
Universitat de Barcelona

Design and Implementation of an DL-based
Video Processing Pipeline

Author:
Carla Morral I Martín

Supervisor:
Sergio Escalera Guerrero

End-of-Degree Project

13 June 2022

Abstract

This project was born as an internal need at Amazon for being able to automatically or
semi-automatically perform Quality Assurance checks to videos featuring books in order to
eliminate or reduce the human time spent on doing video QA. The proposed workflow uses
a variety of tools and algorithms that will be detailed, including the use of deep learning.
This is a good example of a real-life use-case in which deep learning is used to help improve
the humans life. This video processing pipeline is composed of some checks to ensure that
the videos are correctly rendered and is already integrated to the major architecture Waldo
Media Factory, and ready to be used in production.

Contents

1 Mathematics of Deep Learning 4

1.1 An Introduction to Machine Learning . 4

1.1.1 Models an Optimization . 4

1.1.2 PAC Learning . 7

1.2 Deep Neural Networks . 10

1.2.1 Theorems of Cybenko and Hornik 10

1.2.2 Stability of Stochastic Gradient Descent 10

2 A Real-World Application: Design and Implementation 14

2.1 Problem Statement . 14

2.1.1 Business Background . 14

2.1.2 Technical Requirements . 15

2.1.3 Challenges . 17

2.2 Base Architecture: Waldo Media Factory . 17

2.2.1 Amazon Web Services . 17

2.2.2 Waldo Media Factory high-level architecture 22

2.2.3 The Video Creation Workflow . 23

2.2.4 CI/CD: The Waldo Media Factory Pipeline 27

2.3 The Video QA Workflow . 27

2.3.1 High-Level System Design . 27

2.4 Main Components of the Workflow . 32

2.4.1 The Text-Content Validator . 32

2.4.2 The Spelling Valdidator . 35

2.4.3 The Video Flash Detector . 37

2.4.4 The Color Contrast Problem . 39

2.5 Workflow Integration: AWS CDK . 42

2.6 Testing and Results . 44

2.6.1 The Report Generator Lambda . 44

2.6.2 Integration Tests . 49

3 Conclusions 50

3.1 Project Conclusions . 50

2

3.2 Future Work . 50
Bibliography . 51

3

Chapter 1

Mathematics of Deep Learning

1.1 An Introduction to Machine Learning

Machine Learning is increasingly becoming a key factor in our lives. The necessity of
building methods and models that can learn from real situations and produce reliable out-
puts is expanding through a high diversity of fields, such as Natural Language Processing,
Computer Vision or Biology. Loosely speaking, it is about producing computer programs
without writing them. Informally, these types of models try to learn from a huge set of
data called Training Data to then predict or make decisions about data in the same dis-
tribution. In addition, Machine Learning has acquired a reputation of having some Black
Magic behind, especially the neural network-based models. To my view, this is because
of the huge offer of libraries offering ready-to-use implementations of the state-of-the art
models and therefore, the lack of a basic understanding of the theoretical background be-
hind these models. Moreover, it’s not trivial to understand why a tiny tuning of some
hyper-parameters on the model can substantially affect their performance. As a result, the
purpose of this chapter is to formally expose the basics of Machine Learning, as well as an
interesting point of view, PAC Learning.

1.1.1 Models an Optimization

The two main branches of Machine Learning are Supervised Learning and Unsupervised
Learning. In the former, the learning algorithm receives labeled data and the model is
trained so that it can predict the label of any unseen piece of data. Some applications of
this algorithm include classification tasks, such as for example, determining the genre of a
book based on the book cover. This might be useful when for instance, on an e-commerce
website, the book publisher does not provide this type of metadata and we want to place
that book on a certain section of the online store depending on the genre. On the other
hand, on the latter approach the algorithm doesn’t receive any type of label associated to
the input data. In contrast, it is the model who has to infer patterns of the data and draw
conclusions about it. A real-world use case of Unsupervised Learning is color quantization,
a process that consists on reducing the number of colors present on an image. This process

4

is usually done using clustering, an Unsupervised Learning algorithm. This is an interesting
problem because for instance, given a painting, this algorithm can output a color palette
of the n most dominant colors on the painting. This report will focus on exploring some
characteristics of Supervised Learning.

Supervised Learning

Definition 1.1.1. Given a finite sequence S = ((x1, y1), ..., (xn, yn)) ∈ X ×Y, where yi is
called the label corresponding to xi, a learning algorithm is a map

A : ∪n∈N(X × Y)x → Yn

where its range is the set of functions h : X → Y. For instance, given a set S ∈ X × Y of
training data, a learning algorithm outputs a function hs := A(S), called hypothesis.

With regards to the pairs (xi, yi), they will always be treated as pair of random variables
(Xi, Yi), that are identically and independently distributed according to some probability
P over X × Y.
Definition 1.1.2. A loss function is a map

L : Y × Y → R

that given a pair (h(xi), yi), where h is the function output by a learning algorithm, mea-
sures the distance between these numbers.
Definition 1.1.3. The risk associated with an hypothesis h is defined as the expectation
of the loss function:

R(h) = E[L(h(x), y)] :=
∫
X×Y

L(h(x), y)dP (x, y)

The goal of a learning algorithm is to minimize the risk. Nevertheless, we can’t directly
evaluate the above expression because at first, the learning algorithm doesn’t know the
distribution P (x, y). That’s why we use the below formula to approximate the risk value.
Definition 1.1.4. The empirical risk of an hypothesis h is defined as:

Remp(h) =
1

n

n∑
i=1

L(h(xi), yi)

Consequently, the goal of the learning algorithm is to choose a hypothesis ŷ such that:

ĥ = argmin
h∈H

Remp(h)

where H denotes the range of the map A.

Thus, the learning algorithm defined by the empirical risk minimization (ERM) principle
consists in solving the above optimization problem.

Depending on whether Y is continuous or discrete we can distinguish two types of super-
vised learning problems: regression problems and classification problems.

5

Regression

Definition 1.1.5. We say that a learning problem is a regression problem when Y is
continuous. For instance, Y can be a height or a salary.
Definition 1.1.6. Given a hypothesis h and the quadratic loss L(y, h(x)) = |y − h(x)|2,
the L2 risk, also known as the mean squared error, is defined as:

R(h) = E[L(h(x), y)] = E[|y − h(x)|2]

The quadratic loss is the most common loss function in case Y = R. The below theorem
is one of the reasons why.
Theorem 1.1.7. Let h : X → Y = R be a Borel function and assume that E[Y 2] and
E[h(X)2] are both finite. Then, the conditional expectation r(x) := E[Y |X = x] minimizes
the L2 risk.

Proof. We start from the following expression and we shall minimize it:

E[|Y − h(X)|2] =
∫ ∞

−∞
Y − h(X)2fy|x(y|x)dy

Decomposing the square we obtain the following:

E[|Y − h(X)|2] =
∫ ∞

−∞
y2fy|x(y|x)dy − 2h(x)

∫ ∞

−∞
yfy|x(y|x)dy + [h(x)]2

∫ ∞

−∞
fy|x(y|x)dy

Which can be translated to:

E[Y − h(X)2] =

∫ ∞

−∞
y2fy|x(y|x)dy − 2h(x)E[Y |X] + [h(X)]2

Which implies the following rquivalence:

argmin
h(x)

E[Y − h(X)2] = argmin
h(x)

(−2h(X)E[Y |X] + [h(X)]2)

Finally, taking the derivative w.r.t h(X) on the right side of the equation and setting it
equal to zero we obtain:

h(X) = E[Y |X]

Classification

Definition 1.1.8. We say that a learning problem is a classification problem when Y
is discrete. For instance, Y can be a book genre or the sentiment of a text.
Definition 1.1.9. A function h : X → Y where (X ,Y) ⊂ Rd × 1, 2, ...,K is called a
classifier. In other words, a classifier is a map that, assigns an estimate Y = r to a given
observation X = x.

As for the classification problems, the usual loss function is

L(y, y′) = 1− δy,y′

6

Consequently, according to the definition of risk we have that:

R(h) = E[L(y, y′)] = E[1− δy,y′] = E[1h(X)̸=Y] = P (h(X) ̸= Y)

Definition 1.1.10. We define the Bayes classifier as:

hBayes(x) = argmax
r∈1,...,K

P (Y = r|X = x)

Theorem 1.1.11. The Bayes classifier is optimal and the Bayes error rate is minimal.

Proof. We will show that the minimum of the function R(h) = E[L(y, y′)] is achieved at
h = hBayes. For the definition of conditional probability we have the following.

R(h) = E[L(y, y′)] = EXEY |X [L(y, y′)|X]

Consequently,

hmin(x) = argmin
c∈0,1

EY |X [L(y, c)|X]

= argmin
c∈0,1

P (Y = 0|X = x)L(0, c) + P (y = 1|X = x)L(1, c)

= argmin
c∈0,1

P (Y ̸= c|X = x)

= argmin
c∈0,1

1− P (Y = c|X = x)

= argmax
c∈0,1

P (Y = c|X = x)

1.1.2 PAC Learning

The Probably Approximately Correct learning model was introduced by L.G Valiant back
in 1984. This framework consists of leaning from random examples from some probability
distribution that may be over the input space. Moreover, in these kind of algorithms one
can allow a small probability of failure, in cases in which might be impossible to learn
the target function due to the structure of the input data. More formally, we have the
following definition.
Definition 1.1.12. Let C be a class of boolean functions f : 0, 1n → 0, 1. We say that C is
PAC-learnable if there exists an algorithm L such that for every f ∈ C, for any probability
distribution D, for any ϵ where 0 ≤ ϵ < 1

2 and for any δ where 0 ≤ δ < 1 algorithm L
on input ϵ and δ and a set of random examples picked from any probability distribution D
outputs at least with probability 1− δ, an hipothesis h such that error(h, f) ≤ ϵ.
Definition 1.1.13. We say that C is efficiently PAC-learnable if C is PAC learnable and:

• The number of examples that L takes is bounded by some polynomial in n, 1
ϵ and 1

δ .

7

• L runs in time asymptotically bounded by some polynomial in n, 1
ϵ and 1

δ .
Example 1.1.14. Consider a game to learn an unknown axis-aligned rectangle i.e. a
rectangle in the Euclidean plane R2 whose sides are parallel to the coordinate axes. Let R
be the target rectangle. The examples are provided to the learner are in the form of random
points p along with a label indicating whether p is contained in R (a positive example) or
not contained in R (a negative example). Figure 1.1 shows the unknown rectangular region
R along with some positive and negative examples.

Figure 1.1: The target rectangle R along with some positive and negative points.

Theorem 1.1.15. The concept class of axis aligned rectangles in R2 s is efficiently PAC
learnable.

Proof. Note that there is a simple and efficient way to come up with a hypothesis R′ by
taking a large number of examples and fitting the tightest rectangle around the positive
ones so that all the given positive points lie inside it, as shown in figure 1.2.

Figure 1.2: The tightest-fit rectangle R′ over the given examples.

Moreover, R′ will always be a subset of R. Also note that if we can guarantee that weight
under D of each strip (i.e. the probability over D of falling under such strip) is not more
than ϵ

4 , then we can be sure that the total error of R′ is at most ϵ. This is because of the
union bound:

8

P (A ∪B) ≤ P (A) + P (B)

So, consider what can be a bad event for us in this setting. Please agree it would be a
bad event if the probabilistic weight (or the probability), over D, of the top strip (that is
a part of the error region) is more than ϵ

4 i.e. at least ϵ
4 (see figure 1.3). In other words,

it would be a bad event if the probabilistic weight of the rest of the region i.e. non-error
region is at most (1 − ϵ

4).

Figure 1.3: One of the four error strips.

Therefore, a bad event over m draws would be when the probability that we draw all our
m examples from the non-error region is at most (1− ϵ

4)
m. Here we made use of the fact

that all the draws/examples are independent of each other. The same argument holds for
the other three strips as well. So, to calculate the total probabilistic weight of the bad
event, we take the union bound of all four to give 4(1 − ϵ

4)
m. And this probability must

be bound δ. This is because, as discussed in the formal definition of PAC learning, our
confidence measure in the good event must be at least 1− δ i.e. the probability of the bad
event must be at most δ. So we get:

4(1− ϵ

4
)m ≤ δ

that can be solved using that (1− x) ≤ e−x:

m ≥ (
4

ϵ
ln(

4

δ
)

So, if our algorithm takes at least m examples, then with a probability at least 1− δ, the
resultant hypothesis h will have an error at most ϵ with respect to f and over D. Also,
since the processing of each example would require at most four comparisons, the running
time is linearly bounded by m. Consequently, it is bounded by a polynomial in n, 1

ϵ , and
1
δ as required. Hence, PAC learnable.

9

1.2 Deep Neural Networks

1.2.1 Theorems of Cybenko and Hornik

In, 1989, Cybenko proved the following theorem:
Theorem 1.2.1 (Cybenko). Let σ be a continuous monotone function with limt→−∞σ(t) =

0 and limt→∞σ(t) = 1. For intance, σ could be the sigmoid function σ(t) = 1
1+e−t . Then,

the set of functions of the form:

f(x) =
∑

αjσ(w
T
j x+ bj)

is dense in Cn([0, 1]
n), where Cn([0, 1]

n) = C([0, 1]n) denotes the space of continuous
functions from [0, 1]n to [0, 1] with the metric:

d(f, g) = sup|f(x)− g(x)|

Later in 1991, Hornik proved a generalization of Cybenko’s result, also known as Universal
Approximation Throrem:
Theorem 1.2.2 (Hornik). Consider the set of functions defined in Cybenko’s theorem, but
without conditions placed on σ. Let Lp(µ) be the space of functions f with

∫
|f |pdµ < ∞

with the metric d(f, g) = (
∫
|f − g|pdµ)

1
p Then:

• If σ is bounded and non-constant, then the set is dense in Lp(µ), where µ is anby
finite measure in Rℸ.

• If σ is additionally continuous, then the set is dense in C(X), the space of all con-
tinuous functions on X, where X ⊂ Rk is compact.

• If, additionally, σ ∈ Cm(Rk), then the set is dense in Cm(Rk) and also in Cm,p(µ)

for every finite µ with compact support.

• If, additionally, σ has bounded derivatives up to the order m, then the set is dense
in Cm,p(µ) for every measure µ on Rk.

What the above theorem says is that given any continuous function at all no matter how
complicated it might be, it’s always possible to find an artificial neural network which can
approximate that function as well as you would like. In other words, for most activation
functions, including any σ : R → R such that limt→−∞σ(t) = 0 and limt→∞σ(t) = 1,
and also including the ReLu function, we can represent almost any function given enough
neurons, with small error in any reasonable norm.

1.2.2 Stability of Stochastic Gradient Descent

The most widely used optimization method in machine learning practice is stochastic
gradient method (SGM). Stochastic gradient methods aim to minimize the empirical risk
of a model by repeatedly computing the gradient of a loss function on a single training
example, or a batch of few examples, and updating the model parameters accordingly.

Let’s consider the following general setting of supervised learning. Let D be an unknown
distribution o and S = (z1, ..., zn) a sample of non i.i.d. examples from D. Let f(w, z)

10

denote s loss function where w is the model and z the sample. Our goal is then to minimize
the empirical risk:

RS(w) =
1

n

n∑
i=1

f(w, zi)

Definition 1.2.3. The generalization error of a model w is the difference

RS(w)−R(w)

where R(w) denotes the risk defined previously.

If w = A(S), where A is a random algorithm, we need to estimate the expected general-
ization error:

ϵgen := ES,A[RS(A(S))−R(A(S)]

Definition 1.2.4. The algorithm A is ϵ − uniform stable if for all data sets S, S′ that
differ at most one example:

sup
z

EA[f(A(S), z)− f(A(S′), z)] ≤ ϵ

We define ϵStab(A,n) the smallest such ϵ.
Proposition 1.2.5. The generalization error can be controlled by ϵStab(A,n):

|ES,A[RS(A(S))−R(A(S))]| ≤ ϵStab(A,n)

Proof. Let S = (z1, ..., zn) and S′ = (z′1, ..., z
′
n) two independent random samples and let

S(i) = (z1, ..., zi−1, z
′
i, zi+1, ..., zn).Then , we have the following:

ESEA[RS(A(S))] = ESEA[
1

n

n∑
i=1

f(A(S)), zi)]

= ESS′EA[
1

n

n∑
i=1

f(A(S(i))), z′i)]

= ESS′EA[
1

n

n∑
i=1

f(A(S)), z′i)] + δ

= ESEA[R(A(S))] + δ

where

|δ| = |ESES′A[
1

n

n∑
i=1

](f(A(S(i)), z′i)− f(A(S), z′i))| ≤ ϵStab(A,n)

Definition 1.2.6. Given the loss function f(w, z), the stochastic gradient update with
learning rate αt > 0 is given by:

wt+1 = wt − αt∇wf(wt, zit)

where the indices it are picked randomly in 1, ..., n or according to a random permutation.

11

Theorem 1.2.7. Assume that for all z, f(, z) is convex and L-Lipschitz, and ∇f is β −
Lipschitz. Suppose that we run the stochastic gradient method for T steps with step sizes
αt ≤ 2

β , then

ϵStab ≤
2L2

n

T∑
t=1

αt

Proof. For the proof we will need the following result:

Proposition 1.2.8. If f is convex and ∇f is β − Lipschitz then:

⟨∇f(v)−∇f(w), v − w⟩ ≥ 1

β
||∇f(v)−∇f(w)||22

Let S and S′ be two samples of size n differing in only one example. Let {wt} and {w′
t}

two runs of the algorithm with data sets S and S′, and δt = ||wt − w′
t||2.

Because the two data sets differ in a single example, at step t:

• With probability 1− 1
n , the algorithms choose the same data example.

• With probability 1
n , the algorithms choose different data examples.

If the first case happens at strep t, then:

δ2t+1 = ||wt − w′
t − αt(∇f(wt, z)−∇f(w′

t, z))||22
≤ ||wt − w′

t||2 + α2
t ||∇f(wt, z)−∇f(w′

t, z)||22 − 2αt⟨wt − w′
t,∇f(wt, z)−∇f(w′

t, z)⟩

≤ ||wt − w′
t||2 = δ2t

provided that αt ≤ 2
β , using 1.2.8.

On the other hand, if the algorithms choose different data examples z and z′, we have:

δt+1 = ||wt − w′
t − αt(∇f(wt, z)−∇f(w′

t, z))||2
≤ ||wt − w′

t||2 + αt(||∇f(wt, z)||2 + ||∇f(w′
t, z)||2

≤ δt2αtL

Taking into account that the first case happens with probability 1− 1
n and the second one

with probability 1
n :

E[δt+1] ≤ (1− 1

n
)E[δt] +

1

n
E[δt + 2αtL]

= E[δt] +
2αtL

n

Overall we have:

12

E[δT] ≤
2L

n

T∑
i=1

αt

and

|f(wT , z − f(w′
T , z))| ≤ L||wT − w′

T ||2 ≤
2L2

n

T∑
i=1

αt

13

Chapter 2

A Real-World Application: Design
and Implementation

2.1 Problem Statement

2.1.1 Business Background

In 2021, the company launched an experiment in which they published +2K videos on Chil-
dren’s Books detail page on the US marketplace. The videos featured the book cover, three
inside pages and the book back cover, as well as some slides with text, such as the title and
the author(s). The videos were generated using an architecture called WaldoMediaFactory,
that I will expand on afterwards, and Vivid, an internal video rendering platform. On the
real world it is important that any generated content is properly validated before released
to the general public. In other words, these videos needed to be validated before deployed
to production. This process not only implies checking that the content on the videos is the
expected, but also that the videos are accessible, for instance. Nevertheless, the company
did not have any internal automated or semi-automated tool to validate that the videos
were correctly generated, and therefore the videos’ quality-assurance process process was
fully manual. The validation was done by an internal team that spent around two weeks
checking a batch of 1000 videos and making sure that they were valid and if not, discard
them.

This year the plan is to launch more video experiments not only with Children’s Books,
but also with other book’s genres, such as Fiction and Non-fiction, Manga, Comic Books
or Cookbooks. Moreover, if these experiments work as expected, more videos will be gen-
erated, as well as in more marketplaces. As a result, there is a clear need of an automated
or semi-automated tool to validate the videos. First, because the company cannot always
rely on manual processes. Second, because we need to reduce the error rate on these kind
of validation. And most important, if this process is automated, the human time spent on
video QA will substantially decrease, and therefore, the whole process will be cheaper. As
a result, the fact of having an automated video processing pipeline will enable us to scale.

14

2.1.2 Technical Requirements

More formally, the objective of this project is to build an automated video-processing
pipeline with the main functionality of video validation. In other words, the workflow will
process a batch of videos and perform some checks to ensure that the videos are eligible
to be published on the website and contain no errors. To achieve that, three types of
validation steps have been implemented:

• The Text Content Validator: This validator checks that the text on the video
is not cut, partially occluded. It also checks if the text present on the video is the
expected. It basically compares the expected text on the video against the text that
is actually present on the frames.

• The Spelling Validator: This validator checks the spelling of the text on the video,
meaning that fails if the text on the video contains spelling errors.

• The Video Flash Detector: And finally, the flash detector processes a video and
detects the timestamps in seconds in which a video contains flashes that could likely
cause seizures to the eyes. This validation step is crucial to ensure that the videos
are accessible.

The above checks run in parallel for each video, and each video is pre-processed before the
execution of these validators. This pre-processing step will be detailed later. A high-level
diagram of the idea can be seen on figure 2.1:

Figure 2.1: Three-step workflow - High-Level idea

Another important requirement for this architecture is that more validation steps can
be easily added in the future, such as for example a color contrast check or a metadata
validation step. To fulfill the requirement, the following idea shown in figure 2.2 has been
implemented, based on a plug and play policy.

Another point to keep in mind is that this workflow must be template-agnostic, meaning
that it can validate a diverse range of videos. As for now, the existing videos are of two

15

Figure 2.2: Plug and play workflow

types: Children’s Books videos and Fiction/Non-Fiction videos. Figure 2.3 illustrates how
the currently available templates look like.

(a) Children’s Books Template (b) Fiction/Non-Fiction Template

Figure 2.3: Thumbnails of the two available templates

The architecture must of course be scalable, supporting big batches of videos, as well as
the integration of more validation steps as said.

In short, these are the requirements.

• Implementation and integration of the Text Content Validator

• Implementation and integration of the Spelling Validator

• Implementation and integration of the Video Flash Detector

• The architecture must support multiple templates, and it must be easy to adapt it
to support a new one.

• The architecture must be flexible to be able to easily add new validation steps,

16

following the stated Plug and Play policy.

• The architecture must be scalable, being able to validate huge batches of videos.

• The architecture must be efficient both in run-time and in resource usage.

• Integration of the workflow to Waldo Media Factory, to be able to use it in production.

2.1.3 Challenges

The main challenge to build the desired solution is the fulfillment of the template-agnostic
requirement. In other words, the workflow must process and validate different kinds of
videos, featuring different book genres, not having the same length or containing assets
from different sources. Moreover, this requirement also implies that the implementation of
the validation steps must not depend on the type of video, only focus on the main technical
objective.

Moreover, the Plug and Play requirement is challenging as well, because the solution needs
to be as flexible as possible on that aspect and it is not straightforward.

All in all, the designing phase is crucial and that is something that I never did before for
such a big architecture, being this one more challenge to overcome.

2.2 Base Architecture: Waldo Media Factory

2.2.1 Amazon Web Services

Amazon Web Services (AWS) is a secure cloud services platform, offering compute power,
database storage, content delivery and other functionality to help businesses scale and grow.
In order to build a solution for the exposed problem I used some of the services offered
by this platform. Moreover, the existing architecture is built on top of AWS as well. The
purpose of this section is to give an overview of the services that will be mentioned from
now on so that the solution can be better understood.

AWS IAM

AWS Identity Access Management is a service that enables you to control who can access
which services and resources. At a high level, is a layer of security to ensure that unless
we say the opposite, no service will be accessible by anyone, and this is by default. In
other words, if someone is using AWS they must be using IAM. It provides the following
functionalities:

• Create User identities — Add Users (unique identities that can be used to interact
with AWS services) to your AWS Account. A User can be an individual, system, or
application requiring access to AWS services.

• Assign and manage security credentials — Assign security credentials (such as access
keys) to each User, and rotate and/or revoke these credentials as desired.

17

• Organize Users in groups — Create groups to more easily manage permissions for
multiple Users.

• Centralize control of User access — Control which operations each User can perform,
such as accessing specific AWS service APIs and resources. The operations that a
User can perform are determined by the policies that the role has attached.

• Conditionally control User access — Add conditions to control how a User can use
AWS, such as their originating IP address, time of day, or whether they are using
SSL.

• View a single AWS bill — Receive a single bill for the activity of all Users within
your AWS Account.

So for instance, let’s say we set up a service A, which is an API, and we want this service
A to be called by another service B, we then need to create a policy that allows to invoke
the API of service A and attach it to the role of service B, so that the instance B can
perform the operation of calling service A. This example is illustrated below in figure 2.4.

Figure 2.4: Usage example of IAM

And of course, to implement the solution I needed to create both users and roles that I
will expand on afterwards.

AWS S3

S3, the Simple Storage Service, is a reliable, fast and cheap way to store data on the
Internet. S3 can be used to store just about anything: XML documents, binary data,
images, videos, or whatever else. The preferred interface is REST. There exist variants such
as S3 Intelligent-Tiering, S3 Standard-IA, S3 One Zone-IA or S3 Glacier, and depending
on the desired use case one may want to use one variant or another. For instance, S3
Glacier is suitable if the data is not at all accessed, meaning 1-2 times a year. On the other
hand, S3 Standard-IA is the best option if one wants rapid access to data when needed, as
it offers low latency on retrieval operations. On this use case, S3 Standard is the chosen

18

variant (the default one), as no specific requirements are needed with regards to storage
time or retrieval operations.

Figure 2.1 depicts how S3 works at a high level. An IAM role can perform these types of
operations, given of course that has the corresponding policies attached.

Figure 2.5: Available sets of S3 operations

AWS Lambda

AWS Lambda is a compute service that runs your code in response to events and auto-
matically manages the compute resources for you, making it easy to build applications
that respond quickly to new information. AWS Lambda starts running your code within
milliseconds of an event such as an image upload, in-app activity, website click, or output
from a connected device. You can also use AWS Lambda to create new back-end services
where compute resources are automatically triggered based on custom requests. With
AWS Lambda you pay only for the requests served and the compute time required to run
your code. Billing is metered in increments of 100 milliseconds, making it cost-effective
and easy to scale automatically from a few requests per day to thousands per second.

Lambda is supported in multiple run-times, such as Java and Python, but it works exactly
the same. The code must have an entry-point which is a function called handler that
receives two parameters: the event and the context. The event contains the input of the
function and the context is an object containing information about the invocation, function,
and execution environment.

While Lambda seems a pretty good choice to build an efficient micro-services architecture,
it has its constraints. For instance, there’s an execution timeout of 15 minutes and the
deployment package .zip file size must be below 50 MB (and below 250 MB unzipped),
which sometimes is not straightforward to achieve. As far as I have seen, this is mostly
because of the dependencies. For example, scipy ’s size unzipped is already 200 MB. As a
result, if your code depends on scipy and its size exceeds 50 MB it can’t be deployed to
AWS Lambda.

As it will be seen, the Waldo Media Factory architecture is mostly based on AWS Lambda,
as it’s the most suitable service for the use case as it will be seen afterwards.

19

AWS Step Functions

Step Functions help developers build, run, and scale distributed applications using state
machines and the Amazon States Language (ASL). Step Functions can be thought as a
fully-managed application state tracker and coordinator in the AWS Cloud. Step Func-
tions has been used to build completely serverless applications (via integrations with AWS
Lambda and API Gateway), applications hosted in PROD or EC2 (via Coral or native pro-
grams), hybrid-cloud applications, mobile applications, and even applications built from a
series of UNIX or Powershell scripts.

If you are building a distributed application that performs a series of sequential and parallel
steps, want to track the state of processing, and need to recover or retry if a task fails, AWS
Step Functions can help you. And this is exactly what I used to build the QA workflow.

As Step Functions is a state machine, there are different types of states. The most relevant
steps are the following:

• Pass: This type of state just passes the input to its output without performing any
operation. This state is often used for debugging operations.

• Task: This type of state is where the work gets done. It is usually implemented as a
Lambda, like I did on this project. Step functions invokes the corresponding Lambda
handler and outputs the result of the Lambda.

• Choice: This state enables you to add if/else logic on the workflow. The decision
can only be made using comparison of strings. It can be useful to optimize the
number of workflows by running similar workflows as branches of a general workflow
instead of having to build separate state machines.

• Wait: This state delays the state machine for a specified time. Can be useful to cool
down between API requests, for instance.

• Parallel: This interesting step can be used to create parallel branches of execution
in the state machine. As I will show below, I use it to run the validation steps in
parallel as they are totally independent.

• Map: Given an input array, this step is run one time for each element of the array.
It’s very useful for batch operations in which each of the elements needs to be pro-
cessed separately. This state is also used in the QA workflow as I will show, because
it runs for batches of videos.

On figure 2.6 there’s a Hello World example of Step Functions. The input of the workflow
is of the following form:

{

"IsHelloWorldExample": bool

}

Then, the Hello World example? state is a Choice and evaluates the variable "IsHel-
loWorldExample" to determine whether to run the left part of the workflow or the right

20

one. On figure 2.6 the input value was true and therefore the right side of the workflow
was executed. On this part of the workflow there is also a Parallel state, in which both
branches of the workflow are run, with the same input, and the output of each of the
branches is appended on a list, that is the output of the Parallel state.

Figure 2.6: Hello World of AWS Step Functions

AWS API Gateway

Amazon API Gateway is a fully managed service that makes it easy for developers to create,
publish, maintain, monitor, and secure APIs at any scale. The main functionality is to
create an API that acts as a "front door" for applications to access data, business logic,
or functionality from any back-end services, such as workloads running on Amazon Elastic
Compute Cloud (Amazon EC2), code running on AWS Lambda, or any Web application.
Amazon API Gateway handles all the tasks involved in accepting and processing up to
hundreds of thousands of concurrent API calls, including traffic management, authorization
and access control, monitoring, and API version management.

Figure 2.7 depicts an API Gateway call flow. As said before, API Gateway handles traf-
fic coming from multiple sources, such as Mobile Apps, Websites or Services. Amazon
CloudFront is a web service for content delivery, it automatically routes incoming requests
to the nearest edge location, so content is delivered with the best possible performance.
Then, the requests reach API Gateway, that forwards these to the corresponding target
endpoints. AWS CloudWatch is a monitoring service, one can access logs and data from

21

running services within an AWS account. As a result, the logs from API Gateway can be
found on CloudWatch.

Figure 2.7: An Amazon API Gateway Call Flow

AWS Rekognition

AWS Rekognition is an AI service that provides sophisticated deep learning-based visual
search and image classification algorithms. With Rekognition, one can detect objects,
scenes, faces; recognize celebrities, identify inappropriate content in images and much
more. Amazon Rekognition is based on deep learning technology developed by Amazon’s
computer vision scientists to analyze billions of images daily for Prime Photos. Amazon
Rekognition uses deep neural network models to detect and label thousands of objects and
scenes in images. With regards to the use case for this project, it is used to detect and
recognize text on an image, as I will explain afterwards.

AWS Comprehend

AWS Comprehend is a service that provides access to numerous types of algorithms re-
lated to NLP (Natural Language Processing) and Text Analysis. Some examples include
sentiment analysis, key-phrase extraction or syntax detection. In this project I use Com-
prehend to detect the language of a text and to perform syntax analysis to identify the
proper nouns, as I will expand on in the spelling validator section.

2.2.2 Waldo Media Factory high-level architecture

Before diving deep into the design of the actual solution I will give an overview of the
context on top of which this has to be built. Waldo Media Factory is a system focused
on automating the creation and upload of video trailers for books with graphical content

22

(e.g. children’s books, comics, graphical novels, etc) to VSE (Video Shopping Experience)
systems. It’s built on top of Amazon Web Services (AWS) and has the following features:

• Creation and rendering of videos

• Uploading and publishing videos

• Updating published videos

• Deleting/unpublishing videos

Below in figure 2.8 there is a simplified diagram depicting the Waldo Media Factory high-
level architecture:

Figure 2.8: Waldo Media Factory high-level architecture

As it can be seen, there is a QA step depicted, the one that will be tackled on this project.
The idea is that this QA step is triggered from the creation workflow, so that the recently
created videos can be validated before their publication. As for now, the whole architecture
is triggered from a CLI (Command Line Interface) and the CLI triggers the corresponding
workflows via an API Gateway. The CLI itself is part of Waldo Media Factory as the
solution is under development.

2.2.3 The Video Creation Workflow

The Video Creation workflow as the name implies, is responsible for the creation of the
videos. Given a batch of book ASINs (Amazon Standard Identification Number) it outputs
the generated videos under an S3 location. The input of the workflow is of the following

23

form and is illustrated in figure 2.11:

{

"obfuscatedMarketplaceId": string,

"asins": list of strings,

"videoPrefix": string,

"template": string,

"locale": string

}

This input is directly mapped to the first component of the workflow, the VividExternalId-
Pass Lambda. This is part of a pre-processing step to ensure that the final request to the
service that actually creates the video (Vivid) is correct. What I will expand on is the first
map of the workflow, which from now on I will call the FetchBookContentMap. The last
part of the workflow mainly builds the request to be sent to the renderer service.

This first component of the workflow is mainly responsible for fetching all the information
from a book, such as for example the book cover images, the inside pages, the authors
or the number of pages. Moreover, it also returns a color palette. This color palette is
a set of n colors that are suitable to the cover of the corresponding book. This is useful
because in some templates we need to customize the colors on the video and this is done
with the PaletteGenerator lambda. All in all, the two main components of the FetchBook-
ContentMap are the FetchBookContent Lambda and the PaletteGenerator Lambda. Next,
I will expand on the PaletteGenerator Lambda because it’s the part of the workflow that
I implemented and is technically interesting.

The Palette Generator Lambda

In order to automate the video creation, we also need to automate the theme generation
for the trailers. For that, the first step is to be able to compute a color palette that will be
applied to a given template, that will be the background of the video trailer. The process
that it’s going to be explained is illustrated in figure 2.9:

Figure 2.9: Color palette extraction schema

So the high level steps are:

24

• Given a book cover, generate a suitable n-color palette.

• Apply this color palette to a given template.

To achieve that, we need to take into account multiple factors, such as the contrast, ensure
that the background fits with the book cover, how to locate the colors, and how to mitigate
all the possible problems and corner cases. To be able to generate a palette that fits with
the book cover theme, we must apply color quantization to an image. Color quantization
is a process that reduces the number of distinct colors used in an image, usually with the
intention that the new image should be as visually similar as possible to the original image.
There is an example in figure 2.10.

(a) The Golden Gate (b) The Golden Gate quantized to 20 colors

Figure 2.10: Comparison between an original image and the quantized image

Among the many applications that this process has, one of them is to create a color
palette from a given image, as shown in figure 2.9. As it can be seen, if we apply a
quantization algorithm to the book cover and extract the colors we obtain an optimal
representation of the main colors of the cover. And of course, by increasing n the colors
are more representative. There are different algorithms to perform color quantization, but
I saw that the results from the algorithm K-Means were slightly better and I decided to
integrate it. K-Means is a clustering algorithm that aims to partition n observations into
k clusters in which each observation belongs to the cluster with the nearest mean. So what
I did is run this algorithm in which the observations where colors in RGB, as if they were
3D points. After that, the output will be a palette of k colors, as a result of a clustering
of the colors already present in the image.

Some modifications can be done to tweek this algorithm and see different results. One
that I tried was Spatial color quantization. This technique relies on taking into account
the position of the pixels apart from the color pixels to perform the color quantization
method, that’s the reason of the name spatial color quantization. Therefore, the Euclidean
dimension of the space is five: x, y, r, g and b. While this method takes into account the 2D
position of a pixel on an image, the contribution of the spatial coordinates can be weighed
with a value t between 0 and 1. In our case, we could test for different values of t to see
the different results. In fact, the K-Means algorithm is a particular case of this method,
in which t = 0. Nevertheless, with some experiments was seen that for our application

25

the best approach is to use the raw K-Means algorithm, without the space coordinates, as
the resulting palettes showed more contrast because the algorithm only relied in the color
coordinates.

The input of the palette_generator Lambda is of the following form:

{

"palette_data": {

"cover_image_url": <url of the book cover>,

"template": <template id>

}

}

And depending on the template the number of output colors is determined in the code.
For instance, for the Children’s Books template the number of colors is 7.

Figure 2.11: Video Creation Step Functions Workflow

26

2.2.4 CI/CD: The Waldo Media Factory Pipeline

In software engineering is crucial to have well defined the Continuous Integration and
Continuous Delivery of the processes. For that, a pipeline is often used. The main objective
is to compile the incremental code changes made by developers, and then link and package
them into production. All this process is automated with the help of the Waldo Media
Factory pipeline, that can be seen in figure 2.12 and I will describe at a very high level.

Figure 2.12: Waldo Media Factory pipeline

Waldo Media Factory is composed by a number of packages, that can be seen on the left side
of the pipeline. The main idea is that whenever there is a change under a package consumed
by this pipeline, this is automatically triggered and all the deployments take place. There
are three environments: Beta, Gamma and Prod; and after each of the deployments the
integration tests for the corresponding environment are triggered and, if at least one of the
tests fail, the promotion to the next environment is automatically stopped and the pipeline
needs to get unblocked in order to continue with the deployments. This means that the
pipeline is continuously monitored and if there is a failure we’re immediately notified. The
CI/CD process that I followed during the implementation of this project is illustrated in
figure 2.13.

2.3 The Video QA Workflow

2.3.1 High-Level System Design

A high-level architecture solution is proposed to address the stated problem. To start with,
I will talk about the main workflow, that can be seen in figure 2.14.

27

Figure 2.13: Waldo Media Factory pipeline

Figure 2.14: Video QA Step Functions Workflow

The video QA workflow is be implemented using AWS Step Functions and is composed
by Lambda functions. The implementation of the Lambdas explained below can be found
under the package WaldoVideoQALambda, except for the Lambdas located on the first
map of the workflow and the PrepareVividBatch Lambda. The workflow starts with the

28

PrepareQABatch Lambda function, the workflow entry-point. This lambda function fetches
the ASINs of the books and places them on a list. The input/output of the PrepareQABatch
Lambda are as follows:

Input:

{

"bucket_name": <bucket_name> // Comes from the StepFunctions Payload

"obfuscatedMarketplaceId": <obfuscatedMarketplaceId>,

"template": <template>,

"locale": <locale>,

"videoPrefix": <videoPrefix>,

"index": <objectIndex>

}

Output:

{

"requests": [{

"obfuscatedMarketplaceId": <obfuscatedMarketplaceId>,

"asin": <asin>,

"template": <template>,

"locale": <locale>

}],

"template": <template>,

"videoPrefix": <videoPrefix>

}

Next, the FetchBookContent Map that I explained in the previous section is run, as well
as the PrepareVividBatch Lambda, which basically reduces all the information of the map
and places it on a list, together with more useful information.

Up to this point, no QA has been done to the videos, but everything is set to start. The
next step of the process is the main workflow. As it can be appreciated, there are two
steps just before the Parallel state of the workflow, where the main logic is. I will expand
on these two components, on the Parallel state and finally on the triggering logic of the
workflow.

The FetchVideoContent Lambda

This Lambda is mainly responsible for returning good structured information of the video
at a frame level so that the validators can use these information to compute the corre-
sponding checks. To better understand the idea, the following are the input and output of
this Lambda:

Input:

{

29

'videoPrefix': <videoPrefix>,

'videoName': <videoName>,

'videoSuffix': <videoSuffix>,

'input': {video contents (template specific)},

'template': <template>

}

Output:

{

'key': <videoKey>,

'video_content': {

frame_second: {text: [expectedStrings], images: [expectedImages]},

...

}

}

So the idea is that according to the template, this component will determine the key frames
of the video and return the expected information on each of the frames of the video: the
text and the images. This step is crucial and most important, is the last step of the
workflow that is template-specific. From now on, no processes depend on the type of video
that needs to be validated, including the validators.

The FramesExtractor Lambda

This Lambda, as the name implies extracts the frames of a video. It takes as input the
output of the FetchVideoContent Lambda, downloads the video from S3, extracts the
corresponding frames, uploads the frames on S3 and returns a JSON of the form:

{

'key': <videoKey>,

'video_content': {

'frame_second': {

'text': [expectedText],

'images': [expectedImages],

'bucket_name': <bucket>,

'key': <frameKey>

}

}

}

This in fact will be the input of all the validation steps under the Parallel state. The idea
behind the frames extractor is that the videos that we produce are composed of n different
frames, and we do know n. As a result, I implemented this Lambda using ffmpeg to extract
the frames on the respective timestamps.

30

Main QA workflow (Parallel state)

As said before, the main idea is to implement some validators and run them in parallel to
extract a final report of the video. Moreover, a pre-processing step may run just before some
validation steps to provide the required input and ease the computations. For example,
the TextRecognition Lambda is run before the TextContentValidator.

One important characteristic of the validators is that they are totally independent, meaning
that they can perfectly run in parallel to optimize the computation time, and this is how
I did it. As it it shown in the figure, there are actually two validators integrated, the
TextContentValidator and the GrammarValidator or SpellingValidator (I will give more
details in the corresponding sections).

And another important point of the design is that more validators can be easily added to
the workflow, just by adding a branch under the Parallel state. As I said before, the input
of all the elements under the Parallel state will be the same, according to the definition of
Parallel. And the input will be the output of the FramesExtractor Lambda. The input is
designed in such a way that all the validators can fetch the useful information to perform
the computations. Right now there are only text validators but for instance, in a future
we could add an ImageOrientationValidator that checks that the orientation of the images
is correct and therefore the images field would be useful. An in all, the design is thought
to be as flexible an as general as possible.

The following is how the output of a validator looks like:

{

<VALIDATOR_NAME>_report: {

'frame_second': 'SUCCESS'/<VALIDATOR_ERROR_CODE>,

...

'result': 'SUCCESS'/<VALIDATOR_ERROR_CODE>

}

}

Then, all the outputs are joint and two reports are created using the ReportGenerator
Lambda. This Lambda will be detailed under the "Testing and Results" section.

Triggering Logic

As I briefly explained before, the idea is that this workflow is triggered by a CLI, that calls
an API Gateway that triggers the workflow. With the CLI one can:

• Trigger the workflow

• Check the execution status of the workflow

To trigger the workflow, the following command can be run:

npm run -- wmf qa psv s3://<S3URI> <template> -r <region> -m <marketplace> -l <locale>

where the region is an AWS region, the marketplace is a marketplace ID and the locale is

31

an identifier for the country and the language.

To check the status of the workflow one can run the following command:

npm run -- wmf qa psv s3://<S3URI> <template> -r <region> -m <marketplace> -l <locale>

The above command checks the execution status of the workflow, that can have the fol-
lowing values:

• RUNNING: The execution is still running.

• SUCCEEDED: The execution has succeeded.

• FAILED: The execution has failed.

• TIMED_OUT: The execution has timed out.

• ABORTED: The execution has been manually stopped.

If the execution succeeded, the CLI automatically downloads the reports and returns the
local location.

As for the API Gateway, the QA workflow step functions is exposed to the endpoint batch-
qa, so qhen the triggering command is run on the CLI, this calls that endpoint and the
workflow is triggered.

2.4 Main Components of the Workflow

2.4.1 The Text-Content Validator

The text content validator is the first validator that I implemented. It performs the fol-
lowing checks on a video:

• Checks that the text is correctly seen, not partially occluded. For instance, the case
shown in figure 2.16 would be detected:

• The content of the text is correct. For instance, in the last part of a video with the
children’s books template there’s the number of pages. So this validator would fail
if the number of pages that is displayed on the video is not correct.

• There are no encoding errors. For instance, I found that a video had displayed the
title as: HowÂ OneÂ TherapistÂ andÂ aÂ CircleÂ of StrangersÂ SavedÂ MyÂ Life,
which is not correct.

As said previously, before this validator is run there is a pre-processing step that consists on
extracting the text that is displayed on the video. This is done in the text_recognition_lambda.
This lambda iterates over the video frames S3 locations, runs AWS Rekognition to detect
the text on the frames and returns a payload with the following form:

{

'key': <videoKey>,

'video_content': {

'frame_second': {

32

Figure 2.15: Triggering logic of the QA workflow

'text': [expectedText],

'images': [expectedImages],

'bucket_name': <bucket>,

'key': <frameKey>,

'detected_text': <detectedText>

}

33

Figure 2.16: Video frame with cropped text

}

}

This output is then directly forwarded to the text_content_validator lambda as an input
as shown in figure 2.14. The following is the pseudo-code of this validator:

for frame in video_frames:

for string in expected_strings:

remove non-braking spaces and HTML dashes from string

expected_words = string.split()

for word in expected_words:

if word not in detected_text:

return False

return True

The idea of the algorithm is to check word by word that is present on the detected text,
because this check already ensures that the three checks stated above are performed. More-
over, the text recognition algorithm may not detect the text in the proper order and as a
result the detected_text string may not have sense. For instance, for the frame displayed
in figure 2.17 we would need to check that the title and the author are correct. As a result
the expected text is the following list:

"expected_text": [

"The Night Watchman",

"By Louise Erdrich"

],

But the text_recognition_lambda detects the following text on the video:

"detected_text": "Copyrighted Material \"A magisterial epic that brings her

power of witness to every page.\" -Luis Alberto Urrea. New York Times

Book Review THE NIGHT The Night Watchman WATCHMAN By Louise Erdrich A

NOVEL LOUISE ERORICH Copyrighted Material"

↪→

↪→

↪→

Which is effectively present on the video frame but does not make sense as a sentence.

Lastly, on figure 2.18 it can be seen a high-level flow diagram of the text validation workflow.

34

Figure 2.17: Video frame example of the fiction/non-fiction template

Figure 2.18: Text Content Validator workflow

2.4.2 The Spelling Valdidator

The spelling_validator, actually named as grammar_validator checks that the spelling of
the text on the video is correct. In a future iteration the idea is that it also checks that the
text is grammatically correct. It is important to note that this validation step runs against
the expected_text on the video, not the detected_text, because the text_content_validator
is already checking that the text is correct. Moreover, by checking the expected_text I
ensure that I’m not carrying a possible error from the text recognition algorithm.

This validator’s algorithm can be understood in the below pseudo-code. The idea of this
algorithm is the following: for each frame, if the frame contains text, detect the language
of the text, and this is done at a frame level because though in principle all the text in the
video should be in the same language, there may be some quotes in other languages. The
language is detected using AWS Comprehend and just after this step the corpus of the
language is fetched, a big set of words in the detected language. Then, for each sentence
of the text I detect the syntax using AWS Comprehend as well, to be able to filter proper
nouns that may not appear on the corpus. This was seen in some tests that I did, in which
some proper nouns weren not in the corpus, so I added this layer of validation to avoid
these kind of false negatives.

35

Then, the text is processed word by word to check the spelling. The words are pre-
processed by removing the punctuation and converted to lower-case. Then, the main step
of the algorithm happens. I compute the edit distance or Levenshtein distance between
the target word and the words in the corpus, and get the word with lowest distance.
This distance is the minimum number of single-character edits (insertions, deletions or
substitutions) required to change one word into the other, so if if we find a word in the
corpus with which the edit distance is 0, the target word is correctly spelled. This is the
main idea. Nevertheless, I also had to work with some edge cases. For instance, if the
word is in plural it does not appear in the corpus, so I also check the singular of the word
and if it’s a proper noun.

for frame in video_frames:

if not text in frame:

return True

language = detect_language()

corpus = get_corpus(language)

for sentence in text:

tags = detect_syntax()

words = sentence.split()

for word in words:

Remove punctuation from word, such as trailing commas

word.strip(punctuation)

if tags[word] = PROPER_NOUN or word.isdigit():

continue

word = word.lower()

edit_distances = [edit_distance(word, w) for w in corpus]

sort edit_distances

Get closest word

correct_word = edit_distances[0]

singular = singularize word and strip punctuation

if (

word != correct_word

and singular != correct_word

and singular.capitalize is not PROPER_NOUN

):

return False

return True

Finaly, on figure 2.19 it can be seen a high-level flow diagram of the spelling validation
workflow.

36

Figure 2.19: Spelling Validator workflow

2.4.3 The Video Flash Detector

The Video Flash detector is another tool that I built to validate the videos. The purpose
of this validator is to check if the videos contain flashing sequences that could harm one’s
sight. This is an interesting problem that raises from the existance of the Photosensitive
Epilepsy (PSE) disease. People with photosensitivity may have seizures, migraines or other
adverse reactions to certain visual stimuli such as flashing images and alternating patterns,
and around 50 million people worldwide have epilepsy, 3-5% of which had seizures triggered
by luminance flashes or spatial patterns on images or videos.

Moreover, one may have this disease and may not know it until they get harmed by a
flashing sequence. As a result, it is crucial to test any video that will be released to the
public with a flashing detection algorithm to ensure that won’t be harmful. In fact, in
the U.K is compulsory to perform this kind of check before publishing any video. Another
important point is that currently there’s no free software available, and the prices quite
high. For instance, the cost to evaluate a video with a duration under 2 minutes is around
$30. As a result, the need to have this algorithm is more than justified.

To illustrate the importance of this issue, some examples of Photosensitive Epilepsy episodes
are the following:

• In 1993, a broadcast advertisement Golden Wonder Pot Noddles triggered seizures
in 3 viewers in the U.K.

37

• In 1997, the 25th episode of the anime YAT Anshin!Uchu Ryokö triggered seizures
in 3 viewers.

• In 1997, the 38th episode of the 1st season of Pokemon caused 685 seizures.

• In 2012, the London Olympic Games promotional film triggered seizures in 4 people.

To be able to introduce the algorithm, I will first give some formal definitions.
Definition 2.4.1. Luminance is a photometric measure of the luminous flux density in a
particular direction. The IS unit for luminance is Candela per square metre (cd/m2).
Definition 2.4.2. Relative Luminance Relative luminance is equivalalent to luminance, but
with the values normalized normalized as 0.0 to 1.0. For RGB colors, it can be computed
with the following formula:

Y = 0.2126R+ 0.7152G+ 0.0722B

Definition 2.4.3. Gamma correction or gamma is a nonlinear operation used to encode
and decode luminance in video or image systems. Gamma-compressed RGB values can be
converted back to linear with the following formula:

V (u) =

{
u

12.92 , u ≤ 0.04045

(u+0.055
1.055)2.4 otherwise

where u is a value of read, green or blue.
Definition 2.4.4. Perceived Lightness is an approximation of the lightness response of
human vision. It’s defined as:

L∗(Y) =

{
Y ∗ 903.3 , Y ≤ 0.008856

(Y 1/3 ∗ 116)− 16 otherwise

Definition 2.4.5. Flash sequences are sequences of three frames in which the first and last
frame are significantly darker compared to the middle frame, or vice-versa.
Definition 2.4.6. We say that a sequence of flashes is harmful if we can find 3 or more
flashes within a 1 second window.

Figure 2.20 depicts a sequence of frames with three consecutive flashes.

Figure 2.20: A sequence of frames, representing three consecutive flashes.

The pseudocode is the following:

for frame in video:

Compute frame perceived lightness

for luma_frame in video:

38

Compute the luminance variation , ∆L

Compute average of luminance variation , ∆L

Compare the signs of the previous and current variations.

if different signs and ∆L_acc >= ∆Lmax then flag frame

else ∆L_acc+ = ∆L

Update prev variables

Flag frames that have more than three local extremes in 1s.

Harmful timestamps in seconds or Success if None

Lastly, as this algorithm requires to iterate over each of the pixels of the video, it is
computationally expensive and therefore it can’t be implemented using a Lambda, because
of the time limit constraints. I tested the flash detector with one of the videos and took
around 30 minutes to process. Moreover, as this validation step needs to run against all
the frames of the video, it doesn’t follow the pattern of the other validators. This validator
is yet to be integrated to the workflow as the idea is that it can be used as a tool within
the company and therefore the integration will be slightly different.

2.4.4 The Color Contrast Problem

As I explained under the Video Creation workflow section, we are using the palette_generator
lambda to generate a color palette that fits the cover of the book featured in the video. But
we can’t always ensure that this palette will be good enough. For instance, in the example
in figure 2.21 the output of the algorithm contains only two distinguishable colors, but the
intention was to obtain a palette containing a total of 5 colors. This is a problem because
we may want to set one of the colors as the background another for text and another for
some shapes, for example.

Figure 2.21: An example of a color palette without contrast between the colors.

The first step to solve the above problem is to be able to identify the problematic palettes.
For that, I used the L*a*b* color space. The *CIELAB color space* also referred to as
L*a*b* is a color space defined by the International Commission on Illumination (abbre-
viated CIE) in 1976. It expresses color as three values: L* for perceptual lightness, and a*
and b* for the four unique colors of human vision: red, green, blue, and yellow. CIELAB
was intended as a perceptually uniform space, where a given numerical change corresponds

39

to similar perceived change in color.

While the LAB space is not truly perceptually uniform, it nevertheless is useful in industry
for detecting small differences in color. This means that this space is the most similar
color space to the human eye. And that can help us identify up to which point the colors
contained in a palette are different.

For that, we need to talk about the Delta E distance. The Delta E is a distance that
takes values in [0, 100] between two colors defined in the L*a*b space. And with this two
preliminaries we can get to the alpha score.
Definition 2.4.7. The equation of the α score is as follows:

α =

∑N
i=1∆E∗

µci

100N

where:

• N is the number of colors.

• For every i, ci is a color.

• µ =
∑N

i=1 ci
N .

• ∆E∗
µci is the Delta E (CIE76) distance between µ and ci.

This score will tell us up to what extent the colors present on a palette are distinguishable.
In the following example (figure 2.22) it can be seen that the score decreases as the quality
of the palette does.

Figure 2.22: Alpha scores for four types of input palettes.

We just defined a score to compute the goodness of a color palette, but what do we do
in case that the colors of the palette are undistinguishable? For that, we can implement
Waldorama. The main idea is that given the most dominant color on the book cover, find
n more suitable colors to that color, and generate a palette containing these colors.

For this approach, the colors are represented using the HSL coordinates (Hue , Saturation
and Lightness), because then it’s much easier to perform the rotations to obtain the colors.

40

As it will be seen later on in the visual example, this approach always ensures that the
resulting palette will have different colors. As a result, although this algorithm does not
compute the most appealing palettes, it solves the contrast problem and could be applied
on a later stage if needed.

The pseudo-code for this approach is the following:

color = get_mpst_dominant_color(book_cover)

palette = [color]

hue = random hue value

Define S and L at their mid point to avoid grayscale colors

saturation = 0.5

lightness = 0.5

step = 360 / (num_colors) - 1

for i in range(num_colors - 1):

hue = (hue + step) % 360

Weight S and L 80% on 0.5 and 20% on a random value

new_color = (hue, saturation, lightness)

colors.append(new_color)

return colors

For instance, if we suppose that num_colors = 4, we first add the most dominant color
to the palette and the three remaining colors are calculated in the following way, where 1
is a color with random hue and all the colors have the saturation and lightness of around
0.5. This schema can be seen in figure 2.23.

Figure 2.23: A color contrast problem solution illustrated.

41

And the following (figure 2.24) is an output example using the same book cover with which
I obtained a palette with poor contrast.

While this is not a proper validation step, it is an algorithm that can be used to build a
color_contrast validator, because as I said before the workflow is flexible and it is easy
to add new validation steps. As a result, this validator could fetch the color palette and
determine with the α score if there is enough contrast. Alternatively, the algorithm for
obtaining a palette with contrast could be added to the creation workflow to reduce the
number of failures.

Figure 2.24: Output example of the exposed solution for the color contrast problem.

2.5 Workflow Integration: AWS CDK

The AWS Cloud Development Kit (AWS CDK) is an open-source software development
framework to define cloud application resources using familiar programming languages.
In my case, I used Typescript to define the necessary infrastructure ans resources for the
application. It provides high-level components called constructs that pre-configure cloud
resources with proven defaults, so you can build cloud applications with ease. AWS CDK
provisions your resources in a safe, repeatable manner through AWS CloudFormation.
It also allows you to compose and share your own custom constructs incorporating your
organization’s requirements, helping you expedite new projects.

Figure 2.25 shows how AWS CDK works. Inside a CDK application you can define Stacks,
and inside each Stack have constructs, which are cloud components that represent archi-
tectures of any complexity, such as a single resource (S3, Lambda, SNS,...) or a multi-stack
application. In my case, there is a construct for every AWS region, named scope.

As for the integration of the QA workflow to the existing architecture, I created a stack,
video-qa-stack.ts and defined all the required resources, including:

• Lambda: I defined all the lambda functions that are needed to run the work-

42

flow, including: PrepareQABatch, FetchVideoContent, FramesExtractorPreproces-
sor, TextRecognitionPreprocessor, TextContentValidator, GrammarValidator, Re-
turnFrames and the ReportGenerator.

• S3: I defined an S3 bucket to store the output reports and the video frames.

• IAM Policy Statements: I needed to define a total of six policy statements to allow
some Lambdas perform operations such as reading and writing from S3, running AWS
Rekognition or running AWS Comprehend. Figure 2.26 shows an overview of how the
architecture looks like, including the policy statements attached to the corresponding
lambda functions.

• State Machine: This is the Step Functions workflow.

• IAM Role: Invocation role assumed by API Gateway do that it can trigger the
workflow.

Figure 2.25: AWS CDK application diagram. Source: https://aws.amazon.com/blogs/aws/aws-cloud-
development-kit-cdk-typescript-and-python-are-now-generally-available/

As seen in figure 2.26 as well, all the lambdas are placed inside the Video QA Step Functions
workflow, because they are part of it. Another important point to mention is that the Video
Bucket is an S3 bucket that contains the videos. This bucket is already created as part of
the Video Creation Stack but has to be referenced in three policy statements because some
of the lambdas need access to that bucket. Lastly, although the API Gateway is present
on the diagram, it is not created as part of the Video QA Stack, in fact it has its proper
Stack in which all the endpoints are defined. I placed it to illustrate that I am creating an
invocation role that enables to call the step functions workflow and attach it to the API
Gateway.

43

Figure 2.26: Resources created using AWS CDK for the Video QA workflow

2.6 Testing and Results

2.6.1 The Report Generator Lambda

This lambda is the last step of the workflow. It can be seen as the reduce step from the
map-reduce operation that is done in the QA workflow. It mainly fetches all the validation
results for all the videos and outputs two reports:

• JPG report: The JPG report contains the key frames of all the videos horizontally
stacked. This report is useful because it enables to check the videos faster and see
if for example, an image is missing or the colors of the video do not fit with the
displayed images.

• CSV report: The CSV report contains a summary of the validation outputs at a
frame level for each of the processed videos.

As it returns information at a video batch level, the input is of the form:

[

[

44

[

{

'key': <video_key>,

'frames': [{'bucket_name': <bucket_name>, 'key': <frame_key>}]

},

{

<validator_name>_'report': {

'frame_second': 'SUCCESS'/<validator_error_code>,

...

'result': 'SUCCESS'/<validator_error_code>

}

}

],

[Next video validation outputs]

],

[Next batch of videos validation outputs]

]

Note that the input list is organized in batches of videos. This is because on the Prepare-
VividBatch Lambda (see figure 2.14) the videos are split into batches due to the request
limit of the video renderer (Vivid).

Next I will show some results for the two types of templates that are currently supported
by the workflow:

Example for the Children’s Books template

Figure 2.27 depicts a reports for two Children’s Books videos. This means that the input
of the QA workflow were two video and as a result the output reports contain information
about these videos. As said before, the JPG report consists of an image with the key
frames of the videos. So these videos contain a total of six key frames.

Figure 2.27: JPG report for two Children’s Books videos

As for the CSV report, it can be seen in figure 2.29. While the second video doesn’t have
any problem, the TextContentValidator fails for the last frame of the first video. This is
because the text that is shown in the video is not correct. So the input data for that frame
was the following:

"32": {

45

"bucket_name":

"videoqastack-gamma-us-ea-videoqagammauseast15ebd5-1wmbif6echwhi",↪→

"key": "video-frames/067088278X.TT85.PSV.MP4/sec_32.jpg",

"text": [

"Viking Books for Young Readers",

"Book published by",

"Preview for Board book (32 pages) Other formats: Audible

Audiobook, Books, Hardcover and more"↪→

],

"images": [],

"detected_text": "Preview for Board book (34 pages) Other formats:

Audible Audiobook, Hardcover, Kindle Edition and more Book

published by Puffin amazon"

↪→

↪→

}

And as it can be seen, the text differs from the detected text. Figure 2.28 shows this frame
bigger so the text can be appreciated.

Figure 2.28: Last frame of video 067088278X.TT85.PSV.MP4

Figure 2.29: CSV report for two Children’s Books videos

Example for the Adults’s Books template

Figure 2.30 is the JPG report for two Adult’s Books videos. In this template the videos
have six key frames as well, and the main difference is that this template contains far more
text than the Children’s Books template, because all the frames contain some text.

In figure 2.31 it can be seen that both videos fail the two validation checks. Let’s first
analyze the first video.

On video 1408867044.TT85.PSV.MP4, both validators fail at the frame on second 26, which
is depicted on figure 2.32. The reason behind is the word "worng", which is misspelled (it
should be wrong). The TextContentValidator fails because the text on the database con-
tains the word correctly spelled and the SpellingValidator fails because it detects that this

46

Figure 2.30: JPG report for two Adults’s Books videos

Figure 2.31: CSV report for two Adults’s Books videos

word is not correctly spelled. One could then ask why are we using the SpellingValidator
if the TextContentValidator is already detecting these issues, but that is because it could
happen that the text in the database is already misspelled.

Figure 2.32: Frame on second 26 of video 1408867044.TT85.PSV.MP4

On the other hand, the second video has erros on second 13 and on second 20. Second
13 of video 1432885855.TT85.PSV.MP4 can be seen under figure 2.33. The validator that
fails in this case is the SpellingValidator. This is because it detects this "dash" character
between the words "families" and "the", and interprets it as a hyphenated word, which
obviously doesn’t exist.

Figure 2.33: Frame on second 13 of video 1432885855.TT85.PSV.MP4

In the case of second 20, the TextContentValidator is failing because the text of the second
accolade is cut on the bottom, and the validator fails because the expected text contains
the text that cannot be seen on the video.

47

Figure 2.34: Frame on second 20 of video 1432885855.TT85.PSV.MP4

Lastly, on figure 2.35 I show a report for a total of eleven videos to illustrate how a bigger
reports would look like.

Figure 2.35: JPG report for eleven Adults’s Books videos

Video Flash Detector Tests

48

Under the code folder I placed two videos in the directory:

VideoFlashDetector/videos

For video_1.mp4, I computed the following output:

This video has failed the Harding Test.

The following timestamps in seconds have been identified as harmful:

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

As it can be checked, these are all the seconds of the video. The algorithm identifies the
whole video as potentially harmful because of the continuous flashing sequences that are
present on the clip. On the other hand, for video_2.mp4, the following seconds are
identified as harmful:

This video has failed the Harding Test.

The following timestamps in seconds have been identified as harmful:

{10, 15, 16, 17, 18, 19, 20}

And these timestamps of the London 2012 promotion video are the most harmful.

The script can be tested using the following command in case of video_1.mp4, and
equivalently for video_2.mp4:

python flash_detector.py --videokey video_1.mp4

2.6.2 Integration Tests

As I said on the CI/CD section of the project, integration tests run on each stage of the
pipeline (except Prod) and need to succeed in order to let the changes promote to the
next environment. As this is a totally new workflow, I needed to write integration tests.
For that, I created a package called WaldoVideoQALambdaTests and I wrote a couple of
integration tests, one for the Children’s Books template and another one for the Adult’s
Books template. These tests consist on triggering the workflow on the environment in which
they are running to validate one video, and the workflow needs to return the execution
status SUCCEEDED in order to make the test pass.

49

Chapter 3

Conclusions

This chapter is divided into two sections. In the first one I will explain the conclusions
about the project and evaluate the outcome, discussing whether the proposed objective
has been met or not. And lastly, I will give an overview of possible future work that can
be done to scale the solution.

3.1 Project Conclusions

The following outcomes have been achieved:

• Having built an end-to-end architecture to perform QA on videos.

• The workflow is ready to be used in production.

3.2 Future Work

There are two main points that can be expanded:

• Adding more validation steps: As I explained, the designed architecture supports
the addition of more checks, and these could include for instance, a check to ensure
that the featured images in the video are not rotated, or a step to check that there
is enough contrast between the colors on the video, using for example the algorithm
that I proposed on the corresponding section.

• Supporting new templates: More templates can be supported as the architecture is
flexible and one can add validation for a new template fairly easily.

• Integration of the Video Flash Detector on the workflow: This validation step needs to
be integrated to the main QA workflow as for now is just implemented. Moreover, as
I explained before, this can’t be a Lambda because of the execution time constraints
so a possible solution would be to set it up as a container.

50

Bibliography

[1] George Cybenko. Approximations by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals and Systems, 2:183–192, 1989.

[2] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
networks, 4(2):251–257, 1991.

[3] Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks.
In Conference on learning theory, pages 907–940. PMLR, 2016.

[4] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability
of stochastic gradient descent. In International conference on machine learning, pages
1225–1234. PMLR, 2016.

[5] Lúcia Carreira, Nelson Rodrigues, Bruno Roque, and Maria Paula Queluz. Automatic
detection of flashing video content. In 2015 Seventh International Workshop on Quality
of Multimedia Experience (QoMEX), pages 1–6. IEEE, 2015.

[6] Natalie Nylund. A photosensitive epilepsy flash pattern detection algorithm, 2020.

[7] Dalitso Hansini Banda. Deep video-to-video transformations for accessibility applica-
tions. PhD thesis, Massachusetts Institute of Technology, 2018.

[8] E Weinan. Machine learning and computational mathematics. arXiv preprint
arXiv:2009.14596, 2020.

[9] Pac learning. https://en.wikipedia.org/wiki/Probably_approximately_

correct_learning.

[10] Michael M. Wolf. Mathematical foundations of supervised learning, 2022.

[11] Universal approximation theorem. https://en.wikipedia.org/wiki/Universal_

approximation_theorem.

[12] Bayes classifier. https://en.wikipedia.org/wiki/Bayes_classifier.

[13] Empirical risk minimization. https://en.wikipedia.org/wiki/Empirical_risk_

minimization.

51

https://en.wikipedia.org/wiki/Probably_approximately_correct_learning
https://en.wikipedia.org/wiki/Probably_approximately_correct_learning
https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://en.wikipedia.org/wiki/Bayes_classifier
https://en.wikipedia.org/wiki/Empirical_risk_minimization
https://en.wikipedia.org/wiki/Empirical_risk_minimization

	Mathematics of Deep Learning
	An Introduction to Machine Learning
	Models an Optimization
	PAC Learning

	Deep Neural Networks
	Theorems of Cybenko and Hornik
	Stability of Stochastic Gradient Descent

	A Real-World Application: Design and Implementation
	Problem Statement
	Business Background
	Technical Requirements
	Challenges

	Base Architecture: Waldo Media Factory
	Amazon Web Services
	Waldo Media Factory high-level architecture
	The Video Creation Workflow
	CI/CD: The Waldo Media Factory Pipeline

	The Video QA Workflow
	High-Level System Design

	Main Components of the Workflow
	The Text-Content Validator
	The Spelling Valdidator
	The Video Flash Detector
	The Color Contrast Problem

	Workflow Integration: AWS CDK
	Testing and Results
	The Report Generator Lambda
	Integration Tests

	Conclusions
	Project Conclusions
	Future Work
	Bibliography

