothing, but its initial state is different, then if we directly
applied a model to register these garments we would obtain different results, even that it
is the same cloth. That is why, before registering the garment, we want to build a model
that stretches it, and tries to smooth the garment shape. If we do that this way, ideally,
for different 3D objects that represent the same garment with different initial states, the
stretching model should be able to output the same stretched version for the two different
samples.

After that, we will use the output of the stretching model, and define a second model to
learn the actual registration.

Then we have to consider how are our models going to learn to solve the problem. In our
case, we do not have a training dataset which has the initial garment and an associated
output to train with, so for each sample we do not know a priori which will be the desired
output. This is why we will be using unsupervised learning techniques. To do that, we
will have to think and define a set of what we will call the loss functions of our problem.

These functions will take the output state of the model, and evaluate some metrics that we
want to minimize in our problem, and then, computing the gradients of these functions,
we will be able to train the model in order to minimize the loss functions.

15



16 Methodology

4.2 Stretching Model

As mentioned before, the stretching model will be processing the input garments and
construct an smoothed version of them.

First, we have to define the number of layers and shape of the Graph Convolutional Net-
work that we are going to use to construct this model.

Indeed, choosing a good model topology is a really hard task, as it is very difficult to
estimate in an objective way which network shape will give better results, and as Neuronal
Networks take a lot of time to train, we cannot test so many configurations. Then, in our
case, we will be choosing a not very complex configuration that we tested out that was
giving reasonable results, and we will stick to it during all the project.

This is a five layer Graph Convolutional Network, with a Fully Connected layer at the
end to reduce the feature space, because as we are working with 3D garments, the input
and output graphs must be of shape N X 3, being N the number of vertices of the outfit,
and the 3 Cartesian coordinates of the vertex position. We can see a representation of this
model structure in Figure 4.1

Figure 4.1: Graph Convolutional Network shape

4.2.1 Loss functions

Now, we have to define the loss functions of the network. These functions are the way
we have to indicate to the model what do we want to achieve, as in the training stage,
the parameters of the model will be adjusted in order to minimize the values of these loss
functions. Indeed, the model will try to minimize a single value, the total loss, with will
be a combination of all the defined loss functions multiplied by a coefficient. Each loss
will have associated a coefficient, that will indicate how much important is this loss in our
model. Adjusting these coefficients is not an easy task, as sometimes the behavior of the
models while training is unexpected, and we have to take into account lots of factors to
adjust these values.

Normal loss

As we commented before, one of the objectives of the first model is to smooth the surface
of the garment. To do that, we could consider the normal vectors of the garment. The
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normal is a vector which is perpendicular to the surface at a given point, as we can see in
Figure 4.2 [10].

Figure 4.2: Normal vector of a vertex (extracted from [10])

Then, in order to smooth the surface, we want to construct a metric that evaluates how
close are the normal vectors of close vertices. This way, we are penalizing irregularities on
the garment surface.

A first approach to implement this metric would be to compute the standard deviation
over the normals of adjacent vertices of each vertex of the garment, which given a garment
with M vertices, and being the Nij the normal of the adjacent vertex j to the vertex i can
be defined as:

loss(GM) =
M

∑
i=1

std(Ni1, Ni2, ..., Nin)
2

Nevertheless, this approach is very difficult to implement efficiently, using the power of
the GPU and tensorflow functionalities, because with this formulation, we would need to
iterate over each vertex of the garment and find all of his neighbors. This shows clearly
the difficulty of this problem and defining loss functions, as this loss definition, even that
is correct and evaluates the metric we want, is not possible to implement.

However, we can choose a different approach, instead of computing the standard devia-
tions, we can use the dot product, that can be expressed as:

dot(a, b) = ||a|| · ||b|| · cos(αa,b)

Indeed, as the norms of the normal vectors are always one, we know for sure that the dot
product will be always cos(αa,b). Because of that, this value gives us a really clear measure
of how similar two normal vectors are.

Then, we can, in a very efficient way, apply a graph convolution that computes the dot
product of all vertices with all his neighbors. At each vertex we will have a value between
-1 and 1, 1 meaning that all the adjacent vectors have exactly the same direction, and
-1 otherwise. That is why the final metric will be 1 minus the mean of all the vertices’
convolution. We can implement this function using tensorflow methods as following:
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1 def normal_loss(V, F, L):
2 # V: mesh vertices
3 # F: mesh faces
4 # L: Laplacian adjacencies matrix
5

6 # Compute the Normals
7 N = tfg.geometry.representation.mesh.normals.vertex_normals(V, F)
8

9 # Apply convolution to compute dot product
10 D = tfg.geometry.convolution.graph_convolution.edge_convolution_template(
11 N, L, sizes=None ,
12 edge_function= lambda x,y: tf.einsum("ij ,ij->ij", x, y),
13 reduction=’weighted ’,
14 edge_function_kwargs ={}
15 )
16 # Sum values to complete dot product and compute the mean
17 return tf.reduce_mean (1 - tf.reduce_sum(D, axis =1))

Listing 4.1: Normal loss function

Collision Loss

One of the objectives of this models is also to separate the garments a bit from the body.
Also, we would consider an incorrect output one that collides with the body mesh, as we
do not want the garment inside the body.

For that, we will be using the collision function implemented in the DeepSD [11] code,
that given two 3D meshes gives a metric given the number of faces of the two meshes that
intersect.

Distance Loss

As we want to separate the garment from the body, we are also defining a metric that
computes the differences between the positions of all vertices. To do that, we need to
define two tensorflow tensors, one with the garment values and with shape (M, 1, 3), being
M the number of vertices of the garment; and another with the values of the body with
shape (1, N, 3), being N the number of vertices of the body. With tensorflow we can use
the subtract operand with different shaped tensors, and we will be actually obtaining a
(M, N, 3) tensor, which contains all the differences between each body vertex and all the
garment vertices. Once we have this result, we can compute euclidean distances all over
the tensor and compute the sum of all of them to obtain a metric to indicate the overall
distance body to garment. We can implement this function using tensorflow methods as
following:

1 def distance_loss(B, G):
2 # B: body vertices tensor
3 # G: garment vertices tensor
4

5 garment_reshape = tf.reshape(G, (G.shape[0], 1 , G.shape [1]))
6 body_reshape = tf.reshape(B, (1, B.shape[0], B.shape [1]))
7
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8 #Compute all euclidean distances and sum them
9 d = tf.reduce_sum(tf.square (1 - tf.reduce_min(tf.sqrt(tf.reduce_sum(tf.

square(garment_reshape - body_reshape), -1)), -1)))
10

11 return d

Listing 4.2: Distance loss function

Vertices Position Loss

In most of the cases when training machine learning models, we also have to define some
loss functions that we could consider that are not so useful for obtaining the desired
output, but help to stabilize the training process. These are the regularizers of our model,
and they help us to maintain it stable and avoid extreme over-fitting behaviors.

In our case, if we just used the loss functions above, we could find that the model outputs
are not something we would expect, as for instance it could find that returning a com-
pletely plane garment would minimize completely the normal loss, or giving a garment
really far away from the body to improve the distance loss. That is why we will define a
loss that computes the differences between the original garment and the predicted one. If
we have two garments, G being the original garment, and P the predicted one, both with
N vertices, this loss can be easily defined as:

verticesLoss(G, P) =
N

∑
i=1

(Gi − Pi)
2

This function can clearly help us to have results that in some way resemble the original
garment. Obviously, our main objective here is to transform the original garment, this is
why this loss may seem a bit counterintuitive, but we also do not want to obtain an output
that does not have any relationship with the original garment.

Edges distance loss

As we did with the vertices position, we can do the same with the edges lengths. We could
define another regularizer that penalizes the model for changing a lot the edge lengths.
This way we will not return garments with very different shapes from the original one,
as we are enforcing the edge lengths to be similar to the input garment. Having two
garments, G being the original garment, and P the predicted one, both with N vertices,
and being Xi,j the edge length of garment X from vertex i to vertex j, we can define this
loss as:

edgesLoss(G, P) =
N

∑
i=1

N

∑
j=1

(Gi,j − Pi,j)
2

4.3 Register Model

Once we have defined our stretching model, we can start with the model that will actually
register the garments.
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To do that, first we have to think about how will be the shape of our Graph Convolutional
Network Model. As we said before, this is a really complex task, and to keep things
simple, we are going to reuse the model shape used in the stretching model (already seen
in Figure 4.1). We think this is the best option to start with, as we already tested that
this model is able to learn how to stretch our garment, so we will assume this topology is
good for recognizing and transforming graph shaped outfits.

4.3.1 Loss functions

After that, we need to define the particular loss functions that will help us to solve our
problems. We will be probably reusing some functions that were used in the stretching
model, but we will also need to repeat the task of adjusting the coefficients of the different
losses that we have defined to obtain the expected results.

Chamfer distance Loss

Foremost, we will define the main function of the model. In our case, our objective is
to establish a correspondence between each garment vertex to the body vertices. To do
that, we would like to minimize the distance between each body vertex and the closest
one in the garment. To achieve that, we can implement an existing metric called Chamfer
Distance. Given two point clouds S1 and S2 for each point in each cloud, the chamfer
distance finds the nearest point in the other point set, and sums the square of the distance
up. It can be defined as:

Cham f erDistance(S1, S2) =
1

|S1| ∑
x∈S1

miny∈S2 ||x − y||22 +
1

|S2| ∑
x∈S2

miny∈S1 ||x − y||22

Seeing its definition, we would expect that when this distance is minimized, we will obtain
the registered outfit.

Luckily, to implement this loss, we can use a module from the tensorflow-graphics-gpu
library. The function tfg.nn.loss.chamfer_distance.evaluate is able to return this metric in an
efficient time, using GPU parallelism power.

Registration Vectors Similarity Loss

By the registration nature, we would expect that vertices with similar position, will be
registered to similar vertices in the body. Thus, we can force this behavior stating a loss
function that tries to minimize the differences between the registration vertices of each
neighborhood of vertices.

A first approach to implement this metric would be to compute the standard deviation
over the registration vectors of adjacent vertices of each vertex of the garment, which given
a garment with M vertices, and being the Rij the registration vectors of the adjacent vertex
j to the vertex i.
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loss(GM) =
M

∑
i=1

std(Ri1, Ri2, ..., Rin)
2

As we see, this loss definition is practically the same that the one we were defining in the
stretching model with the normals. We can also use in this case the trick to be able to
use a graph convolution and compute the registration vertices differences using the dot
product. We remember that the definition of the dot product can be expressed as:

dot(a, b) = ||a|| · ||b|| · cos(αa,b)

However, in this case, we do not know for sure what will be the lengths of the registration
vectors, and in some cases will be bigger than one. So in this case, the dot product will
not be the most accurate metric to measure vectors differences, but in practice it still gives
us a metric about how similar the vectors are, as cos(αa,b) is always multiplying to obtain
the result.

In practice, we have tested that, for our samples, this registration must never be big-
ger than 10, but she should take into account take this may vary with other samples or
datasets.

Then, we can define this loss similarly to what we did with the normal loss, applying
a graph convolution to compute the dot products of the neighborhood of each vertex,
and then the final metric will be 10 minus the mean of all vertices’ convolution. We can
implement this function using tensorflow methods as following:

1 def register_vectors_loss(stretched , predicted , L):
2 # stretched: vertices of the stretched garment
3 # predicted: vertices of the predicted garment
4 # L: laplacian matrix of both garments
5

6 register = stretched - predicted
7

8 # Convolution to compute partial products of the dot product
9 D = tfg.geometry.convolution.graph_convolution.edge_convolution_template(

10 register , L, sizes=None ,
11 edge_function= lambda x,y: tf.einsum("ij ,ij ->ij", x, y),
12 reduction=’weighted ’,
13 edge_function_kwargs ={}
14 )
15 # Compute 10 - dot products and see the means
16 return tf.reduce_mean (10 - tf.reduce_sum(D, axis =1))

Listing 4.3: Register Vectors similarity loss function

Edge Similarity Loss

We expect the outfit to be registered in a uniform way, so we do not want vertices to very
far away from other vertices, thus the registered garment should not have very different
edge values. Then, we can simply define a loss that computes the standard deviation over
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all edge values in the garment. We expect to obtain values close to 0, as we do not want
huge differences between edges. Being Gedges the list of all the garment edges distance,
we can define this loss as:

edgeSimilarity(G) = std(Gedges)

Collision loss

As with the stretching model, we also consider that colliding with the body should be
penalized. Then the function used in that model will be reused.

However, we should note that in this case the penalty for colliding should be way lower,
as we expect some collisions as our objective is to bring the garment really close to the
body. Later, we should use a smaller coefficient for the collision loss.

Vertices position loss

As with the first model, we also require some way to stabilize the model. The vertices
position of the output should not be very far away from the original vertices. As we
commented in the first model, even though our objective is to transform the input, we still
need some way to stabilize the training process and regularize it. We will use the same
loss function defined in the first model.

4.4 Training pipeline

To define our training pipeline we have reused some code used in the DeepSD project [11]
to train the models. In our case, we have defined two python scripts train_stretch.py and
train_register.py to implement the training of each model.

Indeed, the training process is not so complex, we just need to load the required samples,
using the DeepSD data management functionalities, and then, for each step in the training
process, compute the parameters gradients. We can do that in a very simple and transpar-
ent way using the tensorflow GradientTape functionality. When we define a section of code
with a GradientTape watch, all the gradients are automatically computed when different
operations are applied. Then, after computing all the loss functions, we can easily obtain
the loss gradient with respect to the model parameters, and we can adjust them using a
tensorflow optimizer, in our case we are using Adam, which is a stochastic gradient descent
method that is based on adaptive estimation of first-order and second-order moments.

We should also note that all the losses and operations defined in the training pipeline
are prepared to work with multiple batches. That means that we can train with multiple
samples at the same time. However, for technical reasons, we are using one batch at the
time, because we need huge GPU memory space to compute some loss functions, and if
we use more than one sample we may face memory allocation errors.
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4.5 Usage of an autoencoder

While training the networks, we realized that the first stages of training are very chaotic.
In the first initialization, the values of all the parameters of the model are random, so
the first output meshes have also random positions. Sometimes, the outfit would appear
inside the body, making it very difficult for the model to learn how to get out of it, because
the collision loss would penalize the model if it tried. That, and other factors, made the
first steps of training very unpredictable, and generated inconsistent results with the same
or similar models.

However, to solve that problem, we could use what is called an autoencoder. This is a
simple model that learns how to represent the input. This way, instead of starting training
with random values on the model parameters, we would start with some values that
are already trained and know how to represent the input, and thus we are not facing the
instability of the first training epochs that we were facing before. Autoencoders are widely
used in the machine learning world, as they can be useful in many situations and often
can improve the performance of the models.

To train our autoencoder we can just use the vertices loss, as we want to minimize the
differences of the positions between input and output garments. We can see the difference
between the original outfit and the predicted by the autoencoder in Figures 4.3 and 4.4:

Figure 4.3: Visualization of a dress outfit
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Figure 4.4: Output of the autoencoder when outfit in Figure 4.3 is given as an input

As we can see, the prediction of the autoencoder model is not perfect, but we do not need
it to be so. We just need having a model that knows how to reproduce some result that is
able to stabilize the first epochs of training.
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Results

5.1 The Dataset

The dataset I will be working with is the CLOTH3D dataset [1]. It is the first big scale
synthetic dataset of 3D clothed human sequences. CLOTH3D contains a large variability
on garment type, topology, shape, size, tightness and fabric. Clothes are simulated on
top of thousands of different pose sequences and body shapes, generating realistic cloth
dynamics.

To train the model, we will need loading different outfits, composed of one or more
garments, and a body. The CLOTH3D dataset does not contain the body models, because
to generate them, it uses the SMPL model [12], which enables us to generate realistic body
models with different shape and pose parameters. So, we will need to load the SMPL
body shape parameters and generate the body in a rest pose using SMPL.

However, training a model with this dataset it is not so easy, as we have to take into
account several technical details, as we want to quickly extract the data, and we do not
want to lose any unnecessary time processing the data while training. To do that, I will
be using the preprocessing and data extraction scripts used for the DeepSD model [11],
which also uses the CLOTH3D dataset to train its model to perform realistic garment
animations.

In Figure 5.1 we can see a loaded outfit on top of the SMPL body in rest pose.

5.2 Used Tools

To implement the proposed models, we are going to use the python programming lan-
guage, combined with the use of several libraries.

5.2.1 General use libraries

We are using several libraries that provide us with some useful functionalities that make
the coding easier, and they are very common while coding in python, as numpy for nu-

25



26 Results

Figure 5.1: Cloth3D outfit sample, loaded with its body model in rest pose

merical operations, plotly for 3D meshes visualization, scipy for general scientific purposes
as sparse matrix operations and others.

5.2.2 Tensorflow

Tensorflow provides a set of functionalities to build and create machine learning models.
It allows us to easily create the models, and train the network weights.

The training process of neuronal networks is often very slow, but tensorflow provides a key
feature that allows us to use a GPU to train the model in a parallel way. This makes the
training very fast compared with the CPU implementation.

Also, we will need to define all the loss functions using the tensorflow methods, which
are also GPU friendly. A correct implementation of the loss functions using the tensorflow
functionalities can be the difference between hours of training or just a few minutes.

Besides, tensorflow has a submodule called tensorflow-graphics-gpu, that provides several
functionalities to work with graphs implemented with GPU friendly methods, as graph
convolutions, and will be widely used in this project.

5.2.3 Google Collab

As mentioned before, using a GPU for training is very fast compared to CPU training.
That is why we will be using Google Collab. It provides a virtual environment in which
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we can run python scripts, and enables us to use for free a GPU to execute them.

This has multiple advantages, as we do not have to configure any physical GPU. The GPU
also has good memory specifications (12 GB), and this also will be very helpful as we are
processing very big graphs containing garment information.

However, the time that we can use to train models on Google Collab is limited, and this
could limit our model parameters tuning.

5.3 Model Results

Once we had defined and implemented the models, it was time to test them and see its
results. However, this is a very complex process, as in our case we need to fine tune all
the models’ hyperparameters, the different loss coefficients. We also have some technical
limitations, as to fully train our models, we need to use a GPU with big memory space,
and the training procedure takes very long times. In our case, we are using Google Collab
to generate them, and using this free environment provided by Google, we have limited
training time, so we cannot train the models so long.

Nevertheless, I think the objective of this project should never be to obtain perfect results.
I think the most interesting part should be analyzing some results obtained and trying
to understand what is happening, how they can be improved, and provide a strong base
to be able to upgrade these models in order to be able to solve the registration problem
using machine learning based methodologies.

This is why, in this particular case, we will be generating 5 different models, and in each
one we will be using only a particular sample, and try to generate models training with
them. The chosen samples from the CLOTH3D dataset are:

• 00016: outfit of trousers and a T-Shirt. Figure 5.2.

• 01643: outfit of a dress. Figure 5.2.

• 02179: outfit of a jumpsuit. Figure 5.2.

• 04846: outfit of a trouser and a top. Figure 5.2.

• 05207: outfit of T-Shirt and a skirt. Figure 5.2.
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Figure 5.2: Loaded Samples of the different outfit that will be used to train the different
models.
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5.3.1 Stretching Model Results

First, we have generated the results for the stretching model. It is very difficult to judge
in an objective way the correctness of these results, as we do not have a very clear output
objective. For the five different samples used, we have created five different models and
trained them with only the selected sample 100 epochs. The resulting outputs for each
model are:

• 00016: stretched outfit of trousers and a T-Shirt. Figure 5.3.

• 01643: stretched outfit of a dress. Figure 5.3.

• 02179: stretched outfit of a jumpsuit. Figure 5.3.

• 04846: stretched outfit of a trouser and a top. Figure 5.3.

• 05207: stretched outfit of T-Shirt and a skirt. Figure 5.3.

Figure 5.3: Output outfits after stretching.

The used coefficients and the different loss values at the final training epoch(100) can be
found in the following table:
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Normal Loss Collision Loss Distance Loss Vertices Loss Edge Loss Total Loss

Coefficients 1.0e+3 7.5e+2 1.0e-5 3.0e-1 2.0e+0 -

00016 7.217782 0.36556184 0.100651726 1.2818129 0.63180006 9.597609
01643 10.70532 1.0065246 0.074037805 2.8015463 1.7641408 16.35157
02179 4.807514 0.0029138895 0.12792708 0.36674708 0.1531826 5.458285
04846 5.083509 0.010080771 0.10781584 0.3017217 0.1691572 5.6722846
05207 7.75503 0.0035081136 0.10921732 0.82273716 0.38270578 9.073199

We can also see how the losses values evolve during all the training epochs in Figure 5.4.

Figure 5.4: Losses values during all training epoch of the stretching model with sample
00016.

In general, the stretching model results should be good for the purpose we want to use
it. If we examine the different samples, we can observe that have not changed a lot
compared to the input garments. Indeed, we have seen that this helps the second model
performance, as we do not want a garment in a very different position or very far away
from the body, as it would cause problems later when registering the garment. That is why
we have chosen to give a very small coefficient to the distance loss, and very significant
coefficients to the vertices and edge regularizers. The main loss, the normal loss, is the
one that has higher coefficients, and we can clearly see its work as it has smoothed the
garment’s shape. We can clearly see the work it has done in Figure 5.5.

However, if we observe the losses table, we can see some clear unexpected behaviors. We
see that some losses have unexpected values, for instance, we see that the collision loss
has very high values in some samples, as in the sample 01643. We would expect high loss
values in other losses, as the regularizers or the normal loss, as we know for sure that it is
impossible to obtain outputs with all these losses being 0, but in theory we would never
want any face of the outfit to collide with the body.
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Figure 5.5: Sample 05207 stretched, seen from a top view to observe how the dress shape
has been smoothed significantly.
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Then, we could think that one solution to this would be to increase drastically the collision
coefficient. But, this only shows the complexity of the problem, and why adjusting the
coefficients is so hard. Even that, we would not want any collision at the final model, this
loss is a part of the learning process. If we penalized completely any collision, the model
would not be able to tell any difference between results that are close to being correct,
and those who are completely wrong. In practice, what we see if we increase the collision
coefficient excessively, is that the gradients of the loss completely push the outfit far away
from the body to avoid any collisions. And surprisingly, it is sometimes not even able to
avoid all the collisions, as we can see in Figure 5.6.

Figure 5.6: Sample 05207 stretched, but using collision loss coefficient 7.5e+4. Because of
the high collision penalty, the model tries to minimize the number of faces that collide
with the garment, instead of trying to adjust the arms in the dress.

In this example, we can clearly see the nature of neuronal network models. These models
are very good at finding local minimums, but this does not ensure us that this minimum is
the global. While working with these models, we should always be aware of this behavior,
and try to deal with it.

In our case, what this problem causes is some artifacts on the outputs, as we observe
some collisions in the outputs or some results that seem to have certain parts that are not
well stretched. We can clearly see that on the sample 01643 5.3. However, we should ask
ourselves if these problems have any influence on the second model, and the reality is that
they have few or none. We have to remember that in this first model, what we only want
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is to generalize the outfits to make the second model output independent of the initial
garment state. So, these little artifacts will not cause any problem, and we can consider
that the outputs of this first model are quite correct.

5.3.2 Register Model Results

After defining and obtaining the results of the stretching model, we can start testing and
obtaining results of the registration model. That is one of the reasons why tuning this
model is a particularly difficult task, as we do not only need to adjust its hyperparameters,
we also know that it directly depends on the output of the other model.

As with the previous model, we have used the 5 selected samples and generated one
model for each one, and trained them 100 epochs. The resulting outputs of the model are:

• 00016: registered outfit of trousers and a T-Shirt. Figure 5.7.

• 01643: registered outfit of a dress. Figure 5.7.

• 02179: registered outfit of a jumpsuit. Figure 5.7.

• 04846: registered outfit of a trouser and a top. Figure 5.7.

• 05207: registered outfit of T-Shirt and a skirt. Figure 5.7.

Figure 5.7: Output outfits of the registration model.
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The used coefficients and the different loss values at the final training epoch(100) can be
found in the following table:

Chamfer D. Loss Vertices Loss Register Vect. Loss Collision Loss Edge Loss Total Loss

Coefficients 5.0e+2 1.0e+0 1.0e-1 1.0e+0 2.0e+1 -

00016 7.4765115 4.7933254 0.99992514 0.060638268 0.13096592 13.461367
01643 5.883686 5.031674 0.99986124 0.04409196 0.24721038 12.206524
02179 3.7493124 3.374235 0.9999687 0.07047841 0.11340179 8.307397
04846 4.329788 5.1768384 0.99996024 0.05137386 0.2648859 10.822847
05207 9.41104 3.3697863 0.9999596 0.015292238 0.16460073 13.960679

We can also see how the losses values evolve during all the training epochs in Figure 5.8.

Figure 5.8: Losses values during all training epoch of the registration model with sample
00016.

At this point, looking at the generated results, we can see clearly that they have lots
of artifacts, and they seem to be far away from the fully registered garments that we
were expecting. However, I feel we should not be very disappointed, as I believe that by
examining them we can extract much more insights about the complexity of this problem
and what can be done to improve the results. Nevertheless, this model is still giving some
correct results at certain parts of the body as we can see in Figure 5.9, so we should take
notes on that and see which parts are failing and why.

Observing Figure 5.9, we can clearly see that the garment is following the body shape,
and it is getting really close to it. We can see that even in some parts is getting inside the
body, but we were expecting that and it is not bad for our results as we really want the
position of the body and garment vertices to be practically the same, and that is why we
have given a small coefficient to the collision loss for this model.
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Figure 5.9: Output of the registration model with sample 00016, from a top close view.

However, even that in the middle parts of the body we see that the model may be regis-
tering well the outfit, we see that it clearly struggles in other parts as near the head, arms
and legs. The registration here becomes more tricky, as the model needs to find a solution
at points where there can be multiple vertices that minimize the chamfer distance loss.
For instance, as we see clearly in sample 04846 5.7, some vertices that should be registered
to the body, get registered to the head or arms. This is caused because at some moment of
the training, the model has found that going closer to the head or arms was minimizing
the total chamfer distance, and as we saw in the first model, the neuronal network models
are very good and finding local minimums, but once they have found it, is difficult to
make the model change and find the global minimum that would totally minimize the
loss.

Similarly to what we saw in the previous model, in this case what we would want is to
have a model that fully minimizes the chamfer distance loss. If the model was able to do
that, we would have practically perfect results, as when the chamfer distance is very close
to 0 that means that the vertices position is practically the same. However, what we have
found in practice, is that we still need a strong support of the vertices position regularizer
to obtain a coherent result. If we increase the chamfer collision loss too much without
the help of the regularizers, we get very unstable results, and even that it could be very
counterintuitive to give such importance to a loss that is only pushing us to stay with the
original inputs, this is the only way to get a stable training. We can see the results when
we increase too much the chamfer distance coefficient in Figure 5.10.

If we examine the output samples on detail, what we can see is that the model is clearly
doing some registration, but it is clearly struggling to generalize for all the garment parts.
As mentioned before, simpler garments parts get registered more or less in a coherent
way, but when it has to face parts that initially were very far away from the garment or
have more complex topologies as skirts or dresses, it is not able to register all the outfit in
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Figure 5.10: Output of the registration model with sample 00016, with chamfer distance
loss coefficient set to 5.0e+4. We see that the model over stretches the garment to try to
minimize the global chamfer distance.
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the same way.

Then, we can conclude that the results are not correct, but they are a clear basis of what a
machine learning based model could do to implement the registration.

From my point of view, the main chamfer distance loss is not enough to find and optimal
solution to this problem, and I think other well thought losses could definitively help the
model to solve the problem in a more correct way.

Finally, we should also be aware of that this model is an unsupervised based model. That
means there is not any target output that we want to obtain, and indeed the final obtained
losses are a direct consequence of how we have defined the losses and which coefficients
we have assigned to each of them. So, the final obtained errors are not a very good way to
judge how the model is doing, as in part we are creating these errors. That is why it is so
difficult to tune the losses coefficients and to define the loss functions, as it is very hard to
objectively judge how the model is doing automatically and without human supervision.
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Chapter 6

Conclusions

6.1 Future Work

As we commented before, there is wide range of improvement of the obtained results, that
could be implemented to obtain much more accurate outputs.

First, we could play with a more complex network shape. As we said, we used a very
simple Graph Convolutional Network, as it was already returning some results that made
us understand that it was able to learn the problem. However, including more layers, with
higher number of features, could definitively help the models to solve the problem, even
thought the training and computation times would increase.

In our case, also we were limited by the available computational resources, as using Google
Collab we can only train the models for a reduced amount of time, and we could not train
the model with the full dataset, to be able to generalize for all different samples, instead
of training five different models, overfitting one particular sample.

Another possible improvement to the model, could be to introduce in some way the body
shape to the registration network. In our cases, as we are only training with one sample
at the time, the model can learn implicitly the body shape and position, but the reality is
that the bodies shape vary a lot, and we could even think of using different poses and try
to register them to train our models. That is why, I think that, if we want to train with
the full CLOTH3D dataset, we must include in some way the body in the model inputs,
as if we do not do that, the model cannot learn how to register an outfit to a body it is not
knowledgeable about.

In addition, we saw that the registration model certainly struggles with skirts and dresses.
This is caused because the topology of the body and garment is very different, in one case
the garment has one overture, but the body has two legs. That problem was discussed
during the project development, and the proposed solution is to smooth the body legs and
create a join between the two legs to create a one leg body. This way, the registration
results for this particular samples would be improved.
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Also, as commented in the results sections, I feel like the registration model still needs
other loss functions that help the model to register the garments, as I feel like it really
struggles to minimize the chamfer distance, and the other losses are not able to create a
big impact on the results.

Furthermore, I would like to state that in this particular case we have found that adjusting
the model coefficients is a really hard task, as subtle changes on them could cause very
unexpected behaviors. Maybe, we could define some techniques to dynamically adjust the
coefficients while training, but I believe that this definition should be very well thought, as
it is not an easy task because we have to progressively increase or reduce the coefficients
but establishing some metrics to avoid getting chaotic results.

Finally, I think the problem is still open to new clever ideas, as for instance we could
think of defining another model to judge how well the registering model is doing the
registration, or generating some samples that are already registered with other methods
and train the model comparing with them.

6.2 Conclusions

To conclude, I think that this project could establish a clear basis on how a Neuronal
Network based model could be able to solve the registration model efficiently. But, at the
same time, it also shows the high complexity of designing this type of solutions. While
implementing the solutions, we had to constantly review the proposed initial designs and
review them to fulfill the project objectives. From my point of view, that also shows that
we are still at the tip of the iceberg of the machine learning knowledge, as we still have to
figure out how to optimize or make faster the design of the models, as for instance, it is
very hard to determine which model shape will be better to solve our problem. Even if we
achieve so, I think that this also shows that humans are and will be completely necessary
while designing machine learning based algorithms, because, even if we are trying to
design models that learn by themselves, we are the ones who can define the problems and
mechanisms to the models to be able to learn new and demanding problems.

From a personal perspective, I would like to add that I am very satisfied with the work
done in this project. I had always been interested in Neuronal Networks, and even we have
seen some basic concepts about them during the degree, this was my first opportunity to
engineer a complex machine learning model and to actually implement it with widely
used tools in the machine learning world. Definitively, this has given me a much more
scientific approach to this kind of problems, and I believe it may be useful to me as it has
given me some ideas of other models or problems that can be solved with this kind of
approaches.
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