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Abstract 

 

People have loved clothing fashion for thousands of years, from the early days of Egypt 

until nowadays. Throughout history, drawings, documents, and other archaeological finds 

have also revealed that people wore fashion in different moments of history. 

As an example, we have had various civilizations. The Greeks wore thick woolen long 

dresses. The ancient Egyptians were typically dressed in light cotton clothing. The 

Romans became the most critical example of style and fashion because of their expansion 

and dominance. 

In the recent past, the fashion industry has emerged as one of the crucial industries for the 

global economy. The trends change every second, the clothing industry has proved itself 

one of the most creative realms, and with the advent of the internet and handheld devices, 

customers can easily shop on the go.  

While people keep up with fashion trends, machine learning is changing the trends in the 

fashion industry, and daily there are systems keeping track of every sale and the upcoming 

trends. This gives the companies vast knowledge about what a user is interested in. 

Seeing how many opportunities there are, I want to participate and try to develop a neural 

network in charge of categorizing each clothing it sees. Therefore, we need to use deep 

learning and understand how it works. 

The concept of deep learning started in 1943 when Warren McCulloch and Walter Pitts 

created a computer model based on the human brain’s neural networks. They used a 

combination of mathematics and threshold logic algorithms to mimic the thought process.  

Since then, deep learning has evolved steadily, with two significant developmental breaks 

over the years. The progress of the basics of a continuous Back Propagation Model by 

Henry J. Kelley in 1960, and when Stuart Dreyfus came up with a simpler version based 

only on the chain rule in 1962. 

Now, it is an important topic. Scientists use deep learning algorithms with multiple 

processing layers to make better models capable of understanding large quantities of 

unlabelled data, such as photos with no description, voice recordings, etc. 



 
 

We want to use those algorithms, especially Object Detection and Semantic 

Segmentation, to start a project where we want to detect different pieces of clothing in a 

large dataset established by Fashion RGB Images. 

The purpose is to carry out a study on both implementations. We want to train a model 

several times with different parameters and datasets, trying to achieve the most optimal 

results from both.  

Once we have the results, we will compare them to see which is best for our case and 

study why it is the best. 
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1 Introduction 

 

My first time working on machine learning was in my third year at university in the 

artificial vision subject. During that year, I discovered different ways to process images 

and some basic implementations to recognize objects into them using various techniques.  

I remember thinking that it was instrumental in business because there were many 

possibilities to use it. Since then, I have always been interested and wanted to know how 

it worked more deeply.  

Today I still think the same. Therefore, I believe that joining deep learning and fashion is 

a great combination. There are a lot of possibilities to take advantage of and use it to 

improve sales, predict new trends, or know what people want at all times. Thanks to this 

project, I can start to learn everything that comes with it and maybe, expand it to achieve 

one of those possibilities I mentioned before in the future. 

Nowadays, machine learning is completely changing the trends in the fashion industry. 

Every brand uses machine-learning techniques to increase customers and stay ahead of 

the movement.  

People are into fashion and want to know what looks best and how they can improve their 

style and elevate their personality. Using Deep learning technology and infusing it with 

Computer Vision techniques, one can do so by utilizing Brain-inspired Neural Networks. 

Training them, playing around with Unstructured Data, and investing in the transformer 

architecture are just some highlights that can be touched in the Fashion domain. 

This project will study different Deep Learning algorithms, primarily Object Detection 

and Semantic Segmentation, to train a model to detect clothing items by itself on Fashion 

RGB Images. To make this possible, we have to do different tasks. 

First, we have to research to understand the basics of deep learning and how to implement 

it. We will do experiments with Cifar trying multiple structures, adding data 

augmentation, or changing parameters to improve the results. 

After that, once we have the basic knowledge, we have to search for an extensive fashion 

dataset with a considerable number of images as well as the data they imply, besides 
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developing the corresponding functions on each dataset to extract all the information that 

we have talked about and display it in the requested format. 

Then, look for Object Detection and Semantic Segmentation implementations that fit our 

purpose, adapt them for proper functioning, and start to train our model.  

Once we arrive here, we have to train our model multiple times because, in each training, 

we will play with different variables to achieve the most optimal outcome of both 

methods. This phase will be the longest part of the project due to the big data, considering 

that it has to process many images once and again to improve its skills.  

Finally, once we have our trained models, we will check and compare the results to make 

a study and discover the most optimal way to train our fashion model. 

 

2 Objectives 

 

This section will define the main objectives the TFG has attempted to address since the 

beginning, regardless of whether the results obtained may or may not be the expected 

ones. You can see which they were below: 

1. Search for a database that fits the requisites. 

2. Extract the required information from datasets. 

3. Implement the Object Detection algorithm using the dataset from task one. 

4. Implement the Semantic Segmentation algorithm using the dataset from task one. 

5. Train and test both implementations using multiple setups. 

6. Compare and study the results from both algorithms. 

7. Write a Memory to explain the process and the methodologies used in the project. 

These are the main functions established initially. In addition, in case of having enough 

time, the idea was to develop an application that could be fed with images and returns the 

objects detected with the selected method. 
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3 Planning 

 

Next, we have two Gantt diagrams from February 14th to June 13th. The first one displays 

the initial planning and the second one how it ended. They have principal and secondary 

tasks with the corresponding time needed to finish them. As you can see, it took more 

time than expected to complete some objectives, and in the end, the app failed. 

 

 

 



4 
 

4 Theoretical Background 

 

Throughout the project, we will use general concepts, such as deep learning or 

convolutional neural network, which are essential to know and how they work. Therefore, 

we will describe and explain all those concepts to understand them better and not get lost 

in some parts of the project. 

 

4.1 Deep Learning 

 
Deep Learning is a subset of Machine Learning that uses mathematical functions to map 

the input to the output. These functions extract non-redundant information or patterns 

from the data, enabling them to form a relationship between the input and the result. This 

is known as learning, and the learning process is called training. 

To grasp the idea of deep learning, imagine an infant and parents. The child points to 

objects with his finger and calls him ‘dog.’ The parents tell him ‘Yes, that is a Dog’ or 

‘No, that is not a dog.’ The kid persists in pointing at objects but becomes more accurate 

with ‘dogs.’ The kid does not know why he can say it is a dog or not. He has just learned 

how to classify complex features coming up with a dog by looking at it and focusing on 

details such as the tails or the nose before making up his mind. 

 

 

Figure 1: Deep Learning Process 

 

Modern deep learning models use neural networks inspired by the human brain to extract 

information. The neural networks are the key to deep learning and are designed to mimic 

the working of neurons in the human brain. Next, we have an example of a neural network 

neuron. 

https://www.v7labs.com/blog/machine-learning-guide
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Figure 2: Example of a Neuron from a Neural Network 

 

These analyze and cumulate insights from the data and later learn from the same. Any 

deep learning algorithm reiterates and repeatedly performs a task, tweaking and 

improving a bit every time to improve the outcome.  

When we speak about neural networks, we can say there are several types: Feed Forward, 

Recurrent Neural Networks, Generative Adversarial Networks, etc. 

 

4.2 Convolutional Neural Network  

 

A Convolutional Neural Network or CNN is a Deep Learning algorithm that can take an 

image as an input, assign importance (learnable weights and biases) to various objects in 

the image, and differentiate one from the other. Also, the pre-processing required in a 

CNN is much lower than the others. 

Four layers form a Convolutional Network: 

1. Input Layer – Input Image. 

2. Convolutional layer – Kernel. 

3. Pooling layer. 

4. Classification – Fully connected layer.  
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Figure 3: Process of Convolutional Neural Network 

 

4.2.1 Input Layer 

 
The input layer is the first layer of the CNN. It receives an RGB image with a specific 

shape (width, height, channels). 

 

 

Figure 4: Example of Input Image 

 

Depending on the image’s dimensions, computationally, it can increase exponentially due 

to the large amount of data it can receive. For that reason, the role of the convolutional 

layer is to reduce the images into a form that is easier to process without losing critical 

features. It is crucial to take care of when we want to design an architecture that is good 

at learning features and scalable to massive datasets. 
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4.2.2 Convolutional Layer 

 
The next layer is the convolutional layer. As its name suggests, it is in charge of carrying 

out a convolution operation that shifts a kernel through the input image x times depending 

on the stride value. The layer will make a matrix multiplication between the filter and the 

input portion on each shift.  

For every shift, all the results will be summed with the bias to give us, in the end, a 

Convoluted Feature Output, also known as a Feature Map. The number of filters we use 

depends on the depth of the input. 

 

 

Figure 5: Convolution process 

 
This layer aims to extract high-level features from the image. Convolutional layers are 

not limited to just one. Usually, the first one is responsible for capturing low-level features 

like edges, colors, etc. The architecture also adapts to high-level features adding layers, 

giving us a network capable of understanding images as humans. 

Moreover, the convolution results depend on the padding used: 

• Valid padding: The image is not padded, and filters always stay inside the image. 

There can be a loss of information, and as a result, the convolved feature is 

reduced in dimensionality compared to the input.  
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• Same Padding: The image is half padded. This technique ensures that the filter is 

applied to all the input elements and no information is lost. As a result, the 

convolved input increases or remains the same in dimensionality compared to the 

input. 

 

4.2.3 Pooling layer 

 

The pooling layer is similar to the convolutional layer because it performs downsampling 

to reduce the spatial dimensionality of the convolved feature and decrease the 

computational power required to process the data, the learning time, and the likelihood of 

overfitting. Additionally, it works with a filter that shifts across the input image x times 

based on a stride value as the convolutional layer. 

There are two types of pooling layers: 

• Max Pooling: Returns the maximum value from the image portion covered by the 

kernel. In addition, it is a noise suppressant. 

• Average Pooling: Returns the average of all values from the image portion 

covered by the kernel. 

 

Figure 6: Examples of Max Pooling and Average Pooling 

 

The convolutional and the pooling layers form the i-th layer of a convolutional neural 

network. If we want more accuracy in detecting low-level details, we can increase its 

number, but at the cost of more computational power.   

Up to now, our model will be able to understand the features of an input image.  
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4.2.4 Fully connected layer  

 
The Fully Connected Layer is the last one of our CNN. That layer enables our model to 

learn non-linear combinations of the high-level features represented by the output of the 

convolutional layer in a cheap way. 

The first step is to flatten the image into a column vector. The flattened output will be fed 

to a feed-forward neural network, and backpropagation will be applied at every learning 

iteration. After some epochs, our model will be able to detect features in the image and 

classify them with some classification techniques. 

 

 

Figure 7: Example of Fully Connected Layer 

 

4.3 Activation Function 

 
The activation function is performed in each node of every convolutional layer of the 

CNN and decides whether a neuron should be activated or not. We speak of an activated 

neuron when the information is relevant enough to pass to the next layer. Moreover, 

depending on the selected activation function, the capability and performance of the 

neural network can be affected. 
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Many different activation functions are used in neural networks, although only a small 

number are used in practice. Here are three of the most commonly used activation 

functions: 

• Rectified Linear Unit (ReLU). 

• Logistic (Sigmoid). 

• Hyperbolic Tangent (Tanh). 

 

 

4.4 Loss Function 

 
The loss function computes the distance between the current output of the algorithm to 

the expected outcome and allows us to evaluate how the algorithm models the data. 

Furthermore, we can derive the gradients from this function to upgrade the weights.  

In conclusion, the loss function helps us adjust the weight values on each training epoch, 

finding the best parameters combination to perform good predictions. 

 

 

Figure 8: Example of Loss Function 

 
Next, you can see some of the most commonly used loss functions: 

• Cross-entropy. 

• Log loss. 

• Exponential Loss. 
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4.5 Overfitting and Underfitting 

 
On the one hand, overfitting appears when our model performs well for training data but 

poorly for testing data. This may be due to a small training dataset, a complex model, or 

dirty training data containing noise. In addition, if we train the model for too long, it can 

learn unnecessary details and noise from the data. 

On the other hand, underfitting appears when our model has not learned the patterns 

during the training and makes unreliable predictions. This may be due to noisy data, a 

high bias, a small training dataset, or a simple model.  

We need to check the training and testing set performance to verify our model is well 

fitted. The objective is to simultaneously decrease the training and testing data error as 

much as possible.  

To achieve this, we can adapt our model based on the problems we have observed above, 

for example, cleaning the data to avoid noise, increasing or decreasing the dataset, etc. 

Also, we can use methods that help us, such as dropout. 

 

 

Figure 9: Model Underfitted, Well fitted, and Overfitted 

 

4.6 Dropout 

 
Dropout is a regularization method used to face the problem of overfitting in neural 

networks. It is in charge of randomly selecting neurons from a layer and ignoring them 

with their outputs during the training. Therefore, weight updates are not applied to the 

neuron on the backward pass. 
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The effect is that the network becomes less sensitive to the specific weights of neurons. 

This results in a network capable of better generalization and less likely to overfit the 

training data. 

Next, we can see an example of a neural network with and without dropout and how the 

number of outputs varies in both: 

 

 

Figure 10: Neural Network with and without Dropout 

 

4.7 Object Detection 

 

Object detection is a general term to describe a collection of related computer vision tasks 

that involve identifying and locating objects in pictures or videos. Specifically, object 

detection draws a bounding box around these detected objects. 

We have considered various options like Faster R-CNN and YOLO to carry out this task. 

On the one hand, YOLO only looks at the image once to detect what objects are present 

and where they are. Hence the name You Only Look Once. 

It can do this because it divides the image into an SxS grid cell. Each grid cell predicts x 

bounding boxes and their confidence scores. The confidence score indicates how sure the 

model is that the bounding box contains an object and how accurate it thinks the box is 

that predicts. 
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On the other hand, Faster R-CNN is a faster extension of Fast R-CNN due to the region 

proposal network or RPN. This region proposal network is a fully convolutional network 

that generates proposals with various scales and aspect ratios.  

The process of Faster R-CNN is to generate region proposals with RPN. After that, from 

all the region proposals in the image, a fixed-length feature vector is extracted to be 

classified using the Fast R-CNN. Then, the class scores of the detected objects and their 

bounding boxes are returned. 

Finally, we decided to use YOLO in our project because we found other works comparing 

these two implementations. The results showed that YOLO was slightly more accurate 

and faster. 

 

 

Figure 11: Example of Object Detection 

4.8 Semantic Segmentation 

 

Semantic Segmentation is a process of image segmentation that classifies each pixel in 

an image belonging to a specific class. In addition, another technique related to image 

segmentation is instance segmentation, where all the instances of an object are classified 

with a unique label.  

We have considered different options such as Mask-RCNN and Unet to carry out this 

task. 
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On the one hand, Mask RCNN is an extension from the Faster R-CNN that adds a third 

branch that outputs the object mask. There are two stages of Mask RCNN. First, it 

generates region proposals where an object might be based on the input image. Second, 

it predicts the object’s class, refines the bounding box, and generates a mask at the pixel 

level of the item based on the first stage proposal. 

On the other hand, Unet handles the problem of segmenting objects at multiple scales 

with an encoder-decoder network. The encoder reduces the feature map to capture high 

semantic information, and the decoder slowly recovers the spatial data. 

In the end, we decided to use Unet.  

 

 

Figure 12: Example of Semantic Segmentation 

 

5 Experimental Background 

 
Before starting the project, we experimented with the Cifar database to do some 

implementations ourselves and have a first contact with the subject. This section will 

explain all these experiments and what we have learned from them that we will use later 

in the project. 
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5.1 Cifar 

 

Cifar is one of the most widely used datasets to implement object detection and stands for 

Canadian Institute for Advanced Research. There are two variations from this dataset, 

CIFAR-10 and CIFAR-100. They are labeled subsets from the 80 million tiny 

images dataset collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.  

Next, we will describe the characteristics of CIFAR-10: 

• It consists of 60.000 images. 

• Each image is 32x32x3. 

• There are 50000 training images and 10000 test images. 

• There are ten classes, and 6000 images represent each class. 

• The classes are mutually exclusive (The same photo cannot belong to more 

than one class). 

Below, we can see the dataset and the ten classes that make it up: 

 

 

Figure 13: Cifar-10 Dataset 

 
In addition to CIFAR-10, we also have CIFAR-100, with the same characteristics but 

much more challenging: 

• It consists of 100 classes. 

• Each class has 600 images. 

• Twenty superclasses group all the classes. 

http://people.csail.mit.edu/torralba/tinyimages/
http://people.csail.mit.edu/torralba/tinyimages/
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Some examples of superclasses are flowers and insects, and its subclasses are orchids, 

poppies, roses, sunflowers, tulips for flowers, and bee, beetle, butterfly, caterpillar, and 

cockroach for insects. 

These two datasets have been of great importance at the beginning of the project. We 

have used them to do experiments and learn how deep learning works. 

 

5.2 Experiments 

 
The first experiment was to try different ways of structuring the model. The idea was to 

add or remove layers from the model to see the impact on the results. Also, thanks to that, 

we learned the purpose of each layer.  

Another experiment was about data augmentation. I had to develop different functions to 

create new images based on the originals but with a few modifications and, as a result, 

increase our dataset. Some of the augmentations we used are the next ones: 

 

 
 

 

 

Figure 14: Examples of Data Augmentation. 

 

The idea of this experiment was to train the model with no standard images because in 

real life, not all the pictures are centered, or we can see perfectly all its components. 

Therefore, we wanted to apply these modifications to prepare the model for all the 

possible situations. 
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Finally, the last experiment was about trying default models, such as ResNet or Inception, 

and seeing their performance.  

On the one hand, ResNet stands for Residual Network and solves the problem of a 

maximum threshold for depth in CNN using residual blocks. The residual blocks have a 

direct connection, called skip connection, that skips some of the layers of the CNN.  

Thanks to this skip connection, ResNet solves the vanishing gradient problem in deep 

neural networks and allows the model to learn the identity functions, ensuring that the 

higher layer will perform at least as well as the lower layer. 

 

 

Figure 15: Residual Block 

On the other hand, Inception is a deep neural network with an architectural design that 

consists of repeating components referred to as Inception modules.  

There are different types of inception modules. An example is naïve, which performs 

convolution with three different sizes of filters and max pooling on the same level. The 

outputs are concatenated and sent to the next layer. 

 

 

Figure 16: Inception Module 
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6 Methodology 

 
This section will explain the algorithms we have used to implement object detection and 

semantic segmentation. These methods are Yolo and Unet, and we will show their 

network architecture and how they work step by step. 

 

6.1 Yolo 

 

Yolo is an object detection algorithm that applies a single forward pass neural network to 

the whole image and predicts the bounding boxes and their class probabilities. This 

technique makes YOLO a super-fast real-time object detection algorithm. 

To aim this, it uses a 53 layers neural network called Darknet-53. 

 

 

Figure 17: Architecture of Darknet-53 

 

6.1.1 Process 

 

Yolo divides every input image into an SxS grid of cells, and each cell predicts B 

bounding boxes and C class probabilities of the objects whose centers fall inside the grid 

cells. The B refers to the number of using anchors, and each bounding box 
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has 5+C attributes. The first five attributes are from the bounding box: center coordinates, 

height, width, and confidence score. The last one, C, is the number of classes of the 

dataset. 

After passing a cell into a forward pass convolution network, we will obtain a 3-D tensor 

that looks like [S, S, B*(5+C)]. Next, you can see an example of the process using the 

COCO dataset: 

 

 

Figure 18: Yolo Process 

 

6.1.2 Anchors 

 
Yolo can only detect one object per grid cell, so it uses three different anchor boxes to 

see overlapping items on every detection scale, which means there are nine anchor boxes 

in total.  

Each anchor is a set of pre-defined bounding boxes of a certain height and width used to 

capture the scale and different aspect ratios of specific object classes we want to detect.  
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These aspect ratios are defined beforehand. For this reason, to create these anchor boxes, 

it has been used the K-means clustering method over the entire dataset's bounding box 

shapes. 

 

6.1.3 Scales 

 

Yolo detects items in three scales to accommodate various object sizes using strides of 

32, 16, and 8.  

On the first scale, Yolo downsamples the image with a stride of 32 and predicts at layer 

82.  

After that, Yolo takes the feature map from layer 79 and applies a convolutional layer 

before upsampling it by a factor of two. Then, this upsampled feature map is concatenated 

with the feature map from layer 61. This concatenated feature map will be subjected to 

more convolutional layers until the second prediction at layer 94. 

Finally, the previous process is repeated on the third scale. A convolutional layer is added 

to the feature map from layer 91, is upsampled and concatenated with the feature map 

from layer 36, and the predictions will be performed at layer 106. 

The following figure contains the Yolo network architecture with all the steps we 

mentioned above: 

 

 

Figure 19: Yolo Network Architecture 
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6.1.4 Bounding Boxes Prediction 

 

For each bounding box, Yolo predicts four parameters: 

• The bounding box center coordinate relative to the grid cell whose center falls 

inside. (Tx, Ty) 

• The width of the bounding box. (Tw) 

• The height of the bounding box. (Th) 

The output of the bounding box predictions is refined using the formula from figure 20, 

where Pw and Ph are the anchor’s width and height. In addition, next to the procedure, 

there is an image that describes the transformation in more detail. 

 

 

Figure 20: Example of Bounding Box Prediction 

Once we have all the parameters, we use the top-left corner and the box width and height 

to draw the bounding box. The top-left corner is calculated based on previous parameters 

using the following formula: 

 

 

Figure 21: Formula to calculate top-left corner 
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6.1.5 Non-Maximum Suppression 

 
After processing the entire input image, Yolo probably will have predicted more than one 

bounding box for every object when we only wanted one. That is why is used the method 

of non-maximum suppression. 

First, this method suppresses all the predicted bounding boxes with a confidence score 

under a specific threshold value. 

After that, all the remaining confidence scores are sorted from the highest to the lowest, 

and the one with the best score is selected as the correct one. Then, we compute the 

Intersection Over Union between the chosen bounding box and the rest one by one. If the 

value surpasses a certain threshold, both bounding boxes are pretty oversampled, so the 

second one must be removed because it is pointing to the same object.  

 

 

Figure 22: Example of Non-Maximum Suppression 

 

6.2 Unet 

 
Unet is one of the most well-recognized image segmentation algorithms. It was initially 

invented and first used for biomedical image segmentation, and its architecture can be 

broadly thought of as an encoder network followed by a decoder network. 
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6.2.1 Process 

 

Unet uses an Encoder-Decoder Network. The encoder is in charge of gradually reducing 

the feature maps and capturing higher semantic information. The decoder, however, 

slowly recovers the spatial data. 

 

 

Figure 23: Encoder-Decoder Network 

 

On the encoder side, Unet uses a pre-trained classification network that acts as a feature 

extractor. It is in charge of repeatedly applying two 3x3 convolution blocks, each 

followed by the activation function ReLU and a 2x2 max pooling operation with stride 

two for downsampling. At each downsampling step, the number of feature channels is 

duplicated. In conclusion, it encodes the input image into feature representations at 

multiple levels. 

On the decoder side, Unet aims to semantically project the discriminative features (lower 

resolution) learned by the encoder onto the pixel space (higher resolution) to get a dense 

classification. It consists of an upsampling of the feature map followed by a 2x2 up-

convolution that halves the number of feature channels, a concatenation with the 

corresponding cropped feature map from the encoder, and the application of two 3x3 

convolutions, each followed by an activation function ReLU. 

The cropping is used due to the loss of border pixels in every convolution. Finally, in the 

last layer, a 1x1 convolution is used to map 64-component to the desired number of 

classes. In total, there are 23 convolutional layers. 
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Figure 24: Unet Architecture. Blue boxes represent multi-channel feature maps, while 

white boxes represent copied ones. 

 

Worth mentioning that ReLU is a type of activation function that is linear in the positive 

dimension but zero in the negative. In addition, the positive side's linearity prevents the 

non-saturation of gradients. 

 

 

Figure 25: ReLU activation Function 
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7 Datasets  

 

This is the first task we have to do to start our project, search for a dataset that fulfills all 

the requisites. As we mentioned previously, it is needed a dataset with fashion as the 

topic, a significant number of images, and as much information as possible about them, 

for example, the bounding boxes, the category of each one, the masks, etc. We have found 

three different datasets acceptable at first sight to our project: 

1. Clothing Co-Parsing 

2. DeepFashion 

3. Fashionpedia 

After selecting the dataset, we also have to develop a function to process all the 

information and put it in a specific format that we will explain now. Below, you can see 

an example of the structure to follow. 

image_path x_min, y_min, x_max, y_max, class_id x_min, y_min... class_id 

The first parameter, the image_path, refers to the local path where the image is located. 

The next four are coordinates (x, y) of a bounding box, the first two are the bottom left 

corner (x_min, y_min), and the last two are the top right corner (x_max, y_max). This 

bounding box covers an element of the image that our model should detect by itself in the 

future. The final parameter, the class_id, refers to the element’s name that covers the 

bounding box expressed previously. Finally, these variables can be repeated as many 

times as the number of categorized features in the image. 

Below, you can see an extract of the text document created: 

 

 

Figure 26: Part of the Annotation document created 

 
Next, we will describe all the three datasets independently, explaining the process we 

have developed for each of them to extract the information and which one we will select 

for the project. 
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7.1 Clothing Co-Parsing 

 

Clothing Co-Parsing is a new fashion database including elaborately annotated clothing 

items. It is established with 2.098 high-resolution street fashion photos with 59 tags, 

where each image has a wide range of styles, accessories, garments, and poses. In 

addition, all the images have image-level annotations, and 1.000 have pixel-level 

annotations. 

The dataset folder is structured as follows: 

• Photos – Directory of original photos 

• Annotations – Directory of annotations 

o Pixel-level – pixel-level annotations (1.004 files) 

o Image-level – image-level annotations (1.094 files) 

• Label_list.mat – [1*59] cell array, which maps label numbers to label names 

• README.md – File with information about the dataset.  

Below, you can see some examples of the dataset: 

 

 

Figure 27: Clothing Co-Parsing Dataset 
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7.1.1 Information extraction 

To extract all the corresponding information about the dataset, we have developed a 

process with python that we will explain now. 

First, we must extract all image masks from the Pixel-level folder and the 59 labels from 

the file Label_list.mat. We will use the method loadmat from the package scipy that 

enables us to load the MatLab files.  

As you can see below, a mask is an image where each component has the value of the 

correspondent label id. To grasp the idea, if the label id of the skirt is ten, then all the 

pixels into that clothing item will have that value: 

 

 

Figure 28: Example of an Image mask 

 
After that, we have built a method to extract the categories from an input mask. The first 

step is to take the unique values of the input to collect the label Ids within the image. 

Then, we loop through all these Ids and assign them the category that coincides with the 

list’s Ids. As a result, we will get a dictionary of all the labels of an input image. Next, 

you can see an example of an output: 

 

 

Figure 29: Dictionary with labels and ids of an image 
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Then, we have to create a text document where we will write all the information in the 

format we have explained at the beginning of this section. To achieve this, we have had 

to follow the following steps: 

1. Create and open a text document. 

2. Loop through all the masks. 

3. Loop through all the labels obtained with the previous function for each mask. 

4. For each label, make a copy of the mask and put all the pixel values within the 

category to 255 and the rest to 0. 

5. With the method ‘ConnecetedComponentsWithStats’ from cv2, extract all the 

coordinates of the bounding boxes, the bottom left and top right corners, of all the 

components with a pixel value of 255.  

6. Loop through all these components and write their coordinates and categories in 

the document we have created in the first step. 

7. Close the text document once all the images and labels are processed. 

Finally, we have recovered all the coordinates from the previous text document and drawn 

all the corresponding bounding boxes over the original images to verify that the results 

are correct. Below, you have an example of the result obtained: 

 

 

Figure 30: Original and Recovered Image 
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7.1.2 Discussion 

 
In conclusion, we can say that this database fits our requisites quite well. There are no 

irrelevant or incorrect labels, and the bounding boxes extracted from the masks are very 

accurate. There is only a problem with Clothing Co-Parsing. It does not have enough 

images to train the model and achieve optimal results. 

For that reason, we have not selected Clothing Co-Parsing as our final database, but we 

have used it to do fast trains and see some results in a short time. We have done that to 

see which combination of parameters gives us the best results and then maybe accelerate 

the training process with the final database. 

 

7.2 DeepFashion 

 

DeepFashion is a large-scale clothes database. It contains over 800.000 diverse fashion 

images ranging from well-posed shop images to unconstrained consumer photos, 

constituting the largest visual fashion analysis database. In addition, it is annotated with 

information about the clothing items within the pictures. Each image in this dataset is 

labeled with 50 categories, 1.000 descriptive attributes, bounding boxes, and clothing 

landmarks. 

Four benchmarks are developed using this database: 

• Category and Attribute Prediction. 

• Consumer-to-shop Clothes Retrieval. 

• In-shop Clothes Retrieval. 

• Landmark Detection. 

We would use the Category and Attribute prediction benchmark from these four options. 

It is a large subset of DeepFashion that contains: 

• 289.222 clothes images. 

• 50 clothing categories and 1.000 clothing attributes. 

• Each image is annotated with the bounding box and clothing type. 
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Figure 31: DeepFashion Dataset  

 

7.2.1 Discussion 

 

Contrary to Clothing-Co-Parsing, DeepFashion has a correct number of images to train 

the model. It would be a perfect database to start our training if it were not because we 

found that classes were mutually exclusive during the extraction process, meaning that 

we only have a bounding box per image. 

Because of that, we stopped the development of the information extraction and concluded 

that DeepFashion was not the best database for our model. We prefer a database where 

we can train the model to detect multiple objects on a single image. 

 

7.3 Fashionpedia 

 

Fashionpedia is a dataset provided with many images of people wearing various clothing 

types in multiple poses. It contains over 45.000 images to train and 3.200 to test and 

validate. 

This database project consists of two parts: an ontology built by fashion experts 

containing 27 main apparel categories, 19 apparel parts, 294 fine-grained attributes, and 

their relationships; and the second part is a dataset with fashion images annotated with 

segmentation masks and their associated per-mask fine-grained features, built upon the 

Fashionpedia ontology. 
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Figure 32: Fashionpedia Dataset 

 

The dataset follows the annotation format of the COCO Dataset with additional fields, 

and the annotations are stored in the JSON format. Below, you can see some examples of 

how they are organized: 

 

    

Figure 33: Examples of Fashionpedia JSON format 

 

7.3.1 Information extraction 

 

To extract all the corresponding information about the dataset, we have developed a 

process with python that we will explain now. 

First, we must consider that this dataset has subcategories such as sleeves, pockets, 

neckline, etc. These subcategories can confuse our model during the training, so we will 

not include the corresponding annotations that contain these labels in the text document. 
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Considering this, the first step is to extract the JSON file information. We will use the 

method loads from the python package JSON and put all the information we need into a 

pandas dataframe.  

As you can see below, we have an example of the resulting dataframe with the 

information we need. The image id, the coordinates of the bounding box, the category id, 

and the path where the image is located. 

 

 

Figure 34: Result dataframe from JSON file 

 

Once we have extracted all the data, we can create the text document by following these 

steps: 

1. Create and open a text document. 

2. Create an empty list where we will add each image processed to avoid 

duplications.  

3. Create a list of category Ids to refuse. 

4. Loop through all the rows of the dataframe. 

5. For each image id not in the list of processed images, create a sub-dataframe that 

only contains its annotations. 

6. Loop through the annotations of each image id. 

7. Add the annotation information to the text document only if its category is not in 

the list of categories to refuse. 

8. Close and save the document once all the images and annotations have been 

processed. 

Finally, we have recovered all the coordinates from the previous text document and drawn 

all the corresponding bounding boxes over the original images to verify that the results 

are correct.  

Below, you have an example of the results obtained: 
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Figure 35: Original and Recovered Image 

 

7.3.2 Discussion 

 

After processing all the images and information from the dataset, we can say that this 

database fits perfectly to train our model. It contains many pictures with various poses 

and styles for training and testing. In addition, many image data are related to object 

detection and image segmentation. 

As we can see in the previous images, the data is accurate, so our model will make 

reasonably accurate predictions. In addition, thanks to the COCO Dataset format on the 

annotations, we can easily access the information. 

The only disadvantage is that it contains some subcategories that can affect the model 

eventually. Still, there is no problem because we can control this issue by excluding these 

subcategories while extracting the information.  

Therefore, Fashionpedia will be the dataset selected to train and test the model during this 

project.  
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8 Tests, evaluation, and results 

This section will show all the tests we have done throughout the project and the obtained 

results on both implementations. First, we will describe all the modifications we have 

made to optimize our model on its predictions, and after that, we will display some of the 

results to comment on them. 

 

8.1 Object detection 

 

This implementation aims to predict where the objects are located and their label. To get 

these predictions, we have to recover the checkpoint with the minor test loss saved during 

the training and convert it into a pb file using the function freeze_ckpt_to_pb provided in 

the code. 

We must remember that we have trained our model with a variation of the Fashionpedia 

database where all the irrelevant subcategories, such as sleeves, pockets, and others, are 

ignored to avoid possible confusion by the model. 

Finally, we have trained and tested our model in multiple ways, which we will explain in 

the following sections with their corresponding setup.  

 

8.1.1 Training Setup 

 
Next, we will explain the different variables we have modified during the project to obtain 

the actual models.  We will start with the training variables. 

First, The GPU is our Graphics Processing Unit, and thanks to it, we have accelerated the 

training and testing process because it allowed us to process multiple images at once. 

With a GPU worse than the one used, we probably would not have finished the project 

because of time. 

The selected network in all the models is Darknet-53. It is a CNN that is 53 layers deep 

and acts as a backbone for the YOLOv3 object detection approach. 

The training sessions have been organized in epochs. We process all the images from the 

corresponding dataset, training or testing, for each period. In addition, we have the batch 
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size, which is the number of samples that will be propagated through the network at one 

on every step of the epoch. 

The IoU Loss Threshold is a parameter that teaches our model when a predicted bounding 

box is correct or not. If the IoU Loss is less than the value specified, the bounding box 

will be marked as wrong; otherwise, the bounding box will be marked as valid. The IoU 

Loss is an evaluation metric that computes how overlapped are the original bounding box 

and the predicted one. The higher the values, the better results and vice versa. 

The learning rate is a parameter of the neural networks between 0.0 and 1.0 that controls 

how quickly the model is adapted to a problem. For higher values, we will need fewer 

epochs and vice versa. The weights’ amount is updated during training is referred to as 

the step size or the learning rate. 

The Data Augmentation variable is a Boolean. If true, the dataset will be enlarged by 

augmentations functions; otherwise, it will stay normal.  

The anchor variable is the path where the document with the anchors we want to use is 

located. 

Finally, the checkpoint variable is the path where the checkpoint we want to use is located. 

If there are not any checkpoints, it means that we are working from scratch. Otherwise, 

we will use pre-trained weights from our model, which needs more training, or other 

people’s models. The use of this variable is also called finetuning. 

 

8.1.2 Testing Setup  

 
The following parameters we are going to explain are from the test configuration.  

The IoU threshold is used for non-maximum suppression. It is a technique that selects the 

bounding box with the best confidence and suppresses the others when the IoU Loss is 

greater than the threshold established. This avoids having more than one bounding box 

recovering the same object. 

Finally, the Score threshold is used to only accept bounding boxes with a confidence 

equal to or higher than the specified value. 
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8.1.3 Model I 

 
First, we will summarize all the configurations we have used to train and test the model. 

 

TRAIN CONFIGURATION 

GPU NVIDIA GeForce RTX 2070 SUPER 

Network Darknet-53 

Nº epochs 50 

Batch size 2 

IOU Loss Threshold 0.5 

Initial Learning Rate 1e-4 

Data Augmentation True 

Anchors Own anchors 

Checkpoint None 

 

 TEST CONFIGURATION 

GPU NVIDIA GeForce RTX 2070 SUPER 

Batch size 1 

IOU Threshold 0.3 

Score Threshold 0.6 

 

With this configuration, the best test loss obtained is 7,37%. Next, you can see a graph 

with the evolution of the test loss over the epochs: 

 

 

Figure 36: Evolution of the Model I Test Loss 

We can see that the test loss decreases exponentially during the first steps, but it becomes 

more difficult to reduce in the end. 
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Below, you can see some of the results obtained from Model I: 
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As we can see, the results are incredible. The model can detect almost all the clothing 

items from the image with precise bounding boxes and high confidence. We can say that 

this model is qualified to do its job with quite reliable predictions. 

 

8.1.4 Model II 

 
As before, we will summarize all the configurations we have used to train and test the 

model. 

 

TRAIN CONFIGURATION 

GPU NVIDIA GeForce RTX 2070 SUPER 

Network Darknet-53 

Nº epochs 50 

Batch size 2 

IOU Loss Threshold 0.5 

Initial Learning Rate 1e-4 

Data Augmentation True 

Anchors Default anchors 

Checkpoint None 

 

 TEST CONFIGURATION 

GPU NVIDIA GeForce RTX 2070 SUPER 

Batch size 1 

IOU Threshold 0.3 

Score Threshold 0.6 

 

With this configuration, the best test loss we have obtained is 10,44%. The only change 

we have made in this model is the anchors’ file. In this case, we have used the anchors 

from the COCO Dataset provided by the code.  

The first change we can observe is the test loss. Compared with Model I, the test loss 

obtained in Model II is 3.09 points higher. Also, as shown in figure 37, these 3-4 points 

of difference seem to be maintained during all training. 

This loss in accuracy is expected because we have used anchors with predefined bounding 

boxes from another model where the classes and boxes’ ratios are not the same as our 

database. So probably, the predictions will get worse on Model II.  
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Next, you can see a graph with the evolution of the test loss from both presented models 

over the epochs: 

 

 
 

Figure 37: Evolution of the Model I and II Test Loss 

 
Below, you can see some of the results obtained from Model II: 
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As we can see, the results are worse than Model I but are acceptable. Some clothing items 

are not detected, but the bounding boxes of the detected objects are generally precise and 

accurate.  

 

8.1.5 Model III 

 
As always, we will summarize all the configurations we have used to train and test the 

model. 

 

TRAIN CONFIGURATION 

GPU NVIDIA GeForce RTX 2070 SUPER 

Network Darknet-53 

Nº epochs 50 

Batch size 2 

IOU Loss Threshold 0.5 

Initial Learning Rate 1e-4 

Data Augmentation False 

Anchors Own anchors 

Checkpoint None 
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 TEST CONFIGURATION 

GPU NVIDIA GeForce RTX 2070 SUPER 

Batch size 1 

IOU Threshold 0.3 

Score Threshold 0.6 

 

With this configuration, the best test loss we have obtained is 8,07%. In this case, we have 

trained the model without data augmentation, which means we have trained with the 

default dataset size. 

The first change we can observe is the test loss. The result is between both previous 

models, 2.36 points under Model II and 0.70 points over Model I. Also, as you will see 

in figure 38, the test loss at the beginning is even better than Model I, but eventually, it 

gets static while Model I keeps reducing it little by little. Still, it is better than Model II 

during all the training sessions. 

Next, you can see a graph with the evolution of the test loss from all the presented models 

over the epochs: 

 

 
 

Figure 38: Evolution of all the Models Test Loss 
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Below, we will display some of the results obtained with Model III: 

 

         

 

          

 

As we can see, the results are similar to Model I, so we can say that Modell III is also 

qualified to detect images in our project.  
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8.1.6 Discussion 

 
So far, we have seen all the models and their results, and the question we want to solve is 

which one of them is better. 

In the first instance, we can discard Model II because it is the one with less accuracy in 

making predictions and is not as reliable as the others are, as we can observe in the 

previous results. 

Then the choice is between Models I and III. As we have seen, both models have a shallow 

test loss and can perform good predictions in all the dataset images. The only difference 

between them is that Model I use data augmentation, and the other does not. 

We have concluded that Model I is the best because of data augmentation. This extra 

training that gives data augmentation to the model allows it to be prepared for more 

situations than Model III. This decision has been taken thinking of the future, where the 

model could be tested with images not as clean and clear as the ones from the dataset.  

If we focus only on the tests from the dataset, both models are equivalent. Maybe, Model 

I has higher confidence in the bounding box predictions, but that is all. 

 

8.2 Semantic Segmentation 

 
This implementation aims to predict where the objects are located and what label they 

are, like in object detection but adding a mask, where the image is segmented depending 

on the items from it.  

We must remember that we have trained our model with a variation of the Fashionpedia 

database where all the irrelevant subcategories, such as sleeves, pockets, and others, are 

ignored to avoid possible confusion by the model. 

Finally, we have trained and tested our model in multiple ways, which we will explain in 

the following sections with their corresponding setups.  
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8.2.1 Training Setup 

 
Next, we will explain the different variables we have modified during the project to obtain 

the current model.  

In this implementation, we have been playing primarily with the classification networks 

in the part of the encoder. We have used three different types: 

• Unet. 

• Mobilnet. 

• Renset50. 

The training sessions have been organized in epochs. During each period, all the images 

from the respective dataset are processed. In addition, we have the batch size, which is 

the number of samples that will be propagated through the network at one on every step 

of the epoch. 

Finally, the checkpoint variable is the path where the checkpoint we want to use is located. 

If there are not any checkpoints, it means that we are working from scratch. Otherwise, 

we will use pre-trained weights from our model, which needs more training, or other 

people’s models. The use of this variable is also called finetuning. 

 

8.2.2 Model I 

 
Like in Object Detection, we will summarize all the configurations we have used to train 

and test the model.  

 

TRAIN CONFIGURATION 

GPU NVIDIA GeForce RTX 2070 SUPER 

Classification Network Resnet50 

Nº epochs 50 

Batch size 2 

Checkpoint None 

 

With this configuration, we have achieved a model with a test loss of 34,81% and an 

accuracy of 89,44%. Next, you can see a graph with the evolution of the test loss and 

accuracy over the epochs: 
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Figure 39: Evolution of Model I Test Loss and Accuracy 

We can observe in the image above that test loss decrease quickly at the beginning but 

becomes slower in the end. Accuracy, however, increases little by little during all the 

training. 

Below, we can see some of the results obtained from Model I: 
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As we can see, the results are decent as much. The model accurately detects the pixels 

where there are clothing items but is very unreliable at classifying them. For example, the 

image above detects the pixels where there is the skirt but says it is a dress, which is 

incorrect. 

 

8.2.3 Model II 

 
As before, we will summarize all the configurations we have used to train and test the 

model.  

 

TRAIN CONFIGURATION 

GPU NVIDIA GeForce RTX 2070 SUPER 

Classification Network Mobilnet 

Nº epochs 50 

Batch size 2 

Checkpoint None 

 

With this configuration, we have achieved a model with a test loss of 34,52% and an 

accuracy of 89,84%. We have improved some tenths to both metrics, specifically, 0.29 

points less in test loss and 0.40 points more in accuracy. Next, you can see a graph with 

the evolution of the test loss and accuracy over the epochs: 
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Figure 40: Evolution of Model II Test Loss and Accuracy 

We can observe that both models have a similar evolution and values on the metrics. The 

test loss may be more variable during the training in Model II, and Model I has a more 

linear development. 

Below, you can see some of the results obtained from Model II: 
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As we can see, the results are very similar to Model I, even changing the feature extractor. 

The same problem appears. It is good at detecting objects but not classifying them. 

However, the classification in Model II improves a little bit. 

 

8.2.4 Discussion 

 

Having seen both models’ results, we can observe that they poorly perform good 

predictions on the images. We could say these predictions are partially correct because 

pixels are correctly selected, showing a fashion item in the end but with ambiguous labels. 

Therefore, we concluded that Models I and II are unsuitable for performing image 

segmentation, at least with fashion as the topic. However, if we had to choose one, Model 

II would be selected due to the extra tenths achieved in the accuracy. Furthermore, as we 

have seen in the results, the classifications are closer to being right in this model. 
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8.3 Yolo vs. Unet 

 

This section will compare both algorithms and their results, and we will see which one 

performs better in detecting fashion items on images. 

We have seen the results from both implementations, and the models selected for each 

are Model I from Object Detection and Model II from Semantic Segmentation. In 

addition, remember that the algorithms used in the project are Yolo and Unet. 

The final decision is quite apparent due to the best results coming from Object detection 

Model I, so we concluded that in this project, the best method to predict fashion items in 

RGB images is Yolo.  

On the contrary, Unet has not been the best option for developing Semantic segmentation 

with fashion as the topic. Which does not mean there are no other algorithms that could 

make better predictions than Yolo on this topic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 
 

9 Conclusion 
 
Finally, we will summarize all the work done, analyze the pros and cons of the project, 

and how it can be improved in the future. 

In this project, we have implemented two deep learning algorithms, Object Detection, and 

Semantic Segmentation, to recognize clothing items in RGB images. We have used 

YOLO as an object detection function and Unet as a semantic segmentation function. 

To allow them to recognize the different parts of a picture, we have made many training 

sessions feeding them with a bunch of photos from a dataset that we have explicitly 

selected. Thanks to that, the models have learned slowly to extract all the features from 

an image and understand it as a human. 

Once we concluded the project, we saw that comparing the two developed 

implementations, the one that performs its job better is Yolo. However, the fact that Yolo 

obtained better results than Unet does not mean object detection is better than semantic 

segmentation.  

Semantic segmentation would be an excellent option to work with, but with another 

algorithm like Deeplab or Pspnet. These methods could be possible options to research 

and put in practice in future projects. Unfortunately, Unet has not been the best 

development option for this project. 

Concerning object detection, Yolo has been a great option to implement, and we have 

achieved excellent results. We could get even better results with a more extensive dataset 

and training. 

In conclusion, we could make improvements in general to the implementations and use 

them in various situations. For example, suppose we could access all Instagram photos or 

TikTok videos. In that case, we could analyze all this information to see which 

combinations of clothing items are more used, liked, etc., and use them in our favor to 

make assumptions based on that. 
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