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Abstract

Density functional theory (DFT) plays a crucial role in computational chemistry, but its

introduction in the chemistry curricula poses a challenge to lecturers when it comes to laying

down its foundation without using a complex mathematical formalism and to establishing its

scope and limitations. This article aims at presenting a simple and clear derivation of the the-

ory that shows up its very general character. It is based on the constrained-search approach,

that bears a close parallelism with the wave-function variational theorem, a familiar tool in

†This article was written as a basis for a talk given in 2016 in the IQTCUB. In 2021 it was submitted for publication
in The Journal of Chemical Education. The Editor-in-Chief Thomas Holme rejected it with arguments such as “While
we are interested in articles that provide content and motivations for including such content in the curriculum, we
are also aware that essentially every course in the chemistry curriculum is already overcrowded with content” and
“there are no citations to literature in chemistry education”. In 2023 it has been published, after a minor revision,

under a CC-by Creative Commons license at the digital repository of the Universitat de Barcelona
(http://hdl.handle.net/2445/197800).
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any quantum chemistry introduction. Notwithstanding its simplicity, this approach shows ap-

pealing features, such as providing an explicit connection of the ground-state density with the

electronic hamiltonian and an expression for the universal functional appearing in the defini-

tion of the energy functional. These lead to a more tangible insight into the theory than the

original derivation by Hohenberg and Kohn, which only guarantees the existence of that con-

nection and this functional. On the other hand, the approach highlights that the theory may,

in principle, treat open and closed shell ground states on an equal footing, without the need

to impose any restriction about the state spin. An interesting result is recalled that guarantees

that a Kohn-Sham scheme may always be set up, no matter the open or closed shell character

of the ground state nor its degree of electron correlation.

Introduction

During the last decades Density Functional Theory (DFT) has become an essential tool for molecu-

lar and material modeling.1 It has allowed a great leap towards the popularization of computational

tools even among non-quantum chemists that were once foreign to quantum methodology. Two

main factors have contributed to this change: the simplicity of DFT calculations as compared with

rigorous wave function-based methods, and their excellent cost-to-performance ratio, that makes

it possible to study fairly complicated systems with very affordable hardware.

DFT tackles the problem of calculating electronic energies and other properties of many-

electron systems with a different strategy than that of the wave function-based methods. These are

normally introduced in quantum chemistry programs by first describing the Hartree-Fock method

as the simplest approach for obtaining approximate electronic wave functions. These are Slater

determinants that admit a straightforward interpretation in terms of orbitals that can be occupied

by one or two electrons. Then post-Hartree-Fock methods are introduced to obtain more accurate

wave functions in order to correct the flaws of the orbital approximation. DFT does not fit into this

scheme, since it aims at obtaining the ground-level electron density and energy of a many-electron

system without actually calculating its wave function. A major advantage here is that the density
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is a function of only three variables —the position coordinates x,y,z— regardless of the number of

electrons, while the wave function depends on four coordinates —three spatial and one of spin—

for each electron.

The usual way of introducing DFT follows an historical perspective: from the precedents of

Thomas2 and Fermi3 in 1927 to the statement of the two foundational theorems by Hohenberg and

Kohn (HK) in their 1964 seminal article.4 In 1979 the constrained-search (CS) approach was put

forward by Levy5 and Lieb6 following an earlier proposal by Percus.7 This approach is concep-

tually clear and elegant, and bears a close parallelism with the wave-function variational theorem,

which is deeply rooted in quantum chemistry. Most importantly, it is more general and rigorous

that the original HK formulation, which was restricted to non-degenerate ground states and re-

lied on the assumption that the trial densities appearing in their variational theorem correspond

to ground state wave functions of many-electron systems (pure-state v-representability), which

is not generally true.6 Both limitations are superseded in the constrained-search (CS) approach.

Moreover, this provides an algorithm connecting the density with the hamiltonian and an explicit

expression for the universal term of the energy functional, while the HK derivation only guarantees

the existence of that connection and this functional.

In this article the CS approach will be presented following a simple, lesser-known derivation

published by Levy in 2001,8 which uses only basic mathematical tools available in any intro-

ductory quantum chemistry text book. Some criticism about a pretended need to impose spin or

symmetry restrictions on the density for open shell systems9 will be shown to be unfounded. The

most widespread practical implementation of the theory –the Khon-Sham (KS) method10– will

also be briefly discussed. This relies on an assumption made by KS that has been the subject of in-

tense debate: the existence of a non-interacting many-electron system with the same ground-level

density as the real interacting one; that is, the non-interacting v-representability of the density.

Work by Chayes et al. in 198511 and specially by van Leeuwen in 200312 clarifies this point and

guarantees that a conveniently generalized KS scheme may always be applied.

We hope to contribute to encourage lecturers to use the present approach for introducing DFT
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into their quantum chemistry curricula.

One-electron density

Although the formalism is more general, we will refer to an n-electron system under the attraction

of one or more nuclei, typically an atom, a molecule or a solid. Its non-relativistic electronic

hamiltonian is:

Ĥ = T̂el +V̂el +V̂nuc−el (1)

where T̂el , V̂el and V̂nuc−el are the operators corresponding to the n-electron kinetic, repulsion and

nuclear attraction energies:13

T̂el =
n

∑
i=1
−∇i

2
V̂el =

n−1

∑
i=1

n

∑
j>i

1
ri j

V̂nuc−el =
n

∑
i=1

vne(~ri) (2)

The one-electron term

vne(~ri) =
N

∑
A=1
−ZA

riA
(3)

is referred to as the external potential, meaning that it represents the interaction of an electron (i)

with something external to the n-electron system: the nuclei (A). This is a multiplicative, spin-

independent operator and, in fact, all the discussion below is valid for any external potential of that

kind.

The one-electron density (for short, “the density”) corresponding to any normalized n-electron

wave function Ψ can be obtained by integrating it with respect of all the space and spin coordinates

(~ri and ωi) except the position coordinates of one of the electrons:14

ρ(~r) = n
∫

ω1

∫
~r2

∫
ω2

. . .
∫
~rn

∫
ωn

|Ψ(~r,ω1,~r2,ω2, . . .~rn,ωn)|2 dω1d~r2dω2 . . .d~rndωn (4)

The definite integrals in this equation highlight that there is an infinity of wave functions leading to
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a given density. Since Ψ is normalized to 1, the density is normalized to the number of electrons:

∫
~r

ρ(~r)d~r = n
∫
~r

∫
ω1

∫
~r2

∫
ω2

. . .
∫
~rn

∫
ωn

|Ψ(~r,ω1,~r2,ω2, . . .~rn,ωn)|2 d~rdω1d~r2dω2 . . .d~rndωn

= n〈Ψ |Ψ〉= n (5)

According to the time-independent Schrödinger equation the energies of the stationary states

of the electron system are the eigenvalues E j of the hamiltonian:

ĤΨjk = E jΨjk k = 1, . . . d j

where d j is the degeneracy of eigenvalue E j and {Ψj1, · · ·Ψjd j} are d j linearly independent eigen-

functions with that eigenvalue. If Ψ is not an eigenfunction of the hamiltonian the corresponding

state has not a well-defined energy, but we can calculate an energy expectation value by solving

the integral: 〈
Ψ

∣∣∣ĤΨ

〉
=
∫
~r1

∫
ω1

. . .
∫
~rn

∫
ωn

Ψ
∗ĤΨ d~r1dω1 · · ·d~rndωn

This can be broken down into two terms by introducing eq. (1):

〈
Ψ

∣∣∣Ĥ Ψ

〉
=
〈

Ψ

∣∣∣(T̂el +V̂el

)
Ψ

〉
+
〈

Ψ

∣∣∣V̂nuc−el Ψ

〉

Let us show that the last term, namely, the nuclei-electron attraction energy, is determined by the

electron density:

〈
Ψ

∣∣∣V̂nuc−elΨ
〉

=
∫

Ψ
∗

(
n

∑
i=1

vne(~ri)

)
Ψ d~r1dω1 . . .d~rndωn

=
n

∑
i=1

∫
~r1

∫
ω1

. . .
∫
~rn

∫
ωn

vne(~ri) |Ψ |2 d~r1dω1 . . .d~rndωn

Since |Ψ |2 is symmetric with respect to exchanges of electron coordinates and vne has the same

mathematical expression for every electron, all the terms in the sum are equal, and we can write it
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as n times the first term:

〈
Ψ

∣∣∣V̂nuc−elΨ
〉

= n
∫
~r1

vne(~r1)

(∫
ω1

. . .
∫
~rn

∫
ωn

|Ψ(~r1,ω1, . . .~rn,ωn)|2 dω1 . . .d~rndωn

)
d~r1

We can now introduce eq. (4) to obtain:

〈
Ψ

∣∣∣V̂nuc−elΨ
〉
=
∫
~r1

vne(~r1)ρ(~r1)d~r1 (6)

Of course, the same applies to any other property whose operator is a sum of multiplicative, spin-

independent, one-electron operators, such as the components of the electric dipole moment (dx ≡

∑
n
i=1 qixi, · · · ), those of the electric quadrupole moment (Qxx ≡ ∑

n
i=1 qix2

i , · · · ), etc. For short, we

will refer to such properties as “one-electron multiplicative properties”. All of these are, therefore,

“functionals” of the density ρ; that is, (real) functions that depend on the variable ρ . This type of

dependency is usually represented with brackets: Vnuc−el[ρ], dx[ρ], Qxx[ρ], etc.

The variational HK theorem

The variational HK theorem states that the ground-level energy E0 of an n-electron system is the

minimum of a functional of the electron density E[ρ] with respect to densities corresponding to

whatever n-electron states:

E0 = min
ρ

E[ρ] (7)

where

E[ρ] = F [ρ]+
∫
~r

vne(~r)ρ(~r)d~r (8)

and F [ρ] is a universal functional; namely, it is independent of the particular n-electron system

being considered.

To prove it let us recall the standard wave-function variational theorem, which states that any

wave function Ψ of the n-electron (antisymmetric) Hilbert space H leads to an energy expectation
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value –the variational integral– not lower than the ground-level energy:

〈
Ψ

∣∣∣Ĥ Ψ

〉
≥ E0

so that E0 can be obtained by minimizing the variational integral over the whole antisymmetric

wave-function space H :

E0 = min
Ψ∈H

〈
Ψ

∣∣∣ĤΨ

〉
(9)

This minimization can be performed in two steps:

1. For any given density ρ we minimize
〈

Ψρ

∣∣∣ĤΨρ

〉
with respect to all the wave functions Ψρ

leading to that density. This gives a real number that depends on ρ —that is, a functional of

the density ρ— that will be referred to as the energy functional:

E[ρ]≡min
Ψρ

〈
Ψρ

∣∣∣ĤΨρ

〉
=
〈

Ψ
min

ρ

∣∣∣ĤΨ
min

ρ

〉
(10)

where Ψ min
ρ is the minimizing Ψρ .

2. Then E[ρ] is minimized with respect to the densities of all the n-electron states (eq. 7).

Let us introduce eq. (1) in (10):

E[ρ] = min
Ψρ

(〈
Ψρ

∣∣∣(T̂el +V̂el

)
Ψρ

〉
+
〈

Ψρ

∣∣∣V̂nuc−elΨρ

〉)
(11)

The last integral is the same for all Ψρ with the same density ρ (eq. 6), so Ψ min
ρ also minimizes the

first term, and we can define a new functional F [ρ] as:

F [ρ]≡min
Ψρ

〈
Ψρ

∣∣∣(T̂el +V̂el

)
Ψρ

〉
=
〈

Ψ
min

ρ

∣∣∣(T̂el +V̂el

)
Ψ

min
ρ

〉
(12)

Introducing eqs. (12) and (6) in (11) one obtains eq. (8).

The operators T̂el and V̂el are completely determined by the number of electrons (eq. 2), which
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is readily obtained by integrating ρ (eq. 5); therefore, F [ρ] is independent of the particular n-

electron system being considered; namely, it is a universal functional. If we had an accurate

enough expression of F [ρ] for some n then, by adding the nuclei-electron attraction energy term of

whatever n-electron system (eq. 6) and minimizing the resulting E[ρ] we would obtain its ground-

level energy and density. Obtaining F [ρ] is the sticking point in DFT, and several strategies have

been devised to this end, including the Kohn-Sham method, to be briefly discussed later.

Some points should be made:

1. The minimization of E[ρ] should be restricted to trial densities coming from (antisymmetric)

wave functions of the n-electron Hilbert space (n-representable densities), since eq. (12)

only defines F [ρ] for such densities. This requirement is weaker than the v-representability

needed for the HK deduction –that is, the necessity of coming from a ground state of some

n-electron hamiltonian– and, according to theorems 1.1 and 1.2 of ref. 6, it is fulfilled by the

necessary and sufficient conditions:

ρ(~r)≥ 0
∫
~r

ρ(~r)d~r = n
∫
~r

∣∣∣~∇√ρ(~r)
∣∣∣2 d~r < ∞

The first two are immediate consequences of the definition of ρ (see eqs. (4) and (5)), and

the third is fulfilled for any system with finite kinetic energy, since it can be shown that∫
~r

∣∣∣~∇√ρ(~r)
∣∣∣2 d~r 6 2

〈
Ψ

∣∣∣T̂Ψ

〉
(see the appendix).

2. The existence of a minimizing wave function Ψ min
ρ in (eq. 12) is guaranteed by theorem 3.3

of ref. 6.

3. The functional F [ρ] is universal in the sense that it is independent of the particular form of

the external potential vne(~ri), but it depends on the number of electrons n.

4. The above demonstration applies no matter the degeneracy of the ground level, unlike the

original HK one. If the ground level is degenerate the minimizations in (10) or (12) and (7)

would lead to the density of one of the degenerate ground states.
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5. It has been claimed that spin and space symmetry restrictions must be imposed to the

trial densities when minimizing E[ρ] for an open shell ground level15. The present ap-

proach makes clear that such restrictions are unnecessary, as they also are for the trial wave-

functions in the standard variational method. If such restrictions were necessary because

some non-restricted antisymmetric wave functions existed with lower energy than the re-

stricted minimum, we could expand that non-restricted function as a linear combination of

restricted functions, and at least one of these should have a lower energy than the non-

restricted one. This would mean that the minimization process has not explored the whole

antisymmetric Hilbert space. The ground level of any quantum system is the lowest eigen-

value of its hamiltonian, which, in turn, is the lowest value of
〈

Ψ

∣∣∣ĤΨ

〉
for Ψ ’s in the

antisymmetric Hilbert space –that may include boundary conditions implied by the phys-

ical problem– and, according to quantum principles, no additional restrictions need to be

imposed for obtaining it.

6. Last, but not least, the present approach provides an expression for the functional F [ρ] (eq.

12), while the original HK demonstration only guarantees its existence. Equation (12) has

been recently used to obtain F [ρ] for a unidimensional 2-electron system with a softened

Coulomb interaction.16

7. Lieb6 introduced an alternative universal functional in which the expectation value of T̂el +

V̂el is calculated and minimized in terms of density operators instead of wave functions (eq.

12). Although it has some mathematical benefits compared to the functional (12) we will not

discuss it here because it exceeds the level of basic quantum chemistry curricula.

The ground-level density determines the external potential

Hohenberg and Khon also demonstrated that the ground-state density ρ0(~r) of an n-electron system

determines the external potential except for an irrelevant additive constant.

Let us assume that the ground-level E0 has degeneracy d0. We will use Ψ0 to refer to one of
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the corresponding wave functions and ρ0 for its electron density. According to the wave-function

variational theorem (eq. 9) Ψ0 minimizes
〈

Ψ

∣∣∣Ĥ Ψ

〉
with respect to any wave function of the

Hilbert space and, in particular, with respect to all of the wave-functions Ψρ0 with density ρ0:

Ψ0 =Ψ min
ρ0

. We have already seen that Ψ min
ρ0

also minimizes
〈

Ψρ0

∣∣∣(T̂el +V̂el

)
Ψρ0

〉
(see eq. (12)

and the discussion that precedes it):

Ψ0 =Ψ
min

ρ0
where "min" refers to min

Ψρ0

〈
Ψρ0

∣∣∣(T̂el +V̂el

)
Ψρ0

〉
(13)

By performing this minimization one can thus obtain Ψ0 from ρ0, something that has been called

into question in ref. 9. In case of degeneracy, any one of the ground-level wave functions could be

obtained, depending on the evolution of the minimization process,

By introducing eqs. (1) and (2) into the Schrödinger equation:

ĤΨ0 = T̂elΨ0 +
n−1

∑
i=1

n

∑
j>i

1
ri j

Ψ0 +
n

∑
i=1

vne(~ri)Ψ0 = E0Ψ0

and dividing by Ψ0 we obtain:

n

∑
i=1

vne(~ri) = E0−
T̂elΨ0

Ψ0
−

n−1

∑
i=1

n

∑
j>i

1
ri j

If we don’t know E0, ∑
n
i=1 vne(~ri) is determined except for an additive constant, that can be obtained

by fixing the origin of the energy scale.

We have already seen that the first two terms T̂el and V̂el of the hamiltonian (1) are determined

by n which, in turn, is determined by ρ0 (eq. 5). So this density determines, in fact, the complete

electronic hamiltonian:

ρ0 −→Ψ0 −→ vne −→ Ĥ

Note that:

1. The degeneracy of E0 is, again, irrelevant to the preceding derivation, while the original HK
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demonstration required the ground state to be non-degenerate.

2. To obtain Ψ0 from ρ0 no information about the spin and/or space symmetry of the ground

state, needs to be imposed (apart, of course, of the exchange antisymmetry inherent in the

antisymmetric Hilbert subspace), which contradicts the statement in ref. 9: “one may incor-

rectly claim that ρ0 does also determine the ground state wave function”.

3. The present approach provides an explicit recipe for obtaining the external potential from

ρ0, while the original proof only assures that a dependency relationship exists.

4. Since the eigenfunctions of Ĥ determine all the properties of the corresponding electronic

states, all of these –not only the ground state energy and one-electron multiplicative properties–

are determined by ρ0, albeit, in general, we do not know how to obtain them without cal-

culating the corresponding wave-functions or, at least, their 2-particle density matrices (see

ref.17 for work along this line).

5. For a degenerate ground level it can be shown12 that, not only the densities ρ0k corresponding

to individual eigenfunctions Ψ0k, with k = 1, · · ·d0, determine Ĥ, but also any “ensemble”

density of the form ρ0 = ∑
d0
k=1 λkρ0k with ∑

d0
k=1 λk = 1 does.

6. The fact that vne is determined by ρ0 admits a simple physical interpretation: ρ0 has peaks on

the nuclei with a slope related to the nuclear charge, so that it is reasonable that the position

and charge of the nuclei and, therefore, vne (see eq. 3) can be obtained from ρ0.

The Khon-Sham implementation

One year after the publication of the HK theorems, Khon-Sham (KS) published a method for

putting those ideas into practice. This consists in looking for a fictitious system of n electrons

that move independently under an external potential vKS(~r) such that its ground-state density is

equal to that of the real system. Then an approximate universal functional is used to obtain the
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energy of this system. Since the electrons of the fictitious system do not interact with each other,

its hamiltonian eigenfunctions can be taken as Slater determinants, and an algorithm similar to the

Hartree-Fock method can be settled to obtain them. Moreover, although the ground state of this

non-interacting system bears no direct relationship to that of the real system, the interpretation of

their obtitals in a way similar to that of the Hartree-Fock orbitals has proven to be fruitful.

We will not go into the details of the KS method, but we want to clarify some points about

the conjecture made by Khon and Sham about the existence of a proper non-interacting system

for every real system. If such a system exists with a ground state Slater determinant (or a linear

combination of degenerate Slater determinants) with density equal to that of the real system we

say that this density is non-interacting pure-state v-representable. In the degenerate case it could

happen that no density ρ0k corresponding to an individual non-interacting wave function coincides

with that of the real system, but a linear combination of the form ρ0 = ∑
d0
k=1 λkρ0k does, in which

case we say that this is non-interacting ensemble v-representable (NI-E-R). This is in fact the

case for some strongly correlated systems and for near-degeneracy situations such as in avoided

crossings, among others. Although we currently don’t known if the sets of interacting ensemble

v-representable (I-E-R) and NI-E-R densities are equal, it has been proven12 that for every I-E-

R density –as is any ground level density of any real system– one can find a NI-E-R density

arbitrarily close. Therefore, a KS scheme can always be set up provided that it allows for ensemble

densities.12,18

Note that we have not mentioned unrestricted Slater determinants, so that no splitting of the

density in alpha and beta components should, in principle, be necessary to reproduce the density

of real open shell systems.

Conclusions

The constrained-search approach to density functional theory is presented in a simple way particu-

larly suitable for quantum chemistry curricula. The derivation of the Hohenberg-Kohn variational
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theorem highlights its close parallelism with the wave-function variational method, that plays a

central role in other computational chemistry methods. Contrary to the original formulation by

Hohenberg and Kohn, the present approach is not restricted to non-degenerate ground states, so

it applies to closed and open shell systems indistinctly without the need to impose any restric-

tion beyond the antisymmetry of the wave functions. Moreover, the former is affected by the

unsolved problem of the v-representability requirement for trial densities, while the constrained-

search derivation only necessitates the weaker n-representability, for which explicit necessary and

sufficient conditions are known. On the other hand, it provides an expression for the universal

functional F [ρ] appearing in the definition of the energy functional and an algorithm to derive the

electronic hamiltonian from the ground-state electron density, while the original formulation only

guarantees the existence of that functional and of a dependency relationship of the hamiltonian

with respect to the density. Besides their potential interest for the development of computational

strategies, those two points make the constrained-search approach more tangible and appealing

from the pedagogical point of view. For all this we consider it the most convenient way of intro-

ducing density functional theory in basic quantum chemistry courses. The Khon-Sham scheme is

also briefly discussed and an interesting result by van Leeuwen is recalled that guarantees that a

Kohn–Sham scheme can always be set up provided that it allows for ensemble densities, not even

being necessary to split de density in alpha and beta contributions for open shell systems.
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Appendix

Differentiation of eq. (4) and use of the Cauchy–Schwarz inequality leads to

∣∣∣~∇1ρ(~r1)
∣∣∣2 = (∂ρ(~r1)

∂x1

)2

+(x1→ y1)+(x1→ z1)

= n2

(∂
∫
|Ψ |2 dω1d~r2 · · ·dωn

∂x1

)2

+(x1→ y1)+(x1→ z1)


= n2

(∫ ∂ |Ψ |2

∂x1
dω1d~r2 · · ·dωn

)2

+(x1→ y1)+(x1→ z1)


= n2

[(∫
2 |Ψ | ∂ |Ψ |

∂x1
dω1d~r2 · · ·dωn

)2

+(x1→ y1)+(x1→ z1)

]

≤ n24
∫
|Ψ |2 dω1d~r2 · · ·dωn

[∫ (
∂ |Ψ |
∂x1

)2

dω1d~r2 · · ·dωn +(x1→ y1)+(x1→ z1)

]

= 4nρ(~r1)
∫ ∣∣∣−→∇ 1Ψ

∣∣∣2 dω1d~r2 · · ·dωn

so that

∫ ∣∣∣~∇1
√

ρ(~r1)
∣∣∣2 d~r1 =

∫ (∂
√

ρ(~r1)

∂x1

)2

+(x1→ y1)+(x1→ z1)

d~r1

=
∫ ( 1

2
√

ρ(~r1)

∂ρ(~r1)

∂x1

)2

+(x1→ y1)+(x1→ z1)

d~r1

=
∫ [ 1

4ρ(~r1)

∣∣∣~∇ρ(~r1)
∣∣∣2]d~r1

≤ n
∫ ∣∣∣−→∇ 1Ψ

∣∣∣2 d~r1dω1d~r2 · · ·dωn

= n
∫ [

∂Ψ ∗

∂x1

∂Ψ

∂x1
+(x1→ y1)+(x1→ z1)

]
d~r1dω1d~r2 · · ·dωn

= n [〈p̂x1Ψ |p̂x1Ψ 〉+(x1→ y1)+(x1→ z1)]

= n
[〈

Ψ

∣∣∣p̂x1
2
Ψ

〉
+(x1→ y1)+(x1→ z1)

]
= 2

〈
Ψ

∣∣∣T̂Ψ

〉
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