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Abstract

In this project we introduce the notion of analytic capacity (γ) as well as some of its essential
properties. Using this concept we identify the family of removable compact subsets of C, which
are those such that, for any bounded holomorphic function defined on their complementary,
they allow to extend analytically such function to the whole complex plane. From this point
on, we discuss a possible geometric characterization for removable subsets, popularly known
as the Painlevé problem. The previous task is done in terms of the Hausdorff dimension of
these subsets, obtaining a full classification for values different than 1. This remaining case,
usually referred to as the critical dimension associated to γ, has to be dealt with apart. It
is at this point that we invoke the theory of singular integrals in order to study a particular
family of these subsets: those contained in graphs of Lipschitz functions. We end our project
by tackling this case, introduced by Arnaud Denjoy in the early 1900’s, and providing a proof
of a characterization theorem in this particular setting.
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Chapter 1

Introduction

Let us start by recalling a basic result that is typically encountered in a first course in complex
analysis. The details of the proof can be found in [14, Proposition 3.3.4].

Theorem. Let D ⊂ C be open, a ∈ D and f ∈ H(D \ {a}). Then, f having a (unique)
holomorphic extension over a is equivalent to f being continuously extendable over a.

This result can be extended, by means of Morera’s theorem, to the case where, instead of
single point, the set where f is continuous but not holomorphic is a line segment.

Bearing in mind such property, assume that we want to distinguish between compact subsets
E ⊂ C depending on the kind of holomorphic functions we may define on their complemen-
tary. That is, depending on the properties of the family H(C \ E). For example, if E = {a}
a single point it is clear that the elements of H(C \ E) are either functions which are entire
or that exhibit a pole or an essential singularity at z = a. On the other hand, if E is a line
segment, such family does not admit a clear characterization in the same terms as with the
previous example. And the reason for this relies, mainly, in the fact that we have imposed
no condition on f other than being holomorphic on C \ E. Hence, a first reasonable way to
approach the problem of classifying compact subsets of C would be to restrict the properties
of f in order to gain control over its extensions. So a question arises: what is the proper
subfamily of H(C \ E) suitable for this purpose?

The choice that will be made in this project is to restrict f to the family of bounded holo-
morphic functions on C \ E. This way, it is possible to distinguish compact subsets of C.
Indeed, one can check, using Liouville’s and Riemann mapping theorems [13, §5.1]; that the
possible extensions for a bounded function f ∈ H(C \E) are different if E is a point or a line
segment. Moreover, if one proceeds this way, a new concept emerges naturally: the analytic
capacity of a compact subset. Its definition was first introduced by Ahlfors [1] (1947) and it
is the following:

Definition (Analytic capacity). The analytic capacity of E ⊂ C compact is

γ(E) := sup |f ′(∞)|,

where f ′(∞) := limz→∞ z
(
f(z) − f(∞)

)
and the supremum is taken over all functions f ∈

H(C \ E) satisfying |f | ≤ 1.
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Figure 1.1: Two examples of sets with Hausdorff dimension greater than 1.

Throughout the project we will see that the nature of the extensions of a bounded function
in H(C \E) is closely related to the analytic capacity of E. In particular, we will prove that
compact subsets with null analytic capacity, known as removable subsets, are exactly those
such that for any f ∈ H(C \ E) bounded, they admit an holomorphic extension of f to C.

At this point, we may also wonder if there is a way, apart from the previous (analytic) point
of view, to identify removable subsets in a pure geometric way. This perspective leads to the
study of the Hausdorff dimension of compact sets of C, that turns out to be connected to their
analytic capacity. In fact, we will be able to prove the following fundamental result:

Theorem. If E ⊂ C, then dimH(E) < 1 implies that E is removable. On the other hand, if
dimH(E) > 1 the set will not be removable.

This means, for example, that the usual real Cantor set, that has Hausdorff dimension
log3(2) ≈ 0.631 is removable; but a greater variety of sets, precisely those with a well-defined
positive length (maybe infinite), are not. Examples are a line-segment, the graph of a Lip-
schitz function or even more exotic sets like the von Koch curve, with Hausdorff dimension
log3(4) ≈ 1.262; or the Sierpinski triangle, with Hausdorff dimension log2(3) ≈ 1.585 (see
Figure 1.1). The reader may consult the book of Mattila [16, Chapter 4] for computational
techniques of the Hausdorff dimension of self-similar sets such as the last two mentioned.

And what about the case dimH(E) = 1? It is, precisely, in the study of this critical dimen-
sion that the theory of singular integrals becomes helpful. We will introduce the Calderón-
Zygmund theory to prove a result – proposed by Arnaud Denjoy (1884-1974) near the first
decade of the 20th century – related to the specific case where E is a finite rectifiable curve.

The previous approach clarifies the connection between analytic capacity and singular inte-
grals; but, in fact, although the early work in analytic capacity relies on one complex variable
methods, in recent articles such as the one from Verdera [28] (2007), γ is expressed as
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γ(E) := sup
T

{
|⟨T, 1⟩| : T ∈ C∞

c (R2)′ s.t. supp(T ) ⊂ E and ∥T ∗ z−1∥∞ ≤ 1
}
.

Let us justify, rather informally, the reason for this alternative definition. First notice that
since (−πz)−1 is the fundamental solution to the ∂-equation (Theorem A.2.1), then ∂

(
T ∗

z−1
)
≃ T , and so we can think T as represented by a function of the type ∂f . Notice that

since T is supported on E, then f becomes holomorphic in C \ E and, in fact, bounded,
because

∥∥T ∗ z−1
∥∥
∞ = ∥f∥∞ <∞. Consider now R > 0 so that supp(∂f) ⊂ D(0, R) and pick

φ ∈ C∞
c (R2), with 0 ≤ φ ≤ 1, satisfying φ ≡ 1 for |z| ≤ 2R and φ ≡ 0 for |z| ≥ 3R. This way,

the Cauchy-Pompeiu formula (Theorem A.1.1, assuming ∂E regular enough) yields

⟨T, φ⟩ =
∫
E
∂f(z)φdL2(z) =

∫
E
∂f(z)dL2(z) =

1

2i

∫
∂E
f(z)dz = πf ′(∞),

and since R is arbitrary, we may define ⟨T, 1⟩ as πf ′(∞), so that it clarifies that both defi-
nitions of γ(E) are equivalent. Hence it is natural to suggest that there will be a connection
between the properties of analytic capacity and those of the singular integral given by the
convolution against a specific kernel, precisely z−1. In fact, it is by changing the nature of
this kernel that we are able to define many other capacities (such as the harmonic, Lipschitz
or C1 capacities, for example. See Mattila & Paramonov [17] for more details).

In any case, our project will focus on studying a particular capacity, the analytic capacity.
As we have mentioned initially, we will present some of its properties as well as its relation to
Hausdorff measure and the geometric characterization of removable subsets of C. For this, we
will need some basic results in measure theory in our proofs, found in the introductory chapter
of Mattila [16]. From that point on, in order to study those sets of Hausdorff dimension 1, we
will develop the necessary theory of singular integrals to give a partial proof of a conjecture
proposed by Denjoy, that was first tackled by Calderón [3] in 1977 and fully answered by
Coifman, McIntosh & Meyer [4] in 1982.

The geometric characterization of removable compact subsets of the complex plane with Haus-
dorff dimension 1 has been a challenging problem of the 20th century, and many mathemti-
cians have worked on it (Pommerenke (1960) [22]; Garnett (1970) [11]; Calderón (1977) [3];
Coifman, McIntosh & Meyer (1982) [4]; David (1984) [5]; Mattila & Paramonov (1995) [17];
Garnett & Verdera (2003) [12]; Tolsa (2003) [25], (2005) [26]). Two of the most recent and
relevant results are found in the last two papers by Xavier Tolsa, in which two fundamen-
tal tools were introduced. The first was the semiadditivity of γ [25], meaning that for any
compact subsets E,F ⊂ C there exists an absolute constant C > 0 so that

γ(E ∪ F ) ≤ C
(
γ(E) + γ(F )

)
.

The second refers the stability of analytic capacity with respect to homeomorphic bilipschitz
transformations [26]. That is, if φ : C → C is a bijective map satisfying that there exists
L > 0 so that

L−1|z − w| ≤ |φ(z)− φ(w)| ≤ L|z − w|, ∀z, w ∈ C,

then, there exists C > 0, depending only on φ, so that for any compact subset E

C−1γ(E) ≤ γ(E) ≤ Cγ(E).

3



Chapter 2

Analytic capacity

We would like to begin our project by defining, straightaway, the concept of analytic capacity,
which will be one of the main pillars of our study. In order to do it, we review first some
of the basic notation needed to define it, to carry on with the statement of some of its basic
properties. To provide a proof of the latter, we will need some important results in complex
analysis such as Montel’s, Weierstrass’ or the 1/4 Koebe theorems. These will lead us to a
more geometric comprehension of the notion of analytic capacity. We will continue by giving a
particular meaning to those compact sets E ⊂ C which have null analytic capacity. This goal
will be achieved using the Cauchy transform, a tool that will allow us, eventually, to connect
the previous notions with the theory of singular integrals using the Hausdorff measure as an
intermediary.

2.1 Some preliminaries and definition of analytic capacity

Previous to presenting the notion of analytic capacity let us clarify some aspects of notation.
Our general setting will be the complex plane C and holomorphic functions defined on open
subsets of the form C \ E, for E compact. Observe that these may have different connected
components, since E might not be simply connected. This gives rise to a first definition.

Definition 2.1.1 (Outer boundary). Let E ⊂ C be a compact set. Its outer boundary,
denoted by ∂oE, will be the boundary of the unbounded connected component of C \E. It is
clear that ∂oE ⊂ ∂E.

Also, given f : C \ E → C holomorphic function, we will use the following notation

f(∞) := lim
z→0

(f ◦ g)(w), where g(w) =
1

w
,

whenever the previous limit exists. This way of writing is motivated by viewing the domain
of f as an open subset of the Riemann sphere C∞, and defining its value at ∞ via the Möbius
transformation g(w) = w−1, which is just the usual inversion.
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2.1 Some preliminaries and definition of analytic capacity

This way of thinking allows us also to define, for example, the values of the derivatives of f
at infinity just as

f (k)(∞) := (f ◦ g)(k)(0), so in particular f ′(∞) := lim
z→∞

z
(
f(z)− f(∞)

)
.

This motivates considering the Laurent expansion of f near∞, which is the Laurent expansion
of f ◦g near 0. Since f is holomorphic in C\E, f ◦g also is in a neighborhood of 0. Therefore,
the Laurent expansion at this point lacks its principal part, obtaining

(f ◦ g)(w) = a0 + a1w + a2w
2 + · · ·

which holds for every w ∈ Dr ⊂ g(C \ E), where Dr = D(0, r) is the closed disk of radius
r > 0 centered at the origin. Recall that the coefficients ak are given by

ak =
1

2πi

∫
∂Dr

(f ◦ g)(w)
wk+1

dw =
1

2πi

∫
−∂D1/r

f(z)zk+1 dz

−z2
=

1

2πi

∫
∂D1/r

f(z)zk−1dz.

So, formally, we can state the definition of the Laurent expansion of f near infinity as:

Definition 2.1.2 (Laurent expansion near ∞). Let E ⊂ C be compact and f : C \ E → C
holomorphic. Its Laurent expansion near ∞ will be

f(z) = a0 +
a1
z

+
a2
z2

+ · · · , where ak =
1

2πi

∫
Γ
f(z)zk−1dz,

and Γ is any curve (regular enough) enclosing E. Notice that

f (k)(∞) =
k!

2πi

∫
Γ
f(z)zk−1dz, so in particular f ′(∞) =

1

2πi

∫
Γ
f(z)dz. (2.1.1)

Now we are ready to present the notion of analytic capacity, that will possibly seem, at first,
rather not intuitive. By this we mean that its definition might not be as transparent as it
could be to convey, just with a first glance, what is its purpose as a mathematical object
neither the meaning of its value. The motivation to conceive the previous concept was to try
to understand better the so called removable subsets.

Definition 2.1.3 (Removable subset). A compact subset E ⊂ C will be called removable
(for bounded holomorphic functions) if for every open set Ω containing E, any bounded
holomorphic function on Ω \ E has an analytic extension to Ω.

And it was in 1947 that Ahlfors [1] introduced the concept of analytic capacity, a positive
quantity associated to each compact subset of C that becomes helpful when characterizing
removability.

Definition 2.1.4 (Analytic capacity). The analytic capacity of a compact subset E ⊂ C is

γ(E) := sup |f ′(∞)|, (2.1.2)

where the supremum is taken over all holomorphic functions f : C \ E → C with |f | ≤ 1.
Holomorphic functions defined on C\E satisfying this last condition will be called admissible.

5



2.2 Basic properties of analytic capacity

Example 1: one trivial example to consider is the case where E is a finite collection of points.
In this case, notice that the family of admissible functions is the family of entire bounded
functions, that is, the family of constant functions. Therefore γ(E) = 0.

Example 2: consider E = Dr, the closed disk of radius r centered at the origin. In this case
we deduce that its analytic capacity must be positive, since taking the admissible function
f(z) = rz−1, we get γ(E) ≥ r. Later on we will see that, in fact, we have an equality.

Hence, the previous results may suggest that we should understand γ(E) as “the size” of E
as a removable singularity. In Section 2.3 we will formalize the connection between the value
of γ(E) and its removability with respect to the bounded functions of H(C \ E).

2.2 Basic properties of analytic capacity

In this section we would like to give some of the most basic but yet fundamental properties
of analytic capacity. In order to discuss and prove these features, we will need two important
theorems that are typically encountered in an advanced course in complex analysis. These
will provide us with information about converging sequences of holomorphic functions and
the properties of their limits regarding holomorphicity.

2.2.1 The theorems of Weierstrass and Montel

Let us denote by Ω ⊂ C a domain of the complex plane and H(Ω) the class of holomorphic
functions on Ω. The first result we will present, known as Weierstrass’ theorem, gives a suffi-
cient condition to ensure the holomorphicity of a function obtained as a limit of holomorphic
functions. To obtain it, first we need to consider a specific kind of convergence.

Definition 2.2.1 (Uniform convergence on compact subsets). We will say that a sequence
(fn)n∈N ⊂ H(Ω) converges uniformly on compact subsets of Ω if there exists a function f :
Ω → C such that for any K ⊂ Ω compact

lim
n→∞

∥fn − f∥L∞(K) = lim
n→∞

sup
z∈K

|fn(z)− f(z)| = 0.

Theorem 2.2.1. (Weierstrass, [14, Theorem 3.1.8]). Let (fn)n∈N be a sequence of functions
in H(Ω) that converges uniformly to f on compact subsets of Ω. Then

1. f ∈ H(Ω).

2. For each k ∈ N, the sequence of k-th derivatives (f
(k)
n )n∈N converges uniformly to f (k)

on compact subsets of Ω.

Proof. Let us begin by proving 1. Since holomorphicity is a local property, it will be enough
to fix an arbitrary z0 ∈ Ω and a small disk D(z0, ε) ⊂ Ω and check the property there. By the
hypothesis of uniform convergence, f is continuous in D(z0, ε). Therefore, applying Morera’s
theorem in this disk and using that the uniform convergence allows us to take limits outside
of the integral, we are done.

Concerning 2, we again fix any z0 ∈ Ω, a disk D(z0, ε) ⊂ Ω and a possibly bigger one of radius
R ≥ ε > 0 so that D(z0, R) ⊂ Ω. The Cauchy formula applied to fn − f yields

6



2.2 Basic properties of analytic capacity

f (k)n (z)− f (k)(z) =
k!

2πi

∫
∂D(z0,R)

fn(w)− f(w)

(w − z)k+1
dw, ∀z ∈ D(z0, ε).

Then ∣∣f (k)n (z)− f (k)(z)
∣∣ ≤ sup

w∈D(z0,R)

|fn(w)− f(w)| k!

|R− ε|k+1
R.

Therefore taking the supremum over all z ∈ D(z0, ε) and letting n → ∞ we obtain the
uniform convergence for closed disks. But since every compact subset can be covered by a
finite number of open disks, we can deduce the result for general compact subsets.

Turning to the second result, in some way, it will be similar to the well-known Arzelá-Ascoli
theorem. That is, it will give a sufficient condition for a sequence of holomorphic functions
defined on a compact subset to have a subsequence converging uniformly on compact subsets.
As we know, the Arzelá-Ascoli theorem relies on two conditions that the family of functions
must satisfy: uniform boundedness and equicontinuity. In our setting, the functions of any
family we may consider will be holomorphic, and this property will relax both of the previously
mentioned requirements. Montel’s theorem (see [24, §2.2] for a proof) formalizes this fact,
and in order to state it we will need the following definition.

Definition 2.2.2 (Normal family). Let Φ ⊂ H(Ω) be a family of holomorphic functions.
We will say that Φ is a normal family if every sequence in Φ has a subsequence converging
uniformly on compact subsets of Ω.

Theorem 2.2.2 (Montel). Let Φ ⊂ H(Ω) be a family of holomorphic functions. Then the
following are equivalent

1. Φ is normal.

2. Φ is uniformly bounded on compact subsets. That is, for each K ⊂ Ω compact, there
exists CK > 0 such that supf∈Φ supz∈K |f(z)| ≤ CK .

2.2.2 Properties of analytic capacity

Let us state some of the most basic properties concerning analytic capacity. Some of them
will follow right away from its definition, just as the following ones.

Proposition 2.2.3. Let E,F ⊂ C and z, λ ∈ C. Then the following hold

1. If E ⊂ F , then γ(E) ≤ γ(F ).

2. γ(z + λE) = |λ|γ(E).

3. If E is compact, then γ(E) = γ(∂oE).

Proof. Property 1 is just a consequence of the fact that if f is admissible for E, then it is also
admissible for F . Regarding 2, proving that γ is invariant under translations is just a matter
of a change of variables given, precisely, by this same translation. Also, if we dilate the set
E by λ, again by a change of variables and taking into account that |f ′(λz)| = |λ||f ′(z)|, the
result easily follows.

7



2.2 Basic properties of analytic capacity

For 3 we apply 1 to get γ(∂oE) ≤ γ(E). The equality can be deduced arguing by contradic-
tion, using the fact that we can always extend, if necessary, an holomorphic function in C \E
to C \ ∂oE (by defining it to be constant with modulus less than 1, for example) as well as
that E is bounded, so the possibly modified values of the extension do not affect |f ′(∞)|.

Let us give now the first main theorem about analytic capacity that will assert that, for E ⊂ C
compact, the supremum involved in the definition of analytic capacity is attained by some
admissible function. That is, for every compact subset E ⊂ C, there is an extremal function
f for γ(E). In fact, under an additional condition, this function will be unique.

Theorem 2.2.4. Let E ⊂ C be compact. Then, the supremum defining γ(E) is attained.
Moreover, if γ(E) > 0, the extremal function is unique and it satisfies f(∞) = 0.

Proof. We begin by proving the existence of an admissible function attaining the supremum.
Let Φ be the family of admissible functions for E. By property 3 of Proposition 2.2.3 we can
assume that each connected component of E is simply connected, so that C \E is connected;
and by property 2 we also assume that there exists a connected component of E that contains
the origin. Consider now the auxiliary family of functions

Φ′ :=
{
f ◦ g : f ∈ Φ, g(z) = z−1

}
,

whose elements are holomorphic in g(C \ E) with modulus bounded by 1. Notice also that
g(C \ E) is a bounded subset of the complex plane that contains the origin. We pick a
sequence (fn ◦ g)n∈N ⊂ Φ′ so that at the origin it approximates the value supf∈Φ |(f ◦ g)′(0)|.
Applying Montel’s theorem 2.2.2 we deduce that the family Φ′ is normal in g(C \ E), so we
may consider a subsequence (fnk

◦ g)k convergent on compact subsets. This way, taking an
exhaustion by compact subsets of g(C \E) and applying Weierstrass’ theorem 2.2.1, we may
construct F holomorphic in C \ E with |F | ≤ 1 so that |(F ◦ g)′(0)| = supf∈Φ |(f ◦ g)′(0)|,
that is |F ′(∞)| = supf∈ϕ |f ′(∞)|, and we are done.

Before proving the uniqueness, we will see that if γ(E) > 0, then any extremal function f
must satisfy f(∞) = 0. To do it, we consider the following function on C \ E

h(z) =
f(z)− f(∞)

1− f(∞)f(z)
=

f(z)− (f ◦ g)(0)
1− (f ◦ g)(0)f(z)

, where g(z) =
1

z
.

Since |f(z)| ≤ 1 in C \ E, we notice that h(z) has the form of an automorphism of the unit
disk, and so |h(z)| ≤ 1 for every z ∈ C \ E, meaning that h is admissible for E. Moreover,
h(∞) = (h ◦ g)(0) = 0 and

h′(∞) = (h ◦ g)′(0) = lim
z→0

(h ◦ g)(z)
z

= lim
z→∞

zh(z) = lim
z→∞

z(f(z)− f(∞))

1− f(∞)f(z)
=

f ′(∞)

1− |f(∞)|2
.

Therefore, |h′(∞)| ≥ |f ′(∞)|. But since f attains the supremum, the inequality must be an
equality and so necessarily f(∞) = 0.

Finally, let us see now that if γ(E) > 0, such function f is unique (we will follow the proof of
Fisher [10, Theorem 1]). Suppose that f1, f2 are admissible functions with f ′1(∞) = f ′2(∞) =
γ(E) and f1(∞) = f2(∞) = 0. Let

8



2.2 Basic properties of analytic capacity

f =
f1 + f2

2
, g =

f2 − f1
2

.

Notice that both f and g are admissible with f(∞) = g(∞) = 0, and f ′(∞) = γ(E). In
addition, we have the identities f1 = f − g and f2 = f + g. Therefore |f ± g| ≤ 1, which
means, explicitly

|f ± g|2 = |f |2 + |g|2 ± 2Re(fg) ≤ 1.

Adding both inequalities, we deduce |f |2 + |g|2 ≤ 1, which at the same time implies

|g|2

2
≤ 1− |f |2

2
=

(1− |f |)(1 + |f |)
2

≤ 1− |f | ⇔ |f |+ |g|2

2
≤ 1.

Now, let us assume that g ̸= 0 in the unbounded component of C\E and reach a contradiction.
If this was the case, in particular g ̸= 0 in a neighborhood of ∞ and we may consider the
Laurent series of g2/2 near ∞

g(z)2

2
=
an
zn

+
an+1

zn+1
+ · · ·

with n ≥ 2, because g(∞) = 0 and g is raised to the second power. Assume also that n was
chosen so that an ̸= 0. Now we choose ε > 0 small enough and define the function

f̃(z) = f(z) + εanz
n−1 g(z)

2

2
,

so that |εanzn−1| ≤ 1 in a bounded neighborhood V of E. Then, in this neighborhood

|f̃(z)| ≤ |f(z)|+
∣∣∣∣εanzn−1 g(z)

2

2

∣∣∣∣ ≤ |f(z)|+ |g(z)|2

2
≤ 1.

So in (C \E)∩ V the function |f̃ | is bounded by 1. On the other hand, since by construction
f̃(∞) = 0, we also have this bound for |f̃ | in a neighborhood of ∞. This implies, by the
maximum modulus principle, that the bound holds in the whole unbounded component of
C \ E, i.e. f̃ is an admissible function. Finally, since f̃ ′(∞) = f ′(∞) + ε|an|2 > γ(E), we
reach the desired contradiction. From it we deduce that g = 0, i.e. f1 = f2, in the unbounded
component of C \ E, which we have assumed to be connected. Hence f1 = f2.

Definition 2.2.3 (Ahlfors function). Let E ⊂ C be a compact set with γ(E) > 0. Then,
the unique admissible function f : C \ E → C attaining the supremum in γ(E) is called the
Ahlfors function of E, and it is such that f(∞) = 0.

The existence of functions defining the analytic capacity for compact subsets provides a first
tool to compute this quantity by approximating methods, as the next result shows.

Corollary 2.2.5. (Outer regularity, [27, Proposition 1.7]). Let (En)n≥0 be a sequence of
compact sets in C satisfying En+1 ⊂ En for each n. Then

γ

( ⋂
n≥0

En

)
= lim

n→∞
γ(En).

9



2.2 Basic properties of analytic capacity

Proof. Set E :=
⋂
n≥0En and notice that property 1 of Proposition 2.2.3 implies that the

sequence {γ(En)}n≥0 is non-increasing. So in particular limn→∞ γ(En) makes sense. In
addition, since E ⊂ En for all n, we obtain γ(E) ≤ limn→∞ γ(En). To see the other inequality,
we pick fn admissible for En with |f ′n(∞)| = γ(En), for every n. By Montel’s theorem 2.2.2 we
get that (fn)n is a normal family on C \E. Hence, we may choose (fnk

)k a subsequence that
converges uniformly on compact subsets of C \E to a function f , that also satisfies |f | ≤ 1 in
C \ E. In addition, by Weierstrass’ theorem 2.2.1, f is holomorphic in this domain, meaning
that f is, in fact, admissible for E. Now, using the uniform convergence of the sequence (fnk

)k
and the relation (2.1.1) for k = 1, we get

f ′(∞) = lim
k→∞

f ′nk
(∞).

On the other hand we know that |f ′nk
(∞)| = γ(Enk

), and so we obtain the identity

|f ′(∞)| = lim
k→∞

γ(Enk
) = lim

n→∞
γ(En),

Therefore we conclude γ(E) ≥ |f ′(∞)| = limn→∞ γ(En) and we are done.

We continue by giving another helpful theorem to compute the analytic capacity of compact
connected subsets of C. The result involves a conformal transformation of the unbounded
connected component of C \ E to D, the unit disk.

Theorem 2.2.6. Let E ⊂ C be a compact connected set with with at least two points. Let f be
a conformal map from the unbounded connected component of C\E to D satisfying f(∞) = 0.
Then, γ(E) = |f ′(∞)|.

Observe that the assumption of E being different from a single point is to avoid the case
where this point is the origin, since in this context we would not be able to apply the Riemann
mapping theorem [13, §5.1] to ensure the existence of the conformal map appearing in the
statement (since the inverted domain would be the whole C).

Proof. Notice that f is admissible, so γ(E) ≥ |f ′(∞)| > 0. The second inequality can be
assumed, without loss of generality, by the Riemann mapping theorem. Let g be any other
admissible function that, by Theorem 2.2.4, is such that g(∞) = 0. We want to see that
|g′(∞)| ≤ |f ′(∞)|. Observe that g ◦ f−1 : D → D is an holomorphic map fixing the origin.
Hence, by Schwarz’s lemma [13, §3.1, p. 130] we get |(g ◦ f−1)(z)| ≤ |z|, ∀z ∈ D. Defining
now w := f−1(z) ∈ C \ E, we have

|g(w)| ≤ |f(w)|, ∀w ∈ C \ E.

In addition, using the genuine definition of derivative at ∞ (a method that was already used,
implicitly, in the proof of Theorem 2.2.4)

f ′(∞) = lim
z→∞

z(f(z)− f(∞)) = lim
z→∞

zf(z), and g′(∞) = lim
z→∞

zg(z),

so we deduce straightaway that |g′(∞)| ≤ |f ′(∞)|, that was what we wanted to prove.

Using the previous theorem we can compute explicitly the analytic capacities of a disk and a
segment of finite length.

10



2.2 Basic properties of analytic capacity

Corollary 2.2.7. The following hold:

1. Let Dr ⊂ C be any disk of radius r. Then γ(Dr) = r.

2. Let [z, w] ⊂ C be the line segment joining z, w ∈ C. Then γ([z, w]) = ℓ([z, w])/4, where
ℓ([z, w]) denotes the length of [z, w].

Proof. For the first statement, if Dr = D(z0, r) we pick the transformation

f(z) =
r

z − z0
,

that maps conformally C \D(z0, r) to D with f(∞) = 0. Hence, by the Theorem 2.2.6. we
deduce γ(Dr) = |f ′(∞)| = r.

For the second statement we assume, without loss of generality, that the line segment is the
real interval [−L/2, L/2]. Now, we consider the transformation

f(z) =

(
z +

1

z

)
L

4
,

that maps conformally the unit disk to C \ [−L/2, L/2] and is such that f(0) = ∞. Hence

γ

([
− L

2
,
L

2

])
= lim

z→∞

∣∣z(f−1(z)− f−1(∞)
)∣∣ = lim

w→0
|f(w)w| = L

4
.

To end this section let us present a bound for the values of the analytic capacity for compact
connected sets in terms of their size, more precisely in terms of their diameter. To prove this
bound we will need the following result conjectured by Koebe and proved by Bieberbach.

Theorem 2.2.8 (1/4 Koebe). Let f : D → C be an holomorphic and univalent (injective)
function with f(0) = 0 and |f ′(0)| = 1. Then, D(0, 1/4) ⊂ f(D).

A proof of this result can be found in [23, Theorem 14.14]. We present now the theorem we
have anticipated above:

Theorem 2.2.9. Let E ⊂ C be compact and connected. Then,

diam(E)

4
≤ γ(E) ≤ diam(E).

Proof. The right inequality follows from the monotonicity of analytic capacity and the fact
that E is contained in a closed disk with radius diam(E). To prove the left inequality let
V ⊂ C the unbounded component of C \ E and consider the conformal map f : V → D with
f(∞) = 0 (here, to obtain this conformal map, we do not take into account the case where E
is a single point, for which the result is trivial). By Theorem 2.2.6, γ(E) = |f ′(∞)|. Since E
is compact we may pick z1, z2 ∈ E so that |z1 − z2| = diam(E), and consider the function

g(z) =
γ(E)

f−1(z)− z1
.

11



2.3 The Painlevé problem. An approach using the Cauchy transform

As f−1 is, in particular, univalent, g is also a univalent map defined on D satisfying g(0) = 0.
Moreover

|g′(0)| = lim
z→0

∣∣∣∣ γ(E)

z(f−1(z)− z1)

∣∣∣∣ = lim
z→0

∣∣∣∣ γ(E)

zf−1(z)

∣∣∣∣ = lim
w→∞

∣∣∣∣ γ(E)

f(w)w

∣∣∣∣ = ∣∣∣∣ γ(E)

f ′(∞)

∣∣∣∣ = 1.

Also, by construction, z2 /∈ f−1(D), and so γ(E)
z2−z1 /∈ g(D). Therefore, by Theorem 2.2.8 we

conclude
1

4
≤ γ(E)

|z2 − z1|
,

and so the inequality follows.

Corollary 2.2.10. Let E ⊂ C be compact with γ(E) = 0. Then, each connected component
of E contains exactly a single point.

Proof. Since analytic capacity is a monotone function, every connected component of E also
has null analytic capacity. Then, by Theorem 2.2.9, their diameter is 0. But recall that for
any A ⊂ C the definition of diameter is diam(A) := sup{|z1 − z2| : z1, z2 ∈ A}, and so the
result follows.

2.3 The Painlevé problem. An approach using the Cauchy
transform

The main aim of this section is to relate the analytic capacity of a compact subset E ⊂ C with
the kind of bounded holomorphic function that can be defined on C \ E. More precisely, we
will prove that if E is any compact set with null analytic capacity, then E will be removable
(Definition 2.1.3), and vice versa.

Theorem 2.3.1 (Ahlfors [1]). Let Ω ⊂ C be open and E ⊂ C compact. Then, γ(E) = 0 if
and only if every bounded analytic function on Ω\E can be extended analytically to the whole
set Ω, i.e. E is removable.

The characterization of removable subsets for bounded holomorphic functions does not only
admit this way of proceeding. Another natural approach could be purely geometrical. That
is, given a compact subset of C, are we able to determine if its removable or not just with
geometric techniques? The problem of typifying removable sets by geometric terms is known
as the Painlevé problem and for us it will be the key concept that will allow us, eventually,
to connect analytic capacity and the theory of singular integrals.

2.3.1 The proof of the characterization theorem

In order to proof Theorem 2.3.1, we will introduce another pillar of our project: the Cauchy
transform. Basically, we have to understand it as an operator acting on complex measures.
Its properties are really helpful in order to express, in a more compact way, the attributes
that are essential about holomorphic functions. It makes its first appearance here, allowing us

12



2.3 The Painlevé problem. An approach using the Cauchy transform

to prove a characterization theorem for removable subsets, but it will also play a crucial role
when trying to understand the meaning of having null analytic capacity in terms of another
parameter such as the Hausdorff dimension of the compact subset itself. This methodology
will be the center of our work in posterior sections.

But for now, let us start by presenting the definition of Cauchy transform:

Definition 2.3.1 (Cauchy transform). Let ν be a finite measure (possibly with complex
values) on C. We define its Cauchy transform as

C ν(z) =

∫
C

1

ξ − z
dν(ξ).

The integral involved in C ν is well-defined in the sense that it defines a locally integrable
function in C (with respect to the planar Lebesgue measure dL2) and thus it is well-defined
L2-a.e. Indeed, for any compact subset K ⊂ C, taking R > 0 so that K ⊂ D(0, R), we
have ∫

K
|C ν(z)|dL2(z) ≤

∫
C

(∫
K

1

|ξ − z|
dL2(z)

)
dν(ξ) ≤

∫
C

(∫ R

0

∫
S1

1

r
rdrdθ

)
dν(ξ)

= 2πRν(C) <∞.

Let us make precise the above statement in which we claimed that the Cauchy transform
compactifies the notation for holomorphic functions. Indeed, this operator appears naturally
in complex analysis, just observe that for any holomorphic function defined on an open simply
connected set Ω ⊂ C and Γ ⊂ Ω any closed Jordan curve (with no self-intersections and regular
enough), if z is a point that belongs to the interior of Γ (and hence z ∈ Ω), then

f(z) = C ν(z), where ν =
1

2πi
f(z)dzΓ,

that is just the usual Cauchy integral formula.

Apart from this, the Cauchy transform has some genuine and essential properties that we
summarize in the following theorem:

Theorem 2.3.2. Let ν be a finite complex measure on C. Then:

1. C ν ∈ L1
loc(C) with respect to the measure dL2. So C ν defines a distribution.

2. C ν is holomorphic in C \ supp(ν).

3. If supp(ν) is compact, then C ν(∞) = 0 and (C ν)′(∞) = −ν(C).

Proof. The first property has already been proved, just after the definition of the Cauchy
transform, so let us focus on 2. Recall that the support of a measure is the smallest closed
set F such that ν(C \ F ) = 0. So we want to prove that C ν is holomorphic in C \ F . Let us
check the property locally for each point of this last open set. So fix z0 ∈ C \ F and ε > 0 so
that D(z0, ε) ⊂ C \ F . For any w ∈ D(z0, ε/2) we have

C ν(w) =

∫
C

1

ξ − w
dν(ξ) =

∫
F

1

ξ − w
dν(ξ),

13



2.3 The Painlevé problem. An approach using the Cauchy transform

and since |ξ − w| > ε/2 we get that C ν is continuous in D(z0, ε/2) (applying, for example,
the dominated convergence theorem and that ν is a finite measure). We may apply Morera’s
theorem, so consider △ any triangle in D(z0, ε/2) and compute∫

△
C ν(w)dw△ =

∫
C

(∫
△

1

ξ − w
dw△

)
dν(ξ) = 0,

where the inner integral is 0 since the integrand is holomorphic in D(z0, ε/2). Also, to apply
Fubini’s theorem we have used, again, the bound |ξ − w| > ε/2 and the fact the ν is a finite
measure. Hence, by Morera’s theorem we get the result.

Finally, let us check the identities of 3. If F := supp(ν), pick R > 0 so that F ⊂ DR :=
D(0, R). Then, if we fix 0 < ε < R−1 and any w ∈ D(0, ε) we have

|C ν(w−1)| =
∣∣∣∣ ∫

F

w

wξ − 1
dν(ξ)

∣∣∣∣ ≤ ∫
DR

|w|
|wξ − 1|

dν(ξ) ≤ ε

1− εR
ν(C),

yielding the first equality taking the limit as ε → 0. Turning to (C ν)′(∞), by definition we
know

(C ν)′(∞) = lim
w→∞

w
(
C ν(w)− C ν(∞)

)
= lim

w→∞
wC ν(w) = lim

η→0

∫
F

1

ηξ − 1
dν(ξ),

where η := w−1. By the same argument as before, defining the corresponding disk D(0, ε) we
can justify the application of the dominated convergence theorem, take the limit inside the
integral and obtain the second equality of 3.

For w ∈ supp(ν), the value of C ν(w) does not need to be defined ν-a.e. since ν may be singular
with respect to dL2. This is because the domain of integration involved in the definition of
C ν(z) contains a point where the integrand is not defined. Hence, to assign a value in this
case we work with a truncated operator

Cεν(z) :=

∫
ξ∈F :|ξ−z|>ε

1

ξ − z
dν(ξ)

and define C ν(z) := limε→0 Cεν(z) whenever this last expression makes sense.

The definition of the Cauchy transform can be extended to the whole family of compactly
supported distributions.

Definition 2.3.2 (Cauchy transform of a distribution). Let ν be a compactly supported
(complex) distribution (by support of a distribution we mean the largest K ⊂ C so that for
every U ⊂ K open, we have ν|C∞

c (U) ̸= 0). We define its Cauchy transform as

C ν(z) =
〈
ν, τz

(
− ξ−1

)〉
= ν ∗

(
− ξ−1

)
(z),

where τz is the translation τzf( · ) = f( · − z) for f : C → C.
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2.3 The Painlevé problem. An approach using the Cauchy transform

Let us clarify the notation we have used. Let ν be any distribution given by f ∈ L1
loc(C)

compactly supported (imlpying, by definition, that ν is compactly supported). Then

C ν(z) =

∫
C

f(ξ)

ξ − z
dL2(ξ).

For this particular setting it is clear that C ν ∈ L1
loc(C), and so it also defines a distribution.

In fact, there is an analogous version of Theorem 2.3.2 for compactly supported distributions,
obtaining the same results in a distributional sense (we will not prove it, see [27, Proposition
1.15] for more details).

A key property that explains why the Cauchy transform is so important in complex analysis
is a direct consequence of the Definition 2.3.2 and Theorem A.2.1.

Theorem 2.3.3. If ν is a compactly supported distribution on C, then

∂(C ν) = −πν.

As a consequence, if f ∈ L1
loc(C) is analytic in a neighborhood of ∞ and f(∞) = 0, then

C (∂f) = −πf.

Proof. The (distributional) equality ∂(C ν) = −πν is a direct consequence of Theorem A.2.1,
that gives us the fundamental solution to the ∂-equation. For the second equality, observe that
since f is holomorphic in a neighborhood of ∞, we shall think ∂f as a compactly supported
distribution on C. Hence, by the first equality we obtain

∂
(
C (∂f)

)
= −π∂f ⇔ ∂

[
C (∂f) + πf

]
= 0.

So C (∂f) + πf is holomorphic on C and null at ∞ (by the distributional version of Theorem
2.3.2), and so it is bounded and therefore constant, yielding the desired equality.

Next, we will present the fundamental operator that will do the task of relating the concepts
of compact sets with null analytic capacity and hence their removability.

Definition 2.3.3 (Vitushkin’s localization operator). Let f ∈ L1
loc(C) and φ ∈ C∞

c (C). We
define the Vitushkin’s localization operator (associated to φ) as

Vφf := φf +
1

π
C (f∂φ).

The principal property of Vφ (that will be responsible for the reason we refer to Vφ as a
localization operator) is presented in the following lemma

Lemma 2.3.4. f ∈ L1
loc(C) and φ ∈ C∞

c (C). Then, we have the following equality between
distributions

Vφf = − 1

π
C (φ∂f),

where ∂f should be also understood in the distributional sense.
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2.3 The Painlevé problem. An approach using the Cauchy transform

Proof. Using the definition of Vφ as well as Theorem 2.3.3

∂(Vφf) = f∂φ+ φ∂f +
1

π
∂C (f∂φ) = φ∂f = ∂

(
− 1

π
C (φ∂f)

)
.

Since φf and f∂φ are compactly supported, Vφf also satisfies this property; and as φ∂f
has compact support, − 1

πC (φ∂f) also has. Therefore Vφf and − 1
πC (φ∂f) are both analytic

in a neighborhood of ∞ and are 0 at ∞. Therefore, applying C ( · ) and the second part of
Theorem 2.3.3 to the above equality, we get the desired relation.

Observe that, with the notation of the previous lemma, if we fix f to be C ν, where ν is a
compactly supported complex measure or distribution; we have

Vφ(C ν) = C (φν).

We know that C ν is analytic in C \ supp(ν), so supp(ν) can be understood as the set of
singularities of C ν. Hence, by the previous equality, we have that Vφ(C ν) is analytic in the
(larger) set C \ supp(φν). That is why we say that Vφ is a localization operator, because now
the singularities of Vφ(C ν) are localized in supp(ν) ∩ supp(φ).

Lemma 2.3.5. Let φ ∈ C∞
c (C) be supported in Dr = D(0, r), the open disk of radius r

centered at the origin. Then, for any f ∈ L1
loc(C), the following hold

1. ∥Vφf∥∞ ≤ C∥fχDr∥∞, for some C > 0.

2. Vφf is holomorphic in C \
(
supp(∂f) ∩ supp(φ)

)
Proof. By the definition of Vφ we have

∥Vφf∥∞ ≤ ∥φf∥∞ +
1

π
∥C (f∂φ)∥∞.

It is clear that ∥φf∥∞ ≲ ∥χDrf∥∞. For the second term notice that for any z ∈ C

|C (f∂φ)(z)| ≤
∫
Dr

1

|ξ − z|
|f(ξ)||∂φ(ξ)|dL2(ξ)

≤ ∥fχDr∥∞∥∇φ∥∞
∫
Dr

1

|ξ − z|
dL2(ξ) ≲ ∥fχDr∥∞,

and so we have 1. Property 2 is just a consequence of Lemma 2.3.4 and the distributional
version of Theorem 2.3.2 [27, Proposition 1.15].

Now we are finally ready to prove Theorem 2.3.1.

Proof (Theorem 2.3.1). Proving that γ(E) = 0 assuming that E is removable is almost trivial.
To do it, notice that the assumption implies that every function analytic and bounded in C\E
is constant. Indeed, given f : C\E → C holomorphic, we may consider its restriction to Ω\E.
Then, by hypothesis, we can extend it to an entire bounded function, and thus constant.
Therefore, by the definition of analytic capacity we conclude that, necessarily, γ(E) = 0.

16



2.3 The Painlevé problem. An approach using the Cauchy transform

Let us see now the reverse implication. We may assume, without loss of generality, that Ω is
bounded (if not, just consider a open bounded subset of Ω containing E and construct the
analytic extension using the argument that will follow). Consider a grid of squares {Qi}i∈I
in C with side length ℓ, the same for every Qi, and {φi}i∈I a family of smooth functions
satisfying, for each i

1. 0 ≤ φ ≤ 1.
2. φi|Qi ≡ 1 and φi|C\2Qi

≡ 0 .
3.
∑

i∈I φi ≡ 1.

In other words, {φi}i is a partition of unity subordinated to the family of squares {Qi}i.
Let us begin by extending f by 0 to (Ω \E)c. As Ω is bounded, we have that f vanishes out
of a bounded set. Therefore, since f is analytic in a neighborhood of ∞ and f(∞) = 0, by
Theorem 2.3.3 we have f = − 1

πC (∂f). We also observe that once we restrict ourselves to a
square Qi satisfying that 2Qi does not intersect the support of ∂f , by Lemma 2.3.4 we have
Vφif ≡ 0. In all, we deduce

f = − 1

π
C (∂f) = − 1

π
C

(∑
i∈I

φi∂f

)
= − 1

π

∑
i∈I

C (φi∂f) =
∑
i∈I

Vφif,

where the sums taken over I are well-defined by the last observation. Let us see first that,
if 2Qi ∩ ∂Ω = ∅, then Vφif ≡ 0. We begin by noticing that supp(∂f) ⊂ E ∪ ∂Ω, so Lemma
2.3.4 yields

supp
(
∂Vφif

)
= supp

(
∂C (φ∂f)

)
⊂ 2Qi ∩ (E ∪ ∂Ω).

Therefore, if 2Qi ∩ ∂Ω = ∅, then Vφif is analytic out of 2Qi ∩E. As Vφif vanishes at ∞ and
the extension of f by 0 to the whole C is bounded, we can apply the first point of Lemma
2.3.5 to deduce ∥Vφif∥∞ <∞. Therefore Vφif is admissible for 2Qi ∩ E. On the other hand

γ(2Qi ∩ E) ≤ γ(E) = 0 ⇒ γ(2Qi ∩ E) = 0

Let us see that the previous condition implies that the function Vφif needs to be constant.
Assume not and let us reach a contradiction. Under the previous hypothesis, there exists
z0 ∈ C \ (2Qi ∩ E) so that Vφif(z0) ̸= Vφif(∞) = 0. Now, we may define the function

g(z) =
Vφif(z)− Vφif(z0)

z − z0
, for z ̸= z0

and g(z0) := (Vφif)
′(z0). It is clear that g is admissible for C \ (2Qi ∩ E), g(∞) = 0 and

g′(∞) = lim
z→∞

z(g(z)− g(∞)) = Vφif(∞)− Vφif(z0) ̸= 0

which contradicts γ(E) = 0. Hence, necessarily, Vφif ≡ 0 if 2Qi ∩ ∂Ω = ∅. So we conclude

f =
∑
i∈I

2Qi∩∂Ω̸=0

Vφif.

Considering the open neighborhood of ∂Ω: U4ℓ(∂Ω) :=
{
z ∈ C : d(z, ∂Ω) < 4ℓ

}
, we have

that in Ω \ U4ℓ(∂Ω) the function f is a finite sum of holomorphic functions (recall that Vφif
is analytic out of 2Qi ∩ E) and hence is holomorphic. But ℓ can be chosen to be arbitrarily
small, so we conclude that f is analytic in the whole Ω and we are done, since we have found
the desired extension.
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2.4 Connection between analytic capacity and Hausdorff measure

2.4 Connection between analytic capacity and Hausdorff mea-
sure

In this new section we return to a problem we have already presented: the characterization
of removable subsets in terms of purely geometric properties. To do this, we will introduce
the concept of Hausdorff measure, that we may understand, intuitively, as a continuous gen-
eralization of the usual Lebesgue measure.

2.4.1 Definition of Hausdorff measure. The Hausdorff dimension.

The concept of Hausdorff measure is a particular case of a more general family of measures
introduced by Carathéodory (1914) [2]. First, we will present this general construction and
some of its fundamental properties, to follow with a more complete study of the Hausdorff
case.

Definition 2.4.1 (Carathéodory’s δ-measure). Let X be a metric space, F ⊂ P(X) a col-
lection of subsets of X and ζ a non-negative function on F . Assume that

1. For every δ > 0 there exist E1, E2, · · · ∈ F such that

X =
∞⋃
i=1

Ei with diam(E) ≤ δ.

2. For every δ > 0 there exists E ∈ F so that ζ(E) ≤ δ and diam(E) ≤ δ.

Then for 0 < δ ≤ ∞ we define the Carathéodory’s δ-measure ψδ : X → [0,∞] to be

ψδ(A) = inf

{ ∞∑
i=1

ζ(Ei) : A ⊂
∞⋃
i=1

Ei, diam(Ei) ≤ δ, Ei ∈ F
}
.

Observe that the first hypothesis of the definition was just added to ensure that the coverings
appearing in the definition of ψδ exist for each δ. On the other hand, one of the reasons to
add the second condition is to have ψδ(∅) = 0 for every δ. Indeed, this property allows us to
construct a sequence (En)n≥0 ⊂ F with ζ(En) → 0 and diam(En) → 0 as n→ ∞.

Proposition 2.4.1. The Carathéodory’s δ-measure is monotonic and subadditive.

Proof. Let A,B ∈ F with A ⊂ B. Let us also fix 0 < δ ≤ ∞. Assume (En)n≥0 ⊂ F is such
that B ⊂

⋃∞
n=1En and diam(En) ≤ δ. Then A ⊂

⋃∞
n=1En, implying{

(En)n ⊂ F : B ⊂
∞⋃
i=1

Ei, diam(Ei) ≤ δ

}
⊂

{
(En)n ⊂ F : A ⊂

∞⋃
i=1

Ei, diam(Ei) ≤ δ

}
,

and so ψδ(A) ≤ ψδ(B), since the infimum of ψδ(A) is computed taking into account a larger
family of sets.

Let us see now that is subadditive. We will treat explicitly the case ψδ(A∪B) ≤ ψδ(A)+ψδ(B)
for any A,B ∈ F . Fix ε > 0 and pick (En,A)n≥0 ⊂ F and (En,B)n≥0 ⊂ F such that
A ⊂

⋃∞
n=1En,A and B ⊂

⋃∞
n=1En,B, with diam(En,A) ≤ δ, diam(En,B) ≤ δ and also satisfying
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2.4 Connection between analytic capacity and Hausdorff measure

∞∑
n=0

ζ(En,A) = ψδ(A) + ε,

∞∑
n=0

ζ(En,B) = ψδ(B) + ε.

Now define the alternating sequence (Ẽn)n≥0 with Ẽ2n = En,A and Ẽ2n+1 = En,B. This way
we obtain

ψδ(A ∪B) ≤
∞∑
n=0

ζ(Ẽn) =
∞∑
n=0

ζ(En,A) +
∞∑
n=0

ζ(En,B) = ψδ(A) + ψδ(B) + 2ε,

and by the arbitrariness of ε we are done. By induction we get the result for finite unions and
by a limiting argument we obtain the general result.

Another natural property that follows from the definition of the Carathéodory’s δ-measure is
that

if 0 < δ1 < δ2 ≤ ∞, ψδ2(A) ≤ ψδ1(A),

since the infimum in the definition of ψδ2 includes a larger family of sets. This property
justifies the following definition:

Definition 2.4.2 (Carathéodory’s measure). The Carathéodory’s measure, denoted by ψ =
ψ(F , ζ), associated to the family of sets F with function ζ is

ψ(A) = lim
δ↓0

ψδ(A) = sup
δ>0

ψδ(A), for A ⊂ X

Theorem 2.4.2. Let X be a metric space, F ⊂ P(X) a collection of subsets of X and ζ a
non-negative function on F . The following properties hold:

1. ψ = ψ(F , ζ) is a Borel measure.

2. If F ⊂ B(X), the family of Borel sets, then ψ is Borel regular.

Proof. Proving that ψ is indeed an (outer) measure is just a matter of checking the defining
properties, which follow straightforward from the definition of ψ. To see that is a Borel
measure we will apply Carathéodory’s theorem [16, Theorem 1.7], that states that ψ is a
Borel measure if and only if

µ(A ∪B) = µ(A) + µ(B), ∀A,B ⊂ X with d(A,B) > 0.

So let A,B ⊂ X with d(A,B) > 0. We will be done if we prove ψ(A ∪ B) = ψ(A) + ψ(B).
Choose 0 < δ < d(A,B)/2 so that if E1, E2, · · · ∈ F cover A∪B and are such that d(En) ≤ δ,
then no En intersects both A and B. Therefore

∞∑
n=1

ζ(En) =
∑

A∩En ̸=∅

ζ(En) +
∑

B∩En ̸=∅

ζ(En) ≥ ψδ(A) + ψδ(B),

and so taking the infimum over this family of coverings we get ψδ(A ∪ B) ≥ ψδ(A) + ψδ(B).
But as the other inequality follows from subadditivity, we have ψδ(A ∪B) = ψδ(A) + ψδ(B),
and letting δ ↓ 0 we obtain the desired result.

19



2.4 Connection between analytic capacity and Hausdorff measure

Let us prove now 2, that is, we have to prove that for any A ⊂ X there is B ∈ B(X) so that
ψ(A) = ψ(B). To do it, for each n = 1, 2, . . . we consider a sequence En,1, En,2, · · · ∈ F ⊂
B(X) satisfying

A ⊂
∞⋃
m=1

En,m, diam(En,m) ≤
1

n
and

∞∑
m=1

ζ(En,m) ≤ ψ 1
n
(A) +

1

n
.

This sequence exists due to the hypothesis of Definition 2.4.1. Then,

B :=

∞⋂
n=1

∞⋃
m=1

En,m

is a Borel set, since it belongs to the σ-algebra of measurable sets, and satisfies, by construc-
tion, A ⊂ B. Moreover, for every n we have B ⊂

⋃∞
m=1En,m, so ψ(B) ≤ ψ 1

n
(A)+ 1

n . Therefore

ψ(B) ≤ ψ(A), and by the monotonicity of ψ we obtain the equality ψ(A) = ψ(B).

Given this construction by Carathéodory, we obtain the definition of the Hausdorff measure
for a particular choice of F and ζ (under the additional assumption thatX is separable).

Definition 2.4.3 (Hausdorff measure). Let X be a separable metric space and let s ∈ [0,∞).
Choose

F := P(X), ζ(E) := diam(E)s,

with the conventions 00 := 1 and diam(∅) := 0. The corresponding measure ψ for this case is
called the s-dimensional Hausdorff measure and is denoted by Hs. Notice that by Theorem
2.4.2 Hs is a Borel regular measure. More explicitly

Hs(A) = lim
δ↓0

Hs
δ(A) = sup

δ>0
Hs
δ(A),

where

Hs
δ(A) = inf

{ ∞∑
n=1

diam(En)
s : A ⊂

∞⋃
n=1

En, diam(En) ≤ δ

}
.

Let us try to give a better intuition about the role of this measure in each dimension. We
will briefly comment some particular cases and state the most relevant results. If the reader
seeks a more detailed discussion about the topic we suggest to consult the books of Evans &
Gariepy [8, Chapter 2] or Mattila [16, Chapter 4].

1. For the case s = 0 it is not difficult to prove that the Hausdorff measure H0 coincides
with the counting measure, i.e.

H0(A) = card(A) = number of points in A.

2. For s = 1, the value of H1 also has a concrete meaning as a generalized length measure.
Let us recall first the following definition:

Definition 2.4.4 (Rectifiable curve). Let Γ : [0, 1] → Rn be a curve. We will say that
Γ is rectifiable if it is a continuous curve that admits a Lipschitz parametrization.
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2.4 Connection between analytic capacity and Hausdorff measure

We know that a Lipschitz function is differentiable at almost every point with bounded
derivative [8, Theorem 3.2], implying, in particular, that rectifiable curves have finite
(Lebesgue) length. Then, if one wants to consider a line integral along a certain curve
(such as in Definition 2.1.2) the choice of requiring, at least, the curve to be rectifiable
is a reasonable hypothesis to ask for, much less restrictive than demanding, for example,
continuous differentiability. For a rectifiable curve Γ in Rn it can be shown that H1(Γ)
equals the length of Γ. For unrectifiable curves one gets H1(Γ) = ∞.

3. In the setting X = Rn, if 1 < s < n and s ∈ Z; it also can be proved that the restriction
of Hs to any s-dimensional C1-submanifold is proportional to the Lebesgue measure of
Rn restricted to the same submanifold. In fact, one has that there exists a constant
C = C(s, n) so that following inequality holds for any x ∈ Rn and r > 0

Hs(B(x, r)) = c(s, n)rs. (2.4.1)

This condition on a measure is usually referred as having s-dimensional growth.

4. Again in Rn, for the case s = n, the following fundamental equality between measures
can be proved

Hn =
(
2π−

1
2

)n
Γ

(
n

2
+ 1

)
Ln, (2.4.2)

where here Γ denotes the usual gamma function. Hence, in particular, we obtain

Hn(B(x, r)) = (2r)n, ∀x ∈ Rn, r ∈ (0,∞).

5. Finally, for any s > n in Rn, we have Hs(Rn) = 0.

Continuing our discussion about the general properties of the Hausdorff measure, in practice
one often is only interested in determining which sets have null Hs-measure. Observe that in
this context, since for δ1 < δ2 we have Hs

δ2
< Hs

δ1
, it is enough to study the approximating

measures Hs
δ . In fact, the following result shows that we do not need any measure at all.

Proposition 2.4.3. Let X be a separable metric space, s ∈ [0,∞) and δ ∈ (0,∞]. Then, for
any A ⊂ X the following conditions are equivalent

1. Hs(A) = 0.

2. Hs
δ(A) = 0.

3. For each ε > 0 there exist E1, E2, · · · ⊂ X such that

A ⊂
∞⋃
n=1

En, and

∞∑
n=1

diam(En)
s < ε.

Proof. The implication 1⇒2 is trivial. To prove 2⇒3 begin by fixing ε > 0 and by observing
that if Hs

δ(A) = 0, then for every η > 0 there exists {En,η}n so that A ⊂
⋃∞
n=1En,η and∑∞

n=1diam(En)
s < η. Hence choosing η := ε we are done. Finally, let us check 3⇒1. Fix

ε := δs so that

A ⊂
∞⋃
n=1

En, and
∞∑
n=1

diam(En)
s < δs.
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2.4 Connection between analytic capacity and Hausdorff measure

Then, diam(En) < δ for each n. Hence Hs
δ < δs, and so taking the limit as δ ↓ 0 we obtain

the result for 0 < s < ∞. For the remaining case s = 0 notice that if 3 holds, picking ε < 1
we obtain that A = ∅, meaning H0(A) = card(∅) = 0, that is what we wanted to prove.

Observe that the previous theorem holds, in particular, for the case δ = ∞, meaning that
there is no restriction with respect to the diameters of the chosen coverings. This special case
receives a name of its own.

Definition 2.4.5 (Hausdorff content). Let X be a separable metric space and s ∈ [0,∞).
We define the s-dimensional Hausdorff content of A ⊂ X, Hs

∞ as

Hs
∞(A) = inf

{ ∞∑
n=1

diam(En)
s : A ⊂

∞⋃
n=1

En

}
.

By the previous result we have that Hs
∞(A) = 0 ⇔ H(A) = 0.

We will finish this introduction to H by presenting one of its most essential and elementary
properties, which will motivate the definition of the Hausdorff dimension.

Theorem 2.4.4. Let X be a separable metric space, 0 ≤ s < t <∞ and A ⊂ X. Then

1. Hs(A) <∞ implies Ht(A) = 0.

2. Ht(A) > 0 implies Hs(A) = ∞.

Proof. Notice that 2 is just a restatement of 1, so as soon as we prove the first property
we will be done. By the infimum involved in the definition of Hs

δ we are able to consider
A ⊂

⋃∞
n=1En with diam(En) ≤ δ and

∑∞
n=1 diam(En)

s ≤ Hs
δ(A) + 1. Therefore

Ht
δ(A) ≤ diam(En)

t−s
∞∑
n=1

diam(En)
s ≤ δt−s

∞∑
n=1

diam(En)
s ≤ δt−s

(
Hs
δ(A) + 1

)
,

and taking the limit as δ ↓ 0 and using the hypothesis Hs(A) <∞ we obtain the result.

Notice that Theorem 2.4.4 implies that when calculating the Hausdorff measure of a certain
set, there exists a borderline value of s (what we will understand as dimension) for which if
we consider smaller values than that, the Hausdorff measure is ∞, and for bigger values the
Hausdorff measure is 0. So according to this observation we may define:

Definition 2.4.6 (Hausdorff dimension). Let X be a separable metric space and A ⊂ X.
The Hausdorff dimension of A is

dimH(A) = sup{s : Hs(A) > 0} = sup{s : Hs(A) = ∞}
= inf{t : Ht(A) <∞} = inf{t : Ht(A) = 0}.

In other words, dimH(A) is the unique value (that might be ∞) for which s < dimH(A)
implies Hs(A) = ∞; or, equivalently, t > dimH(A) implies Ht(A) = 0.

For the case s = dimH(A) we do not have any general information about the value of Hs(A).
It may happen to be 0, ∞ or finite. However, what we know is that if for a given A we can
find some s so that 0 < Hs(A) <∞, then s must be the Hausdorff dimension of A.
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2.4 Connection between analytic capacity and Hausdorff measure

2.4.2 Estimating analytic capacity using the Hausdorff measure

We are ready to give some of the most important theorems of our project. These will connect
the concepts of the analytic capacity of a compact subset of C with its Hausdorff measure,
giving a first geometric understanding of γ. More specifically, the first (old) result, due to
Painlevé, yields an estimate for γ(E), where E ⊂ C is compact, in terms of the one-dimensional
Hausdorff content of E.

Theorem 2.4.5 (Painlevé, 1888 [21]). For every compact set E ⊂ C, the following estimate
holds

γ(E) ≤ H1
∞(E).

Therefore, if H1(E) = 0, then E is removable.

Proof. Let us begin by fixing ε > 0 and cover E with a family of sets {An}n so that

∞∑
n=1

diam(An) ≤ H1
∞(E) + ε.

Without loss of generality, we can assume that {An}n is a finite family of balls {Bn}Nn=1

with respective radii rn. Indeed, take if necessary rn slightly bigger than diam(An) so that
E ⊂

⋃
nBn and

∑
n rn ≤ H1

∞(E) + 2ε, and use that E is compact to obtain a finite open
subcover.

Consider now the curve Γ = ∂o

(⋃N
n=1Bn

)
and apply relation (2.1.1) so that, if f is the

Ahlfors function of E (that recall that satisfies |f | ≤ 1 in C \ E), we obtain

|f ′(∞)| =
∣∣∣∣ 1

2πi

∫
Γ
f(z)dz

∣∣∣∣ ≤ 1

2π

N∑
n=1

∫
Γ∩∂Bi

|f(z)||dz| ≤ 1

2π

N∑
n=1

2πrn ≤ H1
∞(E) + 2ε,

and letting ε→ 0 we obtain the result.

We also have the following estimate for the particular case in which E ⊂ C is a compact set
contained in R.

Theorem 2.4.6. Let E ⊂ C be a compact set contained in R. Then

1

4
H1(E) ≤ γ(E) ≤ 1

π
H1(E).

Proof. Since we can express any compact set of R as the limit of a sequence
⋂n
j=1Kj , where

Kj is a finite collection of disjoint intervals; by Corollary 2.2.5 (outer regularity), it is sufficient
to prove the result for E a finite collection of disjoint intervals.

So let us assume that E is of this form and consider ε > 0 and a rectifiable curve Γ surrounding
E (that we may think as the sides of a rectangle) with H1(Γ) = 2H1(E)+ 2ε (recall that, for
this type of curves, H1(Γ) coincides with the length of the curve). By an analogous argument
to the one used in the proof of Theorem 2.4.5, for any f admissible function for E we get

|f ′(∞)| =
∣∣∣∣ 1

2πi

∫
Γ
f(z)dz

∣∣∣∣ ≤ 1

π

(
H1(E) + ε

)
,

and so we deduce the first estimate γ(E) ≤ 1
πH1(E).
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2.4 Connection between analytic capacity and Hausdorff measure

To prove the remaining inequality we define the function f := 1
2C (H1|E). Notice that if

w = x+ iy /∈ E, then

Imf(w) =
1

2

∫
E
Im

1

t− w
dH1(t) =

1

2

∫
E

y

(t− x)2 + y2
dH1(t).

Hence, if y = 0 we have Imf(w) = 0, and if not

|Imf(w)| < 1

2

∫
R

|y|
t2 + y2

dH1(t) =
π

2
.

So, in general, we deduce that f maps C \ E to the strip |Im(z)| < π
2 . We now consider the

conformal map

φ(z) =
ez − 1

ez + 1
,

that maps the strip |Im(z)| < π
2 to the unit disk. This way g := φ◦f is an admissible function

for E and, as f(∞) = 0 and g(0) = φ(0) = 0, we have

γ(E) ≥ |g′(∞)| = lim
z→∞

|zg(z)| = lim
z→∞

|zf(z)|
∣∣∣∣φ(f(z))f(z)

∣∣∣∣ = |f ′(∞)φ′(0)|,

and using that f ′(∞) = −1
2H1(E) and φ′(0) = 1

2 we get the desired estimate.

In fact, there is a much stronger result concerning the analytic capacity of compact subsets of
the real line due to Pommerenke [22, Theorem 3], that we will not prove, that asserts

γ(E) =
1

4
H1(E). (2.4.3)

Now we turn our attention to sets of Hausdorff dimension bigger than one. The result we will
prove is the following essential estimate:

Theorem 2.4.7. Let s > 1. Then, for every compact subset E ⊂ C there exists c > 0 such
that the following estimate holds

γ(E) ≥ c

(
s− 1

s

)
Hs

∞(E)
1
s .

The proof of the previous theorem relies on the following lemma:

Lemma 2.4.8. (Frostman, [16, Theorem 8.8]). Let 0 < s ≤ d and E ⊂ Rd compact. Then
Hs

∞(E) > 0 if and only if exists a non-trivial Borel measure ν supported on E so that

ν(B) ≲ r(B)s and ν(E) ≥ cHs
∞(E),

for any ball B, where r(B) is the radius of B; and for some constant c > 0.

Proof. Let us assume first that such measure ν exists and let us check that Hs
∞(E) > 0.

Consider any covering E ⊂
⋃
nAn (that, by compactness, can be assumed to be finite) and

take, for each n, a point xn ∈ An. Since the union of the balls B(xi,diam(Ai)) is a covering
of E, we obtain
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2.4 Connection between analytic capacity and Hausdorff measure

∑
n

diam(An)
s =

∑
n

r
(
B(xn, diam(An))

)s
≳
∑
n

ν
(
B(xn,diam(An))

)
≥ ν(E).

So taking the infimum over all coverings we deduce Hs
∞(E) ≳ ν(E) > 0, since ν is non-trivial

and supported on E, and we are done with this implication.

Let us check now the converse. Assume that E is contained in some dyadic cube (by translating
it, if necessary). Also, recall that the definition of Hs

∞(E) was

Hs
∞(E) = inf

{ ∞∑
n=1

diam(En)
s : E ⊂

∞⋃
n=1

En

}
.

Therefore, if Q1, Q2, . . . is any family of cubes that cover E, we get that there exists a constant
c > 0 so that ∑

i

diam(Qi)
s ≥ cHs

∞(E). (2.4.4)

For every m ∈ Z+ we consider the family of dyadic cubes Qm with side length 2−m. We
define a measure µmm (depending on E) on Rd by requiring that for all Q ∈ Qm,

µmm|Q = 2−ms
1

Ld(Q)
Ld|Q, if E ∩Q ̸= ∅,

µmm|Q = 0, if E ∩Q = ∅.

This indeed defines a measure in Rd, since Qm covers the whole space implying that we can
decompose any Ld-measurable subset as a disjoint union of subsets of Qm and use the σ-
additivity of the Lebesgue measure.

Now we modify µmm by defining another measure µmm−1 requiring that for every Q ∈ Qm−1

(the dyadic parents of the cubes in Qm) we have

µmm−1|Q = 2−(m−1)s 1

µmm(Q)
µmm|Q, if µmm(Q) > 2−(m−1)s,

µmm−1|Q = µmm|Q, if µmm(Q) ≤ 2−(m−1)s.

Notice that the µmm−1-measure of a dyadic cube belonging to Qm−1 does not increase with
respect to its µmm-measure. We continue this recursive definition, setting µmm−k−1 to be, for
each Q ∈ Qm−k−1,

µmm−k−1|Q = min

{
1, 2−(m−k−1)s 1

µmm−k(Q)

}
µmm−k|Q.

We stop this process as soon as E ⊂ Q for some Q ∈ Qm−k0 and put µm := µmm−k0 . Observe
that by construction we have the following estimate

µm(Q) ≤ 2−(m−k)s for Q ∈ Qm−k, k = 0, 1, 2, . . . (2.4.5)

In addition, observe that any set in Rd not intersecting E has µm-measure 0. That is because
the µmm-measure of such set would be 0 and the recursive definition implies, eventually, that
it has also µm-measure 0.
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2.4 Connection between analytic capacity and Hausdorff measure

Moreover, observe that for every x ∈ E we will always be able to find k ∈ {0, 1, . . . , k0} and
Q ∈ Qm−k so that x ∈ Q and if ℓ(Q) denotes the side length of Q,

µm(Q) = 2−(m−k)s = (ℓ(Q))s = d−
s
2 ·
(√
d · ℓ(Q)

)s
= d−

s
2 · diam(Q)s. (2.4.6)

Let us clarify this. Assume we fix m and x ∈ E. Let us pick the unique Q ∈ Qm−k0 so that
x ∈ Q. If µmm−k0+1(Q) > 2−(m−k0)s we are done, choosing k := k0. If not, that means that

µmm−k0+1(Q) ≤ 2−(m−k0)s and therefore, by definition, µm(Q) = µmm−k0+1(Q). This process
might continue, in the worst scenario, until we reach that µm(Q) = µmm(Q), but even for this
case we would have µm(Q) = 2−ms, so by choosing k := 0 we would be done.

Picking for each x the largest Q satisfying the property (2.4.6), we obtain disjoint cubes
Q1, . . . , QN that cover E. Now, using that if any A ⊂ Rd is such that A ∩ E = ∅, then
µm(A) = 0, we have

µm(Rn) = µm(E) =
N∑
i=1

µm(Qi) = d−
s
2

N∑
i=1

diam(Qi)
s ≥ d−

s
2 cHs

∞(E).

where we have applied relation (2.4.4). Let, for each m ∈ Z+

νm :=
1

µm(Rd)
µm.

It is clear that νm(E) = νm(Rd) = 1 and also that for every k = 0, 1, 2, . . . and Q ∈ Qm−k

νm(Q) ≤ 1

d−
s
2 cHs

∞(E)
2−(m−k)s

because of relation (2.4.5). Therefore, we have obtained a sequence (νm)m of measures in Rd
that satisfy supm∈Z+

νm(K) < ∞ for every compact set K ⊂ Rd. Hence, there is a weakly
convergent subsequence νmk → ν as k → ∞ [16, Theorem 1.23], ν being a Borel measure and
ν(E) = ν(Rd) = 1.

Now, for any x ∈ Rn and 0 < r < ∞ we can find p ∈ Z+ so that B(x, r) is contained in the

interior U of a union
⋃2d

i=1Qi of 2
d cubes Qi ∈ Qp with

diam(Q) = 2−pd
1
2 ≤ 4rd

1
2 .

That is, p has been chosen so that the interior of 2d cubes of Qp cover B(x, r) and do not
have side length bigger than twice its diameter. Hence for m ≥ p,

νm(U) ≤ 2d
1

d−
s
2 cHs

∞(E)
2−ps ≤ 2d

1

d−
s
2 cHs

∞(E)
(4r)s = 2d+2s 1

d−
s
2 cHs

∞(E)
rs.

Now, using [16, Theorem 1.24] we conclude

ν(B(x, r)) ≤ ν(U) ≤ lim inf
k→∞

νmk(U) ≤ 2d+2s 1

d−
s
2 cHs

∞(E)
rs,

and so ν(B(x, r)) ≲ rs. Also, as ν(E) = 1, choosing c small enough so that cHs
∞(E) ≤ 1, we

are done, since we obtain the second estimate ν(E) ≥ cHs
∞(E).
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Proof (Theorem 2.4.7). Use Frostman’s lemma 2.4.8 to pick ν a Borel measure supported on
E with ν(E) ≥ cHs

∞(E) and ν(B(z, r)) ≲ rs for each z ∈ C and r > 0. Consider the function
f := C ν and observe that f(∞) = 0 and |f ′(∞)| = ν(E), by Theorem 2.3.2. Moreover

|C ν(z)| ≤
∫

1

|w − z|
dν(w) =

∫ (∫ |w−z|−1

0
dt

)
dν(w) =

∫ ∞

0

(∫
{w : |w−z|<t−1}

dν(w)

)
dt

=

∫ ∞

0
ν
({
w : |w − z| < t−1

})
dt =

∫ ∞

0
ν
(
B
(
z, t−1

))
dt ≲

∫ ∞

0
min

(
ν(E), t−s

)
dt.

And computing this last integral we obtain∫ ν(E)−
1
s

0
ν(E)dt+

∫ ∞

ν(E)−
1
s

t−sdt = ν(E)1−
1
s +

1

s− 1

(
ν(E)

1
s
)s−1

=
s

s− 1
ν(E)1−

1
s .

Therefore, ∥f∥∞ ≲ s
s−1ν(E)1−

1
s . Now, normalizing f to be f/∥f∥∞ in order for f to be

admissible, we finally conclude

γ(E) ≥ |f ′(∞)|
∥f∥∞

≳

(
s− 1

s

)
ν(E)

1
s ≳

(
s− 1

s

)
Hs

∞(E)
1
s .

2.5 The critical dimension and Denjoy’s conjecture

The two main results of the previous section that allow us to estimate the analytic capacity
of a compact subset via its Hausdorff measure/dimension are Theorems 2.4.5 and 2.4.7. The
first yields

⋆ γ(E) ≤ H∞(E) ≤ H1(E). So in particular if dimH(E) < 1, then γ(E) = 0,

and the second, by Proposition 2.4.3, implies

⋆ If dimH(E) > 1, then γ(E) > 0.

So by the above statements we deduce that dimension 1 is the critical dimension for the
analytic capacity. A natural question arises: if a compact set E has positive analytic capacity,
does it mean that its one-dimensional Hausdorff measure, H1(E), is non-zero (maybe infinite)?
That is, do the reciprocal implications hold?

Finding the answer to the previous question is not an easy task, and it was first achieved by
Vitushkin in the 1960’s, when he constructed a compact set with positive one-dimensional
Hausdorff measure and null analytic capacity, concluding that the answer to the problem was
negative. A paradigmatic example of such set is the so called four-corner Cantor set. This set
is constructed in similar way as the usual Cantor set of R. We show the first four iterates of
its construction in Figure 2.1 (let us remark that the set of points we are considering in each
iterate is formed by the union of the boundaries of the different squares of each generation).
If E denotes the previous singular set, in Tolsa [27] we can find a rather simple proof of the
fact that 0 < H1(E) <

√
2, implying that dimH(E) = 1. On the other hand, the proof of

γ(E) = 0 turns out to be more intricate, and it was found by Garnett [11].
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2.5 The critical dimension and Denjoy’s conjecture

E0 E1 E2 E3

Figure 2.1: First four iterates involved in the definition of the four-corner Cantor set.

A full characterization of removable subsets of positive one-dimensional Hausdorff measure
is not a trivial task. So from this point on, we will restrict ourselves to a more particular
setting, focusing our attention on the following question:

given E ⊂ C compact, connected and with H1(E) < ∞; if γ(E) = 0, what does this
imply about the geometric structure of E?

Eventually, the type of compact sets E we will study will be those of Hausdorff dimension 1
with finite measure, so we can understand them as usual sets of Lebesgue dimension 1, with
null area and finite length measure. Using [9, Exercise 3.5] we deduce that E being compact,
connected and with finite H1-measure is equivalent to being the image of a rectifiable curve.
So our case of study can be rephrased, in a slightly more general way, as follows:

given Γ ⊂ C rectifiable curve and E ⊂ Γ compact, what are the implications of γ(E) = 0
on the geometric structure of E?

The previous problem was first outlined by Arnaud Denjoy (1874-1974), and he proposed the
following conjecture:

Conjecture 2.5.1 (Denjoy). If a rectifiable curve contains a compact set with positive length,
then this compact set has positive analytic capacity (and thus it is not removable).

Denjoy first thought of it as an extension of Pommerenke’s result 2.4.3 in R. This conjecture
was first partially answered (positively) by Calderón [3] by means of the L2-boundedness of
the Cauchy transform. In his response he covered the case where the slope of Γ was small
enough, connecting the subjects of analytic capacity and the theory of singular integrals.

For us this will be the objective from this point on. That is, we will develop the necessary the-
ory concerning singular integrals in order to understand Calderón’s partial proof of Denjoy’s
conjecture.
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Chapter 3

Maximal operators and the Hilbert
transform

Our main goal in the forthcoming sections is to present, eventually, the definition of a
Calderón-Zygmund operator. We will see that the Cauchy transform is particular case of
this type of operator and its properties will be the key to tackle Denjoy’s conjecture in a
similar way as Calderón did, covering a partial proof of it. More particularly, we will prove
that if the slope of the graph of the curve Γ is small enough, Denjoy’s conjecture holds.

But in order to achieve the previous goal as rigorously as possible, we need to do some ground-
work. Indeed, to be able to cover the definitions and the proofs of some of the most important
results, we will need to present a series of concepts which are necessary to give a coherent
and significant meaning to the theory of singular integrals. In fact, in this chapter we will
introduce some theorems that will be essential in order to establish, eventually, the bounded-
ness of singular integral operators. More precisely, the main results will be the Marcinkiewicz
interpolation theorem (Theorem 3.1.3) and a result concerning maximal operators (Theorem
3.1.2). Both will ease the task of checking the boundedness property of operators by checking
it for just some specific cases so that, if they are proved to hold, then the boundedness will
also follow for the rest.

3.1 The Marcinkiewicz interpolation theorem and maximal
operators

We begin our discussion by introducing a weaker condition than usual boundedness for op-
erators. We will find this necessary when studying maximal operators defined in Lp(Rn).
Indeed, during this process we will see that for the case p = 1 such operators satisfy a weaker
condition rather than being bounded in an ordinary way. So let us first introduce this less
restrictive notion in a general setting for measurable spaces (although we will mainly work
with Rn endowed with the Lebesgue measure).
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3.1 The Marcinkiewicz interpolation theorem and maximal operators

Definition 3.1.1 (Weak type (p, q) operator). Let (X,µ), (Y, ν) be measurable spaces, 1 ≤
p ≤ ∞ and T : Lp(X,µ) → {g : Y → C, measurable} an operator. We will say that T is of
weak type (p, q), 1 ≤ q <∞, if for every f ∈ Lp(X,µ) there exists C > 0 such that

ν
(
{y ∈ Y : |Tf(y)| > λ}

)
≤
(
C∥f∥p
λ

)q
, ∀λ > 0

This last inequality will be usually referred as the weak type (p, q) inequality. We will also say
that T is of weak type (p,∞) if T is a bounded operator from Lp(X,µ) to L∞(Y, ν).

The next lemma proves that the previous notion is less restrictive than being bounded.

Lemma 3.1.1. Let T : Lp(X,µ) → Lq(Y, ν) be a bounded operator. Then T is of weak type
(p, q).

Proof. Let us fix f ∈ Lp(X,µ) and put Eλ := {y ∈ Y : |Tf(y)| > λ}. Then

ν(Eλ) =

∫
Eλ

dν(x) ≤
∫
Eλ

∣∣∣∣Tf(x)λ

∣∣∣∣qdν(x) ≤ ∥Tf∥qq
λq

≤
(
∥T∥∥f∥q

λ

)q
.

For the sake of completeness we introduce the following definition just to fix notation.

Definition 3.1.2 (Strong type (p, q) operator). Let (X,µ), (Y, ν) be measurable spaces and
let T : Lp(X,µ) → Lq(Y, ν) be an operator. We will say that T is of strong type (p, q) if it is
a bounded operator. Notice that, for us, if q = ∞, weak and strong boundedness will refer to
the same property.

Let us introduce now the concept of maximal operator associated to a family of operators,
one of the central notions of this section.

Definition 3.1.3 (Maximal operator). Let {Tt}t be a family of operators defined from
Lp(X,µ) to the space of measurable functions from X to C. We define the maximal op-
erator T ∗ associated to the family {Tt}t as follows

T ∗f(x) := sup
t

|Ttf(x)|.

The interest in considering the maximal operator of a certain family is to infer properties
of the latter just by studying the former. This is the case, for example, of the following
theorem.

Theorem 3.1.2. If T ∗ is of weak type (p, q), then for every −∞ ≤ t0 ≤ ∞

1. The set {f ∈ Lp(X,µ) : limt→t0 Ttf(x) = f(x) µ-a.e.} is closed.

2. The set {f ∈ Lp(X,µ) : limt→t0 Ttf(x) exists µ-a.e.} is closed.

Proof. We will begin by proving 1. Let us fix t0 and consider (fn)n a sequence of functions
converging to f in Lp(X,µ) and such that Ttfn(x) converges to fn(x) µ-a.e. for every n as
t→ t0. We first observe the for almost every x we have
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3.1 The Marcinkiewicz interpolation theorem and maximal operators

lim sup
t→t0

|Ttf(x)− f(x)| = lim sup
t→t0

(
|Ttf(x)− f(x)| − |Ttfn(x)− fn(x)|

)
≤ lim sup

t→t0
|Tt(f − fn)(x)− (f − fn)(x)|

≤ lim sup
t→t0

|Tt(f − fn)(x)|+ |(f − fn)(x)|.

Fix λ > 0 and use the above inequality, the weak type (p, q) inequality and Chebyshev’s
inequality to obtain

µ

({
x ∈ X : lim sup

t→t0
|Ttf(x)− f(x)| > λ

})
≤ µ

({
x ∈ X : lim sup

t→t0
|Tt(f − fn)(x)|+ |(f − fn)(x)| > λ

})
≤ µ

({
x ∈ X : lim sup

t→t0
|Tt(f − fn)(x)| >

λ

2

})
+ µ

({
x ∈ X : |(f − fn)(x)| >

λ

2

})
≤ µ

({
x ∈ X : T ∗(f − fn)(x) >

λ

2

})
+ µ

({
x ∈ X : |(f − fn)(x)| >

λ

2

})
≤
(
2C

λ
∥f − fn∥p

)q
+

(
2

λ
∥f − fn∥p

)p
−−−→
n→∞

0

proving the first result. To prove 2 notice that it is enough to check that

µ

({
x ∈ X : lim sup

t→t0
Ttf(x)− lim inf

t→t0
Ttf(x) > λ

})
= 0, ∀λ > 0.

Again, take (fn)n converging to f in Lp(X,µ) such that Ttfn(x) converges to a certain value
ℓn(x) µ-a.e. for each n as t → t0. Adding and subtracting ℓn(x) and using that ℓn(x) =
lim supt→t0 Ttfn(x) = lim inft→t0 Ttfn(x) µ-a.e. we get for every λ > 0

µ

({
x ∈ X : lim sup

t→t0
Ttf(x)− lim inf

t→t0
Ttf(x) > λ

})
= µ

({
x ∈ X : lim sup

t→t0
Tt(f − fn)(x)− lim inf

t→t0
Tt(f − fn)(x) > λ

})
≤ µ

({
x ∈ X : 2T ∗(f − fn)(x) > λ

})
≤
(
2C

λ
∥f − fn∥p

)q
−−−→
n→∞

0.

One of the main applications of this result is the pointwise a.e. convergence of approximate
identities in Lp spaces, 1 ≤ p < ∞. The way to proceed will be to prove it for the functions
of the Schwartz class and use their density in the Lp spaces along with the previous theorem
to deduce the general result.

As we can see, although the study of a maximal operator tells us a lot of information about
its original family of operators, we are left to check an inequality that may be hard to prove.
However the following result will ease significantly the previous task:
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3.1 The Marcinkiewicz interpolation theorem and maximal operators

Theorem 3.1.3. (Marcinkiewicz interpolation, [7, Theorem 2.4]). Let (X,µ), (Y, ν) be mea-
surable spaces, 1 ≤ p0 < p1 ≤ ∞ and T a sublinear operator from Lp0(X,µ) + Lp1(X,µ) to
the space of measurable functions from Y to C. Assume T is of weak type (p0, p0) and of weak
type (p1, p1). Then, T is of strong type (p, p) for p0 < p < p1.

Previous to the proof of the theorem let us clarify the notation used in its statement:

• First, by the space Lp0(X,µ) + Lp1(X,µ) we mean the set formed by the C-valued
functions defined on X which can be written as a sum f0+ f1 where f0 ∈ Lp0(X,µ) and
f1 ∈ Lp1(X,µ).

• And second, when we say that T is a sublinear operator we mean that it satisfies the
following properties: for every f, g ∈ Lp0(X,µ) + Lp1(X,µ) and y ∈ Y

1. |T (f + g)(y)| ≤ |Tf(y)|+ |Tg(y)|.

2. For every λ ∈ C we have |T (λf)(y)| ≤ |λ||Tf(y)|.

In addition, let us introduce a specific function that will be helpful in the proof of the theorem
as well as one of its basic properties.

Definition 3.1.4 (Distribution function). Let (X,µ) be a measure space and let f : X → C be
a measurable function. The distribution function of f (associated to µ), af : (0,∞) → (0,∞]
is defined as

af (λ) := µ ({x ∈ X : |f(x)| > λ}) .

Proposition 3.1.4. Let ϕ : [0,∞) → [0,∞) be differentiable, increasing and such that ϕ(0) =
0. Then the following identity holds for every measurable f : X → C∫

X
ϕ (|f(x)|) dµ =

∫ ∞

0
ϕ′(λ)af (λ)dλ.

Proof. ∫
X
ϕ (|f(x)|) dµ =

∫
X

∫ |f(x)|

0
ϕ′(λ)dλdµ =

∫ ∞

0
ϕ′(λ)

(∫
{x∈X: |f(x)|≥λ}

dµ

)
dλ

=

∫ ∞

0
ϕ′(λ)af (λ)dλ,

where in the first equality we have used that ϕ(0) = 0 and in the second that ϕ′(λ) ≥ 0, so
that we can apply Tonelli’s theorem.

One particular case in which we will be interested in is when ϕ(λ) = λp. The result reads as
follows:

∥f∥pp = p

∫ ∞

0
λp−1af (λ)dλ. (3.1.1)

Proof (Theorem 3.1.3 ). Let us fix p ∈ (p0, p1) and prove that T is of strong type (p, p). First,
we choose f ∈ Lp(X,µ) arbitrary and we prove that f can be written as f = f0 + f1, where
f0 ∈ Lp0(X,µ) and f1 ∈ Lp1(X,µ). Indeed, let c > 0 and λ > 0, and set

f0 := fχ{|f |>cλ}, f1 := fχ{|f |≤cλ}.
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3.1 The Marcinkiewicz interpolation theorem and maximal operators

Applying Hölder’s inequality (with the exponents p/p0 and p/(p − p0)) and Chebyshev’s
inequality, we obtain

∥f0∥p0p0 =

∫
X
|f(x)χ{|f |>cλ}(x)|p0dµ(x) ≤ ∥f∥p0p µ ({x : |f(x)| > cλ})1−p0/p

≤ ∥f∥p0p
1

(cλ)p
∥f∥p−p0p = (cλ)−p∥f∥pp <∞.

And similarly for f1, applying Chebyshev’s inequality we get

∥f1∥p1p1 =

∫
X
|f(x)χ{|f |≤cλ}(y)|p1dµ(x) ≤ (cλ)p1µ ({x : |f(x)| ≤ cλ}) ≤ (cλ)p1−p∥f∥pp <∞.

Moreover, since T is sublinear we have for every y ∈ Y the estimate |Tf(y)| ≤ |Tf0(y)| +
|Tf1(y)|. This implies, in particular

aTf (λ) = µ ({x : |Tf(x)| > λ}) ≤ µ

({
x : |Tf0(x)| >

λ

2

})
+ µ

({
x : |Tf1(x)| >

λ

2

})
= aTf0

(
λ

2

)
+ aTf1

(
λ

2

)
. (3.1.2)

Now we proceed with the proof by assuming first that p1 = ∞. Since T is of weak type
(p1, p1), for every g ∈ L∞(X,µ) we have that Tg ∈ L∞(Y, ν) and ∥Tg∥∞ ≤ A1∥g∥∞ for some
A1 > 0. Then, by fixing c := (2A1)

−1 we get that ∥f1∥∞ ≤ λ/(2A1) and so ∥Tf1∥∞ ≤ λ/2,
which implies aTf1 (λ/2) = 0. Now, regarding f0, the weak type (p0, p0) inequality yields

aTf0

(
λ

2

)
≤
(
2A0

λ
∥f0∥p0

)p0
.

So for this case, the decomposition (3.1.2) as well as the relation (3.1.1) imply the result,
namely

∥Tf∥pp = p

∫ ∞

0
λp−1aTf (λ)dλ ≤ p

∫ ∞

0
λp−1aTf0

(
λ

2

)
dλ

≤ p(2A0)
p0

∫ ∞

0
λp−1−p0

(∫
{2A1|f |>λ}

|f(x)|p0dµ(x)

)
dλ

= p(2A0)
p0

∫
X
|f(x)|p0

(∫ 2A1|f(x)|

0
λp−1−p0dλ

)
dµ(x) =

p2p

p− p0
Ap00 A

p−p0
1 ∥f∥pp.

For the remaining case, p1 <∞, we will use both weak type inequalities

aTf0

(
λ

2

)
≤
(
2A0

λ
∥f0∥p0

)p0
, aTf1

(
λ

2

)
≤
(
2A1

λ
∥f1∥p1

)p1
,

and by the exact same argument as the previous one (now done also for f1, since aTf1 (λ/2)
may not be 0) we obtain

∥Tf∥pp ≤ p

(
(2A0)

p0

(p− p0)cp−p0
+

(2A1)
p1

(p1 − p)cp1−p

)
∥f∥pp.
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3.1 The Marcinkiewicz interpolation theorem and maximal operators

3.1.1 The Hardy-Littlewood maximal function

We will now study an specific maximal operator whose properties will be closely related to
those of certain families of functions which define an approximate identity. Before introducing
the operator itself, as a motivation, let us recall what we mean by approximate identity and
some of its properties.

Definition 3.1.5 (Approximate identity). Let ϕ ∈ L1(Rn) such that
∫
Rn ϕ(x)dx = 1. For

t > 0 we define

ϕt(x) :=
1

tn
ϕ
(x
t

)
,

which clearly satisfies ϕt ∈ L1(Rn) and
∫
Rn ϕt(x)dx = 1. We will call the collection {ϕt}t>0

an approximate identity.

We know that we can identify every integrable function in Rn as an element of S ′(Rn) –
that is, the space of linear continuous functionals defined in the Schwartz class S(Rn). More
specifically, and in the case of ϕt, that functional is

Tϕtf :=

∫
Rn

f(x)ϕt(x)dx =

∫
Rn

f(tx)ϕ(x)dx, f ∈ S(Rn). (3.1.3)

Later on we will obtain a result that will allow us to state that the association ϕt 7→ Tϕt , which
is clearly linear, is injective. Observe that for almost every x ∈ Rn we have limt→0 ϕ(x)f(tx) =
ϕ(x)f(0) and also |ϕ(x)f(tx)| ≤ ∥f∥∞ϕ(x), with ϕ ∈ L1(Rn). So by the dominated conver-
gence theorem we get

lim
t→0

Tϕtf =

(∫
Rn

ϕ(x)dx

)
f(0) = f(0) =

∫
Rn

f(x)dδ0 = ⟨δ0, f⟩, ∀f ∈ S(Rn).

being δ0 the Dirac measure at {0}. An immediate consequence of the previous argument is
that if {ϕt}t>0 is an approximate identity and f ∈ S(Rn), then ϕt ∗ f converges pointwise to
f as t → 0. In fact, there is a well-known refinement of the previous statement concerning
the convolution with approximate identities that we will not prove [7, Theorem 2.1]. It reads
as follows,

Theorem 3.1.5. Let {ϕt}t>0 be an approximate identity. Then

1. If f ∈ Lp(Rn), 1 ≤ p <∞, we have ∥ϕt ∗ f − f∥p −−→
t→0

0.

2. If f ∈ C0(Rn) (continuous and tending to 0 as |x| → ∞), we have ∥ϕt ∗ f − f∥∞ −−→
t→0

0.

In any case, suppose that we want to determine for f ∈ Lp(Rn), 1 ≤ p < ∞, if there is also
pointwise convergence Ln-a.e. of ϕt ∗ f to f as t→ 0. Since this result is true for f ∈ S(Rn),
if we manage to prove that the maximal operator

f 7→ sup
t>0

|ϕt ∗ f |, f ∈ Lp(Rn)

is weakly bounded for a certain class of approximate identities {ϕt}t>0, by the density of
Schwartz class in the spaces Lp(Rn) (with respect to each of their norms) and Theorem 3.1.2,
we can deduce the result.

34



3.1 The Marcinkiewicz interpolation theorem and maximal operators

Now, we are left to study a certain class of integral operators depending on an approximate
identity. Writing explicitly the maximal operator we want to study, it is of the form

f(x) 7→ sup
t>0

∣∣∣∣ ∫
Rn

ϕt(y)f(x− y)dy

∣∣∣∣. (3.1.4)

A particular case of function ϕ, that gives rise to the definition of the Hardy-Littlewood
maximal function, is obtained if we choose ϕ(x) := |B(0, 1)|−1χB(0,1)(x).

Definition 3.1.6 (Hardy-Littlewood maximal function). Let Br := B(0, r) ⊆ Rn be the
euclidean ball of radius r centered at the origin and let f ∈ L1

loc(Rn) be a locally integrable
function. The Hardy-Littlewood maximal function of f is given by

Mf(x) := sup
r>0

1

|Br|

∫
Br

|f(x− y)|dy.

Notice that for non-negative functions we have that Mf coincides with the maximal operator
in (3.1.4). The fundamental property of the M operator is given in the next theorem:

Theorem 3.1.6. The operatorM is of weak type (1, 1) and of strong type (p, p) for 1 < p ≤ ∞.

We will give a proof of this result for the case n = 1. The reader may find in the book of
Duoandikoetxea [7, Chapters 4 & 7], the proofs for the remaining cases. In any case, returning
to the one-dimensional setting, first we will need the following lemma:

Lemma 3.1.7. Let {Iα}α∈A be a collection of open intervals in R and let K ⊂ R be compact
and contained in

⋃
α∈A Iα. Then, there exists a finite subcollection of intervals {Ij}Nj=1 ⊂

{Iα}α∈A satisfying

1. K ⊆
⋃N
j=1 Ij

2. The intersection of three intervals of the subcollection is empty, i.e.

N∑
j=1

χIj (x) ≤ 2, x ∈ R.

Proof. Since K is compact we can pick a finite subcovering {Iαj}Nj=1 from the initial collection
of intervals. In addition, we will assume that Iαj∩K ̸= 0 for every j = 1, . . . , N and, moreover,

that there is xj ∈ Iαj with x /∈
⋃N
k=1,k ̸=j Iαk

and xj ∈ K, for every j = 1, . . . , N . Our final
assumption will be that K is a closed interval that we name [a, b] (the general case would be
treated analogously using the argument that follows).

Let us begin by choosing i1 ∈ {α1, . . . , αN} so that a ∈ Ii1 = (xi1 , yi1) and we define I1 := Ii1 .
Notice that if yi1 /∈ K, then we are done. On the other hand, if yi1 ∈ K we pick i2 so that
yi1 ∈ Ii2 = (xi2 , yi2) and we define I2 to be

I2 := Ii2 ∩
(
xi1 + yi1

2
, yi2

)
,
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3.1 The Marcinkiewicz interpolation theorem and maximal operators

so that we do not have I1 ⊂ I2. Again, if yi2 /∈ K we would be done. If not, we pick i3 so
that yi2 ∈ Ii3 = (xi3 , yi3) and we define I3 to be

I3 := Ii3 ∩
(
yi1 + yi2

2
, yi3

)
.

This last construction illustrates the general pattern we need to repeat – a finite number of
times, since K ⊂

⋃N
j=1 Ij – to obtain the finite subcollection we are interested in.

Proof (Theorem 3.1.6). Begin by observing that if f ∈ L∞(Rn), it is immediate that ∥Mf∥∞ ≤
∥f∥∞. Thus, by Marcinkiewicz interpolation theorem 3.1.3 it is enough to prove that M is of
weak type (1, 1).

So pick f ∈ L1(R) and for each λ > 0 consider Eλ := {x ∈ R : Mf(x) > λ}. If x ∈ Eλ, then,
by definition of M , there is an interval Ix centered at x such that

1

|Ix|

∫
Ix

|f(y)|dy > λ ⇔ |Ix| <
1

λ

∫
Ix

|f(y)|dy. (3.1.5)

Let K ⊂ Eλ be compact and apply Lemma 3.1.7 to this set and the initial covering {Ix}x∈Eλ
.

Then, we obtain {Ixj}Nj=1 a finite covering of K with
∑N

j=1 χIxj ≤ 2. Therefore by (3.1.5)

|K| ≤
N∑
j=1

|Ixj | <
N∑
j=1

1

λ

∫
Ixj

|f(y)|dy ≤
N∑
j=1

1

λ

∫
R
χIxj (y)|f(y)|dy ≤ 2

λ
∥f∥1.

Since this inequality is true for every compact K ⊂ Eλ, we obtain the desired weak type (1, 1)
inequality, i.e. |Eλ| ≤ 2

λ∥f∥1 (that is because the Lebesgue measure is a Radon measure, so in
particular the measure of any open set can be obtained as the supremum over the measures
of the compact sets contained in it).

Hence, now we can state the following result, which will be a consequence of the previous
Theorem 3.1.6 (we present it in its one-dimensional form, but recall that it is still valid in the
multidimensional case).

Corollary 3.1.8. If f ∈ Lp(R) with 1 ≤ p <∞ and ϕ := 2−1χ(−1,1), then

lim
t→0

(ϕt ∗ f)(x) = f(x), L-a.e.

In addition, the result is still true also if f ∈ C0(Rn).

The last assertion is just a consequence of the second point of Theorem 3.1.5, and notice that
for this case the convergence is more restrictive since it becomes uniform, i.e. with respect to
the norm ∥ · ∥∞.

We may wonder if this last corollary could be also deduced if we chose another positive
integrable function ϕ with similar properties to χ(−1,1). And, indeed, this is the case, as it
is shown in Duoandikoetxea [7, Corollary 2.9], where the result is proved just assuming that
a general function ϕ would be a proper choice if |ϕ| is bounded L-a.e. by ψ, a positive,
integrable, radial and decreasing function.
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3.1 The Marcinkiewicz interpolation theorem and maximal operators

Returning to Corollary 3.1.8, we would like to stress a particular case of the multidimensional
version for p = 1, and we state it in a slightly more general setting. This important result
has a name of its own:

Theorem 3.1.9. (Lebesgue differentiation theorem, [7, Corollary 2.13]). If f ∈ L1
loc(Rn),

then

lim
r→0+

1

|Br|

∫
Br

f(x− y)dy = f(x), Ln-a.e.

Proof. We already know that the result is true if f ∈ L1(Rn). In the case f ∈ L1
loc(Rn) we

consider f̃ := fχBr , which belongs to L1(Rn). Hence we get the result for almost every point
x ∈ Br with r > 0. So by this same argument applied to every Bn with n ∈ N and making
n→ ∞ we get the result for almost every x ∈ Rn.

As a consequence of this last theorem we are able to prove that the identification we did in
(3.1.3), between an integrable function and a linear functional of S(Rn), is injective.

Theorem 3.1.10. If ϕ ∈ L1(Rn) is such that Tϕ = 0, then ϕ = 0 Ln-a.e.

Proof. We know that for every f ∈ S(Rn) we have 0 = Tϕf =
∫
Rn ϕf . Now, since the class of

smooth functions with compact support (test functions) is dense in L1(Rn) and it is contained
in S(Rn), we are able to consider a sequence (fn)n of test functions that converges in L1(Rn)
to χBr . In fact, we may assume, by restricting ourselves to a subsequence, that it converges
pointwise Ln-a.e. Therefore, for every a ∈ Rn, the dominated convergence theorem yields∫

Br

ϕ(x− a)dx =

∫
Rn

ϕ(x− a)χBrdx = lim
n→∞

∫
Rn

ϕ(x− a)fn(x)dx = 0.

So multiplying both sides by |Br|−1, taking the limit as r → 0+ and applying Theorem 3.1.9,
we obtain the result.

Finally, to end this section on the Hardy-Littlewood maximal function we remark that, al-
though we know that M is of weak type (1, 1), it is not of strong type (1, 1). In fact the
following result holds:

Proposition 3.1.11. If f ∈ L1(Rn) and f is not identically 0, then Mf /∈ L1(Rn).

Proof. There exists R > 0 such that
∫
BR

|f | ≥ ε > 0. Now, if |x| > R we have BR ⊂ B(x, 2|x|)
and so

Mf(x) ≥ 1

(2|x|)2

∫
BR

|f(x)|dx ≥ ε

2n|x|n
.

Therefore, if we were to compute the L1(Rn) norm we would get (using polar coordinates)∫
Rn

|Mf(x)|dx ≥ ε

2n

∫
Rn

dx

|x|n
≃ ε

2n

∫ ∞

0

dr

r
= ∞.
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3.1 The Marcinkiewicz interpolation theorem and maximal operators

3.1.2 The dyadic maximal function

Our goal for this last point about maximal functions is to introduce another relevant example.
Its interest not only relies in the fact that its definition, similar to the one of the Hardy-
Littlewood maximal operator, gives rise to a result analogous to the Lebesgue differentiation
theorem; but also relies in the tools needed to prove its boundedness. Indeed, we will introduce
the concept of Calderón-Zygmund decomposition that will be useful when studying the Hilbert
operator and, more generally, Calderón-Zygmund operators.

First, we begin fixing some notation (that was already used, inadvertently, in the proof of
Lemma 2.4.8):

• In Rn we will understand the unit cube, open on the right, as the set [0, 1)n; and we let
Q0 be the collection of unit cubes congruent to [0, 1)n and such that its vertices lie on
the lattice Zn.

• If we dilate Q0 by a factor of 2−k, k ∈ Z, we obtain the family Qk, formed by cubes,
open on the right, with vertices lying at the lattice (2−kZ)n and volume 2−nk.

Definition 3.1.7 (Dyadic cube). We call dyadic cube any element of any family Qk, k ∈ Z.

The collection of dyadic cubes satisfies the following basic properties:

1. Let k ∈ Z and x ∈ Rn. Then, there is a unique dyadic cube in Qk that contains x.

2. Two dyadic cubes are either disjoint or one is contained in the other.

3. A dyadic cube Q ∈ Qk is contained in a unique dyadic cube of Qj , j < k. Moreover, Q
contains 2n dyadic cubes of Qk+1.

Based on these collection of dyadic cubes it is natural to define the following approximation
of f in terms of every Qk, since Qk defines a partition in Rn.

Definition 3.1.8 (Conditional expectation of f with respect to Qk). Given f ∈ L1
loc(Rn), we

define its conditional expectation with respect to Qk as

Ekf(x) :=
∑
Q∈Qk

(
1

|Q|

∫
Q
f

)
χQ(x).

It is clear that if f ∈ L1(Rn), then Ekf satisfies∫
Rn

Ekf =

∫
Rn

f.

Also observe that as k → −∞ the size of dyadic cubes of Qk gets larger. Therefore, since
f ∈ L1(Rn) we have, for almost every x ∈ Rn,

|Ekf(x)| ≤ ∥f∥1
∑
Q∈Qk

2nkχQ(x) = ∥f∥12nk −−−−→
k→−∞

0. (3.1.6)

Definition 3.1.9 (Dyadic maximal function). The dyadic maximal function Md is defined
for each f ∈ L1(Rn) as

Mdf(x) := sup
k∈Z

|Ekf(x)|.
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3.1 The Marcinkiewicz interpolation theorem and maximal operators

Again, as with the Hardy-Littlewood maximal function, we aim to prove an analogous version
of Theorem 3.1.6. Nevertheless, we will first obtain a result – which will be important by
itself and useful in the sequel – that will imply a certain weak boundedness of Md.

Intuitively, given a non-negative f ∈ L1(Rn), we know that its integrability must have an
effect on its growth as |x| → ∞. So the idea is to construct a sequence of measurable subsets
of Rn (which in the end will be cubes), depending on f , so that f is essentially bounded outside
of them and so that the measure of the union of all the subsets forming the sequence is finite.
Moreover, as f is also finite Ln-a.e., we might ask for its expected value in every subset of
the sequence to be finite. The existence of such sequence is given by the next theorem.

Theorem 3.1.12. (Calderón-Zygmund decomposition, [7, Theorem 2.11]). Given a non-
negative f ∈ L1(Rn) and λ > 0, there exists a sequence (Qj)j of disjoint dyadic cubes such
that:

1. f(x) ≤ λ for almost every x /∈
⋃
j Qj.

2. |
⋃
j Qj | ≤

1
λ∥f∥1.

3. For every Qj we have: λ < 1
|Qj |

∫
Qj
f ≤ 2nλ.

Proof. Let us begin by defining for each k ∈ Z

Ωk := {x ∈ Rn : Ekf(x) > λ and Ejf(x) ≤ λ if j < k} .

That is, x ∈ Ωk if Ekf(x) is the first conditional expectation of f bigger than λ. Notice that
this definition makes sense because of (3.1.6), which ensures the existence of this first value of
k. Observe that if Qk,x is the unique dyadic cube of Qk containing x, then for every y ∈ Qx,k
we have also y ∈ Ωk, by definition of Ekf . So Ωk can be expressed as the disjoint union of
dyadic cubes of Qk. Moreover, by definition of Ωk, if j < k, then Ωj ∩ Ωk = ∅. Therefore,
the family {Ωk}k∈Z is a collection of disjoint dyadic cubes of different families Qk, k ∈ Z. We
define the sequence (Qj)j as these precise disjoint dyadic cubes.

Let us prove that the previous sequence satisfies 2. We claim that the following identity holds:

{x ∈ Rn : Mdf(x) > λ} =
⊔
k∈Z

Ωk =
⊔
j

Qj , (3.1.7)

(notice that the second equality follows just by construction) where the notation
⊔

stands
for disjoint union. Let us prove the first. The inclusion ⊇ is clear, so we focus on the other.
Let x ∈ Rn be such that Mdf(x) > λ. By definition, there exist ε > 0 and k ∈ Z satisfying
Ekf(x) ≥ λ+ ε (indeed, we can argue this by contradiction) and so x ∈

⊔
j≤k Ωj and we are

done. So we obtain the following estimate

|{x ∈ Rn : Mdf(x) > λ}| =
∑
k∈Z

|Ωk| ≤
∑
k∈Z

1

λ

∫
Ωk

Ekf(x)dx

=
1

λ

∑
k∈Z

∑
Q∈Qk

|Ωk ∩Q|
|Q|

∫
Q
f(y)dy ≤ 1

λ

∑
Q∈Qk

∫
Q
f(y)dy ≤ 1

λ
∥f∥1,

which proves 2 as well as the fact that Md is of weak type (1, 1).
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3.1 The Marcinkiewicz interpolation theorem and maximal operators

Now, concerning 1, if x /∈
⋃
j Qj , then Ekf(x) ≤ λ for all k ∈ Z. If we proved that

limk→∞Ekf(x) = f(x) for almost every point, that would imply the result by a limitting
argument. Let us see first that this is the case if f is continuous. Fix x ∈ Rn and ε > 0.
Choose Kx a compact neighbourhood of x with diameter small enough so that by uniform
continuity |f(x1)−f(x2)| < ε, for any x1, x2 ∈ Kx. Pick also k large enough so that Qk,x ∈ Qk

(the unique dyadic cube of diameter
√
n2−k containing x) satisfies Qk,x ⊂ Kx. Then,

|Ekf(x)− f(x)| =
∣∣∣∣ 1

|Qk,x|

∫
Qk,x

f(y)dy − f(x)

∣∣∣∣ ≤ 1

|Qk,x|

∫
Qk,x

|f(y)− f(x)|dy < ε, (3.1.8)

obtaining the result, since x is arbitrary. If now f ∈ L1(Rn), use the density of continuous
functions and that Md satisfies a weak type (1, 1) inequality together with Theorem 3.1.2.

Finally, regarding 3, the first inequality is clear given the definition of the cubes Qj . On the

other hand, if Q̃j is the dyadic cube containing Qj with sides twice as long, by the definitions
of Ωk and Ek−1f , we get the desired estimate:

1

|Qj |

∫
Qj

f(x)dx ≤ |Q̃j |
|Qj |

1

|Q̃j |

∫
Q̃j

f(x)dx ≤ 2nλ

Corollary 3.1.13. The dyadic maximal operator Md is of weak type (1, 1) and of strong type
(p, p), 1 < p ≤ ∞. Also, if f ∈ L1

loc(Rn), then limk→∞Ekf(x) = f(x) for almost every point.

Proof. We have already seen in the proof of the previous theorem that Md is of weak type
(1, 1). Notice that, although we have only checked the result for non-negative functions, since
every real integrable function f can be decomposed as f = f+ − f−, the result still holds
(and if f took complex values, we may decompose f = Re(f) + iIm(f) and apply the same
argument to its real and imaginary parts). Moreover, if f ∈ L∞(Rn), then

∥Mdf∥∞ = sup
x∈Rn

|Mdf(x)| = sup
x∈Rn

sup
k∈Z

∣∣∣∣∣ ∑
Q∈Qk

(
1

|Q|

∫
Q
f(y)dy

)
χQ(x)

∣∣∣∣∣ ≤ ∥f∥∞

and so Md is of weak/strong type (∞,∞), and by the Marcinkiewicz interpolation theorem
3.1.3 we get that Md if of strong type (p, p) for 1 < p <∞.

Now, let f ∈ L1
loc(Rn). Since for every Q ∈ Q0 we have fχQ ∈ L1(Rn), by the argument of

(3.1.8) we deduce limk→∞EkfχQ(x) = fχQ(x) for almost every point of Rn. Equivalently,
limk→∞Ekf(x) = f(x) for almost every point in Q. But since Q is arbitrary and Q0 is
countable, we obtain the result for Ln-a.e. x ∈ Rn.

To end this section about maximal functions we will present a technical lemma that will be
useful in the sequel, proving properties of the maximal operator of a family of Calderón-
Zygmund operators.

Lemma 3.1.14. If f ∈ L1(Rn) is non-negative and λ > 0, then, if C := π−
n
2 Γ
(
n
2 + 1

)
, we

have
|{x ∈ Rn : Mf(x) > C8nλ}| ≤ 2n|{x ∈ Rn : Mdf(x) > λ}|.
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3.2 The Hilbert transform

Proof. Begin by considering (Qj)j the Calderón-Zygmund decomposition associated to f and
λ. We know by (3.1.7) that {x ∈ Rn : Mdf(x) > λ} =

⊔
j Qj . If we define 2Qj to be

the cube centered at same point as Qj with double side length, since the cubes are disjoint,
|
⊔
j 2Qj | = 2n|

⊔
j Qj | = 2n|{x ∈ Rn : Mdf(x) > λ}|. So it is enough to check {x ∈ Rn :

Mf(x) > C8nλ} ⊆
⊔
j 2Qj to obtain the desired estimate.

Let us fix then x /∈
⊔
j 2Qj and let Q be any cube centered at x. If ℓ(Q) is the side length of

Q, we choose k ∈ Z so that 2k−1 ≤ ℓ(Q) < 2k. Then, Q could intersect, at most, 2n dyadic
cubes of the collection Qk. Let R1, . . . , Rm be those precise cubes, for m ≤ 2n. Notice that
for every s = 1, . . . ,m, Rs ̸⊆ Qj for any j, because if not, since Q ⊆ 2Rs, we would have
x ∈ Q ⊆ 2Rs ⊂

⊔
j 2Qj , which contradicts the initial choice of x. Hence, for every Rs there

exists a certain xs ∈ Rs such that supk∈Z |Ekf(xs)| ≤ λ. This means, by the definition of Md,
that the mean of f in each Rs is, at most, λ. Therefore

1

|Q|

∫
Q
f =

1

|Q|

m∑
s=1

∫
Q∩Rs

f ≤ 2kn

|Q|

m∑
s=1

1

|Ri|

∫
Ri

f ≤ 2nk

2n(k−1)
mλ ≤ 4nλ.

On the other hand, we know that if B is the biggest ball centered at x and contained in Q,
then, as f is non-negative

1

|B|

∫
B
f ≤ |Q|

|B|
1

|Q|

∫
Q
f =

2nΓ(n2 + 1)

π
n
2

∫
Q
f ⇒ 1

|B|

∫
B
f ≤

(
8√
π

)n
Γ
(n
2
+ 1
)
λ,

and since Q (and hence B) is arbitrary, we are done.

3.2 The Hilbert transform

Now we will turn our attention to a specific operator that will motivate the forthcoming
study of the Calderón-Zygmund theory. Such operator is the Hilbert transform and, as in the
previous section, our main goal will be to prove its Lp(R)-boundedness (in Chapter 4 we will
treat the Rn situation).

The key result of the sequel will be the Kolmogorov-Riesz theorem (Theorem 3.2.4) and even
more importantly its proof, that will justify, eventually, the definition of a Calderón-Zygmund
operator. Indeed, we will establish its definition regarding, essentially, at the properties of
the Hilbert transform that imply its Lp-boundedness.

3.2.1 Motivation and definition

Informally, the typical example when one is presented with the concept of singular integral
is

lim
a,b→0

∫ a

−b

1

x
dx, a, b > 0,

which is not well-defined if we do not specify how one approaches 0 both from the right and
the left. It is well-known that one convention to assign a value to integrals of the last kind is
to tend to 0 from both sides at the same rate, defining the so called Cauchy’s principal value
of the singular integral. In the previous example we would have
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3.2 The Hilbert transform

p.v.

∫ a

−a

1

x
dx = lim

ε→0

∫
ε<|x|<a

1

x
dx = 0.

Notice that in the last computation, if the numerator of the integrand would have been
any even (locally integrable) function defined on (−δ, δ) \ {0} for some δ > 0; we would
have obtained the same result. This motivates the study of a possible generalization of this
particular principal value and a natural way to do it is via tempered distributions.

Definition 3.2.1 (Principal value of 1
x). We define the tempered distribution p.v. 1x called

the principal value of 1
x as

p.v.
1

x
(ϕ) := lim

ε→0

∫
|x|>ε

ϕ(x)

x
dx, ∀ϕ ∈ S(R).

Proposition 3.2.1. The principal value of 1
x is, indeed, a tempered distribution.

Proof. Let us fix ϕ ∈ S(R) and notice that∣∣∣∣p.v. 1x(ϕ)
∣∣∣∣ ≤ lim

ε→0

∣∣∣∣ ∫
ε<|x|<1

ϕ(x)− ϕ(0)

x
dx

∣∣∣∣+ ∣∣∣∣ ∫
|x|>1

ϕ(x)

x
dx

∣∣∣∣ ≲ ∥ϕ′∥∞ + ∥xϕ∥∞ <∞,

and hence p.v. 1x is well-defined. To check that it is also a continuous functional, since it is
clearly linear, it is enough to prove that if we have (ϕn)n ⊂ S(R) tending to 0 in S(R), then
p.v. 1x(ϕ) tends to 0 in C (recall that (ϕn)n → 0 in S(R) means that the sequence tends to 0
with respect to all the seminorms that are defined, for any α ≥ 0 and β ∈ N ∪ {0}, as the
quantity supx∈R |xαϕ(β)(x)|). But observe that this is immediate because of the estimate we
have found at the beginning of the proof (which depends on two specific seminorms).

Observe that the previous proof shows that the principle value of 1
x can be defined also for

any even locally integrable function or any Lipschitz function f for which there exists some
a > 0 so that x−1f ∈ L1(a,∞). An example of the first is the cardinal sine, i.e.

sinc(x) =

{
(πx)−1 sinπx x ̸= 0,
1 x = 0,

with principal value 0, since it is an even function.

Thinking of the principal value of 1
x as a tempered distribution, it is reasonable to be interested

in computing its Fourier transform. In order to do it, we prove first the following lemma:

Lemma 3.2.2. Let Qt :=
1
π

x
t2+x2

. Then, the following equality between tempered distributions
holds

lim
t→0

Qt =
1

π
p.v.

1

x
.

Proof. Let us express first the principal value of 1
x as the limit of another tempered distribu-

tion: ψt(x) :=
1
xχ{|x|>t}. Indeed, if ϕ ∈ S(R) then∣∣∣∣(p.v. 1x − ψt

)
(ϕ)

∣∣∣∣ = ∣∣∣∣ limε→0

∫
ε<|x|<t

ϕ(x)− ϕ(0)

x
dx

∣∣∣∣ ≤ 2t∥ϕ′∥∞ −−→
t→0

0.
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3.2 The Hilbert transform

Thus, it is enough to prove that limt→0(Qt− ψt

π )(ϕ) = 0, ∀ϕ ∈ S(R). So we fix ϕ and compute

(πQt − ψt)(ϕ) =

∫
R

xϕ(x)

t2 + x2
dx−

∫
|x|>t

ϕ(x)

x
dx

=

∫
|x|<t

xϕ(x)

t2 + x2
dx−

∫
|x|>t

(
x

t2 + x2
− 1

x

)
ϕ(x)dx

=

∫
|x|<1

xϕ(tx)

1 + x2
dx−

∫
|x|>1

ϕ(tx)

x(1 + x2)
dx.

It is clear that we can apply the dominated convergence theorem in both integrals when
considering the limit t → 0, obtaining two integrals of odd functions in symmetric domains.
Hence the limit is 0.

As a direct consequence of this lemma, we obtain, for any f ∈ S(R)[(
1

π
p.v.

1

y

)
∗ f
]
(x) =

[(
lim
t→0

Qt

)
∗ f
]
(x). (3.2.1)

Now we wish to take the Fourier transform at both sides of the previous equality and apply
its multiplicative property with respect to the convolution. Let us check that we are able to
do it in the case where one of the terms is the tempered distribution p.v. 1x . Consider the
explicit expression of the Fourier transform[(

1

π
p.v.

1

y

)
∗ f
]∧

(ξ) =
1

π

∫
R
lim
ε→0

(∫
|y|>ε

f(x− y)

y
dy

)
e−2πiξxdx. (3.2.2)

Let us prove that we can take the limit outside the outer integral and we can interchange
the order of integration. With respect to the first matter, notice that the pointwise limit is

well-defined and it is
(

1
πp.v.

1
y ∗ f

)
(x). On the other hand notice that∣∣∣∣ ∫

|y|>ε

f(x− y)

y
dy

∣∣∣∣ ≤ ∣∣∣∣ ∫
ε<|y|<1

f(x− y)

y
dy

∣∣∣∣+ ∣∣∣∣ ∫
|y|>1

f(x− y)

y
dy

∣∣∣∣
≤
∫ 1

0
|f ′(x− t+)|dy +

∫ 0

−1
|f ′(x+ t−)|dy +

∫
|y|>1

|f(x− y)|
|y|

dy,

where t+, t− ∈ (0, 1) and depend on y. Integrating with respect to x and applying Tonelli’s
theorem, we get that the first and second integrals are bounded by ∥f ′∥1. Regarding the
third, since |y| > 1 we can estimate it as follows∫

R

∫
|y|>1

|f(x− y)|dydx ≤
∫
R\D

|f(x− y)|dydx =
√
2

∫ 2π

0

∫ ∞

1
|f(reiθ)|rdrdθ ≤ 2π

√
2∥xf∥1

Therefore, we can apply the dominated convergence theorem and put the limit outside. Notice
also that the previous computations also prove that we can apply Fubini’s theorem in (3.2.2),
so we finally obtain:
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3.2 The Hilbert transform

[(
1

π
p.v.

1

y

)
∗ f
]∧

(ξ) =
1

π

∫
R
lim
ε→0

(∫
|y|>ε

f(x− y)

y
dy

)
e−2πiξxdx

=
1

π
lim
ε→0

∫
|y|>ε

1

y
e−2πiξy

(∫
R
f(x− y)e−2πiξ(x−y)dx

)
dy

=

(
1

π
lim
ε→0

∫
|y|>ε

1

y
e−2πiξydy

)
f̂(ξ).

So indeed the multiplicative property holds. Hence, taking the Fourier transform at both
sides of (3.2.1), recalling that it is a continuous operator from S ′(R) to itself, and using that
Q̂t(ξ) = −i · sgn(ξ)e−2πt|ξ| (this can be proved by a direct computation) we obtain[(

1

π
p.v.

1

y

)
∗ f
]∧

(ξ) = lim
t→0

Q̂t(ξ)f̂(ξ) = −i · sgn(ξ)f̂(ξ),

so we conclude (
1

π
p.v.

1

y

)∧
(ξ) = −i · sgn(ξ).

Now we are ready to state the definition of the Hilbert transform, that, in fact, has already
been presented.

Definition 3.2.2 (Hilbert transform). Given f ∈ S(R), we define its Hilbert transform as

Hf(x) =

[(
1

π
p.v.

1

y

)
∗ f
]
(x).

It can be equivalently defined through its Fourier transform, that is, H is the only operator
satisfying

Ĥf(ξ) = −i · sgn(ξ)f̂(ξ). (3.2.3)

Let us make a series of observations regarding H:

1. Recall that p.v. 1x is a tempered distribution that acts on functions ϕ of the Schwartz class

as the integral operator: p.v. 1x(ϕ) = limε→0

∫
|x|>ε

ϕ(x)
x dx. So notice that the convolution

of this operator against ϕ is just its action to a translate of ϕ.

2. Relation (3.2.3) yields Ĥf ∈ L2(R), therefore ∥Hf∥2 = ∥Ĥf∥2 = ∥f̂∥2 = ∥f∥2. This
determines, in particular, the Hilbert transform of a function f ∈ L2(R). Indeed, if
(fn)n ⊂ S(R) is a sequence approximating f in L2(R), then

∥Hfn −Hfm∥2 = ∥fn − fm∥2 −−−−−→
n,m→∞

0.

So (Hfn)n is a Cauchy sequence in L2(R) and hence convergent to a certain limit,
defining the Hilbert transform of f (strictly, we would still have to check that this
definition does not depend on the approximating sequence).
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3.2 The Hilbert transform

3. The previous point motivates considering the iteration H(Hf), for any f ∈ S(R). This
makes sense sinceHf ∈ L2(R). By doing it, notice that if we write the explicit expression
of the Fourier transform of H(Hf) we obtain

[H(Hf)]∧(ξ) =

[(
1

π
p.v.

1

x

)
∗
[(

1

π
p.v.

1

x

)
∗ f
]]∧

(ξ) = [−i · sgn(ξ)]2f̂(ξ) = −f̂(ξ),

and so we conclude that H(Hf) = −f .

4. The following identity holds for any f, g ∈ S(R) (or L2(R))∫
R
Hf(x)g(x)dx = −

∫
R
f(x)Hg(x)dx. (3.2.4)

This is just a consequence of the previous point, the polarization identity in L2(R) and
the fact that ∥Hf∥2 = ∥f∥2.

3.2.2 The Kolmogorov-Riesz theorem

The main goal of this section is to extend H as a bounded linear operator on Lp(R) spaces,
1 < p < ∞ (Riesz’s theorem). On the other hand, for p = 1, similarly as with the Hardy-
Littlewood maximal function, we will prove that H satisfies a weak type (1, 1) inequality
(Kolmogorov’s theorem). Nevertheless, let us fix first some notation before moving on to the
result itself.

Definition 3.2.3 (Good and bad parts of f). Let f ∈ S(R) and λ > 0. Let (Ij)j be a
sequence of disjoint dyadic intervals associated to a Calderón-Zygmund decomposition of f
in R with respect to λ. We define the good part of f as

gf (x) =

{
f(x) x /∈

⋃
j Ij ,

1
|Ij |
∫
Ij
f(y)dy x ∈ Ij .

On the other hand, the bad part of f is

bf (x) =
∑
j

bf,j , where bf,j(x) =

(
f(x)− 1

|Ij |

∫
Ij

f(y)dy

)
χIj (x).

Observe that by construction of the Calderón-Zygmund decomposition we get gf (x) ≤ 2λ.
Also, notice that bf,j is supported on Ij and so the sum that defines bf makes sense pointwise.
We will also need the following basic properties regarding gf and bf :

Lemma 3.2.3. The good and bad parts of f satisfy:

1. For each j, bf,j has null integral.

2. The sum
∑

j bf,j converges to bf in L2(R).

3. ∥gf∥1 ≤ ∥f∥1 and, in fact,
∫
R gf (x)dx =

∫
R f(x)dx.

4. It makes sense to consider Hgf and Hbf .
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3.2 The Hilbert transform

Proof. The first assertion is trivial, so let us begin by focusing on the second. Recall that,
by definition, for every interval Ij there exists k ∈ Z so that if x ∈ Ij , then Ekf(x) > λ
and Esf(x) ≤ λ if s ≤ k. Hence |Ij | = |Ij(k)| = 2−k. This, combined with the conditions
|
⋃
j Ij | ≤ λ−1∥f∥1 and Ij ∩ Ij = ∅ for i ̸= j, implies, necessarily, limj→∞ |Ij | = 0. Now, using

the almost sure convergence given in Corollary 3.1.13

lim
j→∞

(
f(x)− 1

|Ij |

∫
Ij

f(y)dy

)
χIj (x) = 0, for L-a.e. x ∈ R.

Hence, for all ε > 0 there exists j0 so that if j ≥ j0 we have∣∣∣∣{x ∈ Ij :

∣∣∣∣f(x)− 1

|Ij |

∫
Ij

f(y)dy

∣∣∣∣ ≥ ε√
2j |Ij |

}∣∣∣∣ = 0.

Then, we can conclude

∥∥∥∥bf − j0∑
j=0

bf,j

∥∥∥∥
2

=

∫
R

∣∣∣∣∣
∞∑

j=j0+1

(
f(x)− 1

|Ij |

∫
Ij

f(y)dy

)
χIj (x)

∣∣∣∣∣
2

dx

 1
2

≤

 ∞∑
j=j0+1

∫
Ij

∣∣∣∣f(x)− 1

|Ij |

∫
Ij

f(y)dy

∣∣∣∣2dx
 1

2

< ε

 ∞∑
j=j0+1

1

2j

 1
2

< ε.

To prove 3 we compute∫
R
|gf (x)|dx =

∑
j

∫
Ij

|gf (x)|dx+

∫
R∩(

⋃
j Ij)

c

|gf (x)|dx

≤
∑
j

∫
Ij

|f(x)|dx+

∫
R∩(

⋃
j Ij)

c

|f(x)|dx =

∫
R
|f(x)|dx.

The equality between integrals follows also from the same argument but without taking the
absolute value of the integrand.

In order to prove that Hgf makes sense we will prove that gf ∈ L2(R). If we do this, since
bf = f−gf , Hbf will be also well-defined. But this follows from Cauchy-Schwarz’s inequality:

∫
R
|gf (x)|2dx =

∑
j

1

|Ij |

(∫
Ij

|f(x)|dx

)2

+

∫
R∩(

⋃
j Ij)

c

|f(x)|2dx

≤
∑
j

∫
Ij

|f(x)|2dx+

∫
R∩(

⋃
j Ij)

c

|f(x)|2dx =

∫
R
|f(x)|2dx <∞.

Theorem 3.2.4. (Kolmogorov-Riesz, [7, Theorem 3.2]). Let f ∈ S(R). The following hold:

1. H satisfies the weak type (1, 1) inequality: |{x ∈ R : |Hf(x)| > λ}| ≤ C
λ ∥f∥1.

2. H satisfies the strong type (p, p) inequality for 1 < p <∞: ∥Hf∥p ≤ Cp∥f∥p.
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3.2 The Hilbert transform

Proof. We will start by proving 1. Let us fix λ > 0, f ∈ S(R) non-negative and (Ij)j a
sequence of intervals in R associated to a Calderón-Zygmund decomposition of f with respect
to λ. By the last statement in Lemma 3.2.3 we have Hf = Hgf +Hbf and therefore

|{x ∈ R : |Hf(x)| > λ}| ≤
∣∣∣∣ {x ∈ R : |Hgf (x)| >

λ

2

} ∣∣∣∣+ ∣∣∣∣ {x ∈ R : |Hbf (x)| >
λ

2

} ∣∣∣∣.
(3.2.5)

Regarding the first term, since ∥Hf∥2 = ∥f∥2 and 0 ≤ gf (x) ≤ 2λ,∣∣∣∣{x ∈ R : |Hgf (x)| >
λ

2

}∣∣∣∣ ≤ ( 2

λ

)2 ∫
R
|Hgf (x)|2dx =

4

λ2

∫
R
gf (x)

2dx ≤ 8

λ

∫
R
gf (x)dx

=
8

λ

∫
R
f(x)dx =

8

λ
∥f∥1,

where we have used the third statement of Lemma 3.2.3 in the second equality. On the other
hand, in order to estimate the second term in (3.2.5), let 2Ij be the interval with the same
center as Ij and with double side length. Observe that |

⋃
j 2Ij | ≤ 2|

⋃
j Ij | ≤

2
λ∥f∥1, by

construction of the Calderón-Zygmund decomposition. So∣∣∣∣{x ∈ R : |Hbf (x)| >
λ

2

}∣∣∣∣ ≤ ∣∣∣∣⋃
j

2Ij

∣∣∣∣+ ∣∣∣∣{x /∈⋃
j

2Ij : |Hbf (x)| >
λ

2

}∣∣∣∣
≤ 2

λ
∥f∥1 +

2

λ

∫
R∩(

⋃
j 2Ij)

c

|Hbf (x)|dx.

Observe that |Hbf (x)| ≤
∑

k |Hbf,k(x)| for L-a.e. x. This is immediate if the sum is finite.
If it is not finite, by the second point of Lemma 3.2.3 and the continuity H in L2(R), the
estimate still holds. So we can bound the last integral expression as follows∫

R∩(
⋃

j 2Ij)
c

|Hbf (x)|dx ≤
∑
k

∫
R∩(

⋃
j 2Ij)

c

|Hbf,k(x)|dx ≤
∑
k

∫
R\2Ik

|Hbf,k(x)|dx,

Notice that Hbf,k(x) is well-defined for x ∈ R \ 2Ik. Indeed, since |x − y| ≥ |Ik|/2 for every
y ∈ Ik, we have

|Hbf,k(x)| = lim
ε→0

∣∣∣∣ ∫
{|x|>ε}∩Ik

(
f(y)− 1

|Ik|

∫
Ik

f(u)du

)
1

x− y
dy

∣∣∣∣ ≤ 4

|Ik|

∫
Ik

|f(y)|dy <∞.

Also, if we denote by ck the center of Ik, since bf,k has null integral, we get the following
estimate∫

R\2Ik
|Hbf,k(x)|dx =

∫
R\2Ik

∣∣∣∣ ∫
Ik

bf,k(y)

x− y
dy

∣∣∣∣dx =

∫
R\2Ik

∣∣∣∣ ∫
Ik

bf,k(y)

(
1

x− y
− 1

x− ck

)
dy

∣∣∣∣dx
≤
∫
Ik

|bf,k(y)|
(∫

R\2Ik

|y − ck|
|x− y||x− ck|

dx

)
dy.

Now, using that |y − ck| ≤ |Ik|/2 and |x− y| > |x− ck|/2,
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3.2 The Hilbert transform

∫
Ik

|bf,k(y)|
(∫

R\2Ik

|y − ck|
|x− y||x− ck|

dx

)
dy ≤

∫
Ik

|bf,k(y)|
(∫

R\2Ik

|Ik|
|x− ck|2

dx

)
dy

=

∫
Ik

|bf,k(y)|
(∫

R\(−1,1)

1

|u|2
du

)
dy = 2

∫
Ik

|bf,k(y)|dy.

Therefore we conclude∑
k

∫
R\2Ik

|Hbf,k(x)|dx ≤ 2
∑
k

∫
Ik

|bf,k(y)|dy ≤ 4
∑
k

∫
Ik

|f(y)|dy ≤ 4∥f∥1,

and combining these estimates we deduce the weak type (1, 1) inequality:

|{x ∈ R : |Hf(x)| > λ}| ≤
(
8

λ
+

2

λ
+

8

λ

)
∥f∥1 =

18

λ
∥f∥1, (3.2.6)

which is valid for non-negative f ∈ S(R). But since any other function in the space can be
decomposed in its positive and negative parts, we also get the result for a general f ∈ S(R)
(and if f takes complex values we apply this same argument to its real and imaginary parts).
So we have proved 1.

In order to prove 2, since we already know that H is of strong type (2, 2), combining 1 and
the Marcinkiewicz interpolation theorem 3.1.3 we get the strong type (p, p) inequality for
1 < p < 2, allowing to define the Hilbert transform in the spaces Lp(R), 1 < p < 2 (we will
give the details on how to do it after the proof). We also observe that relation (3.2.4) still
holds for f ∈ S(R) and g ∈ Lp(R), 1 < p < 2 (this follows from the density of S(R) in Lp(R),
the already proved continuity of H in this space, and the dominated convergence theorem,
that we can apply taking a subsequence of functions in S(R) converging L-a.e. to g).

The case p > 2 will follow by duality. Indeed, observe that if p′ is such that p−1 + (p′)−1 = 1,
that is, p′ = p

p−1 ; then p
′ ∈ (1, 2). Hence, by strong type inequality for this last case, we get∣∣∣∣ ∫

R
Hf(x)g(x)dx

∣∣∣∣ = ∣∣∣∣ ∫
R
f(x)Hg(x)dx

∣∣∣∣ ≤ Cp′∥f∥p∥g∥p′ , ∀g ∈ Lp
′
(R),

which proves that Hf is a bounded linear functional in Lp
′
(R) with norm at most Cp′∥f∥p.

But we know that there is an isometric isomorphism between Lp(R) and (Lp
′
(R))′, implying

that ∥Hf∥p ≤ Cp′∥f∥p, and so we are done.

In the previous proof we have claimed that the strong type (p, p) inequality of the Kolmogorov-
Riesz theorem allows to extend the definition of the Hilbert operator to Lp(R) spaces, 1 <
p < ∞. Indeed, if f ∈ Lp(R) and (fn)n ⊂ S(R) is a sequence that approximates f in the
Lp(R) norm, the strong type (p, p) inequality implies that (Hfn)n is also a Cauchy sequence
in Lp(R), so by completeness it is convergent. Hence, we define Hf to be the limit of the
previous sequence.

Corollary 3.2.5. The Hilbert transform is a bounded linear functional in Lp(R), 1 < p <∞.
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3.2 The Hilbert transform

If p = 1, in the previous context the weak type (1, 1) inequality would yield

lim
m,n→∞

|{x ∈ R : |(Hfn −Hfm)(x)| > ε}| = 0, ∀ε > 0,

which means that the sequence (Hfn)n is Cauchy in measure, and so also convergent in
measure (see [18, Theorem 5] for details). We will call the limit (measurable) function the
Hilbert transform of f .

So in particular we may wonder what is the Hilbert transform of a simple integrable function
that is not smooth, such as a characteristic function. If we compute Hf for f = χ[0,1] we
obtain

Hf(x) =
1

π
lim
ε→0

∫
ε<y<1

dy

x− y
=

1

π
lim
ε→0

ln
|x− ε|
|x− 1|

=
1

π
ln

|x|
|x− 1|

.

Observe that Hf is neither bounded nor integrable, which shows, at the same time, that H
does not satisfy (in general) a strong type (p, p) inequality for p = 1 or p = ∞. In fact, we
can easily prove the following result that characterizes the integrability of Hf .

Proposition 3.2.6. If f ∈ S(R), then Hf ∈ L1(R) ⇔
∫
R f(x)dx = 0.

Proof. (⇐) The case f non-negative is trivial. The general case is deduced from the decom-
position f = f+ − f−.
(⇒) We know that Ĥf(ξ) = −i · sgn(ξ)f̂(ξ). Since Hf is integrable, its Fourier transform
is, in particular, (uniformly) continuous, which implies necessarily that f̂(0) = 0. But this
means, by definition,

∫
R f(x)dx = 0, so we are done.
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Chapter 4

Singular integrals

One of the motivations to study singular integrals is the Hilbert transform, presented in the
previous section. Recall that given f ∈ Lp(R), 1 ≤ p <∞, we defined H to be

Hf(x) =

[(
1

π
p.v.

1

y

)
∗ f
]
(x) =

1

π
lim
ε→0

∫
|y|>ε

f(x− y)

y
dy.

Now, observe that we can rewrite this last expression as

1

π
lim
ε→0

∫
|y|>ε

sgn(y)

|y|
f(x− y)dy.

This writing motivates an extension of the definition of H to Rn in the following sense. Ob-
serve that the function sgn( · ) is homogeneous of degree 0, i.e., for every x ∈ R and λ > 0 we
have sgn(λx) = sgn(x). Then, we can think of it as a function defined on the unit sphere of
R, which is just the pair of points {−1, 1}. Then, if we aim to define an analogous version
of the Hilbert transform in Rn, we need to take into account its possible dependence on a
certain function Ω with domain Sn−1, integrable and with null integral over Sn−1 (so that its
properties resemble the function sgn( · ) of the one-dimensional case).

4.1 Definition and basic properties

Definition 4.1.1 (Singular integral). A singular integral in Rn will be an operator on S(Rn)
of the form

Tf(x) := lim
ε→0

∫
|y|>ε

Ω(y′)

|y|n
f(x− y)dy, (4.1.1)

where y′ := y/|y| and where Ω is a function defined on the unit sphere Sn−1 ⊂ Rn, integrable
and with null integral over Sn−1.

Now we make two important observations that justify the definition given in (4.1.1):
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4.1 Definition and basic properties

1. The reason to raise the denominator of the integrand to the n-th power is to obtain that
the singular integral operator is well-defined for ϕ ∈ S(Rn):

lim
ε→0

∫
|y|>ε

Ω(y′)

|y|n
ϕ(x− y)dy =

∫
|y|>1

Ω(y′)

|y|n
ϕ(x− y)dy + lim

ε→0

∫
ε<|y|<1

Ω(y′)

|y|n
ϕ(x− y)dy.

For the first term on the right-hand side, taking absolute values and using polar coor-
dinates (denoting the Lebesgue measure of Sn−1 as dσ) we obtain∣∣∣∣ ∫ ∞

1

1

r

∫
Sn−1

Ω(y′)ϕ(r(x′ − y′))dσ(y′)dr

∣∣∣∣ ≤ sup
x∈Rn

|xϕ(x)| · ∥Ω∥L1(Sn−1)

∫ ∞

1

1

r2
dr <∞.

Whereas for the second term, since Ω has null integral in Sn−1, we may use the mean
value theorem for convex domains and the Cauchy-Schwarz inequality to obtain∣∣∣∣ limε→0

∫
ε<|y|<1

Ω(y′)

|y|n
(
ϕ(x− y)− ϕ(x)

)
dy

∣∣∣∣ ≤ ∫
|y|<1

|Ω(y′)|
|y|n

|⟨ϕ′(x̃), y⟩|dy

≤
∫
|y|<1

|Ω(y′)|
|y|n−1

|ϕ′(x̃)|dy =

∫ 1

0

∫
Sn−1

|Ω(y′)||ϕ′(x̃)|dσ(x′)dr

≤ sup
x∈Rn

|ϕ′(x)| · ∥Ω∥L1(Sn−1) <∞,

where x̃ is a point, dependent of y, in the segment that joins x and y. So the singular
integral operator is well-defined. Moreover, notice that by the exact same argument we
used in the proof of Proposition 3.2.1, we get that T is given by the following convolution

T ( · ) = p.v.
Ω(x′)

|x|n
∗ ( · ) ∈ S ′(Rn).

2. Let us see that the condition of Ω having null integral over Sn−1 is necessary for T to
make sense. Indeed, choose f ∈ S(Rn) so that f ≡ 1 if |x| ≤ R. If we split the singular
integral as we have done at the beginning of the first observation (now with respect to
the radius of reference R), the first term remains bounded, but concerning the second,
for any |x| < R/2 we have

lim
ε→0

∫
ε<|y|<R

2

Ω(y′)

|y|n
f(x− y)dy = lim

ε→0

∫
ε<|y|<R

2

Ω(y′)

|y|n
dy = lim

ε→0

∫ R
2

ε

dr

r

∫
Sn−1

Ω(y′)dσ(y′)

= lim
ε→0

ln

(
R

2ε

)∫
Sn−1

Ω(y′)dσ(y′),

that diverges unless the integral of Ω over Sn−1 is 0.

In order to understand better singular integral operators, as they are tempered distributions,
we are interested in studying their Fourier transform. To do it, let us introduce the concept
of homogeneous distribution. To motivate its definition, notice that if ϕ ∈ S(Rn) and λ > 0,
we may consider ϕλ := λ−nϕ(λ−1x). Then, for any function f homogeneous of degree a
determining a tempered distribution (via integration against it), we have∫

Rn

f(x)ϕλ(x)dx = λa
∫
Rn

f(x)ϕ(x)dx.

Therefore, we can define
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4.1 Definition and basic properties

Definition 4.1.2 (Homogeneous distribution of degree a). A (tempered) distribution is said
to be homogeneous of degree a if for any ϕ ∈ C∞

c (Rn) (S(Rn)) and λ > 0 we have

T (ϕλ) = λaT (ϕ), where ϕλ = λ−nϕ(λ−1x).

Given a homogeneous tempered distribution of a certain degree, its Fourier transform will be
also homogeneous with a degree related to the one of the original distribution:

Lemma 4.1.1. If T ∈ S ′(Rn) is homogeneous of degree a, then its Fourier transform is
homogeneous of degree −n− a.

Proof. For any ϕ ∈ S(Rn) and λ > 0 we have

T̂ (ϕλ) = T (ϕ̂λ) = T (ϕ̂(λ· )) = λ−nT (ϕ̂λ−1) = λ−n−aT (ϕ̂) = λ−n−aT̂ (ϕ).

For the particular case T = p.v.Ω(x′)
|x|n , we obtain

T (ϕλ) =
1

λn
lim
ε→0

∫
|y|>ε

Ω(y′)

|y|n
ϕλ

(
x− y

λ

)
dy =

1

λn
lim
ε→0

∫
|u|> ε

λ

Ω(u′)

|u|n
ϕ(x− u)du = λ−nT (ϕ),

and since singular integral operators are homogeneous of degree −n, their Fourier transform
is homogeneous of degree 0.

The second piece of information that we know about the Fourier transform of a singular

integral operator is that it will be the Fourier transform of a convolution against p.v.Ω(x′)
|x|n .

Therefore, by definition, given any function f ∈ S(Rn)[(
p.v.

Ω(x′)

|x|n

)
∗ f
]∧

(ξ) =

∫
Rn

lim
ε→0

(∫
|y|>ε

Ω(y′)

|y|n
f(x− y)dy

)
e−2πi⟨ξ,x⟩dx.

Following an analogous argument as the one we did for (3.2.2), we can take the limit outside
the outer integral and change the order of integration. This way, if for any x ∈ Rn we are
able to compute the quantity

lim
ε→0

∫
ε<|y|< 1

ε

Ω(y′)

|y|n
e−2πi⟨y,ξ⟩dy,

we will obtain a function (thought as a distribution) corresponding to the Fourier transform
of the singular integral operator. The following theorem gives the explicit expression:

Theorem 4.1.2. Let Ω be an integrable function on Sn−1 with null integral. Then, the Fourier

transform of the tempered distribution p.v.Ω(x′)
|x|n is the homogeneous function of degree 0 given

by

m(ξ) =

∫
Sn−1

Ω(u)

[
π

2i
sgn⟨u, ξ′⟩ − ln |⟨u, ξ′⟩|

]
dσ(u). (4.1.2)
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4.1 Definition and basic properties

Proof. Without loss of generality we can assume |ξ| = 1. Since Ω has null integral, we rewrite
m as follows:

m(ξ) := lim
ε→0

∫
ε<|y|<1/ε

Ω(y′)

|y|n
e−2πi⟨y,ξ⟩dy = lim

ε→0

∫
Sn−1

Ω(u)

[ ∫ 1/ε

ε
e−2πir⟨u,ξ⟩dr

r

]
dσ(u)

= lim
ε→0

∫
Sn−1

Ω(u)

[ ∫ 1

ε

(
e−2πir⟨u,ξ⟩ − 1

)dr
r

+

∫ 1/ε

1
e−2πir⟨u,ξ⟩dr

r

]
dσ(u)

= lim
ε→0

∫
Sn−1

Ω(u)

[ ∫ 1

ε

(
cos (2πr⟨u, ξ⟩)− 1

)dr
r

+

∫ 1/ε

1
cos (2πr⟨u, ξ⟩)dr

r

]
dσ(u)

− i

(
lim
ε→0

∫
Sn−1

Ω(u)

[ ∫ 1/ε

ε
sin (2πr⟨u, ξ⟩)dr

r

]
dσ(u)

)
. (4.1.3)

Notice that since the integrals
∫∞
0

sin(x)
x ,

∫ 1
0

cos(x)−1
x and

∫∞
1

cos(x)
x are finite, and Ω is integrable

over Sn−1, we can apply the dominated convergence theorem to enter the limit inside the outer
integrals. Also, assuming that ⟨u, ξ⟩ ≠ 0 (for this case it is clear that m(0) = 0), we do (at the
inner integral) the change of variables s := 2πr⟨u, ξ⟩, for each fixed u. Hence, for the inner
integral of the imaginary part of (4.1.3) we have

lim
ε→0

∫ 1/ε

ε
sin (2πr⟨u, ξ⟩)dr

r
= lim

ε→0

∫ 2π⟨u,ξ⟩/ε

2πε⟨u,ξ⟩

sin (s)

s
· sgn⟨u, ξ⟩ds = π

2
sgn⟨u, ξ⟩.

On the other hand, for the inner integrals of the real part of (4.1.3) we get

lim
ε→0

[ ∫ 2π⟨u,ξ⟩

2πε⟨u,ξ⟩

(
cos (s)− 1

)ds
s

+

∫ 2π⟨u,ξ⟩/ε

2π⟨u,ξ⟩
cos (s)

ds

s

]
= lim

ε→0

[ ∫ 1

2πε⟨u,ξ⟩

(
cos (s)− 1

)ds
s

+

∫ 2π⟨u,ξ⟩/ε

1
cos (s)

ds

s
−
∫ 2π⟨u,ξ⟩

1

ds

s

]
=

∫ 1

0

(
cos (s)− 1

)ds
s

+

∫ ∞

0

cos (s)

s
ds− ln (2π)− ln |⟨u, ξ⟩|.

Integrating now this expressions against Ω(u) over Sn−1 the constant terms disappear, ob-
taining the desired result.

This result is coherent with the expression we obtained for the Fourier transform of the
Hilbert transform, which was −i · sgn(ξ). Indeed, for this particular one-dimensional case,
since Ω(u) = π−1sgn(u), the expression (4.1.2) reads as

m(ξ) =

∫
{−1,1}

sgn(u)

[
1

2i
sgn(uξ′)− ln |uξ′|

]
dσ(u) = − i

2

(
sgn(ξ′)− sgn(−ξ′)

)
= −i · sgn(ξ′) = −i · sgn(ξ),

as expected. Notice that the parity of the two terms multiplying Ω in (4.1.2) is important,
since they might not contribute to the value of the integral depending on the parity of Ω.
Indeed, observe that

• The first term is odd and bounded, so it will have no contribution if Ω is even.
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4.2 The Calderón-Zygmund theorem

• The second term is even, so it will not contribute to the integral if Ω is odd. Although
it is not bounded, any (positive) power of it is integrable in Sn−1. Indeed, if a ∈ R and
we assume ξ = (1, 0, . . . , 0) without loss of generality (by the symmetry of the integral),
expressing the integral in polar coordinates of Rn we get∫

Sn−1

| ln |⟨u, ξ⟩||adσ(u) ≲
∫ π

0
| ln | cos(φ)||adφ = −2

∫ 1

0

ln(x)a√
1− x2

dx

being this last integral finite for all a > 0.

Therefore, since every function Ω in Sn−1 can be decomposed in its odd and even parts as
follows

Ωe(u) :=
Ω(u) + Ω(−u)

2
, Ωo(u) :=

Ω(u)− Ω(−u)
2

,

we obtain immediately the following corollary (by Hölder’s inequality):

Corollary 4.1.3. If Ω is an integrable function on Sn−1 with null integral such that

1. Ωo ∈ L1(Sn−1),

2. Ωe ∈ Lq(Sn−1) for some q > 1,

then the Fourier transform of p.v.Ω(x′)
|x|n is bounded.

In fact, it is possible to carry out a study of the boundedness of singular integral operators in
terms of their parity. The reader may find details of this approach in [7, Chapter 4], which
involves techniques such as the method of rotations or the Riesz transform.

4.2 The Calderón-Zygmund theorem

If one follows the book of Duoandikoetxea [7], the approach commented above regarding the
study of boundedness of singular integral operators in terms of their parity, relies essentially,
in properties about the Hilbert transform. In fact, the arguments used to prove the bounded-
ness of such operators try to encapsulate the necessary information to retrieve an analogous
kernel to that of the Hilbert case, and try to resemble the expression of a singular integral to
a directional Hilbert transform; an approach that is possible once working with polar coordi-
nates and applying H, independently, in each line passing through the origin.

The conditions for boundedness that are presented this way seem to rely excessively on the
properties of the one-dimensional case. Far from this point view being not appropriate, we
seek conditions rather more general and intrinsic to singular integral operators that allow us
to formulate theorems which are independent of the nature of the particular kernel associated
to the operator. A fact that suggests that such development could be necessary is that in [7,
Chapter 4] one does not obtain information about the case p = 1.

In order to start our study, we wish to designate the necessary properties that makes us
think of an operator K as a singular integral operator. We may start imposing a condition
that characterizes the kernel 1/|x|n in Rn, which does not rely excessively in its form. The
condition we choose is that
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4.2 The Calderón-Zygmund theorem

K is a tempered distribution corresponding to a locally integrable function on Rn \ {0}.

This opens new possibilities such as having a kernel of the form ln |x|. But now, we wish to
demand additional properties that allow us to prove its boundedness (either weak or strong)
as an operator. We may find some pieces of information in the proof Theorem 3.2.4, where
we studied the boundedness of the Hilbert transform. To carry out the proof, notice that we
had covered in advance a specific case (p = 2) that could be shown rather easily. To study
this case we strongly relied on properties of the Fourier transform of the operator. By the
observations done after Definition 3.2.2, notice that it will be sufficient to ask for

the Fourier transform of K to be essentially bounded.

Later on, this last condition will be improved in the sense that we will deduce the same
boundedness results just relying on properties of K.

Finally, we observe that the main argument to extend the boundedness to every other case was
based on the Marcinkiewicz interpolation theorem 3.1.3, and we reduced ourselves to prove
the weak type inequality for the case p = 1 using a Calderón-Zygmund decomposition and
considering the study of the good and bad parts of f ∈ S(R). In fact, checking the proof, the
argument only relied on the precise definition of the Hilbert transform when proving∫

R\2Ik
|Hbf,k(x)|dx ≤ C

∫
Ik

|bf,k(x)|dx,

which implied the weak type (1, 1) inequality. Now, this condition could be written as∫
R\2Qk

|Tbf,k(x)|dx ≤ C

∫
Qk

|bf,k(x)|dx,

where (Qj)j is a sequence of disjoint dyadic cubes associated to a Calderón-Zygmund decom-
position of f in Rn for some λ > 0. To achieve the previous bound, we will require K to
satisfy the so called Hörmander condition:∫

|x|>2|y|
|K(x− y)−K(x)|dx ≤ C, ∀y ∈ Rn.

This assumption, in practice, is often obtained from another (stronger) property, that is
such that if K satisfies it, then also verifies Hörmander’s condition. It is called the gradient
condition, which holds if

|∇K(x)| ≤ C

|x|n+1
, ∀x ̸= 0.

If this is true, by the mean value theorem we get that for every x there exists ỹ = ỹ(x) in the
segment joining x and x− y (and thus satisfying |ỹ| > x/2) such that∫

|x|>2|y|
|K(x− y)−K(x)|dx ≤

∫
|x|>2|y|

|∇K(ỹ)||y|dx ≤ C

∫
|x|>2|y|

|y|
|ỹ|n+1

dx

≤ 2n+1C|y|
∫
|x|>2|y|

1

|x|n+1
dx = 2n+1C|Sn−1||y|

∫ ∞

2|y|

dr

r2
= 2nC|Sn−1| <∞,

and so the Hörmander condition holds.
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4.2 The Calderón-Zygmund theorem

Combining all the properties of the operator K we can state and prove the result we were
looking for:

Theorem 4.2.1. (Calderón-Zygmund, [7, Theorem 5.1]). Let K be a tempered distribution
that corresponds to a locally integrable function on Rn\{0} and that satisfies for some A,B > 0

1. |K̂(ξ)| ≤ A for almost every ξ ∈ Rn.

2. The Hörmander condition:∫
|x|>2|y|

|K(x− y)−K(x)|dx ≤ B, ∀y ∈ Rn.

Then we have:

(i ) For 1 < p <∞: ∥K ∗ f∥p ≤ Cp∥f∥p, for some Cp > 0.

(ii ) There exists C > 0 such that for every λ > 0: |{x ∈ Rn : |K ∗ f(x)| > λ}| ≤ C
λ ∥f∥1.

Proof. As we have been arguing before, it will be sufficient to prove for f ∈ S(Rn) that
Tf := K ∗ f is of weak type (1, 1). This is because the strong type inequality for p = 2 is
already satisfied, so by the Marcinkiewicz interpolation theorem 3.1.3 the cases 1 < p < 2 are
covered, as well as those for which 2 < p < ∞, by a duality argument. In this case what we
mean precisely by the latter consists of taking f ∈ Lp(Rn) and g ∈ Lp

′
(Rn) with p > 2 and p′

conjugate of p (and hence such that 1 < p′ < 2), and observing that∣∣∣∣ ∫
Rn

(K ∗ f)(x)g(x)dx
∣∣∣∣ = ∣∣∣∣ ∫

Rn

f(y)(K(− · ) ∗ g)(y)dx
∣∣∣∣ ≤ Cp′∥f∥p∥g∥p′ ,

where in the first equality we have been able to apply Fubini due to the boundedness assump-
tion for 1 < p < 2 and Hölder’s inequality. Then, K ∗ f is a bounded linear functional in
Lp

′
(Rn) with norm at most Cp′∥f∥p, and applying the isometry between Lp(Rn) and (Lp

′
(Rn))′

we are done.

Returning now to the proof of the weak type (1, 1) case, we consider, as in Theorem 3.2.4,
a Calderón-Zygmund decomposition of f in Rn with value λ > 0. We denote the associated
sequence of disjoint dyadic cubes as (Qj)j . As previously mentioned, the key point to deduce
the result was to check if ∫

Rn\2Qk

|Tbf,k(x)|dx ≤ C

∫
Qj

|bf,k(x)|dx.

Let ck be the center of Qk and recall that each bf,k has null integral. Hence, if x /∈ 2Qk

Tbf,k(x) =

∫
Qk

K(x− y)bf,k(y)dy =

∫
Qk

[
K(x− y)−K(x− ck)

]
bf,k(y)dy,

and so we obtain∫
Rn\2Qj

|Tbf,j(x)|dx ≤
∫
Qj

|bf,j(y)|
(∫

Rn\2Qj

∣∣∣K(x− y)−K(x− cj)
∣∣∣dx)dy,

where the inner integral of the right-hand side is bounded, since Rn \ 2Qj ⊂ {x ∈ Rn :
|x− cj | > 2|y − cj |}, and so we can apply Hörmander’s condition.
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4.2 The Calderón-Zygmund theorem

4.2.1 Refining the Calderón-Zygmund theorem using truncated integrals

In the discussion previous to Theorem 4.2.1 it arouse the necessity to obtain, in a rather
direct manner, the boundedness for the case p = 2. We chose to approach this problem by
assuming a certain property about the Fourier transform of the operator K. The goal of
this section is to determine conditions concerning the properties of K itself that ensure its
Lp(Rn)-boundedness, for 1 < p <∞. We begin by stating the following result that will cover
our goal not for the operator, but for a truncation of it.

Theorem 4.2.2. Let K ∈ L1
loc(Rn \ {0}) be a function satisfying

1. There exists A > 0 such that for every 0 < a < b <∞∣∣∣∣ ∫
a<|x|<b

K(x)dx

∣∣∣∣ ≤ A. (4.2.1)

2. There exists B > 0 such that for every a > 0∫
a<|x|<2a

|K(x)|dx ≤ B. (4.2.2)

3. There exists C > 0 such that for every y ∈ Rn∫
|x|>2|y|

|K(x− y)−K(x)|dx ≤ C. (4.2.3)

Then, for any ε > 0 and R > 0 the function Kε,R(x) := K(x)χ{ε<|x|<R} satisfies

|K̂ε,R| ≤ C.

Proof. Let us fix ξ ∈ Rn and ε,R positive constants. Observe that for ε < |ξ|−1 < R we have

K̂ε,R(ξ) =

∫
ε<|x|<R

K(x)e−2πi⟨x,ξ⟩dx

=

∫
ε<|x|<|ξ|−1

K(x)e−2πi⟨x,ξ⟩dx+

∫
|ξ|−1<|x|<R

K(x)e−2πi⟨x,ξ⟩dx (4.2.4)

(in any other case, i.e. |ξ|−1 or |ξ|−1 > R, we would only need to study one of the two
integrals). Let us focus on the first integral. We rewrite it as∫

ε<|x|<|ξ|−1

K(x)dx+

∫
ε<|x|<|ξ|−1

K(x)
(
e−2πi⟨x,ξ⟩ − 1

)
dx.

Taking absolute values and applying the mean value theorem we obtain the estimate∣∣∣∣ ∫
ε<|x|<|ξ|−1

K(x)dx

∣∣∣∣+ ∫
ε<|x|<|ξ|−1

|K(x)|
∣∣∣∇ξ

(
e−2πi⟨x,ξ⟩

)
(ξ̃)
∣∣∣|ξ|dx

≤ A+ 2π|ξ|
∫
ε<|x|<|ξ|−1

|x||K(x)|dx. (4.2.5)
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4.2 The Calderón-Zygmund theorem

To bound the second term we claim that relation (4.2.2) is equivalent to∫
|x|<a

|x||K(x)|dx ≤ B′a, (4.2.6)

for some constant B′ > 0 and for every a > 0. Indeed, observe that if we assume (4.2.2)∫
|x|<a

|x||K(x)|dx =

∞∑
k=0

∫
a

2k+1<|x|< a

2k

|x||K(x)|dx ≤
∞∑
k=0

a

2k
B = 2Ba,

and on the other hand, if (4.2.6) holds∫
a<|x|<2a

|K(x)|dx ≤
∫
a<|x|<2a

|x|
a
|K(x)|dx ≤

∫
|x|<2a

|x|
a
|K(x)|dx ≤ 2B′,

so the claim is proved. Hence, returning to (4.2.5) we get the bound A+ 2πB′.

For the second term of (4.2.4), we introduce the new variable ω := 1
2ξ|ξ|

−2, that satisfies

e2πi⟨ω,ξ⟩ = −1. Changing the variable x 7→ x− ω, the integral, that we will call I, reads as

I := −
∫
|ξ|−1<|x−ω|<R

K(x− ω)e−2πi⟨x,ξ⟩dx.

Hence, summing this expression with the equivalent one of (4.2.4) we get

2I =

∫
|ξ|−1<|x|<R

K(x)e−2πi⟨x,ξ⟩dx−
∫
|ξ|−1<|x−ω|<R

K(x− ω)e−2πi⟨x,ξ⟩dx.

Observe that 2|ω| = |ξ|−1, which means that |x − ω| =
∣∣x − 1

2 |ξ|
−1
∣∣. Then, the domain of

integration of the second integral is contained in
(
1
2 |ξ|

−1, R+ 1
2 |ξ|

−1
)
and, at the same time,

contains
(
3
2 |ξ|

−1, R− 1
2 |ξ|

−1
)
. Therefore

2I =

∫
3
2
|ξ|−1<|x|<R− 1

2
|ξ|−1

[
K(x)−K(x− ω)

]
e−2πi⟨x,ξ⟩dx+

∫
|ξ|−1<|x|< 3

2
|ξ|−1

K(x)e−2πi⟨x,ξ⟩dx

+

∫
R− 1

2
|ξ|−1<|x|<R

K(x)e−2πi⟨x,ξ⟩dx−
∫
|ξ|−1<|x−ω|< 3

2
|ξ|−1

K(x− ω)e−2πi⟨x,ξ⟩dx

−
∫
R− 1

2
|ξ|−1<|x−ω|<R

K(x− ω)e−2πi⟨x,ξ⟩dx.

Now, taking the modulus and enlarging the domains of integration, we can bound 2I in the
following way

2|I| ≤
∫
|ξ|−1<|x|

∣∣K(x)−K(x− ω)
∣∣dx+ 2

∫
1
2
|ξ|−1<|x|< 3

2
|ξ|−1

|K(x)|dx

+ 2

∫
R− 1

2
|ξ|−1<|x|<R+ 1

2
|ξ|−1

|K(x)|dx.
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4.2 The Calderón-Zygmund theorem

Since |ξ|−1 = 2|ω|, we can bound the first integral by (4.2.3); the second one can be bounded
as follows

2

∫
1
2
|ξ|−1<|x|< 3

2
|ξ|−1

|K(x)|dx = 2

∫
1
2
|ξ|−1<|x|< 3

4
|ξ|−1

|K(x)|dx+ 2

∫
3
4
|ξ|−1<|x|< 3

2
|ξ|−1

|K(x)|dx

≤ 2

∫
1
2
|ξ|−1<|x|<|ξ|−1

|K(x)|dx+ 2B ≤ 4B,

and the third can also be bounded it by 4B by a similar argument, so we are done.

An immediate consequence of the previous theorem is the following:

Corollary 4.2.3. If K satisfies the hypothesis of Theorem 4.2.2, then for every ε > 0 and
R > 0 the operator Kε,R ∗ · is of weak type (1, 1) and of strong type (p, p) for 1 < p <∞.

Proof. Notice that is just a mere application of Theorem 4.2.1, since if the conditions of
Theorem 4.2.2 are satisfied, then so are those of the former theorem.

It is clear that our next goal should be to try to transfer the properties of the truncated
operators to the original one. That is, we wish to define the singular integral operator T as
the limit, in some sense, of Kε,R ∗f as ε→ 0 and R→ ∞ so that the properties are preserved.

Begin by noticing that condition (4.2.2) implies Kε,R ∈ L1(Rn), so by Minkowski’s integral
inequality [23, Exercise 16], for any f ∈ Lp(Rn) the convolution Kε,R ∗ f is well-defined in
Lp(Rn). Also, for ϕ ∈ S(Rn), if N = N(R, ε) is the smallest positive integer satisfying
2N > Rε−1, we have

lim
R→∞

∣∣Kε,R ∗ ϕ(0)
∣∣ ≤ lim

R→∞

∫
ε<|x|<R

|K(x)||ϕ(x)|dx < lim
R→∞

N∑
k=0

∫
2kε<|x|<2k+1ε

|K(x)||ϕ(x)|dx

≤ lim
R→∞

B∥|x|ϕ∥∞
N∑
k=0

1

2kε
=

2B

ε
∥xϕ∥∞ <∞,

where the constant B appears in relation (4.2.2). Therefore, Kε,∞ ∗ ϕ is well-defined for
any ϕ ∈ S(Rn) (the previous computation has been done at the point 0, but an analogous
argument can be used for any other point considering a translation of ϕ). In fact, we can
extend the previous definition to any f ∈ Lp(Rn) as follows: if (Rn)n is an increasing sequence
of radii tending to ∞, and (ϕn)n ⊂ S(Rn) approximates f in Lp(Rn), then

∥Kε,Ri ∗ f −Kε,Rj ∗ f∥p
≤ ∥Kε,Ri ∗ (f − ϕn)∥p + ∥Kε,Ri ∗ ϕn −Kε,Rj ∗ ϕn∥p + ∥Kε,Rj ∗ (f − ϕn)∥p
≤ ∥Kε,Ri∥∥f − ϕn∥p + ∥(Kε,Ri −Kε,Rj ) ∗ ϕn∥+ ∥Kε,Rj∥∥f − ϕn∥p,

where the first and third terms tend to 0 as n → ∞ by construction, and the second also
tends to zero as i, j → ∞, since we can apply again (4.2.2) and the fact that it involves an
integral of a rapid decaying function in a domain near infinity. Hence we have found that
the sequence (Kε,Rn ∗ f)n is Cauchy in Lp(Rn), and hence convergent, i.e. Kε,∞ ∗ f is indeed
well-defined for f ∈ Lp(Rn).
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4.2 The Calderón-Zygmund theorem

Therefore, we have reduced the problem of giving meaning to the limit limε→0,R→∞Kε,R ∗ f
to just studying the existence of

lim
ε→0

∫
|x|>ε

K(x)ϕ(x)dx, ϕ ∈ S(Rn),

that is just the principal value of K applied to ϕ. The next result answers this question:

Proposition 4.2.4. Let K ∈ L1
loc(Rn \ {0}) be a function satisfying (4.2.2). Then, the

tempered distribution p.v.K exists if and only if the following limit exists

lim
ε→0

∫
ε<|x|<1

K(x)dx.

Proof. Let us assume first that the tempered distribution exists. We pick ϕ ∈ S(Rn) so that
ϕ ≡ 1 in B(0, 1). Then,

p.v.K(ϕ) = lim
ε→0

∫
ε<|x|<1

K(x)dx+

∫
|x|>1

K(x)ϕ(x)dx.

Observe that the second integral is bounded by∫
|x|>1

|K(x)ϕ(x)|dx =

∞∑
k=0

∫
2k<|x|<2k+1

|x|
|x|

|K(x)ϕ(x)|dx

≤ ∥|x|ϕ∥∞
∞∑
k=0

1

2k

∫
2k<|x|<2k+1

|K(x)|dx ≤ 2B∥|x|ϕ∥∞ <∞,

and therefore the first integral must exist too. We prove now the remaining implication.
Assume that such limit exists, call it ℓ. Then

p.v.K(ϕ) = lim
ε→0

∫
ε<|x|<1

K(x)ϕ(x)dx+

∫
|x|>1

K(x)ϕ(x)dx

= ϕ(0)ℓ+ lim
ε→0

∫
ε<|x|<1

K(x)
[
ϕ(x)− ϕ(0)

]
dx+

∫
|x|>1

K(x)ϕ(x)dx.

The second integral exists by the same argument of the previous implication. For first integral,
using that |ϕ(x)−ϕ(0)| ≤ ∥∇ϕ∥∞|x| as well as property (4.2.6), which is equivalent to (4.2.2),
we can bound it by∫

|x|<1
|K(x)||ϕ(x)− ϕ(0)|dx ≤ ∥∇ϕ∥∞

∫
|x|<1

|x||K(x)|dx ≤ B′∥∇ϕ∥∞,

and so the principal value exists.

Corollary 4.2.5. If we add to the hypothesis of Theorem 4.2.2 the assumption

4. The limit limε→0

∫
ε<|x|<1K(x)dx exists,

then the tempered distribution T defined as

Tf(x) := lim
ε→0

∫
|y|>ε

K(y)f(x− y)dy

is extended to be a bounded operator in Lp(Rn), 1 < p <∞, which is also of weak type (1, 1).
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4.3 Calderón-Zygmund operators

Proof. Let f ∈ Lp(Rn), 1 < p < ∞, and (ϕn)n ⊂ S(Rn) a sequence that approximates f in
Lp(Rn). Then, if (εn)n is any sequence of positive real numbers approaching 0,

∥Kεi,∞ ∗ f −Kεj ,∞ ∗ f∥p
≤ ∥Kεi,∞ ∗ f −Kεi,∞ ∗ ϕn∥p + ∥Kεi,∞ ∗ ϕn −Kεj ,∞ ∗ ϕn∥p + ∥Kεj ,∞ ∗ ϕn −Kεj ,∞ ∗ f∥p
≤ ∥Kεi,∞∥∥f − ϕn∥p + ∥(Kεi,∞ −Kεj ,∞) ∗ ϕn∥p + ∥Kεj ,∞∥∥f − ϕn∥p.

By the comments previous to Proposition 4.2.4, the first and third terms tend to 0 as n→ ∞.
For the second term we use that the tempered distribution of the principal value of K exists,
and so as i, j → ∞ it also tends to 0. Therefore, the sequence (Kεn,∞ ∗ f)n is Cauchy in
Lp(Rn), and by completeness it converges. Such limit will define p.v.K ∗ f . The process
of extension for the weak case is treated similarly but with the measure topology (see the
comments after Corollary 3.2.5).

4.3 Calderón-Zygmund operators

The conditions we have been giving so far in order to apply, ultimately, the Calderón-Zygmund
theorem 4.2.1, take advantage of the base case p = 2 and the fact that the operator involved
is the convolution with a tempered distribution.

Now we will proceed by assuming from the start the L2(Rn)-boundedness, so that the study
of the rest of Lp(Rn) spaces only relies on the Hörmander condition, for which the operator
needs not to be initially of the convolution-type.

Following the same reasoning as in the beginning of the previous section, we wish to find
sufficient conditions to follow a similar proof as the one given for the Kolmogorov-Riesz
theorem 3.2.4.

We begin by noticing that at the very end of the proof of Theorem 4.2.1, to verify the weak
type (1, 1) inequality, we reached an integral of the form∫

Qk

|bf,k(y)|
(∫

Rn\2Qk

∣∣∣K(x− y)−K(x− ck)
∣∣∣dx)dy,

and used that Rn \ 2Qk ⊂ {x ∈ Rn : |x− ck| > 2|y− ck|} to apply Hörmander’s condition. In
the present case, if we want to generalize the last argument, we should start by understanding
our operator T (bounded in L2(Rn)) as represented by K, a function of two variables in
Rn×Rn. In fact, observe that we only need to use this kind of representation when applying T
to bf,j , which belongs to the family of functions in L2(Rn) compactly supported. Moreover, the
domain of K needs not to be Rn×Rn, but we can discard the diagonal ∆ = {(x, x) : x ∈ Rn}
due to the nature of the domains of integration. Overall, we require that there existsK defined
on Rn × Rn \∆ such that, if f ∈ L2(Rn) has compact support, then T is given by

Tf(x) =

∫
Rn

K(x, y)f(y)dy, ∀x /∈ supp(f).

Moreover, it has to satisfy an analogous Hörmander condition, that now is written as∫
|x−y|>2|y−z|

|K(x, y)−K(x, z)|dx ≤ C.
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4.3 Calderón-Zygmund operators

Also, there is a detail when generalizing the property for the case p > 2 using a duality
argument. If we look at the proof of Theorem 4.2.1, there is a step where we do a change of
variables induced by the convolution itself. To follow the same argument we impose the same
Hörmander-like condition but with respect to the first variable, i.e.∫

|x−y|>2|x−w|
|K(x, y)−K(w, y)|dy ≤ C.

Now we are ready to state the main theorem of this section.

Theorem 4.3.1. Let T be a bounded operator in L2(Rn) and K a function defined on Rn ×
Rn \∆ such that if f ∈ L2(Rn) has compact support then T is given by

Tf(x) =

∫
Rn

K(x, y)f(y)dy, ∀x /∈ supp(f).

Assume also that K satisfies∫
|x−y|>2|y−z|

|K(x, y)−K(x, z)|dx ≤ C, (4.3.1)

∫
|x−y|>2|x−w|

|K(x, y)−K(w, y)|dy ≤ C. (4.3.2)

Then T is of strong type (p, p) for 1 < p <∞ and of weak type (1, 1).

Proof. It is analogous to the proof of Theorem 4.2.1.

We may wonder if conditions (4.3.1) and (4.3.2) are too restrictive and do not give rise to
kernels of different nature. But, in fact, there exists a whole family of functions that satisfy
the previous Hörmander conditions:

Definition 4.3.1 (Standard kernel). A function K : Rn × Rn \∆ → C is called a standard
kernel if there exists δ > 0 such that

|K(x, y)| ≤ C

|x− y|n
, (4.3.3)

|K(x, y)−K(x, z)| ≤ C
|y − z|δ

|x− y|n+δ
, if |x− y| > 2|y − z|, (4.3.4)

|K(x, y)−K(w, y)| ≤ C
|x− w|δ

|x− y|n+δ
, if |x− y| > 2|x− w|. (4.3.5)

We remark that standard kernels are functions such that its properties are clearly designed to
satisfy the Hörmander conditions (4.3.1) and (4.3.2). These kernels motivate the definition of
a general type of integral operators that are continuous in Lp(Rn) for 1 < p <∞ and satisfy
a weak type (1, 1) inequality:

Definition 4.3.2 (Calderón-Zygmund operator). We will say that an operator T is a Calderón-
Zygmund operator if
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4.4 BMO and the statement of the T1 theorem

1. T is bounded in L2(Rn).

2. There is a standard kernel K so that for any f ∈ L2(Rn) with compact support

Tf(x) =

∫
Rn

K(x, y)f(y)dy, ∀x /∈ supp(f).

Therefore, if we are given an operator defined through a standard kernel, if we show that it
is bounded in L2(Rn), by Theorem 4.3.1, it is enough to conclude that it is also bounded in
Lp(Rn) for 1 < p <∞. We will tackle precisely this question in the next section.

4.4 BMO and the statement of the T1 theorem

The main goal of this section is to introduce a fundamental tool that will be helpful to check
the L2(Rn)-boundedness of an operator defined through a standard kernel, so that it has all
the properties of a Calderón-Zygmund operator. It will be the T1 theorem 4.4.5, and we will
state it without proof, since we find it rather technical and beyond the purpose of our project.
One may consult a complete proof in the book of Duoandikoetxea [7, §9.4] as well as a more
general version of it (that involves non-doubling measures) in the article of Nazarov, Treil &
Volberg [20, Theorem 1.2].

So we will begin our discussion by presenting a specific subspace of locally integrable functions
that will play a fundamental role in the T1 theorem.

4.4.1 The space BMO

Definition 4.4.1 (Sharp maximal function). Let f ∈ L1
loc(Rn) and Q ⊂ Rn a cube. Let us

denote fQ the average of f in Q, i.e.

fQ :=
1

|Q|

∫
Q
f(y)dy.

We define the sharp maximal function as

M#f(x) = sup
Q∋x

1

Q

∫
Q
|f(y)− fQ|dy,

where we have to understand the supremum as taken over all the cubes containing x.

Definition 4.4.2 (Bounded mean oscillation). Let f ∈ L1
loc(Rn) be so thatM#f is bounded.

In this case we say that f has bounded mean oscillation, and we denote the space of functions
with this property as BMO, that is

BMO :=
{
f ∈ L1

loc(Rn) : M#f ∈ L∞(Rn)
}
. (4.4.1)

We wish to define now a norm in BMO and the first natural choice is

∥f∥BMO := ∥M#f∥∞.
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4.4 BMO and the statement of the T1 theorem

However this is not a proper norm, since any function which is constant almost everywhere
has zero oscillation. Nevertheless, these are the only functions with this property, and so we
will understand (as it is customary also in Lp spaces) BMO as the quotient of the original
space (4.4.1) by the constant functions. This way, (BMO, ∥ · ∥BMO) not only becomes a
normed space, but a Banach space [7, §6.2].

Proposition 4.4.1. Let f ∈ L1
loc(Rn). Then, there exists a constant Cn > 0 such that for

every x ∈ Rn
M#f(x) ≤ CnMf(x),

where M is the Hardy-Littlewood maximal function.

Proof. Let us begin by proving 1. Fix x ∈ Rn us recall that M was defined as

Mf(x) = sup
r>0

1

|Br|

∫
Br

|f(x− y)|dy.

Our first observation is that computing M using balls or cubes is essentially equivalent.
Indeed, for every Q(0, r) = Qr ⊂ Rn (cube of side length 2r centered at the origin) we can
find r1 > 0 and r2 > 0 so that Br1 ⊂ Qr ⊂ Br2 , and therefore for every r > 0 there exist
constants c1 > 0 and c2 > 0 so that

c1
|Br|

∫
Br

|f(x− y)|dy ≤ 1

|Qr|

∫
Qr

|f(x− y)|dy ≤ c2
|Br|

∫
Br

|f(x− y)|dy (4.4.2)

We will denote the maximal operator computed through cubes as M ′ and it is such that
Mf(x) ≈M ′f(x), where ≈ refers to a relation such as (4.4.2). Hence, if Q denotes a cube of
side length 2r containing x, we have

M#f(x) = sup
Q∋x

1

|Q|

∫
Q
|f(y)− fQ|dy ≤ sup

Q∋x

2

|Q|

∫
Q
|f(y)|dy

≤ sup
Q∋x

2

|Q|
|Q(x, 2

√
nr)|

|Q(x, 2
√
nr)|

∫
Q(x,2

√
nr)

|f(y)|dy

= 2
(
2
√
n
)n

sup
r>0

1

|Q(x,
√
nr)|

∫
Q(x,

√
nr)

|f(y)|dy = 2
(
2
√
n
)n
Mf(x)

Notice that if we combine the previous result with Theorem 3.1.6 for the case p = ∞, we have
the inclusion

L∞ ⊂ BMO.

Let us now prove an important result that connects BMO spaces with singular integrals:

Theorem 4.4.2. Let T be a bounded operator such as in Theorem 4.3.1. Then, for any
bounded function f compactly supported, the following are satisfied:

1. Tf ∈ BMO.

2. ∥Tf∥BMO ≤ C∥f∥∞.
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4.4 BMO and the statement of the T1 theorem

Proof. Let us fix a cube Q ⊂ Rn and denote its center by cQ. Set also Q⋆ the cube centered
at cQ whose side length is 4

√
n times that of Q (this dilation factor coincides with four times

the length of the diagonal of the unit cube of Rn). Now we decompose f as the sum f1 + f2
where f1 = fχQ⋆ and f2 = f − f1. Finally, we choose a := Tf2(cQ) to obtain

1

|Q|

∫
Q
|Tf(x)− a|dx ≤ 1

|Q|

∫
Q
|Tf1(x)|dx+

1

|Q|

∫
Q
|Tf2(x)− Tf2(cQ)|dx

≤
(

1

|Q|

∫
Q
|Tf1(x)|2dx

) 1
2

+
1

|Q|

∫
Q

∣∣∣∣ ∫
Rn\Q⋆

[
K(x, y)−K(cQ, y)

]
f(y)dy

∣∣∣∣dx
≤ C

(
1

|Q|

∫
Q⋆

|f(x)|2dx
) 1

2

+
1

|Q|

∫
Q

∫
Rn\Q⋆

∣∣K(x, y)−K(cQ, y)
∣∣dydx · ∥f∥∞

≤ C ′∥f∥∞ + C ′′∥f∥∞ ≲ ∥f∥∞,

where we have useded Hölder’s inequality, the L2(Rn)-boundedness of T and the estimate
(4.3.2), that can be applied since if ℓ(Q) is the side length of Q, for every x ∈ Q and y ∈ Q⋆

we have |y − cQ| > 2
√
nℓ(Q) ≥ 2|x− cQ|.

One of the applications of the previous result is that it allows us to define an operator T as
in Theorem 4.3.1 for any f ∈ L∞(Rn). We do it following a similar scheme as in the above
proof: consider f ∈ L∞(Rn), a cube Q ⊂ Rn centered at the origin and its associated bigger
cube Q⋆. We decompose f = f1+f2 where f1 = fχQ⋆ is bounded and with compact support.
Hence Tf1 is well-defined thinking f1 as an L2(Rn) function, and so Tf1(x) exists for almost
every x. Now we define for each x ∈ Q

Tf(x) := Tf1(x) +

∫
Rn

[
K(x, y)−K(0, y)

]
f2(y)dy. (4.4.3)

The integral involved in the previous expression converges, since it can be bounded as∣∣∣∣ ∫
Rn

[
K(x, y)−K(0, y)

]
f2(y)dy

∣∣∣∣ ≤ ∥f∥∞
∫
R\Q⋆

∣∣K(x, y)−K(0, y)
∣∣dy ≲ ∥f∥∞,

by the definition of Q⋆ and the assumptions made about K (implied by the fact that T is an
operator as in Theorem 4.3.1).

Observe that if Q̃ is some other cube centered at the origin containing Q, we might encounter
a problem, since we have two definitions for Tf(x) if x ∈ Q. But defining f̃1 := fχ

Q̃⋆ and

f̃2 := fχRn\Q̃⋆ we get that the difference between both definitions at x ∈ Q is

T (f1− f̃1)(x)+
∫
Rn\Q⋆

[
K(x, y)−K(0, y)

]
f(y)dy−

∫
Rn\Q̃⋆

[
K(x, y)−K(0, y)

]
f(y)dy. (4.4.4)

Since f1− f̃1 ∈ L2(R2) is compactly supported and x /∈ supp(f1− f̃1) = Q̃⋆\Q⋆, we have

T (f1 − f̃1)(x) =

∫
Rn

K(x, y)(f1 − f̃1)(y)dy =

∫
Q̃⋆\Q⋆

K(x, y)f(y)dy,
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4.4 BMO and the statement of the T1 theorem

so the difference computed in (4.4.4) now simply reads as

−
∫
Q̃⋆\Q⋆

K(0, y)f(y)dy,

which is constant and independent of x. Therefore, both definitions coincide in BMO, so we
can take (4.4.3) as the proper definition of Tf for f ∈ L∞. In fact, by a similar argument as
the one done in the proof of the previous theorem, we can show that

Theorem 4.4.3. The results of Theorem 4.4.2 also hold if f ∈ L∞(Rn).

4.4.2 The statement of the T1 theorem

Along this section we will consider operators T mapping the Schwartz class to the space of
tempered distributions, i.e. T : S(Rn) → S ′(Rn). We will also assume that T is associated
with a standard kernel K, meaning that for f, g ∈ S(Rn) with disjoint compact supports, T
is given by

⟨Tf, g⟩ =
∫
Rn

∫
Rn

K(x, y)f(y)g(x)dxdy. (4.4.5)

We will define its adjoint operator T ∗ as

⟨T ∗f, g⟩ = ⟨f, Tg⟩ ∀f, g ∈ S(Rn),

where we think f as a an element in S ′(Rn). T ∗ is associated with the standard kernel

K∗(x, y) = K(y, x).

We know that if T is bounded in L2(Rn) it becomes a Calderón-Zygmund operator and so we
can define Tf for f ∈ L∞(Rn) as an element in BMO. However, the boundedness condition
in L2(Rn) may not be satisfied a priori. Hence, we will give another argument that allows us
to give meaning to Tf if f ∈ L∞(Rn) ∩ C∞(Rn).
To do it we begin by fixing g ∈ C∞

c,0(Rn), that, for us, will denote the space of smooth functions
in Rn compactly supported and with null integral. Assume supp(g) ⊂ B(0, R) and choose
also ψ1, ψ2 ∈ C∞(Rn) so that supp(ψ) ⊂ B(0, 3R), ψ = 1 in B(0, 2R) and also ψ1 + ψ2 = 1.

Then, for any f ∈ L∞(Rn) ∩ C∞(Rn) we get fψ1 ∈ S(Rn) and so ⟨T (fψ1), g⟩ is well-defined.
In fact, if f had compact support, since ψ2 = 0 in supp(g) ⊂ B(0, 2R), we would have that
fψ2 and g have disjoint supports and the following identity would hold

⟨T (fψ2), g⟩ =
∫
Rn

∫
Rn

K(x, y)f(y)ψ2(y)g(x)dxdy.

However, as f may not be compactly supported, we define

⟨T (fψ2), g⟩ =
∫
Rn

∫
Rn

[K(x, y)−K(0, y)]f(y)ψ2(y)g(x)dxdy,

that generalizes the previous definition because g has null integral. This last expression makes
sense, since the support of ψ2 lies in Rn\B(0, 2R) and because of condition (4.3.5) on standard
kernels, that reads

|K(x, y)−K(0, y)| ≤ C
|x|δ

|y|n+δ
, if |y| > 2|x|.

66



4.4 BMO and the statement of the T1 theorem

Indeed

|⟨T (fψ2), g⟩| ≤ C

∫
B(0,R)

(∫
Rn\B(0,2R)

|f(y)|
|y|n+δ

dy

)
|x|δ|g(x)|dx

≤ ∥f∥∞∥xδg∥∞|B(0, R)||Sn−1|
(∫ ∞

2R

dr

r1+δ

)
<∞.

Definition 4.4.3. We define Tf , for f ∈ L∞(Rn) ∩ C∞(Rn), to be

⟨Tf, g⟩ = ⟨T (fψ1), g⟩+ ⟨T (fψ2), g⟩, ∀g ∈ C∞
c,0(Rn).

Notice that the fact that g has null integral ensures that the definition does not depend on
the choice of ψ1 and ψ2. To prove it choose ψ1, ψ2 and ψ̃1, ψ̃2. Since supp(g) ⊂ B(0, R)
and the differences ψ1 − ψ̃1 and ψ2 − ψ̃2 are compactly supported in B(0, 3R) \ B(0, 2R),
we can apply the genuine definition (4.4.5) to justify that the expressions ⟨T (fψ1 − fψ̃1), g⟩,
⟨T (fψ2−fψ̃2), g⟩ make sense. Moreover, since 1 = ψ1+ψ2 = ψ̃1+ ψ̃2, we deduce the equality
⟨T (fψ1 − fψ̃1), g⟩ = ⟨T (fψ2 − fψ̃2), g⟩, and so indeed ⟨Tf, g⟩ is well-defined.

Let us present now two more definitions that are necessary to state the T1 theorem. First, for
a given f ∈ L∞(Rn) ∩ C∞(Rn), we will introduce what we will understand for Tf ∈ BMO;
and second, we present a weaker condition than boundedness that will be sufficient to state
the desired theorem.

Definition 4.4.4. Given f ∈ L∞(Rn) ∩ C∞(Rn) we say that Tf ∈ BMO if there exists a
function b ∈ BMO so that

⟨Tf, g⟩ = ⟨b, g⟩, ∀g ∈ C∞
c,0(Rn).

Notice that ⟨b, g⟩ is well-defined since BMO ⊂ L1
loc(Rn) and the functions g have compact

support.

Definition 4.4.5 (Weak boundedness property). An operator T will have the weak bound-
edness property (WBP ) if for every bounded subset B ⊂ C∞

c (Rn), there exists a constant CB
so that for any f1, f2 ∈ B, x ∈ Rn and R > 0∣∣〈Tfx,R1 , fx,R2

〉∣∣ ≤ CBR
n, where fx,Rj (y) = φj

(
y − x

R

)
for j = 1, 2.

Recall that a subset B ⊂ C∞
c (Rn) is said to be bounded if for every functional ϕ ∈ C∞

c (Rn)′
we have sup{|⟨ϕ, f⟩| : f ∈ B} <∞.

Let us give an example of an operator that satisfies the weak boundedness property that will
be important in the sequel.

Proposition 4.4.4. Let K be a standard kernel which is anti-symmetric, i.e. K(x, y) =
−K(y, x); associated with the operator T : S(Rn) → S(Rn)′ given by

⟨Tf, g⟩ = lim
ε→0

∫
|x−y|>ε

K(x, y)f(y)g(x)dydx, ∀f, g ∈ S(Rn). (4.4.6)

Then T is well-defined and has the WBP .
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4.4 BMO and the statement of the T1 theorem

Proof. Observe that by the anti-symmetry, the mean value theorem and property(4.3.3)

|⟨Tf, g⟩| ≤
∣∣∣∣12
∫
Rn

∫
Rn

K(x, y)
[
f(y)g(x)− f(x)g(y)

]
dydx

∣∣∣∣
≤
∫
Rn

∫
Rn

|K(x, y)||f(y)g(x)− f(y)g(y)|dydx

+

∫
Rn

∫
Rn

|K(x, y)||f(y)g(y)− f(x)g(y)|dydx

≲
∫
Rn

∫
Rn

|f(y)g′(x̃)|
|x− y|n−1

dydx+

∫
Rn

∫
Rn

|f ′(ỹ)g(x)|
|x− y|n−1

dydx,

and if we apply Fubini’s theorem and work in polar coordinates, it is clear that these last
integrals are finite. Therefore, the integral defining ⟨Tf, g⟩ is absolutely convergent and hence
well-defined.

Let us check now the WBP . Notice that for any bounded subset B ⊂ C∞
c (Rn) and f1, f2 ∈ B

we have

⟨Tfz,R1 , fz,R2 ⟩ = lim
ε→0

∫
|x−y|>ε

K(x, y)f1

(
y − z

R

)
f2

(
x− z

R

)
dydx

= lim
ε→0

∫
|x−y|> ε

R

R2nK(Ru+ z,Rv + z)f1(u)f2(v)dudv.

So ⟨Tfz,R1 , fz,R2 ⟩ can be written in terms of a new kernel Tz,R := RnK(Ru+ z,Rv+ z), which
is still standard and such that

⟨Tfz,R1 , fz,R2 ⟩ = RnTz,Rf1(f2) < Rn sup{|⟨ϕ, f⟩| : f ∈ B}.

Hence, (4.4.6) satisfies the WBP .

We are now ready to state the T1 theorem:

Theorem 4.4.5. (T1 theorem, [7, Theorem 9.9]). An operator T : S(Rn) → S ′(Rn), associ-
ated with a standard kernel K, extends to be a bounded operator on L2(Rn) if and only if the
following hold

1. T1 ∈ BMO.

2. T ∗1 ∈ BMO.

3. T has the WBP .

Observe that by Proposition 4.4.4, if K is an anti-symmetric standard kernel and T is its
associated operator, since T ∗ = −T , we deduce that

T will be bounded in L2(Rn) ⇔ T1 ∈ BMO. (4.4.7)
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Chapter 5

Returning to Denjoy’s conjecture

We end our project by connecting the theory we have developed in the previous sections with
Denjoy’s conjecture 2.5.1, being able to provide a proof of it for a specific case. We recall its
statement:

Conjecture (Denjoy). If a rectifiable curve contains a compact set with positive length, then
this compact set has positive analytic capacity (and thus it is not removable).

The way we will proceed will be the following: we will focus on one particular operator we
have already presented, the Cauchy transform (Definition 2.3.1), restricted to the graph of a
Lipschitz function, the rectifiable curve that will contain the compact set we are interested
in. We will assume that the graph, as a closed subset of R2, is bounded, since we are
interested in studying a compact set contained in it. We will see that the previous operator is
associated with an anti-symmetric standard kernel and, in the end, the result that will yield
the boundedness of the Cauchy transform will be relation 4.4.7.

Having proved the latter, to tackle Denjoy’s conjecture we will have to present three different
lemmas, one without proof and the remaining two fully covered. The final proof will turn out
to be a rather direct consequence of the previous results.

5.1 L2 boundedness of the Cauchy transform on Lipschitz graphs

Let A be a Lipschitz function on [a, b] ⊂ R (hence A′ exists almost everywhere with A′ ∈
L∞(R)) and let Γ be the graph of rectifiable curve given by γ(t) = t+ iA(t), for t ∈ [a, b]. We
define for every f ∈ L1(Γ) (that is f ◦ γ ∈ L1[a, b]) its Cauchy integral along Γ as

CΓf(z) =

∫ b

a

f(t+ iA(t))

t+ iA(t)− z
(1 + iA′(t))dt =

∫ b

a

f(γ(t))

γ(t)− z
dγ(t), ∀z ∈ C \ Γ,

which makes sense since |γ(t)− z| > 0. Observe that the previous definition, extending f by
0 to C \ Γ if necessary, can be rewritten as

C ν(z) =

∫
C

1

w − z
dν(w), where dν(w) = f(w)dH1|Γ(w).
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5.1 L2 boundedness of the Cauchy transform on Lipschitz graphs

By the properties of C , we already now that C ν defines an holomorphic function in C \ Γ
(Theorem 2.3.2). We must understand dH1|Γ as the usual length measure for a curve in C.
Our goal will be to give meaning to the previous expression when z ∈ Γ. This will lead to
consider the Cauchy transform of the length measure of a bounded Lipschitz graph, restricted
to the latter as a subset of C. The main result we will prove is that, under some additional
conditions, this last operator is a bounded operator in L2(Γ). So the operator we are interested
in is the following:

Definition 5.1.1 (Cauchy singular integral operator). Let A : [a, b] → R be a Lipschitz
function with Lipschitz constant ∥A′∥∞, and let Γ = {γ(t) = t+ iA(t) : t ∈ [a, b]} ⊂ C be its
graph. For f ∈ S(R), the Cauchy singular integral operator (over the graph of A) is given by

CΓf(z) = lim
ε→0

∫
w∈Γ: |z−w|>ε

f(w)

z − w
dH1|Γ(w), for H1|Γ-a.e. z ∈ Γ.

To prove that it can be well-defined in L2(Γ), we begin by checking that the kernel associated
with CΓ, that is

K(z, w) :=
1

z − w
, z, w ∈ Γ,

is standard. Observe also that it is anti-symmetric, i.e. K(z, w) = −K(z, w). Expressing
z = γ(x), w = γ(y) for x, y ∈ [a, b], condition 4.3.3, with n = 1, is deduced as a direct
consequence of the Lipschitz hypothesis:

|K(z, w)| ≤ 1

|x− y|

∣∣∣∣1− i
A(x)−A(y)

x− y

∣∣∣∣−1

≤ 1

|x− y|
.

Regarding (4.3.4), if ξ = γ(s) and |x− y| > 2|y − s| we have

|K(z, w)−K(z, ξ)| =

∣∣∣∣∣ y − s+ i
(
A(y)−A(s)

)[
x− y + i

(
A(x)−A(y)

)][
x− s+ i

(
A(x)−A(s)

)]∣∣∣∣∣
≲

|y − s|
|x− y|2

∣∣∣∣∣1 + i
A(x)−A(y)

x− y

∣∣∣∣∣
−1∣∣∣∣∣1 + i

A(x)−A(y)

x− y
+
y − s

x− y

(
1 +

A(y)−A(s)

y − s

)∣∣∣∣∣
−1

≤ |y − s|
|x− y|2

∣∣∣∣∣1− |y − s|
|x− y|

(
1 + ∥A′∥∞

)∣∣∣∣∣
−1

≲
|y − s|
|x− y|2

.

Thus, the condition is satisfied for δ = 1. In an analogous way we can prove that (4.3.5) also
holds with δ = 1. Therefore K is an standard kernel.

Now we continue by rewriting K so that its dependence on Γ becomes explicit. By this we
mean that instead of working with the complex variables z and w, we use that z = γ(x) and
w = γ(y) to obtain the equivalent expression

K(x, y) = K(γ(x), γ(y)) =
1

γ(x)− γ(y)
=

1

x− y − i
(
A(y)−A(x)

) , ∀x, y ∈ [a, b].

Notice that if we assume ∥A′∥∞ < 1 we may expand the kernel K as a geometric series

K(x, y) =

∞∑
k=0

ikKk(x, y), where Kk(x, y) =
1

x− y

(
A(x)−A(y)

x− y

)k
.
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5.1 L2 boundedness of the Cauchy transform on Lipschitz graphs

Definition 5.1.2 (Calderón commutators). If ∥A′∥∞ < 1, the following anti-symmetric ker-
nels

Kk(x, y) =
1

x− y

(
A(x)−A(y)

x− y

)k
, k = 0, 1, 2 . . .

are called Calderón commutators. In a similar way as for K, they are also a standard kernel
with δ = 1 and constants proportional to ∥A′∥k∞.

By the T1 theorem 4.4.5, the kernels Kk satisfy the following essential property:

Theorem 5.1.1. Let A : [a, b] → C be a Lipschitz function, k ≥ 0 an integer and ε > 0. The
linear functional Tk : S(R) → C

Tkf(x) = lim
ε→0

∫
|x−y|>ε

Kk(x, y)f(y)dy

is bounded on L2(R) and there exists a constant C > 0 such that

∥Tk∥ ≤ Ck∥A′∥k∞.

Proof. First we notice that by Proposition 4.4.4, Tkf is well-defined as an element of S(R)′
and so is also Tk as a map from S(R) to S(R)′. Moreover, since T satisfies the WBP , by the
T1 theorem 4.4.5 it will suffice to prove that Tk1 ∈ BMO to obtain the L2(R)-boundedness
of this operator.

In fact, we will prove that there is C > 0 so that for all k

∥Tk1∥BMO ≤ Ck+1∥A′∥k∞. (5.1.1)

Once we prove this, the second part of the statement will follow as a consequence of an
argument used in the proof of the T1 theorem [7, §9.4] that implies that

the norm of Tk depends linearly on the constants of Kk as a standard kernel and the
BMO norm of Tk1.

Then, using that the first constants are proportional to ∥A′∥k∞ as well as (5.1.1), we have

∥Tk∥L∞→BMO ≤ (C ′ + Ck+1)∥A′∥k∞ ≈ Ck+1∥A′∥k∞, (5.1.2)

so the second statement of the theorem follows. Hence we focus on proving (5.1.1) and we
will do it by induction. The case k = 0 is straightforward, since T0 is the Hilbert transform
and so T0 = 0. Now let us assume that the inequality holds for a fixed k and prove it for
k + 1. Integration by parts yields

Tk+11 = TkA
′.

(although formally it is clear, the details to make this statement rigorous become cumbersome.
See [7, Corollary 9.12] for a justification of the previous equality). Thus, by Theorem 4.4.3

∥Tk+11∥BMO = ∥TkA′∥BMO ≤ ∥Tk∥L∞→BMO∥A′∥∞.

71



5.1 L2 boundedness of the Cauchy transform on Lipschitz graphs

Also, from the proof of Theorem 4.4.2 and recalling that the constants from the estimates
that ensure that K is a standard kernel are proportional to ∥A′∥∞, as well as (5.1.2) (that
holds for the case k by induction hypothesis), we have the estimate

∥Tk∥L∞→BMO ≤ C2

(
∥Tk∥L2→L2 + C1∥A′∥k∞

)
≤ C2(C3C

k+1 + C1)∥A′∥k∞.

Then, choosing C large enough so that C2(C3C
k+1 + C1) ≤ Ck+2 we are done.

Therefore, if ∥A′∥∞ < 1 we can expand the kernel K as a geometric series and by Theorem
5.1.1 we deduce that Tk is a Calderón-Zygmund operator with standard kernel Kk(x, y).

Finally, setting dξΓ := dH1|Γ(ξ) to ease the notation, we carry out the following computation
for f ∈ S(R) (a priori)

∥CΓf∥L2(Γ) =

(∫
Γ
|CΓf(z)|2dzΓ

)1/2

=

(∫
Γ

∣∣∣∣ limε→0

∫
w∈Γ: |z−w|>ε

K(z, w)f(w)dwΓ

∣∣∣∣2dzΓ)1/2

=

(∫
Γ

∣∣∣∣ limε→0

∫
|x−y|>ε

∞∑
k=0

ikKk(γ(x), γ(y))f(γ(y))dwΓ(y)

∣∣∣∣2dzΓ(x))1/2

=

(∫
Γ

∣∣∣∣ limε→0

∫
|x−y|>ε

∞∑
k=0

ikKk(x, y)f(γ(y))(1 + iA′(y))dy

∣∣∣∣2dzΓ(x))1/2

=

(∫
Γ

∣∣∣∣ limε→0

∫
|x−y|>ε

lim
N→∞

N∑
k=0

ikKk(x, y)f(γ(y))(1 + iA′(y))dy

∣∣∣∣2dzΓ(x))1/2

.

(5.1.3)

Observe that the product of functions gf := (f ◦ γ)(1 + iA′) is bounded and hence belongs to
L2[a, b]. Notice that it can also be thought as a function in L2(R) once we multiply it by the
characteristic function χ[a,b]. Let us define

CΓ,Nf(x) := lim
ε→0

∫
|x−y|>ε

N∑
k=0

ikKk(x, y)gf (y)dy =
N∑
k=0

ikTkgf (x),

where now, because of Theorem 5.1.1, we can assume f ∈ L2(R) ⊂ L2[a, b]. Notice that if the
following estimate holds

C∥A′∥∞ < 1, (5.1.4)

we deduce

∥CΓ,Nf − CΓ,Mf∥L2[a,b] ≤
N∑

k=M+1

∥Tkgf∥L2[a,b] ≤
( N∑
k=M+1

Ck∥A′∥k∞
)
∥gf∥L2[a,b]

N,M→∞−−−−−−→ 0.

Therefore, by completeness, the sequence (CΓ,N )N is convergent to an element of B(L2[a, b])
(the space of bounded linear operators defined from L2[a, b] to itself) as N → ∞. This means,
in particular, that for every f ∈ L2[a, b], the sequence (CΓ,Nf)N is convergent to an element

of L2[a, b], that we will call C̃Γf . Taking a subsequence that converges for almost every point,
that abusing notation we will equally denote by (CΓ,Nf)N , we have

C̃Γf(x) = lim
N→∞

CΓ,Nf(x) = lim
N→∞

lim
ε→0

∫
|x−y|>ε

N∑
k=0

ikKk(x, y)gf (y)dy, for L-a.e. x.
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5.1 L2 boundedness of the Cauchy transform on Lipschitz graphs

On the other hand, by construction, if we take the limit with respect to N inside, we recover
pointwise almost everywhere CΓf (see expression (5.1.3)). Then, C̃Γf and CΓf must coincide
pointwise L-a.e. on [a, b].

So if we now return to (5.1.3), we are able to take the limit with respect to N outside the
inner integral and obtain

∥CΓf∥L2(Γ) =

(∫
Γ

∣∣∣∣ ∞∑
k=0

lim
ε→0

∫
|x−y|>ε

ikKk(x, y)f(γ(y))dwΓ(y)

∣∣∣∣2dzΓ(x))1/2

=

(∫
Γ

∣∣∣∣ ∞∑
k=0

ikTk(f ◦ γ)(x)
∣∣∣∣2dzΓ(x))1/2

≤
∞∑
k=0

∥Tk(f ◦ γ)∥L2[a,b]

≤
( ∞∑
k=0

Ck∥A′∥k∞
)
∥f ◦ γ∥L2[a,b] =

( ∞∑
k=0

Ck∥A′∥k∞
)
∥f∥L2(Γ).

Therefore, the previous argument together with assumption (5.1.4) finally yield:

Corollary 5.1.2. There exists δ > 0 small enough so that if ∥A′∥∞ ≤ δ, the operator CΓ is
bounded in L2(Γ) (and so it becomes a Calderón-Zygmund operator).

In other words, the previous corollary proves the L2-boundedness of the Cauchy transform of
the length measure of Lipschitz graphs with small enough slope.

Brief comments on the general result

The way we have studied the L2-boundedness using the T1 theorem was first tackled by
Calderón [3] (1977). Those who first proved that the restriction ∥A′∥∞ < ε was not necessary
were Coifman, McIntosh & Meyer [4] (1982). Later on, David [5] (1984) characterized the
curves on which the Cauchy integral defines a bounded operator on L2: they are precisely
those such that any circle of radius r contains in its interior a piece of the curve of length, at
most, Cr with C > 0 fixed. These curves are referred to as Ahlfors-David curves.

In any case, the result that generalizes the one we have proved using the Calderón-Zygmund
theory is the following:

Theorem 5.1.3. Let A : R → R be a Lipschitz function and Γ ⊂ R2 its graph. Consider the
measure ν = H1|Γ. Then, the Cauchy transform C ν is bounded in L2 and its norm does not
exceed a constant depending only on ∥A′∥∞.

One can find an exhaustive proof of the previous result in Tolsa [27, Theorem 3.11], where
more advanced tools are used in the argument, such as the Calderón-Zygmund theory for
non-doubling measures or the Menger curvature of a measure.
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5.2 The Denjoy’s conjecture

5.2 The Denjoy’s conjecture

The last goal of our project is to combine the techniques developed for singular integrals
as well as for analytic capacity to obtain an idea of the proof of Denjoy’s conjecture, whose
statement was foreshadowed at the end of Chapter 2. Let us recall it, now as a theorem:

Theorem 5.2.1 (Denjoy). Let Γ ⊂ C be a rectifiable curve and E ⊂ Γ compact. Then
γ(E) > 0 if and only if H1(E) > 0.

The proof of the previous result will rely heavily on the L2-boundedness of the Cauchy trans-
form on Lipschitz graphs. However, we will need a technical yet fundamental result that we
will not prove. That is the reason we mentioned before that we will just provide an idea of
the proof, since we will present the type of result needed to rigorously deduce the conjecture.
Previous to its statement, let us recall first that a measure ν is said to have linear growth if
for every disk Dr(z) – with center z and radius r – it satisfies ν(Dr(z)) ≲ r. Bearing in mind
this definition, the result we are interested in asserts the following:

Lemma 5.2.2. Assume that a compact set E ⊂ C supports a non-zero Radon measure ν with
linear growth and such that C ν is bounded in L2. Then γ(E) > 0.

The proof of this lemma can be found in Tolsa [27, Remark 4.8] and it needs concepts that are
far from the scope of this project, such as weak Lebesgue spaces or the Calderón-Zygmund
theory for non-doubling measures.

Apart from this result, we will need two more geometric lemmas (easier to prove).

Lemma 5.2.3. Let F ⊂ C be so that for any z, w ∈ F there is a constant CF > 0 satisfying∣∣∣∣Im(z)− Im(w)

Re(z)−Re(w)

∣∣∣∣ ≤ CF

Then F is contained in the graph a Lipschitz function A : R → R.

Proof. From the property defining F we observe that if z, w ∈ F are such that Re(z) = Re(w),
then z = w. Hence, we may define the map

Ã : Re(F ) −→ Im(F )

Re(z) 7−→ Im(z)

It is clear, by definition, that F ⊂ {(x,A(x)) : x ∈ Re(F )}. Moreover, the defining property
of F makes Ã a Lipschitz map with constant at most CF . In fact, we can extend Ã to a
Lipschitz map A : R → R by the formula

A(x) = inf

{
Ã(y) + CF |x− y| : y ∈ Re(F )

}
.

It is clear that if x ∈ Re(F ), then A(x) = Ã(x). Moreover, for any ε > 0, if x1, x2 ∈ R we can
find y1, y2 ∈ Re(F ) such that∣∣A(x1)− Ã(y1)− CF |x1 − y1|

∣∣ < ε

2
,

∣∣A(x2)− Ã(y2)− CF |x2 − y2|
∣∣ < ε

2
.

Using this property, we check the Lipschitz condition on A for different cases depending on
whether if x1, x2 ∈ F or not. It is clear that if both belong to F , the condition is satisfied. If
x1 ∈ F and x2 /∈ F ,
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5.2 The Denjoy’s conjecture

|A(x1)−A(x2)| <
∣∣Ã(x1)− Ã(y2)− CF |x2 − y2|

∣∣ ≤ CF
∣∣|x1 − y2| − |x2 − y2|

∣∣
= CF

∣∣|x1 − x2 + x2 − y2| − |x2 − y2|
∣∣ ≤ CF |x1 − x2|

and the argument for the case x1, x2 /∈ F is analogous to the previous one, concluding that A
is still a Lipschitz map with constant at most CF and with graph containing F .

Lemma 5.2.4. Let Γ be a rectifiable curve and E ⊂ Γ with H1(E) > 0. Then there exists a
compact subset F ⊂ E with H1(F ) > 0 which is contained in the (possibly rotated) graph of a
Lipschitz function A : R → R.

Proof. Let g : [a, b] → C be the arc length parametrization of Γ, i.e. g([a, b]) = Γ with g
differentiable L-a.e. in (a, b) with |g′(t)| = 1. Observe that since g′ ∈ L1[a, b], by Theorem
3.1.9 we have that for L-a.e. t0 ∈ (a, b)

lim
ε→0+

1

2ε

∫ t0+ε

t0−ε
|g′(t0 − t)− g′(t0)|dt = 0.

Therefore, fixing t0 one of the previous points, we can find an interval I0 ∋ t0 so that∫
I0

|g′(t)− g′(t0)|dt ≤
1

20
L(I0). (5.2.1)

We will also assume, without loss of generality, that g′(t0) = 1 (by a rotation if necessary).
Now we consider the following set:

G :=

{
t ∈ I0 : ∃g′(t) and |g′(t)− 1| ≤ 1

10

}
,

The set G has positive L-measure due to condition (5.2.1). Indeed, recalling that g′ exists
almost everywhere we have

L(I0)
20

≥
∫
I0

|g′(t)− g′(t0)|dt =
∫
G
|g′(t)− g′(t0)|dt+

∫
I0\G

|g′(t)− 1|dt

>

∫
G
|g′(t)− g′(t0)|dt+

L(I0 \G)
10

.

so if G had null measure we would reach a contradiction. Now for each m ≥ 1 we set

Gm =

{
t ∈ G :

∣∣∣∣g(s)− g(t)

s− t
− g′(t)

∣∣∣∣ ≤ 1

10
if |s− t| ≤ 1

m

}
.

Since by definition
⋃
m≥1Gm = G, we deduce that for m big enough L(Gm) > 0. For such

value of m, we pick an interval J ⊂ I0 of length (2m)−1 so that L(J ∩ Gm) > 0. Now we
observe that if s, t ∈ J ∩Gm, then∣∣∣∣g(s)− g(t)

s− t
− 1

∣∣∣∣ ≤ ∣∣∣∣g(s)− g(t)

s− t
− g′(t)

∣∣∣∣+ |g′(t)− 1| ≤ 1

10
+

1

10
=

1

5
.
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5.3 And what about other types of compact subsets?

Observe that calling F (s, t) := g(s)−g(t)
s−t we have obtained∣∣F (s, t)− 1

∣∣ =√[Re(F (s, t))− 1]2 + Im(F (s, t))2 ≤ 1

5
,

so geometrically (thinking the last expression as the equation of a circumference), we have∣∣∣∣Re(g(s))−Re(g(t))

s− t

∣∣∣∣ ≥ 4

5
,

∣∣∣∣Im(g(s))− Im(g(t))

s− t

∣∣∣∣ ≤ 1

5
.

Hence, we finally obtain that for any s, t ∈ J ∩Gm∣∣∣∣Im(g(s))− Im(g(t))

Re(g(s))−Re(g(t))

∣∣∣∣ ≤ 1

4
.

So applying Lemma 5.2.3 we get that g(J ∩ Gm) is contained in the graph of a Lipschitz
function. Finally, taking a compact subset F0 ⊂ J∩Gm with L(F0) > 0 and setting F = g(F0)
we are done.

Proof (Denjoy). Recall that we already know the inequalities γ(E) ≤ H1
∞(E) ≤ H1(E), given

by Painlevé’s theorem (2.4.5), so we are left to prove that for E ⊂ Γ with H1(E) > 0, we
have γ(E) > 0. By Lemma 5.2.4 we know that there exists a compact subset F ⊂ E with
H1(F ) > 0 contained in a (possibly rotated) Lipschitz graph. By Theorem 5.1.3, we know
that the Cauchy transform is bounded in L2 with respect to the arc length of this Lipschitz
graph. But it will also be bounded with respect to the measure H1|F , which is Radon (since it
is Borel regular and locally finite [16, Corollary 1.11]) and we know that satisfies a condition
of the type (2.4.1) with s = 1. Hence, we can apply Lemma 5.2.2, obtaining γ(E) > 0 and we
are done.

5.3 And what about other types of compact subsets?

The characterization of removable compact subsets has led to different conjectures apart from
the one we have presented. One of the most well-known is Vitushkin’s conjecture, proposed by
A. G. Vitushkin in 1967 [30], that asserts that removable subsets are those with null Favard
length. To define this notion, denote by pθ the orthogonal projection onto the line through
the origin at angle θ to the positive x-axis. Then, the Favard length of a compact subset
E ⊂ C is the average length of its projections over all directions:

Fav(E) :=

∫ π

0
H1(pθ(E))dθ

The conjecture is γ(E) = 0 ⇔ Fav(E) = 0. In 1986 Mattila [15] proved this conjecture
wrong by showing that having positive Favard length is not invariant under conformal map-
pings, while removability for bounded holomorphic functions is. Nevertheless, although the
conjecture may not hold in full generality, it turns out to be true in the particular case where
E has finite length. This was proved by David in 1998 [6], where he showed that a compact set
E ⊂ C with finite length is removable if and only if is purely unrectifiable, i.e. if it intersects
any rectifiable curve at most in a H1-null set. And applying a theorem of Besicovitch (see
[16, Chapter 18] for more details) we deduce the result, since for subsets of finite length, being
purely unrectifiable becomes equivalent to having null Favard length.
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Appendix A

The fundamental solution of the
∂-equation.

A.1 The Cauchy-Pompeiu formula

A well known basic result in complex analysis is Cauchy’s integral formula, that says that if
f is holomorphic on Ω, a bounded domain with piecewise regular boundary and positively
oriented, then for z ∈ Ω we have

f(z) =
1

2πi

∫
∂Ω

f(w)

w − z
dw.

The formula we are about to present generalizes the previous integral representation for a
bigger class of functions:

Theorem A.1.1 (Cauchy-Pompeiu). Let Ω be a bounded domain with piece-wise regular
boundary and positively oriented. Then, if f ∈ C1(Ω), we have for every z ∈ Ω

f(z) =
1

2πi

∫
∂Ω

f(w)

w − z
dw − 1

π

∫
Ω

∂f(w)

w − z
dL2(w).

Proof. Consider 0 < ε < d(z, ∂Ω) and define Ωε := Ω \D(z, ε). We name also g(w) := f(w)
w−z ,

which belongs to C1(Ωε). Since the boundary of Ω satisfies the necessary conditions to apply
Stoke’s theorem, we can apply it to obtain∫

∂Ωε

g(w)dw =

∫
Ωε

d
(
g(w)dw

)
=

∫
Ωε

dg ∧ dw =

∫
Ωε

(
∂gdw + ∂gdw

)
∧ dw

=

∫
Ωε

∂gdw ∧ dw =

∫
Ωε

[
∂f(w)

w − z
+ f(w)

���
���*

0

∂

(
1

w − z

)]
dw ∧ dw

=

∫
Ωε

∂f(w)

w − z
(dx+ idy) ∧ (dx− idy) = 2i

∫
Ωε

∂f(w)

w − z
dL2(w)

= 2i

∫
Ω

∂f(w)

w − z
χΩε(w)dL2(w).
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A.2 The fundamental solution of the ∂-equation

Now recalling that f ∈ C1(Ω) we deduce, in particular, that |∂f | is bounded by some constant
C > 0 in Ω. Therefore∣∣∣∣2i∫

Ω

∂f(w)

w − z
χΩε(w)dL2(w)

∣∣∣∣ ≤ 2C

∫
Ω

dL2(w)

|w − z|
= 2C

[ ∫
Ωε

dL2(w)

|w − z|
+

∫
D(z,ε)

dL2(w)

|w − z|

]
≤ 2C

[
L2(Ωε)

ε
+ 2πε

]
<∞,

since Ω is bounded. Hence, by the dominated convergence theorem we obtain

lim
ε→0

∫
∂Ωε

g(w)dw = 2i

∫
Ω

∂f(w)

w − z
dL2(w).

On the other hand, if we do not apply Stokes theorem, we also have the identities∫
∂Ωε

g(w)dw =

∫
∂Ω
g(w)dw +

∫
∂D(z,ε)

g(w)dw =

∫
∂Ω

f(w)

w − z
dw +

∫
∂D(z,ε)

f(w)

w − z
dw.

The second integral can be rewritten, using polar coordinates, as follows∫
∂D(z,ε)

f(w)

w − z
dw =

∫ 2π

0

f(z + εeiθ)

εeiθ
εieiθdθ = i

∫ 2π

0
f(z + εeiθ)dθ.

Using again the dominated convergence theorem we obtain that the integral converges to
2πif(z) as ε → 0, and equating both equivalent expressions obtained for

∫
∂Ωε

g(w)dw once
we have taken the limit as ε→ 0, we deduce the desired result.

Corollary A.1.2. If f ∈ C1
c (C) (compactly supported continuously differentiable function on

the whole C ), then for each z ∈ C

f(z) = − 1

π

∫
C

∂f(w)

w − z
dL2(w).

A.2 The fundamental solution of the ∂-equation

One of the most important consequences of the Cauchy-Pompeiu formula has to do with the
fundamental solution of the ∂-equation. By this we mean the following: suppose we are asked
to find a certain function f (preferably compactly supported and continuously differentiable
up to a certain order of derivatives) that satisfies

∂(f) = δ0,

where the equality is in the sense of distributions. To that end, notice that if f ∈ C1
c (C) we

have, by the previous corollary

f(0) = − 1

π

∫
C

∂f(w)

w
dL2(w) ⇔ δ0(f) =

(
− 1

πz

)(
∂f
)
=

[
∂

(
− 1

πz

)]
(f)

implying that

Theorem A.2.1. The fundamental solution of the ∂-equation is − 1
πz . That is,

δ0 = ∂

(
− 1

πz

)
.
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