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Introduction and Summary
The main actor of this project is the Fourier transform, which, for f integrable is defined
as

f̂(ξ) =
∫
R

f(x)e2πixξdx.

This object, and its discrete counterpart, the Fourier series, are extremely important,
not only in Mathematics but also in Physics and Engineering. In spite of its simple
definition, the relation between f and f̂ is not at all easy to understand. To this end,
we can use norm inequalities, like the Hausdorff-Young inequality, which, for 1 ≤ p ≤ 2
states that ∥∥∥f̂∥∥∥

p∗
≤ K ∥f∥p (1)

or Uncertainty Principle relations, which, roughly speaking, assert that the Fourier trans-
form of a localized function is not localized. The most famous of these is the Heisenberg
Uncertainty Principle:

∥xf∥2

∥∥∥ξf̂
∥∥∥

2
≥ K ∥f∥2

2 . (2)

From a qualitative point of view, these inequalities tell us that that the Fourier transform
of an integrable function can not have important blow-ups and that the transform of a
concentrated function can not be concentrated around one point.
The goal of this thesis is to present generalizations of the aforementioned inequalities.
First, to obtain relations between the distribution of f and f̂ in their domain, we study
Weighted Fourier inequalities, that is, inequalities of the form∥∥∥f̂∥∥∥

q,u
≤ K ∥f∥p,v , (3)

where u, v are weights, that is, non-negative measurable functions. Observe that in-
equality (3) is clearly a generalization of (1).
Second, there are many ways in which the idea behind the Uncertainty Principle, that
is, transforms of localized functions must be spread over their domain, can be quantified.
For instance, we can measure the degree of localization of a function by studying its rate
of decay, by computing the fraction of its mass which lies outside of some region, or by
studying generalizations of inequality (2), namely,

∥f∥p,u

∥∥∥f̂∥∥∥
q,v

≥ K ∥f∥r . (4)

The work is devoted to surveying known results and obtaining new ones on the pre-
viously mentioned problems. The thesis is organized as follows. Chapter 1 is devoted
to introducing some preliminary results and concepts which are used in this work. In
Chapter 2 we review the conditions on u and v obtained in [4] which guarantee that
inequality (3) holds. Next, we review classical necessary conditions and obtain new ones
(Theorems 2.3.6 and 2.3.7), thereby showing that the conditions in [4] are necessary
when u and v satisfy a natural monotonicity condition. To conclude this chapter, we
further explore the topic by studying the case of non-monotonous u, v and obtain new
results. Finally, in Chapter 3 we survey several forms of the Uncertainty Principle (UP):
the Hardy UP, the Amrein-Berthier UP and the Nazarov UP. We also study UP of the
type (4), extending the results obtained in [28] for the whole range of parameters, (see
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Theorem 3.4.2). Moreover, we fully characterize a symmetric Heisenberg type UP with
broken power weights, see Theorem 3.5.1.
Finally, I would like to thank my supervisor, Sergey Tikhonov, for his guidance and also
Kristina Oganesyan for numerous helpful remarks.
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Chapter 1

Preliminaries

1.1 Notation
Throughout the whole text we shall make use of the following notation and terminology

• A weight is a non-negative measurable function;

• For a weight v, a function f and p > 0,

∥f∥p,v :=
(∫

R
|f |pv

) 1
p

;

• Lp
v is the weighted Lebesgue space of measurable functions f for which ∥f∥p,v < ∞;

• p∗ = p
p−1 ;

• 1E is the indicator function of the measurable set E.

Finally, we say that two expressions F1 and F2 are equivalent (we write F1 ≈ F2) if there
exists a constant K > 0 only dependent on p and q such that K−1F1 ≤ F2 ≤ KF1.

1.2 Some auxiliary inequalities
The first result is the well-known Chebyshev inequality

Lemma 1.2.1. Let f ≥ 0 be measurable, then for λ > 0,

|{x : f(x) > λ}| λ ≤ ∥f∥1 .

The following two results are classical inequalities, see for instance [6] [13], [18] or [19].

Lemma 1.2.2 (Hardy’s Lemma). Let a, b be two non-negative functions and assume
that for any x > 0 ∫ x

0
a(s)ds ≤

∫ x

0
b(s)ds.

Then, for any non-increasing function f ,∫ ∞

0
f(s)a(s)ds ≤

∫ ∞

0
f(s)b(s)ds.

7
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Theorem 1.2.3 (Continuous Hardy’s Inequality). Let 1 < p, q < ∞ and let u, v be
weights. Then, the inequality(∫ ∞

0
u(x)

(∫ x

0
f(s)ds

)q

dx
) 1

q

≤ K ∥f∥p,v (1.1)

holds for any f if and only if K < ∞, where

1. if q ≥ p,

K ≈ sup
s>0

(∫ ∞

s
u
) 1

q
(∫ s

0
v1−p∗

) 1
p∗

; (1.2)

2. if q < p,

K ≈
(∫ ∞

0
v(x)1−p∗

(∫ ∞

x
u
) r

q
(∫ x

0
v1−p∗

) r
q∗

dx

) 1
r

, (1.3)

with r−1 = q−1 − p−1.

Theorem 1.2.4 (Discrete Hardy inequality).

1. Let r > 1 and p > 1. Then, there exists a constant K(r, p) such that for any
non-negative sequence (xn)n∈Z and p > 1

∞∑
n=−∞

rnxp
n ≤

∞∑
n=−∞

rn

 ∞∑
j=n

xj

p

≤ K(r, p)
∞∑

n=−∞
rnxp

n.

2. Assume that q < 1 and let u, v be weights with v non-increasing. Then, the in-
equality  ∞∑

n=−∞
un

 n∑
j=−∞

xj

q
1
q

≤ K
∞∑

n=−∞
vnxn

holds for any non-negative xn if and only if ∞∑
n=−∞

un

(∑∞
j=n uj

vn

)−q∗− 1
q∗

< ∞.

Moreover, the best constant K is equivalent to the previous expression.

We also need the following result about the boundedness of the Riesz potential:

Theorem 1.2.5 (Theorem 1 in [25]). Let u be a non-negative measurable function. If
for some r > 1, the supremum over all intervals I satisfies

sup
I

|I|α
(

|I|−1
∫

I
ur
) 1

2r

< ∞,

then, there exists K such that for any g∫
R

u(x)
(∫

R

g(y)
|x − y|1−α

dy

)2

dx

 1
2

≤ K ∥g∥2 .
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1.3 Decreasing rearrangement function
In this work we will need some facts about the rearrangement function. The interested
reader can learn more about this function in [6].
Definition 1.3.1. Let (X, µ) be a measure space and let f : X → C be a measurable
function. The distribution function of f is given by

Df (s) = µ {x ∈ X : |f(x)| > s} ,

and the decreasing rearrangement of f , by
f ∗(t) = inf{s ≥ 0 : Df (s) ≤ t}.

Proposition 1.3.2. The following properties hold:
1. Df and f ∗ are non-increasing;

2. if (tn)∞
n=1 ⊂ R+ is a decreasing sequence with limit s, then Df (s) = limn Df (tn);

3. Df (s) = Df∗(s);

4. for any p > 0, ∫
X

|f(s)|pdµ(s) = p
∫ ∞

0
sp−1Df (s)ds =

∫ ∞

0
f ∗(t)pdt;

5. for any p > 0
(fp)∗ = (f ∗)p.

Proof. (1) and (5) are clear. (2) is the Monotone Convergence Theorem for measures.
To prove (3), unpacking definitions, we obtain

Df∗(s) = |{x ≥ 0 : f ∗(x) > s}| = |{x ≥ 0 : inf{t ≥ 0 : Df (t) ≤ x} > s}}| .

Next, we show that
{x ≥ 0 : inf{t ≥ 0 : Df (t) ≤ x} > s} = {x ≥ 0 : Df (s) > x} = [0, Df (s)),

whence the result follows. Clearly,
{x ≥ 0 : inf{t ≥ 0 : Df (t) ≤ x} > s} ⊂ {x ≥ 0 : Df (s) > x};

for the reverse inclusion, for the sake of contradiction assume that for some x with
Df (s) > x, inf{t ≥ 0 : Df (t) ≤ x} = s. Then, there exists a decreasing sequence (tn)∞

n=1
such that limn tn = s and Df (tn) ≤ x < Df (s), which contradicts (2).
For (4) an application of Fubini’s Theorem yields∫

X
|f(s)|pdµ(s) = p

∫
X

∫ |f(s)|

0
xp−1dxdµ(s) = p

∫ ∞

0
µ{s : |f(s)| > x}xp−1dx

= p
∫ ∞

0
Df (x)xp−1ds,

and the result follows by noting that by (3), f and f ∗ have the same distribution function.

Lemma 1.3.3 (Hardy-Littlewood rearrangament, [4], [6]). Let f, g be non-negative func-
tions. Then, the following inequalities hold∫ ∞

0
f ∗ [(1/g)∗]−1 ≤

∫
X

fg ≤
∫ ∞

0
f ∗g∗.
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1.4 The Khintchine inequality
The last preliminary result is the Khintchine inequality.

Theorem 1.4.1 ([1]). For any p > 0, there exist 0 < Ap, Bp < ∞ > such that for all n
and all a1, . . . , an ∈ C,

Ap

 n∑
j=1

|aj|2
 1

2

≤

E
∣∣∣∣∣∣

n∑
j=1

ajεj

∣∣∣∣∣∣
p

1
p

≤ Bp

 n∑
j=1

|aj|2
 1

2

, (1.4)

where ε1, . . . , εn are independent random variables which take the values ±1 which prob-
ability 1

2 . We remark that, here

E

∣∣∣∣∣∣
n∑

j=1
ajεj

∣∣∣∣∣∣
p = 2−n

∑
ε1=±1,...,εn=±1

∣∣∣∣∣∣
n∑

j=1
ajεj

∣∣∣∣∣∣
p

.

Proof. Before we begin, note that by considering separately the real and the imaginary
part, it suffices to prove the theorem for ak ∈ R. First, assume that p > 2. In this case,
the LHS is follows from Hölder’s inequality by noting that

 n∑
j=1

|aj|2
 1

2

=

E

∣∣∣∣∣∣

n∑
j=1

ajεj

∣∣∣∣∣∣
2



1
2

.

For the RHS, put Sn = ∑n
j=1 ajεj. Then, for λ > 0 and using the independence of the

εi, we obtain
E[eλSn ] =

n∏
j=1

E[eλajεi ] =
n∏

j=1
cosh(λaj).

Next, expanding in power series, and using that (2i)! > 2ii!

cosh(λaj) =
∞∑

i=0

(λaj)2i

(2i)! ≤
∞∑

i=0

(λaj)2i

2ii! = e
λ2a2

j
2 .

Thus, from Chebyshev’s inequality,

P(Sn > t)eλt ≤ E[eλSn ] ≤ e
λ2∥a∥2

2
2 .

Here, setting λ = t
∥a∥2

2
, we get,

P(Sn > t) ≤ e
− t2

2∥a∥2
2 .

Finally, using that Sn is symmetric, we deduce that

P(|Sn| > t) ≤ 2e
− t2

2∥a∥2
2

and

E[|Sn|p] = p
∫ ∞

0
tp−1P(|Sn| > t)dt ≤ 2p

∫ ∞

0
tp−1e

− t2
2∥a∥2

2 dt = ∥a∥p
2 2p

∫ ∞

0
tp−1e− t2

2 =: Bp
p ∥a∥p

2 .
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Second, if p < 2, the RHS is trivial. For the LHS, by Hölder’s inequality,

∥a∥2
2 = E[|Sn|2] ≤ (E[|Sn|p])

1
p

(
E[|Sn|p∗ ]

) 1
p∗ ≤ (E[|Sn|p])

1
p Bp∗ ∥a∥2 ,

so that the result follows with Ap = B−1
p∗ .

This result allows us to construct various counterexamples in harmonic analysis. For
instance,

Corollary 1.4.2. The Hausdorff-Young inequality∥∥∥f̂∥∥∥
p∗

≲ ∥f∥p ,

does not hold for p > 2.

Proof. Let ϕ be a smooth function with support in [−1
2 , 1

2 ]. Let a1, . . . , an ∈ C and
consider

f(x) =
n∑

j=1
ajϕ(x − j).

Clearly,
f̂(ξ) = ϕ̂(ξ)

n∑
j=1

e2πiξjaj;

∥f∥p
p = ∥ϕ∥p

p

n∑
j=1

|aj|p;

∥∥∥f̂∥∥∥p∗

p∗
=
∫
R

|ϕ̂(ξ)|p∗|
n∑

j=1
aje

2πijξ|p∗
.

Hence, if the Hausdorff-Young inequality holds, for any choice of signs εj,

∫
R

|ϕ̂(ξ)|p∗|
n∑

j=1
εjaje

2πijξ|p∗
dξ ≲

∥ϕ∥p
p

n∑
j=1

|aj|p


p∗
p

,

and by taking expected values, applying Fubini’s Theorem we deduce that

∫
R

|ϕ̂(ξ)|p∗E

|
n∑

j=1
εjaje

2πijξ|p∗

 dξ ≲

∥ϕ∥p
p

n∑
j=1

|aj|p


p∗
p

,

so that using the Khintchine inequality, we deduce that

∥a∥
p∗
2

2

∫
R

|ϕ̂(ξ)|p∗
≲

∥ϕ∥p
p

n∑
j=1

|aj|p


p∗
p

.

Taking aj = 1, we obtain that the LHS behaves like N
p∗
2 and the RHS like N

p∗
p , which

is a contradiction since p > 2.
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Chapter 2

Weighted Fourier inequalities

Given an integrable function f , its Fourier transform f̂ is defined as

f̂(ξ) =
∫
R

f(x)e2πixξdx.

It is well known that for f integrable, we have that∥∥∥f̂∥∥∥
∞

≤ ∥f∥1 . (2.1)

Moreover, if f is also square-integrable, the Parseval identity,∥∥∥f̂∥∥∥
2

= ∥f∥2 (2.2)

holds. Since L1 ∩ L2 is a dense subspace of L2, we can extend by continuity the Fourier
transform to the whole L2. In this case, for f ∈ L2, it is true that f̂ ∈ L2 and the
Fourier inversion formula, ˆ̂

f(x) = f(−x), holds.
In order to define the Fourier transform in other spaces by using the same method, for
instance, between the weighted Lebesgue spaces Lp

v and Lq
u, one needs to first establish

a Pitt inequality (after Pitt, who obtained analogous inequalities for Fourier Series and
power weights in [23], see also [26]), that is, an inequality of the form∥∥∥f̂∥∥∥

q,u
≤ K ∥f∥p,v , (2.3)

for f belonging to a suitable dense subspace of Lp
v, what motivates the study of (2.3),

the main object of this chapter. It must also be mentioned that the Pitt inequality is a
crucial tool in the study of Uncertainty Principles, see also [11], the theme of the third
chapter of this work, as well as in many other areas of Analysis and PDE’s, see [3], [8]
and [9].

This chapter is divided in four sections. In the first one, we explain the method of
rearrangements due to Heinig and Benedetto ([4]), in which sufficient conditions on
u, v in terms of their non-increasing rearrangements for the inequality (2.3) to hold are
obtained. It is interesting to note that the only properties of the Fourier transform which
are used are equations (2.1) and (2.2). This, in particular, implies that any inequality
obtained by this method must also be satisfied by any rearrangement of the Fourier

13
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transform. Therefore, it is not expected that, in general, sufficient conditions thus
obtained are necessary. However, when the weights satisfy some monotonicity conditions,
it is possible to show that these conditions are indeed necessary. In the second section, we
comment briefly on classical necessary conditions and obtain new ones, thereby showing
that the conditions in [4] are sufficient and necessary for monotonous weights.
The third section illustrates what is lost by only using the aforementioned bounded-
ness properties of the Fourier transform. We obtain instances in which the sufficient
conditions of [4] do not hold, yet for which (2.3) is satisfied.

2.1 Definition and duality
As mentioned before, inequality (2.3) is needed to define the Fourier Transform as an
operator from Lp

v to Lq
v. More precisely,

Proposition 2.1.1. Assume that for given p, q and non-negative u, v the inequality (2.3)
holds for f ∈ L1. Then, there exists a unique bounded linear operator which extends
the Fourier transform as an operator from Lp

v to Lq
u, i.e, there exists a linear bounded

operator T : Lp
v → Lq

u such that T (f) = f̂ whenever f ∈ L1 ∩ Lp
v.

Proof. We show that L1 ∩ Lp
v is dense in Lp

v, whence the result will follow. To this end,
let f be such that ∥f∥p,v < ∞ and, for each N , define

fN(x) = f(x)1|x|≤N1|f(x)|≤N .

Clearly, fN ∈ L1 and, by the Dominated Convergence Theorem, limN→∞ ∥f − fN∥p,v =
0.
Lemma 2.1.2 (Duality). Inequality (2.3) holds for any f ∈ L1 (and a posteriori for
any f ∈ Lp

v) if and only if, for any ϕ ∈ L1 (and a posteriori for any ϕ ∈ Lq∗

u
1

1−q
) the

following holds ∥∥∥ϕ̂∥∥∥
p∗,v

1
1−p

≤ K ∥ϕ∥
q∗,u

1
1−q

. (2.4)

Observe that the previous statement can be rephrased in a more compact way as

sup
f

∥∥∥f̂∥∥∥
q,u

∥f∥p,v

= sup
ϕ

∥∥∥ϕ̂∥∥∥
p∗,v

1
1−p

∥ϕ∥
q∗,u

1
1−q

.

Proof. First, observe that if we let V = v
1

1−p and U = u
1

1−q , we have that V
1

1−p∗ = v and
U

1
1−q∗ = U , so applying twice the transformation takes us back to the original inequality.

Hence, it suffices to prove one implication.
Assume that inequality (2.4) holds and that u is finite everywhere. Let

AN = {ϕ ∈ Lq∗ : ∥ϕ∥q∗ = 1,
∥∥∥ϕu

1
q

∥∥∥
1

≤ N}.

Then, using Hölder’s inequality, we obtain that for f ∈ L1, and since u is finite every-
where, ∫

R
|f̂ |qu = sup

ϕ∈Lq∗ ;∥ϕ∥q∗ =1

∫
R

f̂u
1
q ϕ = sup

N,ϕ∈AN

∫
R

f̂u
1
q ϕ =: I (2.5)
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Here, since for each N , f and u
1
q ϕ belong to L1, an application of Fubini’s Theorem and

then Hölder’s inequality yield

I = sup
N,ϕ∈AN

∫
R

f(u
1
q ϕ)∧ ≤ sup

N,ϕ∈AN

∥f∥p,v

∥∥∥(u 1
q ϕ)∧

∥∥∥
p∗,v

1
1−p

. (2.6)

Finally, the assumption implies that

sup
N,ϕ∈AN

∥f∥p,v

∥∥∥(u 1
q ϕ)∧

∥∥∥
p∗,v

1
1−p

≤ K sup
N,ϕ∈AN

∥f∥p,v

∥∥∥(u 1
q ϕ)

∥∥∥
q∗,u

1
1−q

= K sup
N,ϕ∈AN

∥f∥p,v ∥ϕ∥q∗ ,

and since ∥ϕ∥q∗ = 1 we obtain that (2.3) holds.
For general u, let uN = min(N, u). Since u ≥ uN , we have that inequality (2.4) holds
for uN . Thus, for f ∈ L1 we have ∥∥∥f̂∥∥∥

q,uN

≤ K ∥f∥p,v ,

and the result follows by applying the Monotone Convergence Theorem.

2.2 Sufficient conditions
In this section we describe the method used in [4] to obtain conditions on u, v for (2.3)
to hold. The main tool is the following Calderón-type result, which was obtained in [16].

Lemma 2.2.1. Let T be a linear operator of type (1, ∞) and (2, 2) with norm ≤ 1. That
is, for any f ∈ L1,

∥Tf∥∞ ≤ ∥f∥1

and for any f ∈ L2,
∥Tf∥2 ≤ ∥f∥2 .

Then, for any f ∈ L1 + L2 and any x ≥ 0,

∫ x

0
(Tf)∗(t)2dt ≤ 4

∫ x

0

(∫ t−1

0
f ∗(s)ds

)2

dt. (2.7)

Proof. For u ≥ 0, define fu = f1|f |≤u + u(1 − 1|f |≤u) and fu = f − fu. Observe that
(fu)∗ = min(f ∗, u) = (f ∗)u.
Then, by the triangle inequality and the (1, ∞) boundedness of T ,

|Tf |(x) ≤ |Tfu|(x) + |Tfu|(x) ≤ |Tfu|(x) + ∥fu∥1 .

Hence,
(Tf)∗(x) ≤ (Tfu)∗(x) + ∥fu∥1

and
I :=

(∫ x

0
(Tf)∗(s)2ds

)1/2
≤
(∫ x

0
(Tfu)∗(s)2ds

)1/2
+ x1/2 ∥fu∥1

≤
(∫ ∞

0
(Tfu)∗(s)2ds

)1/2
+ x1/2 ∥fu∥1 ≤

(∫ ∞

0
(fu)∗(s)2ds

)1/2
+ x1/2 ∥fu∥1 ,
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where the last inequality follows from T being of type (2, 2). Set u = f ∗(x−1), then∫ ∞

0
(fu)∗(s)2ds =

∫ ∞

0
(f ∗)u(s)2ds = x−1f ∗(x−1)2 +

∫ ∞

x−1
f ∗(s)2ds

and
∥fu∥1 =

∫ x−1

0
f ∗(s) − f ∗(x−1)ds.

Putting everything together and applying the change of variable y = x−1, we obtain

I ≤ y1/2f ∗(y) +
(∫ x

0
f ∗(s−1)2s−2ds

) 1
2

+ x1/2
(∫ x−1

0
f ∗(s)ds

)
− y1/2f ∗(y) =

(∫ x

0
f ∗(s−1)2s−2ds

) 1
2

+ x1/2
(∫ x−1

0
f ∗(s)ds

)
.

Finally, since f ∗ is non-increasing, we deduce that∫ x

0

(
s−1f(s−1)

)2
ds ≤

∫ x

0

(∫ s−1

0
f ∗(t)dt

)2

ds

and
x

(∫ x−1

0
f ∗(s)ds

)2

≤
∫ x

0

(∫ s−1

0
f ∗(t)dt

)2

,

whence the result follows.

Next, we want to replace the power by a different q ≥ 2. For this, the following lemma
is fundamental.
Lemma 2.2.2 ([17]). Let h be a positive function and define Φ(x) =

∫ x
0
∫ s

0 h(u)duds.
Then if f, g are non-increasing positive functions such that for any x∫ x

0
f(s)ds ≲

∫ x

0
g(s)ds

holds, we have that ∫ ∞

0
Φ(f(s))ds ≲

∫ ∞

0
Φ(g(s))ds.

Proof. Observe that an application of Fubini’s Theorem yields

Φ(x) =
∫ x

0
h(u)(x − u)du =

∫ ∞

0
h(u)(x − u)+du.

Thus,∫ ∞

0
Φ(f(x))dx =

∫ ∞

0

∫ ∞

0
h(u)(f(x) − u)+dudx =

∫ ∞

0
h(u)

∫ ∞

0
(f(x) − u)+dxdu,

and the result follows because for any u∫ ∞

0
(f(x) − u)+dx ≲

∫ ∞

0
(g(x) − u)+dx.

Indeed, since f is non-increasing, there exists a ∞ ≥ x∗ > 0 such that∫ ∞

0
(f(x) − u)+dx =

∫ x∗

0
(f(x) − u)dx ≲

∫ x∗

0
(g(x) − u)dx ≤

∫ ∞

0
(g(x) − u)+dx.
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Corollary 2.2.3. Let T be a linear operator of type (1, ∞) and (2, 2) with norm ≤ 1.
Let q ≥ 2. Then, for any f ∈ L1 + L2 and any x ≥ 0,

∫ x

0
(Tf)∗(t)qdt ≲

∫ x

0

(∫ t−1

0
f(s)∗ds

)q

dt. (2.8)

Proof. From Lemma 2.2.1 we know that
∫ x

0
(Tf)∗(t)2dt ≲

∫ x

0

(∫ t−1

0
f(s)∗ds

)2

dt,

and note that for h(x) = ( q
2 −1) q

2x
q
2 −2 ≥ 0, Φ(x) = x

q
2 . Hence, an application of Lemma

2.2.2 with 1[0,x](Tf)∗(t)2 and 1[0,x]
(∫ t−1

0 f(s)∗ds
)2

yields the result.

Using the previous results, we proceed to state and prove the central results of this
section.
Theorem 2.2.4. Let 1 < p, q < ∞ with q ≥ 2 and u, v be weights and T as before.
Then, the inequality

(∫ ∞

0
(Tf)∗(t)qu∗(t)dt

) 1
q

≲ K
(∫ ∞

0
(1/v)∗(t)−1f ∗(t)pdt

) 1
p

(2.9)

holds with:

1. If q ≥ p,

K = sup
s

(∫ s

0
u∗
) 1

q

(∫ 1/s

0

(1
v

)∗
p∗−1

) 1
p∗

< ∞; (2.10)

2. If q ≤ p,

K =
∫ ∞

0

(∫ 1/s

0
u∗
) r

q (∫ s

0

(1
v

)∗
p∗−1

) r
q∗ (1

v

)∗
(s)p∗−1ds

 1
r

< ∞. (2.11)

Proof. From Corollary 2.2.3 we deduce that
∫ x

0
(Tf)∗(t)qdt ≲

∫ x

0

(∫ t−1

0
f(s)∗ds

)q

dt.

and using Hardy’s Lemma (Lemma 1.2.2) and the change of variable formula, we obtain
∫ ∞

0
u∗(t)(Tf)∗(t)qdt ≲

∫ ∞

0
u∗(t)

(∫ t−1

0
f(s)∗ds

)q

dt =
∫ ∞

0
u∗(t−1)t−2

(∫ t

0
f(s)∗ds

)q

dt.

Finally, from Hardy’s Inequality (Theorem 1.2.3) and the conditions on u∗.v∗ we conclude
that (∫ ∞

0
u∗(t−1)t−2

(∫ t

0
f(s)∗ds

)q

dt
) 1

q

≲
(∫ ∞

0
(1/v)∗(t)−1f ∗(t)pdt

) 1
p

,

whence the result follows.
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Theorem 2.2.5 (Pitt inequality, [4]). Let 1 < p, q < ∞ and u, v be weights. Then,
inequality (2.3) holds with:

1. If q ≥ p,

K ≈ sup
s

(∫ s

0
u∗
) 1

q

(∫ 1/s

0

(1
v

)∗
p∗−1

) 1
p∗

< ∞; (2.12)

2. If q ≤ p and either 2 ≤ p, q or 2 ≥ p, q,

K ≈

∫ ∞

0

(∫ 1/s

0
u∗
) r

q (∫ s

0

(1
v

)∗
p∗−1

) r
q∗ (1

v

)∗
(s)p∗−1ds

 1
r

< ∞, (2.13)

equivalently, ∫ ∞

0
u∗(t)

(∫ t

0
u∗
) r

p

(∫ 1
t

0

(1
v

)∗
p∗−1

) r
p∗

dt

 1
r

< ∞, (2.14)

where r−1 = q−1 − p−1.
Proof. First, if q ≥ 2, we obtain the result from Theorem 2.2.4 with Tf = f̂ and the
following chain of rearrangement inequalities:∥∥∥f̂∥∥∥

q,u
≤
(∫ ∞

0
u∗(t)(Tf)∗(t)qdt

) 1
q

≲
(∫ ∞

0
(1/v)∗(t)−1f ∗(t)pdt

) 1
p

≤ ∥f∥p,v .

If q < 2, by Lemma 2.1.2, we obtain that

sup
f

∥∥∥f̂∥∥∥
q,u

∥f∥p,v

= sup
f

∥∥∥f̂∥∥∥
p∗,v−p∗/p

∥f∥q∗,u−q∗/q

.

Since in this case q∗ > 2, we deduce the result by observing that the transformation
(p, q, u, v) 7→ (q∗, p∗, v−p∗/p, u−q∗/q) does not transform the previous estimates for K.
Indeed,

1. First, since −p∗/p = 1 − p∗ and q∗/q = 1
q−1 ,

sup
s

(∫ s

0

[
v−p∗/p

]∗) 1
p∗
(∫ 1/s

0

( 1
u−q∗/q

)∗
q−1
) 1

q

= sup
s

(∫ s

0
u∗
) 1

q

(∫ 1/s

0

(1
v

)∗
p∗−1

) 1
p∗

.

2. Second, since q < 2, r/q = r/p + 1, applying Fubini’s Theorem, we obtain

∫ ∞

0

(∫ 1/s

0
u∗
) r

q (∫ s

0

(1
v

)∗
p∗−1

) r
q∗ (1

v

)∗
(s)p∗−1ds ≈

∫ ∞

0

[∫ 1/s

0
u∗(t)

(∫ t

0
u∗
) r

p

dt

] (∫ s

0

(1
v

)∗
p∗−1

) r
q∗ (1

v

)∗
(s)p∗−1ds =

∫ ∞

0
u∗(t)

(∫ t

0
u∗
) r

p

[∫ 1
t

0

(∫ s

0

(1
v

)∗
p∗−1

) r
q∗ (1

v

)∗
(s)p∗−1ds

]
≈

∫ ∞

0
u∗(t)

(∫ t

0
u∗
) r

p

(∫ 1
t

0

(1
v

)∗
p∗−1

) r
p∗

dt.
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Remark 2.2.6. In [4], it was stated that the conclusions of Theorem 2.2.5 hold in the
case q < 2 < p too. However, as it was noted in [24] this is not true. In [24], the
authors obtained extra conditions which, together with the condition of Theorem 2.2.5
are sufficient for (2.3) to hold.

As a counterexample, we also have

Proposition 2.2.7. Let p > 2 and v = xα with 0 < α = p
2 − 1. Then, the inequality

(∫ 1

0
|f̂ |p∗

) 1
p∗

≲ ∥f∥p,v (2.15)

does not hold. However, condition 2 of Theorem 2.2.5 holds.

Proof. Condition 2 of Theorem 2.2.5 is here

∫ 1

0
t

r
p

(∫ 1
t

0
s−α(p∗−1)

) r
p∗

dt ≈
∫ 1

0
t

r
p t− r

p∗ + rα
p dt < ∞,

where we have used that (1 − p
2)(p∗ − 1) > −1. Since 1

r
= 1

p∗ − 1
p
, we deduce that this

condition holds.
However, using the same method we used in Corollary 1.4.2, we deduce that inequality
(2.15) implies that there exists a constant K such that for any sequence (an)∞

n=1

∥a∥2 ≤ K

( ∞∑
n=1

|an|pnα

) 1
p

,

which, by Hölder’s inequality, implies that

∞∑
n=1

n− α
p/2−1 =

∞∑
n=1

n−1 < ∞,

which is not true.

2.3 Necessary conditions
Now we set on to find necessary conditions for inequality (2.3) to hold. We shall show
that if q ≥ p, u is non-increasing and v is non-decreasing, the conditions obtained in 2.2.5
are necessary. We also obtain, by using results in Banach Space theory, new necessary
conditions for the case p > q, which match conditions 2 in Theorem 2.2.5 when u and v
are monotonic.
The following result is well-known:
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Proposition 2.3.1. Assume that inequality (2.3) holds. Then,

sup
I,J intervals, |I||J |=(2π)−1

(∫
I

u
) 1

q
(∫

J
v

1
1−p

) 1
p∗

≲ K, (2.16)

equivalently,

sup
I,J intervals, |I||J |≤(2π)−1

(∫
I

u
) 1

q
(∫

J
v

1
1−p

) 1
p∗

≲ K.

In particular, if u is non-increasing and v is non-decreasing

sup
s>0

(∫ 1
s

0
u

) 1
q (∫ s

0
v

1
1−p dx

) 1
p∗

≲ K.

Hence, in this case, and if q ≥ p, Theorem 2.2.5 is sharp.

Proof. Assume first that v > 0. For s > 0 and M > 0, define fs,M(x) = v(x)
1

1−p1v>M1[0,s].
Observe that fs,M is integrable and ∥fs,M∥p,v < ∞, Then,

f̂s,M(ξ) =
∫ s

0
v(x)

1
1−p1v>Me2πξxdx.

In particular, if |2πsξ| ≤ 1, the real part of the Fourier transform satisfies

Re f̂s,M(ξ) ≳
∫ s

0
v(x)

1
1−p1v>Mdx.

Hence, inequality (2.3) implies(∫ 1
2πs

0
u(ξ)

(∫ s

0
v(x)

1
1−p1v>Mdx

)q

dξ

) 1
q

≲ K
(∫ s

0
v(x)

1
1−p1v>Mdx

) 1
p

,

whence we deduce that, independently of M ,

sup
s>0

(∫ 1
2πs

0
u(ξ)

) 1
q (∫ s

0
v(x)

1
1−p1v>Mdx

) 1
p∗

≲ K,

and by letting M → 0 and using the Monotone Convergence Theorem, we deduce that,
since v > 0

sup
s>0

(∫ 1
2πs

0
u(ξ)

) 1
q (∫ s

0
v(x)

1
1−p dx

) 1
p∗

≲ K.

Now, if v vanishes at some points, inequality (2.3) clearly holds with the same constant
if we replace v by v + ε for any ε > 0. Then, we have that for any ε > 0

sup
s>0

(∫ 1
2πs

0
u(ξ)

) 1
q (∫ s

0
(v(x) + ε)

1
1−p dx

) 1
p∗

≲ K,

and by letting ε → 0 and applying the Monotone Convergence Theorem, we deduce that
also in this case

sup
s>0

(∫ 1
2πs

0
u(ξ)

) 1
q (∫ s

0
v(x)

1
1−p dx

) 1
p∗

≲ K.
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Next, the behaviour of the Fourier Transform with respect to translations implies that
(2.3) holds if and only if for u and v replaced by any of its translates. Therefore, we
have

sup
I,J intervals, |I||J |=(2π)−1

(∫
I

u
) 1

q
(∫

J
v

1
1−p

) 1
p∗

≲ K.

Remark 2.3.2. Observe that condition 1 of Theorem 2.2.5 may be rephrased as

sup
E,F measurable, |E||F |=(2π)−1

(∫
E

u
) 1

q
(∫

F
v

1
1−p

) 1
p∗

≳ K,

while the necessary condition we have just obtained is

sup
I,J intervals, |I||J |=(2π)−1

(∫
I

u
) 1

q
(∫

J
v

1
1−p

) 1
p∗

≲ K.

This is not surprising, since in the proof of Theorem 2.2.5 we used rearrangements, so
that any ”geometrical structure” of the Fourier Transform is neglected.

Lemma 2.3.3 and Theorems 2.3.4 and 2.3.5 are classical Banach Space results and are
related to the notions of type and cotype, see for instance [1] and also [22].

Lemma 2.3.3. Let p ≥ 2. Then, there exists a constant K, which only depends on p,
such that for any N and any sequence of functions f1, . . . , fN ∈ Lp

v there exists a choice
of signs ε1, . . . , εN such that the following holds:

(
N∑

n=1
∥fn∥p

p,v

) 1
p

≤ K

∫ v

∣∣∣∣∣
N∑

n=1
εnfn

∣∣∣∣∣
p
 1

p

. (2.17)

Proof. First, observe that since p ≥ 2,

(
N∑

n=1
∥fn∥p

p,v

) 1
p

=
(∫

v
N∑

n=1
|fn|p

) 1
p

≤

∫ v

(
N∑

n=1
|fn|2

) p
2


1
p

.

Next, the Khintchine inequality (Theorem 1.4.1) and Fubini’s Theorem imply that

Ap
p

v
∫ (

N∑
n=1

|fn|2
) p

2
 ≤

∫
v E

∣∣∣∣∣
N∑

n=1
εnfn

∣∣∣∣∣
p
 = E

∫ v

∣∣∣∣∣
N∑

n=1
εnfn

∣∣∣∣∣
p
 .

Thus, there exists a choice of signs εn for which

(
N∑

n=1
∥fn∥p

p,v

) 1
p

≲

∫ v

∣∣∣∣∣
N∑

n=1
εnfn

∣∣∣∣∣
p
 1

p

.
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Theorem 2.3.4. Let p ≤ 2 and let T : Lp
v → Lq

u be a bounded linear operator with norm
1. Then there exits a constant K, which only depends on p, such that for any sequence
of functions f1, . . . , fN ∈ Lp

v the following holds:

∥∥∥∥max
n

|T (fn)|
∥∥∥∥

q,u
≤ K

(
N∑

n=1
∥fn∥p

p,v

) 1
p

. (2.18)

Moreover, by the Monotone we can remove the assumption on finiteness, that is, we also
have ∥∥∥∥sup

n
|T (fn)|

∥∥∥∥
q,u

≤ K

( ∞∑
n=1

∥fn∥p
p,v

) 1
p

, (2.19)

for infinite sequences of functions.

Proof. Let E1, . . . , En be a disjoint partition of the domain for which maxn |T (fn)| =∣∣∣∑N
n=1 1EnT (fn)

∣∣∣. Then, we have

∥∥∥∥max
n

|T (fn)|
∥∥∥∥

q,u
=
∥∥∥∥∥

N∑
n=1

1EnT (fn)
∥∥∥∥∥

q,u

.

Next, by Hölder’s inequality, it suffices to show that for any g ∈ Lq∗

u
1

1−q
with norm 1, we

have ∫
g

N∑
n=1

1EnT (fn) ≤ K

(
N∑

n=1
∥fn∥p

p,v

) 1
p

.

By definition of the adjoint T ∗ and Hölder’s inequality, we have
∫

g
N∑

n=1
1EnT (fn) =

N∑
n=1

∫
T ∗(g1En)fn ≤

N∑
n=1

∥T ∗(g1En)∥
p∗,v

1
1−p

∥fn∥p,v

≤
(

N∑
n=1

∥fn∥p
p,v

) 1
p
(

N∑
n=1

∥T ∗(g1En)∥p∗

p∗,v
1

1−p

) 1
p∗

.

Here, since p∗ ≥ 2, by Lemma 2.3.3 we know that there exists a choice of signs for which

(
N∑

n=1
∥T ∗(g1En)∥p∗

p∗,v
1

1−p

) 1
p∗

≤ K

∫ v
1

1−p

∣∣∣∣∣
N∑

n=1
εnT ∗(g1En)

∣∣∣∣∣
p∗

1
p∗

.

Finally, since for h ∈ Lp
v with norm 1, we have that

∫
h

N∑
n=1

εnT ∗(g1En) =
N∑

n=1
εn

∫
g1EnT (h) ≤

N∑
n=1

∫
|g|1En|T (h)|;

using that the En are disjoint and that g, h and T have norm 1, we conclude that

N∑
n=1

∫
|g|1En|T (h)| ≤

∫
|g||T (h)| ≤ ∥g∥

q∗,u
1

1−q
∥T (h)∥q,u ≤ 1.
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The result follows by noting that, by Hölder’s inequality,

∫ v
1

1−p

∣∣∣∣∣
N∑

n=1
εnT ∗(g1En)

∣∣∣∣∣
p∗

1
p∗

= sup
∥h∥p,v=1

∫
h

N∑
n=1

εnT ∗(g1En) ≤ 1.

For p ≥ 2, the analogous result reads as follows

Theorem 2.3.5 (Theorem 7.13 in [1]). Let p ≥ 2 and let T : Lp
v → Lq

u be a bounded
linear operator with norm 1. Then there exits a constant K, which only depends on p,
such that for any sequence of functions f1, . . . , fN ∈ Lp

v the following holds:∥∥∥∥∥∥∥
(

N∑
n=1

|T (fn)|2
) 1

2

∥∥∥∥∥∥∥
q,u

≤ K

(
N∑

n=1
∥fn∥2

p,v

) 1
2

. (2.20)

Moreover, by the Monotone Convergence Theorem, we can remove the assumption on
finiteness, that is, we also have∥∥∥∥∥∥

( ∞∑
n=−∞

|T (fn)|2
) 1

2
∥∥∥∥∥∥

q,u

≤ K

( ∞∑
n=−∞

∥fn∥2
p,v

) 1
2

. (2.21)

Now, we are going to show that a condition analogous to condition 2 of Theorem 2.2.5
is indeed necessary.

Theorem 2.3.6. Let 1 < q < p ≤ 2 and assume that inequality (2.3) holds. Then

K ≳

∫ ∞

0
v(s)

1
1−p

(∫ s

0
v

1
1−p

) r
q∗
(∫ 1

2πs

0
u

) r
q

ds

 1
r

.

Proof. Since inequality (2.3) holds, applying Theorem 2.3.4, we have that for any se-
quence fi in Lp

v we have

(∫
R

u sup
i

|f̂i|q
) 1

q

≲ K

(∑
i

∥fi∥p
p,v

) 1
p

. (2.22)

Now, by Lemma 2.3.1, we know that

sup
I,J intervals, |I||J |=(2π)−1

(∫
I

u
) 1

q
(∫

J
v

1
1−p

) 1
p∗

≲ K,

in particular, u and v
1

1−p are locally integrable. Hence, for every M > 0 there exists a
partition of the interval [0, M ], (αn)nM

n=−∞ with αnM
= M such that

Vn :=
∫ αn

0
v

1
1−p ≈ 2n.
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Let λn ∈ R+ be arbitrary. Consider the sequence (fn)nM
n=−∞, where fn = λnv

1
1−p1[0,αn].

Recall, that, as we showed in Lemma 2.3.1, for 0 ≤ ξ ≤ 1
2παn

,

|f̂n(ξ)| ≳ λn

∫ αn

0
v

1
1−p = λnVn.

Hence, inequality (2.22) implies that for any λn

λq
nM

V q
nM

∫ 1
2πM

0
u +

nM −1∑
n=−∞

λq
nV q

n

∫ 1
2παn

1
2παn+1

u ≲ Kq

(
nM∑

n=−∞
λp

nVn

) q
p

.

Here, by Hölder’s inequality, we deduce that, by formally setting αnM +1 = ∞ in order
to simplify the notation,  nM∑

n=−∞
V

r
p∗

n

∫ 1
2παn

1
2παn+1

u

 r
q


1
r

≲ K.

Next, using that V
r

p∗
n ≈ 2

nr
p∗ , and setting βn =

(∫ 1
2παn

1
2παn+1

u

)
we use the discrete Hardy

inequality (Theorem 1.2.4)

nM∑
n=−∞

2
nr
p∗ β

r
q
n ≳

nM∑
n=−∞

2
nr
p∗

nM∑
j=n

βj

 r
q

to deduce that  αnM∑
n=−∞

V
r

p∗
n

(∫ 1
2παn

0
u

) r
q

 1
r

≲ K.

Finally, since Vn ≈ 2n

nM −1∑
n=−∞

V
r

p∗
n+1

(∫ 1
2παn

0
u

) r
q

≲
nM −1∑
n=−∞

V
r

p∗
n

(∫ 1
2παn

0
u

) r
q

≲ Kr,

and

Kr ≳
nM −1∑
n=−∞

V
r

p∗
n+1

(∫ 1
2παn

0
u

) r
q

≈
nM −1∑
n=−∞

∫ αn+1

0
v(s)

1
1−p

(∫ s

0
v

1
1−p

) r
q∗

ds

(∫ 1
2παn

0
u

) r
q

≥
nM −1∑
n=−∞

∫ αn+1

αn

v(s)
1

1−p

(∫ s

0
v

1
1−p

) r
q∗

ds

(∫ 1
2παn

0
u

) r
q

≥
nM −1∑
n=−∞

∫ αn+1

αn

v(s)
1

1−p

(∫ s

0
v

1
1−p

) r
q∗
(∫ 1

2πs

0
u

) r
q

ds

=
∫ M

0
v(s)

1
1−p

(∫ s

0
v

1
1−p

) r
q∗
(∫ 1

2πs

0
u

) r
q

ds,

and the result follows by letting M → ∞.
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Likewise, we obtain
Theorem 2.3.7. Let 1 < q < 2 < p and assume that inequality (2.3) holds. Then

K ≳

∫ ∞

0
v(s)

1
1−p

(∫ s

0
v

1
1−p

) r
q∗
(∫ 1

2πs

0
u

) r
q

ds

 1
r

.

Proof. In a similar way, let fn = λnv
1

1−p1[0,αn], where αn are such that (assuming by
simplicity that

∫
v

1
1−p = ∞, otherwise a limiting argument like the one used int he

previous result yields the result)

Vn :=
∫ αn

0
v

1
1−p ≈ 2n.

Then, if 0 ≤ ξ ≤ 1
2παn

|f̂n(ξ)| ≳ λn

∫ αn

0
v

1
1−p = λnVn,

and  ∞∑
j=−∞

|f̂j(ξ)|2
 1

2

≳

 n∑
j=−∞

λ2
jV

2
j

 1
2

.

Thus, if inequality (2.3) holds, we also have that for any sequence of λ,
 ∞∑

n=−∞

∫ 1
2παn−1

1
2παn

u

 n∑
j=−∞

λ2
jV

2
j


q
2


1
q

≲

( ∞∑
n=−∞

λ2
nV

2
p

n

) 1
2

.

Hence, the characterization of the discrete Hardy inequality (Theorem 1.2.4) implies
that

∞∑
n=−∞

∫ 1
2παn−1

1
2παn

u

(∫ 1
2παn−1

0
u

)R
2

V
R
p∗

n < ∞,

where R−1 = q−1 − 2−1. Thus, using that Vn ≈ 2n and that R/2 + 1 = R/q, we deduce
that

∞∑
n=−∞

V
R
p∗

n

∫ 1
2παn

1
2παn+1

u

R
q

< ∞.

Finally, since by Lemma 2.3.1 we know that

sup
n

V
1

p∗
n

∫ 1
2παn

1
2παn+1

u

 1
q

< ∞,

we deduce that
∞∑

n=−∞
V

r
p∗

n

∫ 1
2παn

1
2παn+1

u

 r
q

< ∞,

and the result follows as in the previous theorem.
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Corollary 2.3.8. Let 1 < p, q < ∞ and u, v be weights. Assume that u and v−1 are
non-increasing. Then, inequality (2.3) holds if and only if

1. if q ≥ p,

sup
s

(∫ s

0
u
) 1

q

(∫ 1/s

0
v

1
1−p

) 1
p∗

< ∞; (2.23)

2. if q < p and either 2 ≤ p, q or 2 ≥ p, q,
∫ ∞

0

(∫ 1/s

0
u

) r
q (∫ s

0
v

1
1−p

) r
q∗

v
1

1−p ds

 1
r

< ∞ (2.24)

equivalently, ∫ ∞

0
u
(∫ t

0
u
) r

p

(∫ 1
t

0
v

1
1−p

) r
p∗

dt

 1
r

< ∞, (2.25)

where r−1 = q−1 − p−1.

3. if q < 2 < p, condition (2.24) is necessary but not sufficient.

Moreover, the best constant in (2.3) is equivalent to the corresponding expression above.

Proof. The sufficiency is Theorem 2.2.5. For the necessity, the case 1 < q < p < 2 is
Theorem 2.3.6 and using duality (Lemma 2.1.2), we deduce the result for 2 < q < p, just
like we did in Theorem 2.2.5. If q ≥ p, we obtain the result from Lemma 2.3.1. Finally,
the necessity of case q < 2 < p follows from Theorem 2.3.7 and the non-sufficiency, from
Proposition 2.2.7.

As an easy consequence, we characterize inequality (2.3) for power weights.

Corollary 2.3.9. Let α, β ≥ 0 and u(ξ) = ξ−qα and v(x) = xpβ. Then, inequality (2.3),
that is, ∥∥∥f̂∥∥∥

ξ−qα,q
≲ ∥f∥xpβ ,p ,

holds if and only if q ≥ p, α < 1
q
, β < 1

p∗ and β − α = 1 − 1
p

− 1
q
.

2.4 Inequalities without rearrangements
In the previous sections we observed the ”gap” (Remark 2.3.2) existing between necessary
and sufficient conditions for non-monotonic weights in even the simplest case p = 2 = q.
Here we describe instances in which the Pitt inequality holds but the conditions of
Theorem 2.2.5 do not. Proposition 2.4.2 is specially illustrative because it shows that,
for u the indicator function of a measurable set E and v =

√
x, a type of density of

E determines whether the Pitt inequality holds. It is obvious that any information
of this kind is lost in the method of rearrangements of Heinig and Benedetto, thereby
demonstrating an important weakness of this method.
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Proposition 2.4.1. Set v = (1 + x2)2 and p = q = 2. Then, for any u, condition (2.16)
is also sufficient for inequality (2.3) to hold. Moreover, condition (1) in Theorem 2.2.5
is not necessary.

Proof. Let v = (1+x2)2 and u arbitrary. Observe that f ∈ S if and only if (1+x2)f ∈ S.
Hence, inequality (2.3) holds for any f ∈ S, and a posteriori for any f ∈ L2

v, if and only
if for any f ∈ S ∫

R
u(ξ)

∣∣∣∣(f(1 + x2)−1
)∧

(ξ)
∣∣∣∣2 dξ ≲ ∥f∥2

holds.
Next, using the Parseval relation, and that(

f(1 + x2)−1
)∧

(ξ) = π
(
f̂ ⋆ e−|x|

)
(ξ),

we conclude that our original inequality is equivalent to∫
R

u(x)
∣∣∣∣∫

R
e−|x−y|g(y)dy

∣∣∣∣2 dx ≲ ∥g∥2
2

for any g. This last inequality can be dealt with by using the Hardy inequality (Theorem
1.2.3) as follows (it is clear that we may assume that g ≥ 0)∫

R
u(x)

∣∣∣∣∫
R

e−|x−y|g(y)dy
∣∣∣∣2 dx

≈
∫
R

u(x)e−2x

∣∣∣∣∫ x

−∞
eyg(y)dy

∣∣∣∣2 dx +
∫
R

u(x)e2x

∣∣∣∣∫ ∞

x
e−yg(y)dy

∣∣∣∣2 dx.

Now, using Hardy’s inequality (Theorem 1.2.3), we conclude that∫
R

u(x)e−2x

∣∣∣∣∫ x

−∞
eyg(y)dy

∣∣∣∣2 dx ≲ ∥g∥2
2

and ∫
R

u(x)e2x

∣∣∣∣∫ ∞

x
e−yg(y)dy

∣∣∣∣2 dx ≲ ∥g∥2
2

hold for any g if and only if both

sup
y

e2y
∫ ∞

y
u(x)e−2xdx

and
sup

y
e−2y

∫ y

−∞
u(x)e2xdx

are finite. That is, the latter conditions hold if and only if

sup
y

∫
R

u(x)e−2|x−y|dx < ∞. (2.26)

Finally, all that remains to be shown is that condition (2.26) is implied by

sup
I,J intervals, |I||J |=(2π)−1

(∫
I

u
) 1

2
(∫

J
v−1

) 1
2

< ∞.
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To begin with, observe that since v−1 is decreasing, the supremum over J is attained
when J = [0, s] for s > 0. Hence, we have that there exists a constant K such that for
all I interval ∫

I
u ≤ K

(∫ (2π)−1|I|−1

0
(1 + x2)−2dx

)−1

.

Thus, for any y,
∫
R

u(x)e−2|x−y|dx =
∫
R

u(x + y)e−2|x|dx =
∑
n∈Z

∫ n+1

n
u(x + y)e−2|x|dx

≤
∑
n∈Z

e−2|n|
∫ n+1

n
u(x + y)dx ≲

∑
n∈Z

e−2|n|
(∫ (2π)−1

0
(1 + x2)−2dx

)−1

< ∞.

For the second part, consider u(ξ) = ∑∞
n=1 n1[n,n+n−1]. A simple computation shows that

condition (2.26) holds but u∗ = ∞.

Proposition 2.4.2. Let E ⊂ R measurable and p = q = 2. Set u = 1E and v = |x| 1
2 .

Then, if there exists r > 1 such that

|E ∩ I| ≤ |I|1− r
2

inequality (2.3) holds.

Proof. Observe that by a limiting argument it suffices to consider f ∈ C∞
c supported

away from zero. Indeed, assume that inequality (2.3) holds for f ∈ C∞
c supported away

from zero. Then, by density, there exists an operator T defined on L2
v which coincides

with the Fourier Transform on the previous subspace of functions and which satisfies

∥T (g)∥2,u ≤ K ∥g∥2,v .

It remains to show that if g ∈ L1 ∩ L2
v, T (g) = ĝ in L2

u. To do so, take a sequence
(fn)n ⊂ C∞

c supported away from zero such that limn ∥fn − g∥1 = limn ∥fn − g∥2,v = 0.
Then, T (fn) converges to T (g) in L2

u, so there exists a subsequence of T (fn) = f̂n that
converges u-almost everywhere to T (g); besides, since fn → g in L1, f̂n converges almost
everywhere to ĝ, so T (g) = ĝ in L2

u.
Now, analogously to the previous proposition and if we let Φ(ξ) =

∫
R |x|− 1

4 e−2πixξdx
inequality (2.3) holds if and only if for any g∫

R
u(x)

∣∣∣∣∫
R

Φ(x − y)g(y)dy
∣∣∣∣2 dx ≲ ∥g∥2

2 .

Observe that a change of variable yields that for any |ξ| > 0,

Φ(ξ) = |ξ|−
3
4 Φ(1).

Hence, the inequality that needs to be dealt with is
∫
R

u(x)
∣∣∣∣∣
∫
R

g(y)
|x − y| 3

4
dy

∣∣∣∣∣
2

dx ≲ ∥g∥2
2 .
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By Theorem 1.2.5, it suffices to show that there exists a r > 1 for which

sup
I

|I|
1
4 − 1

2r |E ∩ I|
1

2r < ∞,

that is,
|E ∩ I| ≤ |I|1− r

2 .

If we dualize the previous result (Lemma 2.1.2) we obtain the following uncertainty type
result:
Corollary 2.4.3. Let E be a measurable set. Then, for all f such that f̂ is supported
in E (∫

R
|f(x)|2|x|−

1
2

) 1
2
≲
∥∥∥f̂∥∥∥

2
(2.27)

if there exists r > 1 such that
|E ∩ I| ≲ |I|1− r

2 . (2.28)
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Chapter 3

Uncertainty Principles

Roughly speaking, the Uncertanty Principle (UP) asserts that it is not possible to si-
multaneously localize a function and its Fourier Transform. The most famous instances
of this phenomenon are the following:
Theorem A (Heisenberg Uncertainty Principle). Let f be a square-integrable function.
Then, the following holds:

∥f∥2
2 ≲ ∥fx∥2

∥∥∥f̂ ξ
∥∥∥

2
.

Theorem B. Let f be a compactly supported integrable function such that f̂ is also
compactly supported. Then, f is the zero function.
Theorem B’ (Benedicks Theorem, [5]). Let f be a square integrable function such that
f and f̂ are supported in sets of finite measure. Then, f is the zero function.
The first three sections of this chapter are devoted to surveying generalizations of The-
orems B and B’, using the book [14] as the main source. First, in Section 3.1, we shall
discuss the Hardy UP (see [12] and Theorem 3.1.2), which restricts the simultaneous
decay of a function and its Fourier Transform.
Then, in Section 3.2, we explain and prove the Amrein-Berthier Theorems, which can
also be found in [2], (Theorems 3.2.11 and 3.2.12). Theorem 3.2.11 can be understood
as a more robust version of Theorem B’, in which the conclusion that f is identically
zero is not drawn from the vanishing of both f and f̂ outside of a small set but just
from their ”smallness” outside of a suitable set. Theorem 3.2.12 shows that there are
no restrictions on the simultaneous behaviour of f and f̂ in small sets, thus limiting the
type of UP which can be obtained.
The main topic of Section 3.3 is a multidimensional version of the Nazarov UP (see [15]
and [21]), which is a sharpened version of Theorem 3.2.11.

The last two sections deal with generalizations of Theorem A. In Section 3.4 we complete
and generalize the characterization of the inequality

∥f∥
α+β− 1

q∗ + 1
p

q ≲ ∥fxα∥
β− 1

q∗ + 1
p

q

∥∥∥f̂ ξβ
∥∥∥α

p

for 1 < p, q < ∞ and α, β > 0, which was started in [28]; and, in Section 3.5, we
characterize the parameters for which the inequality

∥f∥p

∥∥∥f̂∥∥∥
p∗

≲
∥∥∥xAf

∥∥∥
p

∥∥∥ξB f̂
∥∥∥

p∗

31
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holds, where xA and ξB are a generalization of power weights.

3.1 Hardy uncertainty principle
As mentioned in the introduction, the Hardy UP restricts the simultaneous decay of f
and f̂ ; more precisely, it asserts that it is impossible for both f and f̂ to decay more
rapidly than the gaussian function e−πx2 . This result was obtained by Hardy in 1933
and published in [12]. The proof we give is close to the original and is based on Complex
Analysis, more exactly, on the Lindelöf-Phragmen principle. There are also proofs using
real-variable methods; for instance, in [7], the result is obtained by using estimates for
the norms of the solutions of the Schrödinger equation.

Lemma 3.1.1. Let F be an entire function, and a, C ∈ R+. Assume that

1. |F (x)| ≤ Ce−ax for 0 < x ∈ R;

2. |F (z)| ≤ Cea|z| for z ∈ C.

Then there exists a C ′ such that

F (z) = C ′e−az.

Proof. To begin with, if F = 0 we are done. From now on, assume that F ̸= 0.

Let
Φδ(z) = F (z)e(a+ia tan δ

2 )z

for δ > 0 and small.
Then, if 0 < x ∈ R,

|Φδ(x)| = |F (x)e(a+ia tan δ
2 )x| ≤ |F (x)|eax ≤ C.

Likewise, if z = xei(π−δ) for 0 < x ∈ R,

Re
[
a(1 + i tan δ

2)z
]

= −ax(cos δ + sin δ tan δ

2) = −ax,

so that

|Φδ(z)| = |F (z)e(a+ia tan δ
2 )z| ≤ Ceaxe−ax = C.

Next, we apply a version of the Lindelöf-Phragmen principle to conclude that |Φδ| ≤ C

in the sector Sδ := {reiθ : 0 ≤ θ ≤ π − δ}. Choose 1 < β < π−δ/4
π−δ/2 , ε > 0 and for z ∈ Sδ,

define
G(z) := Φδ(z) exp

(
iε(zei δ

2 )β
)

.

Note that since zei δ
2 is in the upper-half-plane, we can take an holomorphic branch of

the function z 7→ zβ.
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Observe that if we put z = reiθ for 0 ≤ θ ≤ π − δ, then

Re
(
iε(zei δ

2 )β
)

= −rβε sin(β(θ + δ/2)) ≤ −rβε sin(β(π − δ/2)) ≤ −rβε sin(π − δ/4) < 0.

Therefore, the non-zero holomorphic function G satisfies

lim
|z|→∞

G(z) = 0,

and consequently there exists a z∗ ∈ Sδ such that supz∈Sδ
G(z) = G(z∗) and, by the

Maximum Modulus principle, z∗ ∈ ∂Sδ. Since for z ∈ ∂Sδ, |G(z)| ≤ |Φδ(z)| ≤ C, we
conclude that for any ε > 0 and z ∈ Sδ∣∣∣Φδ(z) exp

(
iε(zei δ

2 )β
)∣∣∣ ≤ C.

Then, letting ε → 0, we deduce that for any δ > 0 and z ∈ Sδ∣∣∣F (z)e(a+ia tan δ
2 )z
∣∣∣ = |Φδ(z)| ≤ C.

Thus, letting δ → 0, we have that for any z ∈ {reiθ : 0 ≤ θ < π},

|F (z)eaz| ≤ C.

Finally, by continuity we extend the previous inequality to the whole upper-half-plane
and repeating the same argumentation for F̄ (z̄), we obtain

|F (z)eaz| ≤ C

in the whole complex plane, and by Liouville’s Theorem,

F (z) = C ′e−az.

Theorem 3.1.2 (Hardy uncertainty principle, [12]). Let f ∈ L1(R) be such that for
A, C ∈ R+, the following hold

1. |f(x)| ≤ Ce−πAx2 ;

2. |f̂(ξ)| ≤ Ce−π ξ2
A .

Then, f(x) is a multiple of e−πAx2.

Proof. First, the decay of f implies that

f̂(z) =
∫
R

f(x)e−2πixzdx

is defined for any z ∈ C and defines an entire function such that |f̂(z)| ≤ C ′e
|z|2

A . Indeed,∫
R

∣∣∣f(x)e−2πixz
∣∣∣ dx ≤ C

∫
R

e−Aπx2+2πx Im zdx ≤ C ′e
π|z|2

A .

Now, assume that f is even. Then, f̂ is even and f̂(z) = F (z2) for some holomorphic
function F , which satisfies
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1. |F (x)| ≤ Ce−π x
A for 0 < x ∈ R;

2. |F (z)| ≤ C ′eπ
|z|
A for z ∈ C.

Using Lemma 3.1.1 we conclude that

f̂(z) = F (z2) = C ′′e−π z2
A .

If f is odd, f̂(0) = 0. Therefore, G(z) := f̂(z)z−1 is holomorphic and even. Hence
G(z) = F (z2) for some holomorphic function which satisfies

1. |F (x)| ≤ C ′e−π x
A for 0 < x ∈ R;

2. |F (z)| ≤ C ′eπ
|z|
A for z ∈ C.

Once again, this implies that f̂(z2)z−2 = C ′′e−π z2
A . However, if C ′′ ̸= 0, |f̂(z)| =

ze−π z2
A ̸≤ Ce−π z2

A , a contradiction. Hence, f = 0.

In the general case, put f = fe + fo with fe even and f0 odd. It is clear that the bounds
for f transform into suitable bounds for fe, fo so that we can conclude that

f̂(ξ) = f̂e(ξ) + f̂0(ξ) = C ′′e−π z2
A ,

and, by the Fourier inversion formula,

f(x) = C ′′′e−πAx2
.

Corollary 3.1.3. Let f ∈ L1(R) be such that for A, B, C ∈ R+, the following hold

1. |f(x)| ≤ Ce−πAx2 ;

2. |f̂(ξ)| ≤ Ce−π ξ2
B .

Then, if B < A, f = 0.

Proof. Observe that, since B < A

|f(x)| ≤ Ce−πAx2 ≤ Ce−πBx2
.

Thus, an application of Theorem 3.1.2 implies that f(x) = C ′e−πBx2 . This contradicts
the hypothesis on f unless C ′ = 0.
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3.2 Amrein-Berthier Theorems
The main results of this section, Theorems 3.2.11 and 3.2.12, were obtained in 1977 by
the quantum physicists Amrein and Berthier. In this subfield of physics, for a suitable
normalized f , the probability density for the position of a particle is given by |f |2, and the
probability of finding a particle in a given zone of space C is computed as

∫
C |f |2; while

the probability density for the momentum is |f̂ |2. It is thus not surprising that these
results are of interest to physicists, for whom the integral

∫
R\S |f |2 found in Theorem

3.2.11 describes the probability of finding a particle outside of S, and the fact, proved
in Theorem 3.2.12, that for S and Σ with |S| + |Σ| < ∞ the restriction of f to S and
the restriction of f̂ to Σ are independent limits the conclusions about the momentum of
a particle which can be drawn by observing its behaviour in a small zone of the space.

It is remarkable that the proof proceeds by studying a more general problem, in which
the Fourier Transform does not play any role, namely, given M , N two closed subspaces
of a Hilbert space H, with orthogonal projections P, Q, it is discussed when it is possible
to obtain the inequality

∥v∥ ≲
∥∥∥P ⊥v

∥∥∥+
∥∥∥Q⊥v

∥∥∥ ,

for any v ∈ H; and when it is possible to find a solution f to the system of equations

1.
Pf = f1;

2.
Qf = f2.

After discussing this abstract setting, the results are applied to the Fourier Transform
setting by taking H = L2(Rd) and suitable P, Q. It is clear that for the previous results
to be true it is necessary that M ∩ N = {0}, and if H is finite dimensional it is also
sufficient. However, in the infinite-dimensional case, the relevant setting for the Fourier
Transform, more restrictive conditions are needed.

3.2.1 Hilbert-Schmidt operators
In this section we give some necessary background about Hilbert-Schmidt operators.
Definition 3.2.1. We say that a continuous operator T : L2(Rd) → L2(Rd) is a Hilbert-
Schmidt operator if

∥T∥HS :=
∑

j∈I

∥Tej∥2

 1
2

< ∞,

where {ej, j ∈ I} is an orthonormal basis.
Proposition 3.2.2. Let T be defined as follows:

Tf(x) =
∫
Rd

K(x, y)f(y)dy,

with K ∈ L2(Rd × Rd). Then T is a Hilbert-Schmidt operator.
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Proof. To begin with, an application of Hölder’s inequality and Fubini’s Theorem yield
that the operator is continuous.
Next, let {ej, j ∈ I} be an orthonormal basis of L2(Rd). Then, the functions fij(x, y) :=
ei(x)ēj(y) for (i, j) ∈ I × I are orthonormal.
Observe that

⟨fij, K⟩ =
∫
Rd×Rd

K(x, y)ej(y)ēi(x)dxdy =
∫
Rd

ēi(x)
∫
Rd

K(x, y)ej(y)dy = ⟨ei, T ej⟩.

Thus, since K ∈ L2(Rd × Rd), Parseval’s Theorem yields

∞ >
∑

i,j∈I

|⟨fij, K⟩|2 =
∑

i,j∈I

|⟨ei, T ej⟩|2 =
∑
j∈I

∥Tej∥2 .

Proposition 3.2.3. Let T be a Hilbert-Schmidt operator. Then it is compact.

Proof. First, we know that L2(Rd) has a countable orthonormal basis {ei : i ∈ N}.
We are going to show that the finite-rank operators

Tn(x) :=
n∑

k=1
⟨ek, x⟩T (ek)

approximate T , whence the result will follow.
Observe that for any x ∈ L2(R) with ∥x∥=1,

∥(Tn − T )(x)∥ ≤
∞∑

k=n+1
∥T (ek)∥ |⟨ek, x⟩| ≤

 ∞∑
k=n+1

∥T (ek)∥2

 1
2
 ∞∑

k=n+1
|⟨ek, x⟩|2

 1
2

≤

 ∞∑
k=n+1

∥T (ek)∥2

 1
2

.

Hence, since
(∑∞

k=1 ∥T (ek)∥2
) 1

2 < ∞, Tn → T in the operator norm.

3.2.2 Characterization of strong annihilating pars
Let M, N be two closed subspaces of a Hilbert space H and let P, Q be their corre-
sponding projectors. As it was said in the introduction, a goal of this section was to find
conditions on M and N which guarantee that the inequality

∥v∥ ≤ c(
∥∥∥P ⊥v

∥∥∥+
∥∥∥Q⊥v

∥∥∥)
holds for v ∈ H. Such pair M, N shall be called a strong annihilating Pair or strong
a-Pair.

Definition 3.2.4. We say that P, Q are an a-Pair whenever M ∩ N = {0}.
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Definition 3.2.5. We say that P, Q are a strong a-Pair whenever there is c > 1 such
that for any v ∈ H

∥v∥ ≤ c(
∥∥∥P ⊥v

∥∥∥+
∥∥∥Q⊥v

∥∥∥). (3.1)
Clearly, strong a-Pairs are a-Pairs.
Next we outline some equivalent definitions of strong a-Pairs.
Example. The following are strong a-pairs:

1. for H = Rn, if M ∩ N = {0}, P, Q are a strong a-Pair;

2. for any H, if P ⊥ = Q, P, Q are a strong a-Pair.

Lemma 3.2.6. Let I be the identity operator. Then, the following are equivalent

1. ∥PQ∥ < 1;

2. R := I − PQ is invertible;

3. there is c > 1 such that for any v, ∥v∥ ≤ c(
∥∥∥P ⊥v

∥∥∥+
∥∥∥Q⊥v

∥∥∥).
4. there is c′ > 1 such that for any v, ∥Qv∥ ≤ c′

∥∥∥P ⊥Qv
∥∥∥ .

5. ∥QP∥ < 1;

6. R∗ := I − QP is invertible.

Note that (3) is the definition of strong a-pair. Moreover, in (4) =⇒ (3), we may take
c = c′ + 1.

Proof. (1) =⇒ (2) is known. For the reverse, note that RQ = (I − PQ)Q = Q − PQ =
(I − P )Q = P ⊥Q, which implies that

∥Qv∥2 = ∥PQv∥2 +
∥∥∥P ⊥Qv

∥∥∥2
= ∥PQv∥2 + ∥RQv∥2 ≥ ∥PQv∥2 +

∥∥∥R−1
∥∥∥−2

∥Qv∥2 ,

so that
∥PQv∥2 ≤ (1 −

∥∥∥R−1
∥∥∥−2

) ∥Qv∥2 ≤ ∥v∥2 (1 −
∥∥∥R−1

∥∥∥−2
),

whence the result follows, since ∥R−1∥−1 ̸= 0.
If (4) holds then

∥PQv∥2 + c′−2 ∥Qv∥2 ≤ ∥PQv∥2 +
∥∥∥P ⊥Qv

∥∥∥2
= ∥Qv∥2 ,

so that

∥PQv∥2 ≤ ∥Qv∥2 (1 − c′−2) ≤ ∥Q∥2 ∥v∥2 (1 − c′−2) ≤ ∥v∥2 (1 − c′−2),

that is, (1) holds.
If (1) holds, we have (4) as follows:

0 < (1 − ∥PQ∥2) ∥Qv∥2 = ∥Qv∥2 − ∥PQ∥2 ∥Qv∥2 ≤ ∥Qv∥2 − ∥PQv∥2 =
∥∥∥P ⊥Qv

∥∥∥2
.
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Finally, (3) clearly implies (4) and we can obtain (3) from (4) as follows:

∥v∥ ≤ ∥Qv∥ +
∥∥∥Q⊥v

∥∥∥ ≤ c
∥∥∥P ⊥Qv

∥∥∥+
∥∥∥Q⊥v

∥∥∥ = c
∥∥∥P ⊥(I − Q⊥)v

∥∥∥+
∥∥∥Q⊥v

∥∥∥
≤ c

∥∥∥P ⊥Q⊥v
∥∥∥+ c

∥∥∥P ⊥v
∥∥∥+

∥∥∥Q⊥v
∥∥∥ ≤ (

∥∥∥P ⊥
∥∥∥+ c)(

∥∥∥Q⊥v
∥∥∥+

∥∥∥P ⊥v
∥∥∥),

whence the result follows (note that
∥∥∥P ⊥

∥∥∥ = 1 unless it is zero).
To finish the proof, note that since (PQ)∗ = QP , (1) and (5) are equivalent; and (5)
and (6) are equivalent just like (1) and (2).

Remark 3.2.7. Observe that in general, M ∩ N = {0} does not imply that M, N are
a strong a-pair, or equivalently, by the previous lemma, that ∥PQ∥ < 1. Indeed, let
M = {x ∈ ℓ2(N) : x2n+1 = 0, n ∈ N} and N = {x ∈ ℓ2(N) : x2n = (n + 1)x2n+1, n ∈ N}.
They are clearly closed subspaces and if x ∈ M ∩ N , then 0 = x2n+1(n + 1) = x2n for all
n, so x = 0.
However, if en is the sequence with zeros at every position except at the n-th, where it
has a 1,

PQ
(

e2n + e2n+1

n + 1

)
= P

(
e2n + e2n+1

n + 1

)
= e2n,

since
∥e2n∥ = 1

and ∥∥∥∥e2n + e2n+1

n + 1

∥∥∥∥ =
√

1 + (n + 1)−2,

∥PQ∥ = 1.

Hence, M, N is an a-Pair which is not strong.

Lemma 3.2.8. Let K be a compact operator. Then, there exists v ∈ H with ∥v∥ = 1
such that ∥Kv∥ = ∥K∥.

Proof. To begin with, if ∥K∥ = 0 the result is obvious, so we may assume that ∥K∥ > 0.
Let (xn)∞

n=1 be a sequence of elements with norm 1 such that ∥Kxn∥ → ∥K∥. Since K
is compact, by extracting a subsequence, we may assume that Kxn converges to some
y ∈ H with ∥y∥ = ∥K∥.
Next, we have that, for K∗ the adjoint of K,

∥K∗y∥ = sup
∥z∥=1

⟨z, K∗y⟩ = sup
∥z∥=1

⟨Kz, y⟩ = ∥K∥2 ,

where the last inequality is true because ⟨Kz, y⟩ ≤ ∥K∥ ∥y∥ = ∥K∥2 and the sequence
xn has norm 1 and Kxn converges to y.
Finally,

∥K∥ ∥KK∗y∥ = ∥y∥ ∥KK∗y∥ ≥ ⟨y, KK∗y⟩ = ⟨K∗y, K∗y⟩ = ∥K∥4 (3.2)

so that
∥K∥3 ≤ ∥KK∗y∥ ≤ ∥K∥ ∥K∗∥ ∥y∥ = ∥K∥3 .
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In conclusion, since
∥KK∗y∥ = ∥K∥3

and ∥K∗y∥ = ∥K∥2, we can take

v = K∗y ∥K∥−2 .

Lemma 3.2.9. Let P, Q be an a-Pair. If PQ is a compact operator, then it is a strong
a-Pair.

Proof. For the sake of contradiction, assume that ∥PQ∥ = 1. By Lemma 3.2.8 there
exists a v with norm 1 such that ∥PQv∥ = ∥PQ∥ = 1. Then,∥∥∥P ⊥Qv

∥∥∥2
+ ∥PQv∥2 = ∥Qv∥2 ≤ ∥v∥2 = 1.

Thus, ∥∥∥P ⊥Qv
∥∥∥2

≤ 1 − ∥PQv∥2 = 0,

whence we deduce that Qv ∈ M ∩ N .
Since P, Q is an a-Pair, we have that Qv = 0, which contradicts the fact that ∥PQv∥ =
1.

Lemma 3.2.10. Let P, Q be a strong a-Pair. Then, for any m ∈ M and n ∈ N , there
exists a v ∈ H such that Pv = m and Qv = n.

Proof. Since P, Q is a strong a-Pair, we know that R = I − PQ and R∗ = I − QP are
invertible. Put

v = Q⊥R−1m + P ⊥(R∗)−1n.

Then,

Pv = PQ⊥R−1m = PR−1m − PQR−1m = P (I − PQ)R−1m = PRR−1m = m,

and by symmetry, Qv = n.

3.2.3 Application to Fourier Analysis
We are now going to apply the previous abstract results to some special problems in
Fourier Analysis. Here and in this whole subsection, H = L2(Rd) and S, Σ ⊂ Rd are
measurable sets of finite measure.
Let

M = {f ∈ H : supp ess f ⊂ S};

N = {f ∈ H : supp ess f̂ ⊂ Σ},

where supp ess denotes the essential support. Note that these are closed subspaces of
H. We denote by P the projection onto M and by Q the projection onto N .
The goal of this section is to show that P, Q form a strong a-Pair (this will be shown in
Lemma 3.2.16), what will imply that
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Theorem 3.2.11 ([2]). There exists c > 0 such that for any f ∈ L2(Rd), the following
holds:

c ∥f∥2 ≤
(∫

Rd\S
|f |2

) 1
2

+
(∫

Rd\Σ
|f̂ |2

) 1
2

, (3.3)

Theorem 3.2.12 ([2]). Let f1 ∈ L2(S) and f2 ∈ L2(Σ), then there exists f ∈ L2(Rd)
such that the following hold:

f |S = f1;

f̂ |Σ = f2.

Lemma 3.2.13. Using the previous notation, PQ is a compact operator.

Proof. For f ∈ S, the Schwartz class, Q is given by

Qf(x) =
∫

Σ
e2πi⟨x,ξ⟩

(∫
Rd

f(y)e−2πi⟨y,ξ⟩dy
)

dξ =
∫
Rd

f(y)
(∫

Σ
e−2πi⟨y−x,ξ⟩dξ

)
dy.

Hence, for f ∈ S,
PQf(x) =

∫
Rd

f(y)1̂Σ(y − x)1S(x)dy.

Next, since
∫
Rd

(∫
Rd

f(y)1̂Σ(y − x)1S(x)dy
)2

dx =
∫

S

(∫
Rd

f(y)1̂Σ(y − x)dy
)2

dx

≤
∫

S

(∫
Rd

|f(y)|2
)

·
(∫

Rd
|1̂Σ(y − x)|2dy

)
dx = |S||Σ| ∥f∥2

2 ,

by continuity, for any f ∈ L2(Rd),

PQf(x) =
∫
Rd

f(y)1̂Σ(y − x)1S(x)dy.

Finally, PQ is a Hilbert-Schmidt operator, and thus, compact (see Section 3.2.1).

Remark 3.2.14. Note that if |S||Σ| < 1, the previous calculations show that ∥PQ∥ < 1,
so that we already have that P, Q is a strong a-Pair.
Besides, if S and Σ are bounded, it is a consequence of the Theorem B that P, Q is an
a-Pair, so by Lemma 3.2.9 it is also a strong one.
To show the result in the general case, that is, the case covered by Theorem B’ we still
need to do some additional work.

Lemma 3.2.15. Using the previous notation, P, Q is an a-Pair and, by Lemma 3.2.9,
it is a strong a-Pair.

Proof. Recall that we need to show that M ∩ N = {0}, equivalently, that if f is such
that supp ess f ⊂ S and supp ess f̂ ⊂ Σ, then f = 0.
Put

E := ker(I − PQ) = {v ∈ H : PQv = v} = {f ∈ L2(Rd) : f(x) =
∫
Rd

f(y)1̂Σ(y−x)1S(x)dy}.



3.2. AMREIN-BERTHIER THEOREMS 41

Note that if v ∈ M ∩ N , then PQv = v, so that M ∩ N ⊂ E . We are going to show that
dim E = 0, what implies M ∩ N = {0}.

Step 1:
To begin with, we show that dim E < ∞. Let f1, . . . , fN be an orthonormal system of
elements in E . Then, if gi = fi(x)f̄i(y), g1, . . . , gN is an orthogonal system of functions
in L2(Rd × Rd). Indeed,∫

Rd×Rd
fi(x)f̄i(y)f̄j(x)fj(y)dxdy =

∫
Rd

fi(x)f̄j(x)dx
∫
Rd

f̄i(y)fj(y)dy = δ2
ij = δij.

Put K(x, y) = 1̂Σ(y−x)Σ1S(x)dy. We have shown that ∥K∥L2(Rd×Rd) ≤
√

|S||Σ|. Hence,
the Parseval inequality gives

|S||Σ| ≥
N∑

j=1
⟨gj, K⟩2.

Finally, since fi ∈ E we have that

⟨gj, K⟩ =
∫
Rd×Rd

fi(y)f̄i(x)K(x, y)dxdy =
∫
Rd

f̄i(x)
(∫

Rd
fi(y)K(x, y)dy

)
dx =

∫
Rd

f̄i(x)fi(x) = 1.

In conclusion, N ≤ |S||Σ|, what implies that

dim E ≤ |S||Σ| < ∞.

Step 2:
Next, we show that if for some S, Σ we have that dim E > 0, then we can find S ⊂ S∗

with |S∗| ≤ |S| + 1, such that dim E∗ = ∞ (where E∗ is the obvious modification of E).
Since by doing this we obtain a contradiction with Step 1, we conclude the proof.
We shall make use of the following lemma:

Lemma 3.2.16. Let S0 ⊂ T be measurable sets of Rd. Further assume that 0 < |S0| ≤
|T | < ∞. Then, for any ε > 0, there exists a v ∈ Rd such that |T | + ε > |T ∪ (S0 − v)| >
|T |.

Proof. Put
h(v) = |T | + |S0| − |T ∪ (S0 − v)| = |T ∩ (S0 − v)|.

Clearly, h(0) = S0.
Observe that h(v) =

∫
T 1S0(x + v)dx, from where we deduce that h is a continuous

function. Indeed,

|h(v1) − h(v2)| ≤
∫

T
|1S0(x + v1) − 1S0(x + v2)|dx ≤

∫
T −v1

|1S0(x) − 1S0(x + v2 − v1)|dx,

and it is known that as v2 → v1, this last expression has limit zero, because 1S0 ∈ L1(Rd).
Finally, we show that limv→∞ |T ∩ (S0 − v)| = 0.
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It is known that for any measurable T and any δ > 0, there exists a compact set K ⊂ T
such that |T \ K| < δ. Then,

h(v) =
∫

T
1S0(x + v)dx ≤ δ +

∫
Rd
1S0∩K(x + v)dx.

Since K is bounded, for any x ∈ K, limv→∞ 1S0∩K(x + v) = 0. Hence, the Dominated
Convergence Theorem yields

lim sup h(v) ≤ δ + lim
∫
Rd
1S0∩K(x + v)dx = δ

for any δ > 0, whence the claim follows.
In conclusion, h is a continuous function for which h(0) = |S0| > 0 and limv→∞ h(v) = 0.
This implies that the function

g(v) = |T ∪ (S0 − v)|

is also continuous and satisfies g(0) = |T | and limv→∞ g(v) = |T | + |S0|. Thus, by the
Mean Value Theorem, any value between |T | and |T |+ |S0| is attained, whence the result
follows.

We resume the proof of Step 2.
Let ϕ0 be a non-zero function in E and put S0 = supp ess ϕ0.
We proceed by induction as follows: set T0 = S0 and let vk ∈ Rd be such that

|Tk| < |Tk ∪ (S0 − vk)| < |Tk| + 2−k+1,

which exists by the previous lemma, with T = Tk and ε = 2−k+1. Define Tk+1 =
Tk ∪ (S0 − vk). Observe that |Tk+1| ≤ Tk + 2−k+1, so |Tk| ≤ |S0| + 1 for all k.
Put S∗ = ∪∞

j=0Tj. Observe that since Tk ⊂ Tk+1, the Monotone Convergence Theorem
yields

|S∗| ≤ |S0| + 1.

Finally, set ϕk(x) = ϕ0(x + vk). Note that supp ess ϕk = supp ess ϕ0 − vk = S0 − vk ⊂
Tk+1 ⊂ S∗. Besides, supp ess ϕ̂k = supp ess ϕ̂0 ⊂ Σ. Hence, ϕk ∈ E∗.

To finish the proof, we show that ϕ0, ϕ1, . . . are linearly independent, and consequently,
E∗ is infinite dimensional. For the sake of contradiction, let N be the minimal number
such that there exist λ0, λ1, . . . λN for which

λ0ϕ0 + λ1ϕ1 + · · · + λN−1ϕN−1 = λNϕN ,

clearly, since ϕ0 ̸= 0, N ≥ 1 and, by minimality, λN ̸= 0..
Recall that supp ess ϕk ⊂ Tk. Hence, the LHS is supported in TN−1, whence we deduce
that supp ess λNϕN ⊂ TN−1. However, if λN ̸= 0, supp ess λNϕN = supp ess ϕN = S0 −
vN . This is a contradiction, because we defined vN to satisfy |TN−1 ∪(S0 −vN)| > |TN−1|,
what implies that (S0 − vN) is not contained in TN−1.
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3.3 Nazarov uncertainty principle
For applications, the main drawback of Theorem 3.2.11 is that the value of c is com-
pletely unspecified. In this section we reproduce the proof of the Nazarov UP, originally
proved in the 1-dimensional case by Nazarov himself in [21] and later generalized to the
multidimensional case in [15], which shows that c can be taken to be A|Σ||S| for A a con-
stant, whose value can be traced dawn by going carefully over the proof; in particular,
its value depends only on the sizes of S and Σ.

3.3.1 The Nazarov-Turán Lemma
A fundamental step in the proof of this UP is Nazarov’s generalization of the Turán
Lemma: the Nazarov-Turán Lemma (see Lemma 3.3.4 below). It allows us to estimate
the Fourier coefficients of a 1-dimensional trigonometric polynomial by controlling the
polynomial in a small subset of the torus T and the number of non-zero coefficients.
Further, we will deal with a generalization of the lemma to the multidimensional case
(see Lemma 3.3.6), due to Fontes-Merz.
Lemma 3.3.1 (Weak boundedness of the Hilbert transform, [27]). Let f ∈ C∞(T). For
z ∈ T, define

H(f)(z) = 1
2πi

lim
r↗1

∫
T

f(w)
w − rz

dw.

Then,
1. For any z ∈ T the previous limit exists. Moreover, if f is real-valued then Hf(z) =

f(z)+f̂(0)
2 + if̃(z), for f̃(z) real-valued.

2. The following weak-type inequality holds:

∣∣∣{|f̃(z)| > t
}∣∣∣ ≲ ∥f∥1

t
,

or, equivalently,
|{|Hf(z)| > t}| ≲ ∥f∥1

t
. (3.4)

Proof. First, we show that the limit does actually exist. For r < 1, define

Hr(f)(z) := 1
2πi

∫
T

f(w)
w − rz

dw = 1
2πi

∫
T

w−1f(w)
∞∑

j=0

(
rz

w

)j

dw =

1
2πi

∞∑
j=0

∫
T

f(w)w−1
(

rz

w

)j

dw =
∞∑

j=0
(rz)j f̂(j),

where as usual
f̂(j) = 1

2π

∫ 2π

0
f(eiθ)e−ijθ dθ.

Hence, as the smoothness of f implies that∑∞
j=0 |f̂(j)| < ∞, the Dominated Convergence

Theorem yields
Hf(z) =

∞∑
j=0

zj f̂(j).



44 CHAPTER 3. UNCERTAINTY PRINCIPLES

In the particular case where f is real valued, the Fourier Inversion formula yields

f(z) =
∑
j∈Z

f(j)zj =
∞∑

j=0
f(j)zj +

∞∑
j=1

f(j)zj = Hf(z) + H(f)(z) − f̂(0),

whence we deduce that
Re(Hf(z)) = f(z) + f̂(0)

2 .

Second, we show that if f ≥ 0, then for r < 1, Re Hr(f) ≥ 0. For this, note that

1
2πi

∫
T

f(w)
w − rz

dw = 1
2π

∫ 2π

0

f(eiθ)
1 − rze−iθ

dθ = 1
2π

∫ 2π

0

f(eiθ)
|1 − rze−iθ|2

(1 − rz̄eiθ) dθ,

and since Re(1 − rz̄eiθ) > 0, the result follows.

Third, note that for z ∈ D, the map

F (z) = 1
2πi

∫
T

f(w)
w − z

dw

is holomorphic in D and, as we saw before, if f ≥ 0 Re F (z) ≥ 0. Thus, for each s,
log |1 + sF (z)| is harmonic in D. Hence, for each r < 1,

log
∣∣∣1 + sf̂(0)

∣∣∣ = log |1 + sF (0)| = 1
2π

∫ 2π

0
log

∣∣∣1 + sF (reiθ)
∣∣∣ dθ.

Here, since ∣∣∣1 + sF (reiθ)
∣∣∣2 ≥

(
1 + s Re(F (reiθ))

)2
≥ 1

the integrand is non-negative, so we can apply Fatou’s Lemma to conclude that

log
∣∣∣1 + sf̂(0)

∣∣∣ ≥ 1
2π

∫ 2π

0
log

∣∣∣1 + sHf(eiθ)
∣∣∣ dθ.

Now, since ∣∣∣1 + sHf(eiθ)
∣∣∣2 ≥ 1 + s2f̃ 2(eiθ),

an application of Chebyshev’s inequality yields

sf̂(0) ≥ log
∣∣∣1 + sf̂(0)

∣∣∣ ≥ |{|f̃ | > t}|
√

log(1 + s2t2),

whence the result follows by setting s = t−1 and recalling that f̂(0) = 1
2π

∥f∥1.
Observe that for general smooth f and Φn a non-negative, smooth approximation of the
identity,

H(Φn ⋆ f)(z) =
∞∑

j=0
Φ̂n(j)f̂(j)zj.

Thus, the Dominated convergence Lemma yields that

lim
n

H(Φn ⋆ f)(z) =
∞∑

j=0
f̂(j)zj = Hf(z).



3.3. NAZAROV UNCERTAINTY PRINCIPLE 45

For a general smooth f , write f = f1 − f2 + if3 − if4, with each fj ≥ 0, then

|{|Hf(z)| > t}| = lim
n

|{|H(Φn ⋆ f)(z)| > t}| ≤ lim
n

4∑
j=1

|{|H(Φn ⋆ fj)(z)| > t/4}|

≲ lim
n

4∑
j=1

∥Φn ⋆ fj∥1
t

=
4∑

j=1

∥fj∥1
t

= ∥f∥1
t

.

Lemma 3.3.2 ([14]). Let P, Q be polynomials and let R = P/Q. Then there exists
B > 0 such that for all R ̸= 0, and for any t, the following holds:

|{z ∈ T : |R′(z)| > t · r · |R(z)|}| <
B

t
, (3.5)

where r = deg P + deg Q.

Proof. Clearly, the form of R(z)
R′(z) shows that it suffices to prove that for any c1, . . . , cr ∈ C,

possibly repeated, ∣∣∣∣∣∣
z ∈ T : |

r∑
j=1

1
z − cj

| > t


∣∣∣∣∣∣ ≲ r

t
.

First, assume that |cj| > 1, then for |z| < 1,

Ij = 1
2πi

∫
T

t̄

|t − cj|2
dt

t − z
= 1

2πi

∫
T

1
(t − cj)(1 − tc̄j)

dt

t − z
.

Now, since 1
t−cj

is holomorphic in the disk and

1
1 − tc̄j

1
t − z

= −1
1 − c̄jz

(
1

t − c̄j
−1 + −1

t − z

)
,

the Cauchy integral formula yields

Ij = −1
1 − c̄jz

(
1

c̄j
−1 − cj

+ −1
z − cj

)
= 1

1 − |cj|2
1

z − cj

.

Hence, if

fj(t) =
(
1 − |cj|2

) t̄

|t − cj|2
,

we have
Hrfj(z) = 1

rz − cj

;

Hfj(z) = 1
z − cj
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and
∥fj∥1 = (|cj|2 − 1)

∫
T

|dt|
|t − cj|2

≈ 1.

Thus, using Lemma 3.3.1, we have∣∣∣∣∣∣
z ∈ T :

∣∣∣∣∣∣
r∑

j=1,|cj |>1

1
z − cj

∣∣∣∣∣∣ > t


∣∣∣∣∣∣ ≲ r

t
.

Moreover, we can extend the previous result to the cj with modulus 1. Indeed,∣∣∣∣∣∣
z ∈ T :

∣∣∣∣∣∣
r∑

j=1,|cj |=1

1
z − cj

∣∣∣∣∣∣ > t


∣∣∣∣∣∣ = lim

r↘1

∣∣∣∣∣∣
z ∈ T :

∣∣∣∣∣∣
r∑

j=1,|cj |=1

1
z − rcj

∣∣∣∣∣∣ > t


∣∣∣∣∣∣ ≲ r

t
.

Finally, if |cj| < 1,
Hfj(z) = 1

cj − z
+ fj(z),

and since ∥fj∥1 ≈ 1, we obtain the result by repeating the previous considerations.

Definition 3.3.3. A trigonometric polynomial is a function of the form

P =
N∑

k=1
ckznk ,

for z ∈ T, nk ∈ Z, n1 < n2 < · · · < nN and ck ∈ C \ {0}.

We say that ord P = N and
∥∥∥P̂∥∥∥

1
= ∑N

k=1 |ck|.

Lemma 3.3.4 (One dimensional Nazarov-Turán Lemma, [20]). Let P be a trigonometric
polynomial. Then, there exists A > 0 such that for any measurable set Γ ⊂ T, the
following holds ∥∥∥P̂∥∥∥

1
≤
(

A

|Γ|

)ord P −1

sup
Γ

|P |. (3.6)

Proof. Put N = ord P . Note that in the trivial case |Γ| = 1, we have supΓ |P | =
supT |P | ≥ maxk |ck|. Hence,

∥∥∥P̂∥∥∥
1

≤ N sup
Γ

|P | ≤
(

A

|Γ|

)ord P −1

sup
Γ

|P |,

if A ≥ 2. From now on, we assume that |Γ| < 1.

Step 1: We construct a sequence of trigonometric polynomials P1, . . . , PN which satisfy
the following:

1. PN = P ;

2. ord Pk = k, for 1 ≤ k ≤ N ;

3. for 2 ≤ k ≤ N ,
∥∥∥P̂k−1

∥∥∥
1

≥ 1
6B

∥∥∥P̂k

∥∥∥
1
, (the same B as in Lemma 3.3.2) ;
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4. |{z ∈ T : |Pk−1| > t|Pk|}| < 1
t
, for t > 0 and 2 ≤ k ≤ N .

Using the notation of Definition 3.3.3, we proceed as follows: put

Q−(z) =
(
z−n1P

)′
(z) =

N∑
k=1

ck(nk − n1)znk−n1−1;

Q+(z) =
(
z−nN P

)′
(z) =

N∑
k=1

ck(nk − nN)znk−nN −1.

Clearly, both ord Q− = ord Q+ = N − 1 and

∥∥∥Q̂−

∥∥∥
1

+
∥∥∥Q̂+

∥∥∥
1

=
N∑

k=1
|ck|(nN − n1) = (nN − n1)

∥∥∥P̂∥∥∥
1

.

Put QN−1 = Q−, if 2
∥∥∥Q̂−

∥∥∥
1

≥ (nN − n1)
∥∥∥P̂∥∥∥

1
and QN−1 = Q+ otherwise.

Finally, for B as in Lemma 3.3.2, define

PN−1 = (3B(nN − n1))−1QN−1.

Repeating the same procedure for PN−1 in place of P , we obtain PN−2 until we reach P1
with order 1.
We now verify that the constructed sequence satisfies properties 1-4:

1. Clear.

2. Also clear.

3. By definition of Qk−1, we have
∥∥∥P̂k−1

∥∥∥
1

= (3B(nN − n1))−1
∥∥∥Q̂k−1

∥∥∥
1

≥ 1
6B

∥∥∥P̂k

∥∥∥
1

.

4. By construction, if ns is the power of z chosen in the definition of Qk−1, we have

|{|Pk−1| > t|Pk|}| =
∣∣∣∣{|
(
z−nsPk

)′
| > 3B(nN − n1)t|z−nsPk|}

∣∣∣∣ .
Here we use Lemma 3.3.2 with R(z) = z−nsPk(z). Observe that if ns = n1, then
R is a polynomial with r = nN − n1; and if ns = nN ,

R =
∑N

k=1 ckznk−n1

znN −n1
,

so that r = 2(nN − n1). Thus, the estimate (3.5) gives

|{|Pk−1| > t|Pk|}| <
2(nN − n1)B
3B(nN − n1)

t <
1
t
.

Step 2: Since P1 = Czm for some m ∈ Z, we have, iterating property (3),

|C| =
∥∥∥P̂1

∥∥∥
1

≥
∥∥∥P̂∥∥∥

1
(6B)−N+1.
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Now we proceed to estimate C. Put ϕk = log(|Pk−1|/|Pk|). Then, property (4) gives
|{z : |ϕk(z)| > t}| < e−t. Also

|C|
|P |

= |P1|
|P |

= exp(
N∑

k=2
ϕk).

Finally, for α ∈ R+, put ρk = ϕk − min(ϕk, α) ≥ ϕk − α. Then

X :=
∣∣∣∣∣
{

N∑
k=2

ϕk > (α + 1)(N − 1)
}∣∣∣∣∣ =

∣∣∣∣∣
{

N∑
k=2

(ϕk − α) > (N − 1)
}∣∣∣∣∣ ≤

∣∣∣∣∣
{

N∑
k=2

ρk > (N − 1)
}∣∣∣∣∣ .

Using the Chebyshev inequality, we deduce that

X ≤ 1
N − 1

(
N∑

k=2

∫
T

ρk(z)dm(z)
)

.

Now, for each k, and using Fubini’s Theorem,∫
T

ρk(z)dm(z) =
∫
T∩{ϕk>α}

(∫ ϕk(z)

α
1dt

)
dm(z) =

∫ ∞

α

∫
{z:ϕk(z)>t}

1dm(z)dt =
∫ ∞

α
|{ϕk > t}|dt.

So that using the estimate |{ϕk > t}| < e−t, we conclude that X < e−α. Setting
α = − log(|Γ|), we have that X < |Γ| < 1. Thus, we deduce that there must exist a
z ∈ Γ for which

N∑
k=2

ϕk(z) ≤ (N − 1)(− log(|Γ|) + 1).

This implies that

C ≤ sup
Γ

|P |e(N−1)(1−log(|Γ|) = sup
Γ

|P | · (e/|Γ|)N−1.

In conclusion, ∥∥∥P̂∥∥∥
1

≤
(

6Be

|Γ|

)N−1

.

Definition 3.3.5. A d-dimensional trigonometric polynomial is a function of the form

P (z) =
N∑

k=1
ckz

nk,1
1 · · · znk,d

n ,

for zi ∈ T, nk,1, . . . , nk,d ∈ Z and ck ∈ C \ {0} for k = 1, . . . N . Note that we can write

P (z) =
N ′∑

k=1
c′

kz
n′

k
i Qk(z1, . . . , zi−1, zi+1, . . . zd),

with n′
1 < . . . , n′

N ′, so that, if we ”freeze” zj for j ̸= i, we obtain a trigonometric
polynomial of order at most N ′. We define ordi P = N ′. Observe that ordi P ≥ 1 unless
P = 0.
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Lemma 3.3.6 (Multidimensional Nazarov-Turan by Fontes-Merz, [10]). Let P be a d-
dimensional trigonometric polynomial and E ⊂ Td a measurable set. Then, there exists
A > 0 independent of d such that

sup
Td

|P | ≤
(

Ad

|E|

)−d+
∑d

i=1 ordi P

sup
z∈E

|P (z)|.

Proof. We proceed by induction on the dimension d. For d = 1 it has already been
proved, because

∥∥∥P̂∥∥∥
1

≥ supT |P |. Now we assume the result for d ≥ 1 and prove it for
d + 1. Let P (z) = ∑N

k=1 ckz
nk,1
1 · · · z

nk,d
n and E ⊂ Td+1. For any z ∈ T, put

Ez = {(z1, . . . , zd) : (z1, . . . , zd, z) ∈ E} ⊂ Td

and let B = {z ∈ T : |Ez| ≥ |E|/C}, for C = d+1
d

. At the end of the proof, we shall
show that |B| > 0.
Let w = (w1, . . . , wd, wd+1) be the point of Td+1 at which the maximum of P is attained.
Then, an application of Lemma 3.3.4 with B in place of Γ and the univariate polynomial
Q(z) = P (w1, . . . , wd, z) yields

sup
Td+1

|P | = sup
T

|Q| ≤
(

A

|B|

)−1+ordd+1 P

sup
z∈B

|Q(z)| =
(

A

|B|

)−1+ordd+1 P

sup
z∈B

|P (w1, . . . , wd, z)|.

This means that for any ε > 0, there exists z(ε) in B such that

sup
Td+1

|P | ≤
(

A

|B|

)−1+ordd+1 P

(ε + |P (w1, . . . , wd, z(ε)|) .

Next, we apply the induction hypothesis to the polynomial (z1, . . . , zd) → P (z1, . . . , zd, z(ε))
and the set Ez(ε). Then,

sup
(z1,...zd)∈Td

|P (z1, . . . , zd, z(ε))| ≤
(

Ad

|Ez(ε)|

)−d+
∑d

i=1 ordi P

sup
(z1,...,zd)∈Ez(ε)

|P (z1, . . . , zd, z(ε))|.

Now, clearly
|P (w1, . . . , wd, z(ε)| ≤ sup

(z1,...zd)∈Td

|P (z1, . . . , zd, z(ε))|

and
sup

(z1,...,zd)∈Ez(ε)

|P (z1, . . . , zd, z(ε))| ≤ sup
z∈E

|P (z)|.

Besides, since z(ε) ∈ B, we have that |Ez(ε)| ≥ |E|/C, so putting everything together,
we have

sup
Td+1

|P | ≤
(

A

|B|

)−1+ordd+1 P
ε +

(
CAd

|E|

)−d+
∑d

i=1 ordi P

sup
z∈E

|P (z)|

 ,

and letting ε → 0,
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sup
Td+1

|P | ≤
(

A

|B|

)−1+ordd+1 P (
CAd

|E|

)−d+
∑d

i=1 ordi P

sup
z∈E

|P (z)|.

Finally, to estimate |B|, note that, by Fubini’s Theorem,

|E| =
∫
T

|Ez|dm(z) ≤ |B| + (1 − |B|) |E|
C

≤ |B| + |E|
C

,

so that
|B| ≥ |E|C − 1

C
= 1

d + 1 .

In conclusion,

sup
Td+1

|P | ≤
(

A(d + 1)
|E|

)−(d+1)+
∑d+1

i=1 ordi P

sup
z∈E

|P (z)|.

Before proving Nazarov’s Uncertainty Theorem, we first show a similar result which uses
the same tools while avoiding some technical difficulties.
Theorem 3.3.7 (Nazarov’s uncertainty for Fourier Series). Let f ∈ L2([0, 1]) and let
S = supp ess f . Then, if I is a finite subset of Z,

∑
n∈I

|f̂(n)| ≤
(

A

1 − |S|

)|I|
 2

1 − |S|
∑
n̸∈I

|f̂(n)|2
 1

2

.

Proof. Put

f(x) =
∑
n∈Z

f̂(n)e2πixn =
∑
n∈I

f̂(n)e2πixn +
∑
n̸∈I

f̂(n)e2πixn =: f1(x) + f2(x).

Observe that since f vanishes outside of S,∫
[0,1]\S

|f1|2 =
∫

[0,1]\S
|f2|2 ≤

∑
n̸∈I

|f̂(n)|2.

Then, by Chebyshev,∣∣∣∣∣∣x ∈ [0, 1] \ S :
|f1(x)|2 >

2
1 − |S|

∑
n̸∈I

|f̂(n)|2

∣∣∣∣∣∣ ≤ 1 − |S|

2 .

Hence, in a set of measure at least 1−|S|
2

|f1|2 ≤ 2
1 − |S|

∑
n̸∈I

|f̂(n)|2,

so that by Lemma 3.3.4,

∑
n̸∈I

|f̂(n)| ≤
(

A

1 − |S|

)|I|
 2

1 − |S|
∑
n̸∈I

|f̂(n)|2
 1

2

.
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Finally, using Lemma 3.2.6 we obtain the following corollary:
Corollary 3.3.8. There exists a B such that for f ∈ L2([0, 1]), S ⊂ [0, 1] and I ⊂ Z
finite, the following holds:

∥f∥2 ≤
(

B

1 − |S|

)|I|+ 1
2

(∫
[0,1]\S

|f |2
) 1

2

+
∑

n̸∈I

|f̂(n)|2
 1

2
 . (3.7)

Proof. First, observe that from Theorem 3.3.7, we deduce that for f supported in S,(∑
n∈I

|f̂(n)|2
) 1

2

≤
(

2A

1 − |S|

)|I|+ 1
2
∑

n̸∈I

|f̂(n)|2
 1

2

.

Clearly, this implies that for f supported in S,

∥f∥2 ≤
(

4A

1 − |S|

)|I|+ 1
2
∑

n̸∈I

|f̂(n)|2
 1

2

.

Now, if we define
Pf =

∑
n∈I

f̂(n)e2πixn

and
Qf = 1Sf,

we have that for any f ,

∥Qf∥ ≤
(

4A

1 − |S|

)|I|+ 1
2 ∥∥∥P ⊥Qf

∥∥∥ .

This is item 4 in Lemma 3.2.6, which implies item 3 from the same Lemma, that is, that
for any f ,

∥f∥ ≤

1 +
(

4A

1 − |S|

)|I|+ 1
2
 (
∥∥∥P ⊥f

∥∥∥+
∥∥∥Q⊥f

∥∥∥),
so that the result follows with B = max(2, 10A).

Observe that if we want to prove an analogous theorem for the Fourier transform we
have the problem that the sum of the values of a function at a discrete set of points need
not be related to the integral of the function. What we are going to prove is that there
exist some points for which it is true. More precisely,
Lemma 3.3.9 (Lattice averaging, [15]). Let ϕ ∈ L1(Rd), ϕ ≥ 0. Then,∫

SOd

∫ 2

1

∑
k∈Zd\{0}

ϕ(ρ(vk)) dv dm(ρ) ≈
∫

∥x∥≥1
ϕ(x) dm(x). (3.8)

We remark that the integral over SOd is with respect to its Haar measure normalized
so that the total measure is 1, since we are not going to use any deep result about this
theory, the reader can simply think of a uniform measure on SOd which is left-invariant
under the action of the group.
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Proof. The picture of the situation is the following: Zd \ {0} is the (punctured) lattice
with integer coordinates, multiplying by v ∈ (1, 2) dilate the lattice; and, applying ρ, we
rotate the lattice.
Now we begin the proof.

For each k,

Ik :=
∫

SOd

∫ 2

1
ϕ(ρ(vk)) dv dm(ρ) = ∥k∥−1

∫
SOd

∫ b∥k∥

a∥k∥
ϕ(vρ( k

∥k∥
)) dv dm(ρ).

Then, since for a fixed n ∈ Sd−1, the orbit of n by SOd is the whole Sd−1 (with equivalent
measure), we deduce that∫

SOd
ϕ(vρ( k

∥k∥
)) dm(ρ) ≈

∫
Sd−1

ϕ(vn) dm(n).

Hence, a change of variable yields

Ik ∥k∥−1
∫[

∥k∥,2∥k∥
]

×Sd−1
ϕ(vn) dv dm(n) ≈ ∥k∥−d

∫
∥k∥≤∥x∥≤2∥k∥

ϕ(x)dm(x).

Finally, ∑
k∈Zd\{0}

Ik ≈
∫
Rd

K(x)ϕ(x)dm(x),

where
K(x) =

∑
k∈Zd\{0}

∥k∥−d
1∥k∥≤∥x∥≤2∥k∥(x).

Since for each x,
K(x) =

∑
{k∈Zd\{0}: ∥x∥

2 ≤∥k∥≤∥x∥}
∥k∥−d ,

which is zero if ∥x∥ < 1 and, if ∥x∥ > 1,

K(x) ≈ ∥x∥−d #
{
k ∈ Zd \ {0} : ∥k∥ ≤ ∥x∥ ≤ 2 ∥k∥

}
≈ 1,

as the number of integer points in a spherical region is approximately its volume, we
conclude the proof.

Definition 3.3.10 (Periodization). Given f ∈ S(Rd), ρ ∈ SOd and 2 > v > 1, we
define, for t ∈ [0, 1]d,

Γρ,v(t) = 1√
v

∑
k∈Zd

f

(
ρ(k + t)

v

)
.

Proposition 3.3.11. The following hold:

1. For m ∈ Zd,
Γ̂(f)ρ,v(m) = vd−1/2f̂(vρ(m));

2. For S ⊂ Rd of finite measure and f supported in S

|{t ∈ (0, 1) : Γρ,v(t) ̸= 0}| ≤ 2d|S|;
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Proof. For (1), assume first that v = 1 and ρ is the identity. Then, for m ∈ Zd, a
computation shows that

∫
[0,1]d

∑
k∈Zd

f(k + t)e−2πi⟨t,m⟩dt =
∑

k∈Zd

∫
k+[0,1]d

f(t)e−2πi⟨t,m⟩dt =
∫
Rd

f(t)e−2πi⟨t,m⟩ = f̂(m).

Now, in the general case, given ρ and v, define fρ,v(x) = f(ρ(x)
v

). Clearly,

1√
v

Γ(fρ,v)Id,1(t) = Γ(f)ρ,v(t),

and
f̂ρ,v(m) = vdf̂(vρ(m)),

whence the result follows.

For (2), note that

|{t ∈ (0, 1) : Γρ,v(t) ̸= 0}| ⊂
∣∣∣∪k∈Zd(vS − k) ∩ [0, 1]d

∣∣∣ =
∣∣∣∪k∈Zd vS ∩ (k + [0, 1]d)

∣∣∣ = |vS| = vd|S|,

whence the result follows from the fact that v ≤ 2.

Proposition 3.3.12. For F : SOd × [1, 2] → R put

E(F ) :=
∫

SOd

∫ 2

1
F (v, ρ)dvdρ.

Then, there exists C > 0 such that for 0 ∈ Σ a measurable set of finite measure and

Mρ,v = {k ∈ Z : vρ(k) ∈ Σ},

the following hold:

1.
E(#Mρ,v − 1) ≤ C|Σ|;

2.

E

 ∑
k∈Zd\Mρ,v

|f̂(vρ(k)|2
 ≤ C

∫
Rd\Σ

|f̂ |2.

Proof. Using Lemma 3.3.9 and recalling that 0 ∈ Σ,

E(#Mρ,v − 1) =
∫

SOd

∫ 2

1

∑
k∈Zd\{0}

1Σ(vρ(k))dvdρ ≈
∫

∥x∥≥1
1Σ ≤ |Σ|,

whence (1) follows. For (2), similarly,

E

 ∑
k∈Zd\Mρ,v

|f̂(vρ(k)|2
 =

∫
SOd

∫ 2

1

∑
k∈Zd\{0}

|f̂(vρ(k)|21R\Σ(vρ(k)) dv dρ ≈
∫

∥x∥≥1
|f̂ |21R\Σ.
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Theorem 3.3.13 (Nazarov’s uncertainty principle, [15]). There exists A > 0 such that
for any f ∈ L2(Rd) and any S, Σ ⊂ Rd of finite measure, the following holds:

∫
Rd

|f |2 ≤ A|Σ||S|
(∫

Rd\S
|f |2 +

∫
Rd\Σ

|f̂ |2
)

. (3.9)

Proof. Before we begin with the proof, some simplifications are in order.
First, if |Σ||S| is small, the results of Section 3.2.2 suffice to obtain the result. Indeed,
using the notation of that section,

f = R−1(P (I − Q)f + (I − P )f),

so that
∥f∥ ≤

∥∥∥R−1
∥∥∥ (∥∥∥Q⊥f

∥∥∥+
∥∥∥P ⊥f

∥∥∥) .

Since by Lemma 3.2.13, we know that ∥PQ∥ ≤ |S||Σ|, and

∥∥∥R−1
∥∥∥ ≤

∞∑
j=0

∥PQ∥j ≤ 1
1 − |Σ||S|

≤ 2|Σ||S|;

if |Σ||S| ≤ 1
2 , we may assume that |Σ||S| ≥ 1

2 .
Second, by a change of scale, we may assume that |S| = 2−d−1. Indeed, given f consider
fλ(x) = λf(λx). Then,

λ−1 ∥f∥2
2 = ∥fλ∥2

2 ≤ A|Σ||S|
(∥∥∥fλ1Rd\λS

∥∥∥2

2
+
∥∥∥f̂λ1Rd\λ−1Σ

∥∥∥2

2

)

= λ−1A|Σ||S|
(∥∥∥f1Rd\S

∥∥∥2

2
+
∥∥∥f̂1Rd\Σ

∥∥∥2

2

)
,

so that it suffices to obtain the result for fλ for a given λ.
Third, by a density argument, we may assume that f ∈ S(Rd).
Fourth, it suffices to obtain the result for f supported in S. Indeed, this is implication
(4) =⇒ (3) of Lemma 3.2.6 (note that we are assuming that |Σ||S| ≥ 1

2 , and this means
that A|Σ||S| + 1 ≈ A|Σ||S| ).
Fifth, if we prove, that for f supported in S,∥∥∥f̂1 Σ

∥∥∥2

2
≤ A|Σ|

∥∥∥f̂1Rd\Σ

∥∥∥2

2
, (3.10)

we can conclude the proof. Indeed, if (3.10) holds,

∥f∥2
2 =

∥∥∥f̂1Rd\Σ

∥∥∥2

2
+
∥∥∥f̂1 Σ

∥∥∥2

2
≤ (A|Σ| + 1)

∥∥∥f̂1Rd\Σ

∥∥∥2

2
≲ (A|Σ|)

∥∥∥f̂1Rd\Σ

∥∥∥2

2
,

where the last estimate follows from |Σ| ≥ 1
2|S| = 2d.

Now we begin the proof. For each ρ, v, put

Γρ,v(t) =
∑

k∈Mp,v

Γ̂ρ,v(k)e2πi⟨k,t⟩ +
∑

k ̸∈Mp,v

Γ̂ρ,v(k)e2πi⟨k,t⟩ =: Γ1(t) + Γ2(t).
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We want to estimate Γ̂ρ,v(0) ≈ f̂(0). Clearly, |Γ̂ρ,v(0)| ≤ supt∈[0,1]d |Γρ,v|. To estimate
this last quantity we shall make use Lemma 3.3.6.

Using Proposition 3.3.12 and the Chebyshev inequality, we deduce that

P(#Mρ,v − 1 > 2C|Σ|) <
1
2;

P

 ∑
k∈Zd\Mρ,v

|f̂(vρ(k)|2 > 2C
∫
Rd\Σ

|f̂ |2
 <

1
2;

so that there is a choice of v, ρ such that the following hold simultaneously

1.
#Mρ,v − 1 ≤ 2C|Σ|;

2. ∑
k∈Zd\Mρ,v

|f̂(vρ(k)|2 ≤ 2C
∫
Rd\Σ

|f̂ |2.

Now, by Proposition 3.3.11 and that |S| = 2−d−1, we know that Γρ,v vanishes in a set F
of measure at least 1/2. Thus |Γ1(t)| = |Γ2(t)| whenever t ∈ F . Once again, since∫

F
|Γ2(t)|2 ≤

∫
[0,1]d

|Γ2(t)|2 = C ′ ∑
k∈Zd\Mρ,v

|f̂(vρ(k)|2 ≤ 2C ′C
∫
Rd\Σ

|f̂ |2,

the Chebyshev inequality guarantees that |Γ2(t)|2 ≤ 8CC ′ ∫
Rd\Σ |f̂ |2 in a set G of measure

1/4 inside F , consequently, the same holds for Γ1. Finally, applying Lemma 3.3.6 to Γ1
with

−d +
d∑

i=1
ordi Γi ≤

∏
i

ordi Γ1 = #Mρ,v ≤ 2C|Σ| + 1

and E = G, we obtain that

|f̂(0)|2 ≲ A|Σ|
∫
Rd\Σ

|f̂ |2,

and repeating the proof by changing the role of 0 by any other point in Σ, we obtain

|f̂(y)|2 ≤ A|Σ|
∫
Rd\Σ

|f̂ |2,

for y ∈ Σ, so that integrating over Σ we deduce that∫
Σ

|f̂ |2 ≤ |Σ|A|Σ|
∫
Rd\Σ

|f̂ |2 ≤ A′|Σ|
∫
Rd\Σ

|f̂ |2,

that is, equation (3.10) holds.

Finally, using Corollary 2.4.3 we can obtain similar results even in the case of |Σ| = ∞.
Indeed,
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Proposition 3.3.14. Assume that Σ is a measurable set that satisfies |Σ ∩ I| ≤ |I|1− r
2

for some r > 1 and every interval I. Then, there exists a δ > 0 for which the inequality

∥f∥2
2 ≲

∫
R\Iδ

|f |2 +
∫
R\Σ

|f̂ |2

holds whenever Iδ is an interval of length δ.

Proof. By Corollary 2.4.3 we know that there exists a K such that whenever f̂ is sup-
ported in Σ,

δ− 1
2

∫ δ

0
|f |2 ≤

∫ 1

0
|f |2x− 1

2 ≤ K ∥f∥2.

Let δ be such that
2
∫ δ

0
|f |2 ≤ ∥f∥2

2 .

Then,
∥f∥2

2 ≲
∫
R\[0,δ]

|f |2.

In the notation of Section 3.2.2, let Q be the projection onto Σ in the frequency side
and P the projection onto [0, δ]. Then, we have

∥Qv∥ ≲
∥∥∥P ⊥Qv

∥∥∥
and by Lemma 3.2.6,

∥v∥ ≲
∥∥∥P ⊥v

∥∥∥+
∥∥∥Q⊥v

∥∥∥ .

3.4 Lp Heisenberg type uncertainty inequalities
The Heisenberg UP

∥f∥2
2 ≲ ∥fx∥2

∥∥∥f̂ ξ
∥∥∥

2

is a crucial result both in mathematics and physics, with numerous applications in both
sciences. It is thus natural to consider the question of whether the L2-norm or the
weights x, ξ can be be replaced.
In [28], the following result was obtained
Theorem 3.4.1. The inequality

∥f∥α+β
q ≲ ∥fxα∥β

q

∥∥∥f̂ ξβ
∥∥∥α

q∗
(3.11)

holds in the following cases:

1. q < 2 and β > 1
q

− 1
2 ;

2. q ≥ 2 and 0 < α < 1
q
.

Observe that the Heisenberg UP is recovered by setting p = q = 2 and α = β = 1.

The main theorem of this section is the following generalization of inequality (3.11):
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Theorem 3.4.2. Let 1 < p, q < ∞ and α, β > 0. Then, the inequality

∥f∥
α+β− 1

q∗ + 1
p

q ≲ ∥fxα∥
β− 1

q∗ + 1
p

q

∥∥∥f̂ ξβ
∥∥∥α

p
(3.12)

holds if and only if β > 1 − 1
q

− 1
p

and one of the following conditions holds:

1. q ≥ 2;

2. p, q < 2;

3. q < 2 ≤ p and β > 1
2 − 1

p
.

Remark 3.4.3. It is worth mentioning that 1 − 1
q

− 1
p

= 1
q∗ − 1

p
= 1

p∗ − 1
q
.

Remark 3.4.4. Note that if β − 1
q∗ + 1

p
< 0, inequality (3.12) does not hold. Indeed, for

any f , consider fN(x) = f(x + N) and let N → ∞. If β − 1
q∗ + 1

p
= 0, the inequality

becomes
∥f∥q ≲

∥∥∥f̂ ξβ
∥∥∥

p
, (3.13)

which holds, assuming β = 1 − 1
q

− 1
p
, if and only if q ≥ p (see Corollary 2.3.9). In

conclusion, in Theorem 3.4.2, we may always assume that β > 1 − 1
q

− 1
p
.

Remark 3.4.5. The exponents of the norms which appear in inequality (3.12) are seen
to be necessary by scaling arguments. Indeed, for a given f consider fλ(x) := Cf(λx).
Then, simple computations show that

1. ∥fλ∥q = Cλ− 1
q ∥f∥q;

2. ∥fλxα∥q = Cλ− 1
q

−α ∥fxα∥q;

3.
∥∥∥f̂λξβ

∥∥∥
p

= Cλ−1+ 1
p

+β
∥∥∥f̂ ξβ

∥∥∥
p

;

and one can check that the exponents of the norm must be the ones appearing in inequality
(3.12). Moreover, note that by choosing suitable C, λ we may always assume that two of
the previous three norms in items 1-3 are equal to 1.

3.4.1 Proof of sufficiency
Lemma 3.4.6. Let 1 < p, q < ∞ and α, β > 0. Assume that β > max(0, 1 − 1

q
− 1

p
)

Then, inequality (3.12) holds if one of the following conditions holds:

1. q ≥ 2;

2. p, q < 2;

3. q < 2 ≤ p and β > 1
2 − 1

p
.
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Proof. Step 1:
First, assume that 1

p∗ − 1
q

< β < 1
p∗ , the inequality

(∫
|ξ|≤1

|f̂ |q
) 1

q

≲
∥∥∥fξβ

∥∥∥
p

holds if q ≥ 2 or if p, q < 2. Indeed, by Pitt’s Theorem (Theorem 2.2.5) it suffices to
check that

• For q ≥ p,

sup
s

(∫ 1/s

0
1

∗
|t|≤1dt

) 1
q

s−β+ 1
p∗ < ∞.

• For q < p, (recall that r−1 = q−1 − p−1)

∫ ∞

0

(∫ 1/s

0
1

∗
|t|≤1dt

) r
q

s
r

q∗ −rβds < ∞.

Since ∫ 1/s

0
1

∗
|t|≤1dt ≤ min(2, s−1),

some computations show that both these conditions hold.
Second, if q < 2 ≤ p, and 1

p∗ > β > 1
p∗ − 1

2 , an application of Hölder’s inequality and the
previous result shows that

(∫
|ξ|≤1

|f̂ |q
) 1

q

≲

(∫
|ξ|≤1

|f̂ |2
) 1

2

≲
∥∥∥fξβ

∥∥∥
p

also holds.
Step 2: Continuing with the proof, by considering fλ(x) = Cf(λx) for suitable C, λ

instead of f , normalize f̂ so that ∥f∥q =
∥∥∥f̂ ξβ

∥∥∥
p

= 1. After this normalization, inequality
(3.12) becomes ∥fxα∥q ≳ 1. We show that ∥fxα∥q can’t be too small.
Let ε > 0 be such that 1

p∗ − 1
q

< β − ε < 1
p∗ , then for a fixed N ∈ N, applying the

inequalities proved in Step 1 to the function

∆N
h f =

N∑
j=0

(−1)jf(x + jh)
(

N

j

)
, (3.14)

with the Fourier transform

(∆N
h f)∧(ξ) = f̂(ξ)(1 − e−2πiξh)N ,

we deduce that(∫
|x|≤1

|∆N
h f |q

) 1
q

≲
(∫

R
|f̂ |p|ξ|p(β−ε)(1 − e2πiξh)pN

) 1
p

≲
(∫

R
|f̂ |p|ξ|p(β−ε) min(1, |ξh|)pN

) 1
p

.
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Further, using that if N > ε, then min(1, |hξ|N) ≤ |hξ|ε, we obtain
(∫

|x|≤1
|∆N

h f |q
) 1

q

≲ hε
∥∥∥f̂ ξβ

∥∥∥
p

= hε.

Finally, let h0 be small enough such that
(∫

|x|≤1 |∆N
h f |q

) 1
q < 1

4 and 4h0 < 1. If

(∫
|x|≤h0

|f |q
) 1

q

≤ 3
4 ,

then
∥fxα∥q ≥ hα

0
4

and the result follows.
Otherwise, we have that (∫

|x|≤h0
|f |q

) 1
q

>
3
4 .

Then, by our choice of h0, we have
(∫

|ξ|≤h0
|∆N

h f(x) − f(x)|q
) 1

q

≥ 3
4 − 1

4 = 1
2 .

Since

1
2 ≤

(∫
|ξ|≤h0

|∆N
h0f(x) − f(x)|q

) 1
q

=
 N∑

j=1

(
N

j

)q ∫
|x−jh|≤h0

|f(x)|q
 1

q

≲

(∫
|x|≥h0

|f |q
) 1

q

≤ h−α
0 ∥fxα∥q ,

we conclude the proof.

3.4.2 Proof of necessity
Lemma 3.4.7. Assume that inequality (3.12) holds for p > 2 > q. Then, β > 1

2 − 1
p
.

Proof. Let Φ̂ be a C∞ function with support contained in [−1/2, 1/2]. We know that Φ
belongs to the Schwartz class of rapidly decreasing functions.
For M ∈ N and cj ∈ R to be fixed, consider the following function:

f(x) = Φ(x)
M∑

j=0
εjcje

−2πij,

where each ε is either +1 or −1.
Observe that ∫

Rn
|f(x)|qdx =

∫
Rn

∣∣∣∣∣∣Φ(x)
M∑

j=0
εjcje

−2πij

∣∣∣∣∣∣
q

.
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Next, by Fubini and Khintchine’s inequality (Theorem 1.4.1), averaging over all possible
values for ε, we obtain

E

∫
R

∣∣∣∣∣∣Φ(x)
M∑

j=0
εjcje

−2πij

∣∣∣∣∣∣
q =

∫
R
E

∣∣∣∣∣∣Φ(x)
M∑

j=0
εjcje

−2πij

∣∣∣∣∣∣
q

dx

≈
∫
R

∣∣∣∣∣∣∣Φ(x)
 M∑

j=0
|cj|2

 1
2
∣∣∣∣∣∣∣
q

dx ≈

 M∑
j=0

|cj|2


q
2

.

Similarly,

E

[∫
R

||x|αf(x)|q
]

≈

 M∑
j=0

|cj|2


q
2

.

Next, a straightforward computation shows that

f̂(ξ) =
M∑

j=0
εjcjΦ̂(ξ + j).

Thus,

∥∥∥f̂ ξβ
∥∥∥

p
=
∫

R

|ξ|β
M∑

j=0
εjcjΦ̂(ξ + j)

p
1
p

=
∫

R

M∑
j=0

|cj|p||ξ + j|βΦ̂(ξ)|p
 1

p

≲

 M∑
j=0

(|j| + 1)βp|cj|p
 1

p

,

where the last equality is true because the supports of the translates are pairwise disjoint.
Finally, if

∥f∥q
q ≲ ∥fxα∥

q
β−1/q∗+1/p

α+β−1/q∗+1/p
q

∥∥∥f̂ ξβ
∥∥∥q α

α+β−1/q∗+1/p

p
,

taking expected values and noting that for any X ≥ 0 random variable,

E[X
β−1/q∗+1/p

α+β−1/q∗+1/p ] ≤ E[X]
β−1/q∗+1/p

α+β−1/q∗+1/p ,

we obtain M∑
j=0

|cj|2


q
2

≲

 M∑
j=0

|cj|2


β−1/q∗+1/p
α+β−1/q∗+1/p

q
2
 M∑

j=0
(j + 1)βp|cj|p

 α
α+β−1/q∗+1/p

q
p

,

that is,  M∑
j=0

|cj|2
 1

2

≲

 M∑
j=0

(j + 1)βp|cj|p
 1

p

,

equivalently,  ∞∑
j=0

|cj|2
 1

2

≲

 ∞∑
j=0

(j + 1)βp|cj|p
 1

p

,
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uniformly on cj.
Since 2 < p, by Hölder’s inequality, this condition holds for all cj if and only if

∞∑
j=0

(j + 1)
− β

1
2 − 1

p < ∞,

which is known to converge if and only if − β
1
2 − 1

p

< −1, which is equivalent to β >

1
2 − 1

p
.

3.5 Broken power weights
Another possible generalization of the Heisenberg UP is the following family of inequal-
ities:

∥f∥p

∥∥∥f̂∥∥∥
p∗

≲
∥∥∥xAf

∥∥∥
p

∥∥∥ξB f̂
∥∥∥

p∗
, (3.15)

where A = (A1, A2) and B = (B1, B2) are broken weights, that is,

xA =
|x|A1 , |x| < 1

|x|A2 , |x| ≥ 1
(3.16)

with A1, A2, B1, B2 ≥ 0. Indeed, setting p = p∗ = 2 and A1 = A2 = B1 = B2 = 1, we
obtain

∥f∥2
2 = ∥f∥2

∥∥∥f̂∥∥∥
2
≲ ∥xf∥2

∥∥∥ξf̂
∥∥∥

2
,

the classical Heisenberg UP.
It is worth mentioning that in [8], the authors used the Pitt inequality to obtain sufficient
conditions for inequalities similar to (3.15) to hold for general weights. Nevertheless, if
one wants to fully characterize the previous inequality, it is necessary to use more delicate
arguments.

The main results of this section is the following:

Theorem 3.5.1. Let p ≥ 2. Then, inequality (3.15) holds if and only if B2 ≥ A1, A2 ≥
B1 and one the following holds:

1. A2 > 1
2 − 1

p
, A1 < 1

2 − 1
p

and B2
2 ≥ (1

2 − 1
p
)A1;

2. A2 > 1
2 − 1

p
, A1 > 1

2 − 1
p
;

3. A2 > 1
2 − 1

p
, 1

2 − 1
p

= A1 < B2;

4. A2 ≤ 1
2 − 1

p
, A1 = 0 and B1 = 0.

In particular, for p = 2, inequality (3.15) holds if and only if A1 ≤ B2, A2 ≥ B1.

Remark 3.5.2. Note that replacing f by f̂ in inequality (3.15) has the effect of exchang-
ing the roles of p by p∗ and A by B. Hence, the condition p ≥ 2 is not restrictive.
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Remark 3.5.3. Observe that the Hausdorff-Young inequality yields

∥f∥2
p ≤ ∥f∥p

∥∥∥f̂∥∥∥
p∗

≤
∥∥∥f̂∥∥∥2

p∗
,

so that inequality (3.15) is in between the type of inequalities described by (3.11) for
α = β.
Corollary 3.5.4. For usual power weights, that is, A = A1 = A2 and B = B1 = B2, we
have that the inequality (3.15) holds if and only if A = B = 0 or A = B > 1

2 − 1
p
.

The proof of the theorem is given in the two following sections.

3.5.1 Proofs of sufficiency
Lemma 3.5.5. Assume p = 2 and that that inequality (3.15) holds for A, B, then it also
holds for λA, λB for all λ > 1.

Proof. We use Hölder’s inequality to obtain∥∥∥xAf
∥∥∥

2
≤ ∥f∥

1
λ∗
2

∥∥∥xλAf
∥∥∥ 1

λ

2
;

∥∥∥ξB f̂
∥∥∥

2
≤
∥∥∥f̂∥∥∥ 1

λ∗

2

∥∥∥ξλB f̂
∥∥∥ 1

λ

2
,

where, as usual, 1
λ

+ 1
λ∗ = 1.

So from formula (3.15) we deduce

∥f∥2

∥∥∥f̂∥∥∥
2
≲
∥∥∥xAf

∥∥∥
2

∥∥∥ξB f̂
∥∥∥

2
≤ ∥f∥

1
λ∗
2

∥∥∥xλAf
∥∥∥ 1

λ

2

∥∥∥f̂∥∥∥ 1
λ∗

2

∥∥∥ξλB f̂
∥∥∥ 1

λ

2
,

whence the result follows.

Lemma 3.5.6. Let A = (A1, A2) and At = (A2, A1) with 0 ≤ A1, A2 < 1/2, then∫
R

|f̂ |2|ξ|−2Adξ ≲
∫
R

|f |2|x|2At

dx.

Proof. It follows from

sup
s

(∫ 1/s

0
ξ−2Adξ

)(∫ s

0
x−2At

dx
)
≲ 1

and Pitt’s inequality (Theorem 2.2.5).

Lemma 3.5.7. For p = 2, if A1 ≤ B2 and A2 ≥ B1, then inequality (3.15) holds.

Proof. Observe that by monotonicity it suffices to prove the result for A1 = B2 and
A2 = B1, that is, for B = At. Besides, an application of Lemma 3.5.5 shows that it
suffices to prove the result for A1, A2 < 1/2.
Then, by Hölder’s inequality and Lemma 3.5.6,

∥f∥2
2 =

∫
R

|f(x)|2dx ≤
∥∥∥fxA

∥∥∥
2

∥∥∥fx−A
∥∥∥

2
≲
∥∥∥fxA

∥∥∥
2

∥∥∥f̂ ξAt
∥∥∥

2
.
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Lemma 3.5.8. Let p > 2. Inequality (3.15) holds if B2 ≥ A1, A2 ≥ B1 and one the
following conditions holds:

1. A2 > 1
2 − 1

p
, A1 < 1

2 − 1
p

and B2
2 ≥ (1

2 − 1
p
)A1;

2. A2 > 1
2 − 1

p
, A1 > 1

2 − 1
p
;

3. A2 > 1
2 − 1

p
, 1

2 − 1
p

= A1 < B2;

4. A2 ≤ 1
2 − 1

p
, A1 = 0 and B1 = 0.

Proof. Before we begin, note that the fourth item is clear because in this case both
weights are pointwise greater than 1; the third item follows from the second one as
follows: let 1

2 − 1
p

= A1 < B2, then there exists ε > 0 such that 1
2 − 1

p
< A1+ε =: A′

1 ≤ B2

and by item (2),

∥f∥p

∥∥∥f̂∥∥∥
p∗

≲
∥∥∥fxA′

∥∥∥
p

∥∥∥f̂xB
∥∥∥

p∗
≤
∥∥∥fxA

∥∥∥
p

∥∥∥f̂xB
∥∥∥

p∗
.

We use further the normalization ∥f∥2 = 1 and assume throughout that A2 > 1
2 − 1

p
.

We use several tools.
Tool 1:
From Hölder’s inequality, we deduce that, for t > 0(∫ t/2

−t/2
|f̂ |p∗

) 1
p∗

≤ t
1

p∗ − 1
2

(∫ t/2

−t/2
|f̂ |2

) 1
2

≤ t
1

p∗ − 1
2
∥∥∥f̂∥∥∥

2
= t

1
p∗ − 1

2 .

This means that (recall the definition of broken weights in equation (3.16))∫
|ξ|≥t/2

|f̂ |p∗|ξ|p∗B ≥ tp∗B
(∥∥∥f̂∥∥∥p∗

p∗
− t1− p∗

2

)

and setting 2t = ∥f∥
1

p∗ − 1
2

p∗ , we establish that
∥∥∥f̂ ξB

∥∥∥
p∗

≳
∥∥∥f̂∥∥∥

p∗

∥∥∥f̂∥∥∥ B
1

p∗ − 1
2

p∗
. (3.17)

Tool 2:
Next, once again by Hölder’s inequality, we deduce that(∫

|x|≤t
|f |2

) 1
2

≲ ∥f∥p t
1
2 − 1

p

and using that A2 > 1
2 − 1

p
,

(∫
|x|≥t

|f |2
) 1

2

≤
∥∥∥fxA

∥∥∥
p

(∫
|x|≥t

x
− A

1
2 − 1

p

) 1
2 − 1

p

,

and combining these estimates, we obtain for t > 0 that

1 = ∥f∥2 ≲ ∥f∥p t
1
2 − 1

p +
∥∥∥fxA

∥∥∥
p

(∫
|x|≥t

x
− A

1
2 − 1

p

) 1
2 − 1

p

. (3.18)
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Tool 3:
First, for t < 1, and k ∈ N, the triangle inequality yields
(∫ t

0
|f |p

) 1
p

≤
(∫ t

0
|f(x) − f(x + t)|p

) 1
p

+
(∫ 2t

t
|f |p

) 1
p

≤
(∫ t

0
|∆k

t f |p
) 1

p

+
(∫ ∞

t
|f |p

) 1
p

,

where ∆N
h f is as in equation (3.14). Thus, using the inequality

(∫ ∞

t
|f |p

) 1
p

≤
∥∥∥fxA

∥∥∥
p

t−A1 ,

we deduce that
∥f∥p ≲

(∫ t

−t
|∆k

t f |p
) 1

p

+
∥∥∥fxA

∥∥∥
p

t−A1 .

Now, Pitt’s inequality (Theorem 2.2.5) implies that for D = (0, D2), if D2 < 1
p
,

(∫ t

0
|f |p

) 1
p

≲ C(t)
∥∥∥f̂xD

∥∥∥
p∗

,

with

C(t) = sup
s

(∫ s

0
1[0,t]

) 1
p

(∫ s−1

0
x−pD

) 1
p

≈ tD2 .

Therefore, just like we did in the previous section,
(∫ t

−t
|∆k

t f |p
) 1

p

≲ tD2
∥∥∥f̂(1 − e2πixt)kxβ

∥∥∥
p∗

.

Hence, for t < 1,

∥f∥p ≲ tD2
∥∥∥f̂(ξ)(1 − e2πixt)kξD

∥∥∥
p∗

+
∥∥∥fxA

∥∥∥
p

t−A1 . (3.19)

Now, we find it convenient to split the proof into four cases.
Case 1. Assume

∥∥∥f̂∥∥∥
p∗

≥ 1 and
∥∥∥fxA

∥∥∥
p

≥ ∥f∥p. From (3.17) we have that
∥∥∥f̂ ξB

∥∥∥
p∗

≳∥∥∥f̂∥∥∥
p∗

, and consequently,

∥∥∥fxA
∥∥∥

p

∥∥∥f̂ ξB
∥∥∥

p∗
≳ ∥f∥p

∥∥∥f̂∥∥∥
p∗

∥∥∥f̂∥∥∥ B
1

p∗ − 1
2

p∗
≥ ∥f∥p

∥∥∥f̂∥∥∥
p∗

.

Case 2: Assume
∥∥∥f̂∥∥∥

p∗
< 1 and

∥∥∥fxA
∥∥∥

p
≥ ∥f∥p. Let t =

(
∥fxA∥

p

∥f∥p

) 1
A2

≥ 1, then equation

(3.18) becomes

1 ≲ ∥f∥p


∥∥∥fxA

∥∥∥
p

∥f∥p


1
2 − 1

p
A2

,

and from (3.17) we deduce

∥f∥
A2

1
2 − 1

p
p

∥∥∥fxA
∥∥∥

p

∥∥∥f̂ ξB
∥∥∥

p∗
≳ ∥f∥p

∥∥∥f̂∥∥∥
p∗

∥∥∥f̂∥∥∥ B
1

p∗ − 1
2

p∗
.
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Finally, using that A2 ≥ B1 and
∥∥∥f̂∥∥∥

p∗
< 1, we have by using the Hausdorff-Young

inequality that ∥∥∥f̂∥∥∥ B
1

p∗ − 1
2

p∗
=
∥∥∥f̂∥∥∥ B1

1
p∗ − 1

2
p∗

≥
∥∥∥f̂∥∥∥ A2

1
p∗ − 1

2
p∗

≥ ∥f∥
A2

1
2 − 1

p
p ,

(note that 1
2 − 1

p
= 1

p∗ − 1
2) whence the result follows.

Case 3.0: Assume
∥∥∥f̂∥∥∥

p∗
≥ 1 and

∥∥∥fxA
∥∥∥

p
≥
∥∥∥f̂ ξB

∥∥∥
p∗

. From (3.17) we derive that

∥∥∥f̂ ξB
∥∥∥

p∗
≳
∥∥∥f̂∥∥∥

p∗

∥∥∥f̂∥∥∥ B
1

p∗ − 1
2

p∗
≳
∥∥∥f̂∥∥∥

p∗
.

Finally, from the Hausdorff-Young inequality and the hypothesis
∥∥∥fxA

∥∥∥
p
≳
∥∥∥f̂xB

∥∥∥
p∗

we
deduce ∥∥∥fxA

∥∥∥
p

∥∥∥f̂xB
∥∥∥

p∗
≳
∥∥∥f̂∥∥∥

p∗
∥f∥p .

Case 3.1: Assume
∥∥∥f̂∥∥∥

p∗
≥ 1,

∥∥∥fxA
∥∥∥

p
< ∥f∥p and A1 > 1

2 − 1
p
. Let t =

(
∥fxA∥

p

∥f∥p

) 1
A1

< 1,

then (3.18) implies that

1 ≲
∥∥∥fxA

∥∥∥
p

+ ∥f∥p


∥∥∥fxA

∥∥∥
p

∥f∥p


1
2 − 1

p
A1

.

Indeed, since t < 1,

1 ≲ ∥f∥p t
1
2 − 1

p +
∥∥∥fxA

∥∥∥
p

(∫
|x|≥t

x
− A

1
2 − 1

p

) 1
2 − 1

p

≲ ∥f∥p t
1
2 − 1

p +
∥∥∥fxA

∥∥∥
p

t
1
2 − 1

p
−A1 +

∥∥∥fxA
∥∥∥

p
,

and all that remains is to substitute t =
(

∥fxA∥
p

∥f∥p

) 1
A1

. Continuing with the proof, from

(3.17) we deduce∥∥∥fxA
∥∥∥ A1

1
2 − 1

p

p
+

∥∥∥fxA
∥∥∥

p

∥f∥p

∥f∥
A1

1
2 − 1

p
p

∥∥∥f̂ ξB
∥∥∥

p∗
≳
∥∥∥f̂∥∥∥

p∗

∥∥∥f̂∥∥∥ B2
1

p∗ − 1
2

p∗
,

equivalently, 

∥∥∥fxA

∥∥∥
p

∥f∥p


A1

1
2 − 1

p

+

∥∥∥fxA
∥∥∥

p

∥f∥p

∥∥∥f̂ ξB
∥∥∥

p∗
≳
∥∥∥f̂∥∥∥

p∗


∥∥∥f̂∥∥∥B2

p∗

∥f∥A1
p


1
2 − 1

p

.

Finally, since B2 ≥ A1 and
∥∥∥f̂∥∥∥

p∗
≥ 1, by the Hausdorff-Young inequality,

∥∥∥f̂∥∥∥B2

p∗

∥f∥A1
p

≥

∥∥∥f̂∥∥∥A1

p∗

∥f∥A1
p

≥ 1;



66 CHAPTER 3. UNCERTAINTY PRINCIPLES

and since A1 > 1
2 − 1

p
and

∥∥∥fxA
∥∥∥

p
< ∥f∥p


∥∥∥fxA

∥∥∥
p

∥f∥p


A1

1
2 − 1

p

+

∥∥∥fxA
∥∥∥

p

∥f∥p

≈

∥∥∥fxA
∥∥∥

p

∥f∥p

,

whence the result follows.
Case 3.2: Assume

∥∥∥f̂∥∥∥
p∗

≥ 1,
∥∥∥fxA

∥∥∥
p

<
∥∥∥f̂ ξB

∥∥∥
p∗

,
∥∥∥fxA

∥∥∥
p

< ∥f∥p, A2 > 1
2 − 1

p
> A1,

B2
2 ≥ A1(1

2 − 1
p
).

Write B2 = D2 + r with r ≥ 0 and D2 < 1
p
. Now, applying inequality (3.19) with

r ≤ k ∈ N, and applying the inequality

(1 − e2πixt)k ≲ min(1, xt)k ≤ (xt)r,

we deduce that, for R = (r, B2) (see (3.16)),

∥f∥p ≲ tB2
∥∥∥f̂ ξR

∥∥∥
p∗

+
∥∥∥fxA

∥∥∥
p

t−A1 . (3.20)

Besides, since
∥∥∥f̂∥∥∥

p∗
≥ 1, from inequality (3.17), we conclude that

∥∥∥f̂∥∥∥
p∗

≲
∥∥∥f̂ ξB

∥∥∥
p∗

.
Hence, ∥∥∥f̂ ξr

1[0,1]

∥∥∥
p∗

≤
∥∥∥f̂∥∥∥

p∗
≲
∥∥∥f̂ ξB

∥∥∥
p∗

,

so we have that ∥∥∥f̂ ξR
∥∥∥

p∗
≲
∥∥∥f̂ ξB

∥∥∥
p∗

,

and equation (3.20) becomes for t < 1,

∥f∥p ≲ tB2
∥∥∥f̂ ξB

∥∥∥
p∗

+
∥∥∥fxA

∥∥∥
p

t−A1 .

Setting 1 > t =
(

∥fxA∥
p

∥f̂xB∥
p∗

) 1
A1+B2

, we get

∥f∥p ≲
∥∥∥fxA

∥∥∥ B2
B2+A1

p

∥∥∥f̂ ξB
∥∥∥ A1

B2+A1

p∗
. (3.21)

Finally, equation (3.17) ∥∥∥f̂ ξB
∥∥∥

p∗
≳
∥∥∥f̂∥∥∥

p∗

∥∥∥f̂∥∥∥ B2
1

p∗ − 1
2

p∗

is equivalent to ∥∥∥f̂∥∥∥
p∗

≲
∥∥∥f̂ ξB

∥∥∥ 1
2 − 1

p
1
2 − 1

p +B2
p∗

,

and since A1 < 1
2 − 1

p
< A2,

1 = ∥f∥2 ≲
∥∥∥fxA

∥∥∥
p

we arrive at ∥∥∥f̂∥∥∥
p∗

≲
∥∥∥f̂ ξB

∥∥∥ 1
2 − 1

p
1
2 − 1

p +B2
p∗

∥∥∥fxA
∥∥∥ B2

1
2 − 1

p +B2
p

.
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Combining this estimate with (3.21), we obtain

∥∥∥f̂∥∥∥
p∗

∥f∥p ≲
∥∥∥fxA

∥∥∥ B2
B2+A1

p

∥∥∥f̂ ξB
∥∥∥ A1

B2+A1

p∗

∥∥∥f̂ ξB
∥∥∥ 1

2 − 1
p

1
2 − 1

p +B2
p∗

∥∥∥fxA
∥∥∥ B2

1
2 − 1

p +B2
p

.

Finally, since B2
2 ≥ A1(1

2 − 1
p
), we have that (to simplify the computations, note that

the sum of the fractions below is 2)

B2

B2 + A1
+ B2

1
2 − 1

p
+ B2

≥ 1 ≥ A1

B2 + A1
+

1
2 − 1

p
1
2 − 1

p
+ B2

,

and since
∥∥∥fxA

∥∥∥
p

≤
∥∥∥f̂ ξB

∥∥∥
p∗

, the result follows.
Case 4.1: Assume that

∥∥∥f̂∥∥∥
p∗

< 1 and
∥∥∥fxA

∥∥∥
p

< ∥f∥p and A1 < 1
2 − 1

p
. By setting t = 0

in equation (3.18) we obtain

1 ≲
∥∥∥fxA

∥∥∥
p

< ∥f∥p ≲
∥∥∥f̂∥∥∥

p∗
< 1,

so that
1 ≈

∥∥∥fxA
∥∥∥

p
≈ ∥f∥p ≈

∥∥∥f̂∥∥∥
p∗

,

so that from equation (3.17) we deduce∥∥∥f̂ ξB
∥∥∥

p∗
≳ 1,

whence the result follows.
Case 4.2: Assume

∥∥∥f̂∥∥∥
p∗

< 1,
∥∥∥fxA

∥∥∥
p

< ∥f∥p and A1 > 1
2 − 1

p
.

Here we have (∫
|x|≤1

|f |2
) 1

2

≲

(∫
|x|≤1

|f |p
) 1

p

≤ ∥f∥p

and (∫
|x|≥1

|f |2
) 1

2

≲

(∫
|x|≥1

|xAf |p
) 1

p

≤ ∥f∥p ,

so
1 = ∥f∥2 ≲ ∥f∥p ≤

∥∥∥f̂∥∥∥
p∗

,

and
∥∥∥f̂∥∥∥

p∗
≈ 1, so that the result follows from Case 3.1.

3.5.2 Proofs of necessity
Lemma 3.5.9. Assume that inequality (3.15) holds for A, B. Then, the following hold:

1. For any λ > 0 we have

∥f∥p

∥∥∥f̂∥∥∥
p∗

≲

(
λ−pA1

∫
|x|≤λ

|f(x)|p|x|pA1dx + λ−pA2
∫

|x|≥λ
|f(x)|p|x|pA2dx

) 1
p

×
(

λp∗B1
∫

|ξ|≤λ−1
|f̂(ξ)|p∗|ξ|p∗B1dξ + λp∗B2

∫
|ξ|≥λ−1

|f̂(ξ)|p∗|ξ|p∗B2dξ

) 1
p∗

(3.22)
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2. A1 ≤ B2 and B1 ≤ A2;

3. If A2 = B1, then, inequality (3.15) also holds for A = (A2, A2) and B = (B1, B1);

4. If A1 = B2, then, inequality (3.15) also holds for A = (A1, A1) and B = (B2, B2).

Proof. For a function f and λ > 0, define

fλ(x) = λf(λx).

Then, f̂λ(ξ) = f̂(ξ/λ). Thus,
∥fλ∥p = λ1/p∗ ∥f∥p

and ∥∥∥f̂λ

∥∥∥
p∗

= λ1/p∗
∥∥∥f̂∥∥∥

p∗
.

Also,

∥∥∥fλxA
∥∥∥

p
= λ1/p∗

(
λ−pA1

∫
|x|≤λ

|f(x)|p|x|pA1dx + λ−pA2
∫

|x|≥λ
|f(x)|p|x|pA2dx

) 1
p

,

∥∥∥f̂λξB
∥∥∥

p∗
= λ1/p∗

(
λp∗B1

∫
|ξ|≤λ−1

|f̂(ξ)|p∗|ξ|p∗B1dξ + λp∗B2
∫

|ξ|≥λ−1
|f̂(ξ)|p∗|ξ|p∗B2dξ

) 1
p∗

,

whence (1) follows.
Next, taking f a Schwartz function, note that

λ−pA1
∫

|x|≤λ
|f(x)|p|x|pA1dx ≤

∫
|x|≤λ

|f(x)|pdx

and for any n ∈ N
lim

λ→∞
λn
∫

|x|≥λ
|f(x)|p|x|pA2dx = 0,

and similarly for f̂ .
Hence, since λ−A2

∫
|x|≥λ |f(x)|p|x|pA2dx decays faster than any polynomial as λ → ∞, we

have that for λ large enough,

λ−A2

(∫
|x|≥λ

|f(x)|p|x|pA2dx

) 1
p

≤ λ−A1

(∫
|x|≤λ

|f(x)|p|x|pA1dx

) 1
p

.

Thus,

∥f∥p

∥∥∥fλxA
∥∥∥

p

∥fλ∥p

≈ λ−A1

(∫
|x|≤λ

|f(x)|p|x|pA1dx

) 1
p

and similarly

∥∥∥f̂∥∥∥
p∗

∥∥∥f̂λxB
∥∥∥

p∥∥∥f̂λ

∥∥∥
p∗

≈ λB2

(∫
|x|≥λ−1

|f̂(ξ)|p∗|ξ|p∗B2dx

) 1
p∗

,
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whence we deduce that B2 ≥ A1 and similarly when λ → 0, A2 ≥ B1, and (2) follows.
Besides, note that if B2 = A1, multiplying the two last equations we deduce that

∥f∥p

∥∥∥f̂∥∥∥
p∗

≲

(∫
|x|≤λ

|f(x)|p|x|pA1dx

) 1
p
(∫

|x|≥λ−1
|f̂(ξ)|p∗|ξ|p∗B2dx

) 1
p∗

,

whence (3) follows by letting λ → ∞. (4) follows in the same fashion.

Lemma 3.5.9 implies some easy restrictions on parameters. We now give an idea of the
proof of necessity of the remaining conditions. The next three lemmas are variations
of the following construction. For a smooth and compactly supported ϕ, we consider
functions of the form

f = f1 + f2 := Nϕ(Nx) +
M∑

n=1
εncnϕ(x − n),

for cn to be chosen later and N, M large. This function consists of two parts: a sharp
peak and a tail which ressembles a step function. Clearly, if N is substantially large,

∥f1∥p ≫
∥∥∥f1x

A
∥∥∥

p
,

(by ≫ we mean ”much greater than” in an informal way) and if we chose cn for which
for every M , ∥∥∥f2x

A
∥∥∥

p
≲ 1,

we will have
∥f∥p ≫

∥∥∥fxA
∥∥∥

p
. (3.23)

The Fourier transform of f ,

f̂ = f̂1 + f̂2 := ϕ̂(ξ/N) + ϕ̂(ξ)
(

M∑
n=1

εncne2πiξn

)
,

also has two parts: a wide component and a component roughly concentrated around
the origin. It is easy to see that if N is large

∥∥∥f̂1ξ
B
∥∥∥

p∗
≫
∥∥∥f̂1

∥∥∥
p∗

in such a way that
∥∥∥f̂1

∥∥∥
p∗

∥f∥p ≲
∥∥∥fxA

∥∥∥
p

∥∥∥f̂1ξ
B
∥∥∥

p∗
.

The crucial point is to choose the cn so that∥∥∥f̂2

∥∥∥
p∗

≫
∥∥∥f̂1ξ

B
∥∥∥

p∗
.

If we can accomplish that, since f̂2 is concentrated around the origin,∥∥∥f̂∥∥∥
p∗

≈
∥∥∥f̂2

∥∥∥
p∗

≳
∥∥∥f̂ ξB

∥∥∥
p∗

and we obtain a violation of inequality (3.15) from (3.23).
As a final remark, our cn must satisfy both

∥f2∥p ≤
∥∥∥f2x

A
∥∥∥

p
≲ 1 ≪ ∥f1∥p
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and ∥∥∥f̂2

∥∥∥
p∗

≫
∥∥∥f̂1ξ

B
∥∥∥

p∗
≫
∥∥∥f̂1

∥∥∥
p∗

,

since it is easy to see that ∥∥∥f̂1

∥∥∥
p∗

≈ ∥f1∥p ,

we conclude (see Corollary 1.4.2) that

∥f2∥p ≪
∥∥∥f̂2

∥∥∥
p∗

.

We are now ready to make the previous considerations precise.
Lemma 3.5.10. Assume that inequality (3.15) holds for p > 2 and A1 > 0. Then,
A2 > 1

2 − 1
p
.

Proof. For the sake of contradiction, assume that A2 ≤ 1
2 − 1

p
. Choose M, N > 0,

1 ≥ ϕ ≥ 0 smooth and supported in (0, 1), c1, . . . , cM ∈ R and define

f(x) = f1 + f2 := Nϕ(Nx) +
M∑

n=1
εncnϕ(x − n),

where εn is either 1 or −1. A computation shows that

f̂(ξ) = f̂1 + f̂2 := ϕ̂(ξ/N) + ϕ̂(ξ)
(

M∑
n=1

εncne2πiξn

)
.

Thus, raising inequality (3.15) to p∗, we have

∥f∥p∗

p

∫
R

∣∣∣∣∣ϕ̂(ξ/N) + ϕ̂(ξ)
(

M∑
n=1

εncne2πiξn

)∣∣∣∣∣
p∗

dξ ≲

∥∥∥fxA
∥∥∥p∗

p

∫
R

∣∣∣∣∣ϕ̂(ξ/N) + ϕ̂(ξ)
(

M∑
n=1

εncne2πiξn

)∣∣∣∣∣
p∗

ξBp∗
dx.

Taking expectations over all possible values of ε (see Theorem 1.4.1), we deduce that

E

∥f∥p∗

p

∫
R

∣∣∣∣∣ϕ̂(ξ/N) + ϕ̂(ξ)
(

M∑
n=1

εncne2πiξn

)∣∣∣∣∣
p∗

dξ

 ≲

E

∥∥∥fxA
∥∥∥p∗

p

∫
R

∣∣∣∣∣ϕ̂(ξ/N) + ϕ̂(ξ)
(

M∑
n=1

εncne2πiξn

)∣∣∣∣∣
p∗

ξBp∗
dξ

 . (3.24)

For the RHS of (3.24), we have

E

∥∥∥fxA
∥∥∥p∗

p

∫
R

∣∣∣∣∣ϕ̂(ξ/N) + ϕ̂(ξ)
(

M∑
n=1

εncne2πiξn

)∣∣∣∣∣
p∗

ξBp∗
dξ

 ≲

∥∥∥fxA
∥∥∥p∗

p

∫
R

|ϕ̂(ξ/N)xB|p∗
dξ +E

∫
R

∣∣∣∣∣ϕ̂(ξ)
(

M∑
n=1

εncne2πiξn

)∣∣∣∣∣
p∗

ξBp∗
dξ

 ,
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and applying Fubini’s and Khintchine’s (or simply Hölder’s) inequality, we deduce that

RHS ≲
∥∥∥fxA

∥∥∥p∗

p

∥∥∥ϕ̂ξB
∥∥∥p∗

p∗

(
M∑

n=1
|cn|2

) p∗
2

+
∥∥∥f̂1ξ

B
∥∥∥p∗

p∗

 . (3.25)

For the LHS of (3.24), using the reverse triangle inequality for the norm X 7→ E[|X|p∗ ]
1

p∗ ,
we deduce that

∥f∥p∗

p

∫
R
E

∣∣∣∣∣ϕ̂(ξ/N) + ϕ̂(ξ)
(

M∑
n=1

εncne2πiξn

)∣∣∣∣∣
p∗p∗ 1

p∗

dξ

≥ ∥f∥p∗

p


∫
R

E
∣∣∣∣∣ϕ̂(ξ)

(
M∑

n=1
εncne2πiξn

)∣∣∣∣∣
p∗

1
p∗

− |ϕ̂(ξ/N)|


p∗

dξ

 . (3.26)

Continuing the estimates for the LHS, we have that, by the Khintchine inequality (The-
orem 1.4.1) and the reverse triangle inequality we conclude that

E
[∥∥∥f̂∥∥∥p∗

p∗

] 1
p∗

∥f∥p ≳ ∥f∥p


∫
R

Ap|ϕ̂(ξ)|
(

M∑
n=1

|cn|2
) 1

2

− |ϕ̂(ξ/N)|


p∗

dξ


1

p∗

≥

∥f∥p

Ap

∥∥∥ϕ̂∥∥∥
p∗

(
M∑

n=1
|cn|2

) 1
2

−
∥∥∥f̂1

∥∥∥
p∗

 . (3.27)

Hence, using both the estimates for the LHS and the RHS, we deduce that

∥f∥p

Ap

∥∥∥ϕ̂∥∥∥
p∗

(
M∑

n=1
|cn|2

) 1
2

−
∥∥∥f̂1

∥∥∥
p∗

 ≲
∥∥∥fxA

∥∥∥
p

∥∥∥ϕ̂ξB
∥∥∥

p∗

(
M∑

n=1
|cn|2

) 1
2

+
∥∥∥f̂1ξ

B
∥∥∥

p∗

 .

(3.28)
Next, some easy computations show that (here ≈ is allowed to depend on ϕ)

∥f∥p ≈ ∥f1∥p + ∥f2∥p ≈ N
1

p∗ +
(

M∑
n=1

|cn|p
) 1

p

;

∥∥∥f̂1

∥∥∥
p∗

=
∥∥∥ϕ̂∥∥∥

p∗
N

1
p∗ .

∥∥∥fxA
∥∥∥

p
≤
∥∥∥f1x

A1
∥∥∥

p
+
∥∥∥f2x

A2
∥∥∥

p
≈ N

1
p∗ −A1 +

(
M∑

n=1
|cn|pnpA2

) 1
p

;
∥∥∥f̂1ξ

B
∥∥∥

p∗
≲ N

1
p∗ +B1+B2 .

Finally, define cn = 1√
n log(n)

. Note that ∑∞
n=1 c2

n = ∞ but, since A2 ≤ 1
2 − 1

p
, S :=(∑∞

n=1 cp
nnpA2

) 1
p ≤ ∑∞

n=1
1

n log(n)
p
2

< ∞. Fix N such that N
1

p∗ ≈ ∥f1∥p ≥ S, so that we
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have ∥f∥p ≈ N
1

p∗ , then letting M → ∞, inequality (3.28) becomes

N
1

p∗
∥∥∥ϕ̂∥∥∥

p∗
≲
(
N

1
p∗ −A1 + S

) ∥∥∥ϕ̂ξB
∥∥∥

p∗
,

and since A1 > 0, we obtain a contradiction by letting N → ∞.

Lemma 3.5.11. Assume that inequality (3.15) holds for p > 2. If A2 ≤ 1
2 − 1

p
it is

necessary that B1 = A1 = 0.

Proof. We already know that it is necessary that A1 = 0. For the sake of contradiction
assume that B1 > 0. Then, let ϕ be a non-negative Schwartz function supported in
[0, 1]. Take c2, . . . , cn · · · ∈ R. For each M, N ≥ λ−1 > 1 define

f(x) = Nϕ(Nx) +
M∑

n=2
εncnϕ(x − n).

Then,

f̂(ξ) = ϕ̂(ξ/N) + ϕ̂(ξ)
M∑

n=2
εncne2πinx,

where εi = ±1. Clearly,

∥f∥p ≈ N
1

p∗ +
(

M∑
n=2

|cn|p
) 1

p

.

Besides, as we did in the previous proof (equation (3.27)),

E
[∥∥∥f̂∥∥∥p∗

p∗

] 1
p∗

≳

Ap

∥∥∥ϕ̂∥∥∥
p∗

(
M∑

n=1
|cn|2

) 1
2

−
∥∥∥f̂1

∥∥∥
p∗

 =
∥∥∥ϕ̂∥∥∥

p∗

Ap

(
M∑

n=1
|cn|2

) 1
2

− N
1

p∗

 .

From equation (3.22) in Lemma 3.5.9 , we have

∥f∥p

∥∥∥f̂∥∥∥
p∗

≲

(∫
|x|≤λ

|f(x)|pdx + λ−pA2
∫

|x|≥λ
|f(x)|p|x|pA2dx

) 1
p

·

(
λp∗B1

∫
|ξ|≤λ−1

|f̂(ξ)|p∗|ξ|p∗B1dξ + λp∗B2
∫

|ξ|≥λ−1
|f̂(ξ)|p∗|ξ|p∗B2dξ

) 1
p∗

.

Because of our choice of f , (observe that ϕ(Nx) vanishes for x ≥ λ ≥ N−1)
(∫

|x|≤λ
|f(x)|pdx

) 1
p

≤ N
1

p∗ ;

(
λ−pA2

∫
|x|≥λ

|f(x)|p|x|pA2dx

) 1
p

≈
(

λ−pA2
M∑

n=2
|cn|pnpA2

) 1
p

;

(
λp∗B1

∫
|ξ|≤λ−1

|f̂(ξ)|p∗|ξ|p∗B1dξ

) 1
p∗

≲ N
1

p∗ + λB1

∥∥∥∥∥ϕ̂
M∑

n=2
εncne2πinx

∥∥∥∥∥
p∗

;
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(
λp∗B2

∫
|ξ|≥λ−1

|f̂(ξ)|p∗|ξ|p∗B2dξ

) 1
p∗

≲ λB2

NB2− 1
p∗ +

∥∥∥∥∥1|ξ|≥λ−1ϕ̂
M∑

n=2
εncne2πinx

∥∥∥∥∥
p∗

 .

Analogously to the previous lemma, raising inequality (3.22) to the p∗-th power, taking
expectations, using the Khintchine inequality and then taking p∗-th roots, we get
N

1
p∗ +

(
M∑

n=2
|cn|p

) 1
p


∥∥∥ϕ̂∥∥∥

p∗
Ap

(
M∑

n=1
|cn|2

) 1
2

− ∥ϕ∥p∗ N
1

p∗

 ≲

N
1

p∗ +
(

λ−pA2
M∑

n=2
|cn|pnpA2

) 1
p

×

N
1

p∗ + λB1
∥∥∥ϕ̂∥∥∥

p∗

(
M∑

n=1
|cn|2

) 1
2

+ λB2

NB2− 1
p∗ +

∥∥∥1|ξ|≥λ−1ϕ̂
∥∥∥

p∗

(
M∑

n=1
|cn|2

) 1
2


 (3.29)

Here, since A2 ≤ 1
2 − 1

p
, there exists a sequence cn such that ∑∞

n=2 cp
nnpA2 = Sp < ∞ and∑∞

n=2 |cn|2 = ∞.
Choosing N such that N

1
p∗ > S and letting M → ∞, we deduce that

N
1

p∗ ≲
(
N

1
p∗ + λ−A2S

)
(λB1 + λB2

∥∥∥1|ξ|≥λ−1ϕ̂
∥∥∥

p∗
).

Letting N → ∞ and then letting λ → 0 we obtain the desired contradiction.

Lemma 3.5.12. Assume that inequality (3.15) holds for p > 2. If A1 < 1
2 − 1

p
, then

B2
2 ≥ A1(1

2 − 1
p
).

Proof. Before we begin, note that if B2 = 0, Lemma 3.5.9 implies that A1 = 0, so that
the conclusion holds. From now on assume that B2 > 0. Once again, for any λ > 0,

∥f∥p

∥∥∥f̂∥∥∥
p∗

≲

(
λ−pA1

∫
|x|≤λ

|f(x)|p|x|pA1dx + λ−pA2
∫

|x|≥λ
|f(x)|p|x|pA2dx

) 1
p

·

(
λp∗B1

∫
|ξ|≤λ−1

|f̂(ξ)|p∗|ξ|p∗B1dξ + λp∗B2
∫

|ξ|≥λ−1
|f̂(ξ)|p∗ |ξ|p∗B2dξ

) 1
p∗

We are going to use a modification of the previous argument.
Choose λ, N > 2 integers, ϕ ≥ 0 smooth and supported in (0, 1). Let further c1, . . . , cn, · · · ∈
R and define

f(x) = f1 + f2 := Nϕ(Nx) +
λ−1∑
n=1

εncnϕ(x − n),

where εn is either 1 or −1. It is easy to see that

f̂(ξ) = f̂1 + f̂2 := ϕ̂(ξ/N) + ϕ̂(ξ)
(

λ−1∑
n=1

εncne2πiξn

)
.
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Since f is supported in [0, λ],
(

λ−pA1
∫

|x|≤λ
|f(x)|p|x|pA1dx + λ−pA2

∫
|x|≥λ

|f(x)|p|x|pA2dx

) 1
p

=
(

λ−pA1
∫

|x|≤λ
|f(x)|p|x|pA1dx

) 1
p

≈ λ−A1

N
1

p∗ −A1 +
(

λ−1∑
n=1

|cn|pnpA1

) 1
p

 .

Likewise,

∥f∥p ≈ ∥f1∥p + ∥f2∥p ≈ N
1

p∗ +
(

λ−1∑
n=1

|cn|p
) 1

p

.

By monotonicity and using Hölder’s inequality,

(
λp∗B1

∫
|ξ|≤λ−1

|f̂(ξ)|p∗|ξ|p∗B1dξ

) 1
p∗

≲ λ− 1
p∗ + 1

2 ∥f∥2 ≈ λ− 1
p∗ + 1

2

√
N +

(
λ−1∑
n=1

|cn|2
) 1

2

 .

We also have ∫
|ξ|≥λ−1

|f̂(ξ)|p∗|ξ|p∗B2dξ ≤
∫
R

|f̂(ξ)|p∗|ξ|p∗B2dξ

≲ N1+p∗B2 +
∫
R

|ϕ̂(ξ)xB2|p∗
∣∣∣∣∣
λ−1∑
n=1

εncne2πiξn

∣∣∣∣∣
p∗

dx;

and in the usual way (equation (3.27)),

E

[∥∥∥f̂∥∥∥p∗

p∗

] 1
p∗

≳
∥∥∥ϕ̂∥∥∥

p∗

(λ−1∑
n=1

|cn|2
) 1

2

− N
1

p∗

 .

So that raising equation (3.22) to p∗, applying Khitchine’s inequality and taking p∗-th
root, we deduce that

∥∥∥ϕ̂∥∥∥
p∗

Ap

(
λ−1∑
n=1

|cn|2
) 1

2

− N
1

p∗


N

1
p∗ +

(
λ−1∑
n=1

|cn|p
) 1

p

 (3.30)

≲ λ−A1

N
1

p∗ −A1 +
(

λ−1∑
n=1

|cn|pnpA1

) 1
p

×

λ− 1
p∗ + 1

2

N
1
2 +

(
λ−1∑
n=1

|cn|2
) 1

2

+ λB2

N
1

p∗ +B2 +
∥∥∥ϕ̂ξB2

∥∥∥
p∗

(
λ−1∑
n=1

|cn|2
) 1

2




≲ λ−A1

N
1

p∗ −A1 +
(

λ−1∑
n=1

|cn|pnpA1

) 1
p

 · λB2

N
1

p∗ +B2 +
∥∥∥ϕ̂ξB2

∥∥∥
p∗

(
λ−1∑
n=1

|cn|2
) 1

2

 ,

because as p∗ < 2,
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λ− 1
p∗ + 1

2

N
1
2 +

(
λ−1∑
n=1

|cn|2
) 1

2

 ≲ λB2

N
1

p∗ +B2 +
∥∥∥ϕ̂xB2

∥∥∥
p∗

(
λ−1∑
n=1

|cn|2
) 1

2

 .

Choose cn such that (
λ−1∑
n=1

|cn|pnpA1

) 1
p

= N
1

p∗ −A1

and such that the Hölder inequality

(
λ−1∑
n=1

|cn|2
) 1

2

≤
(

λ−1∑
n=1

|cn|pnpA1

) 1
p
(

λ−1∑
n=1

n
− A1

1
2 − 1

p

) 1
2 − 1

p

becomes an equality. This implies that

(
λ−1∑
n=1

|cn|2
) 1

2

≈ N
1

p∗ −A1λ−A1+ 1
2 − 1

p .

Finally, we take λ and N to be related by

NB2+ 1
p∗ = N

1
p∗ −A1λ−A1+ 1

2 − 1
p ≈

(
λ−1∑
n=1

|cn|2
) 1

2

,

that is, λ = N
A1+B2

1
2 − 1

p −A1 .
To finish the proof, let us examine the effect of the previous choices in each term of
equation (3.30). Recall that, as stated in the beginning of the proof, B2 > 0.N

1
p∗ +B2 +

∥∥∥ϕ̂ξB2
∥∥∥

p∗

(
λ−1∑
n=1

|cn|2
) 1

2

 ≈ N
1

p∗ +B2 ;

∥∥∥ϕ̂∥∥∥
p∗

(λ−1∑
n=1

|cn|2
) 1

2

− N
1

p∗

 ≈ N
1

p∗ +B2 ;

N
1

p∗ −A1 +
(

λ−1∑
n=1

|cn|pnpA1

) 1
p

 ≈ N
1

p∗ −A1 ;

N
1

p∗ +
(

λ−1∑
n=1

cp
n

) 1
p

 ≈ N
1

p∗ .

Hence, inequality (3.30) implies

1 ≲ λB2−A1N−A1 = N
(B2−A1)(A1+B2)

1
2 − 1

p −A1
−A1

,
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and letting N → ∞ we conclude that

0 ≤ (B2 − A1)(A1 + B2)
1
2 − 1

p
− A1

− A1.

That is,
B2

2 − A2
1 ≥ −A2

1 + A1(
1
2 − 1

p
),

whence the result follows.

We are now in posicion to conclude the proof of the Theorem.

Proof of necessity in Theorem 3.5.1. To begin with, the conditions B2 ≥ A1 and A2 ≥
B1 follow from the second item of Lemma 3.5.9. Second, if A2 ≤ 1

2 − 1
p
, Lemmas 3.5.10

and 3.5.11 show that B1 = A1 = 0. Third, if A2 > 1
2 − 1

p
and A1 < 1

2 − 1
p
, Lemma 3.5.12

shows that B2
2 ≥ A1(1

2 − 1
p
); if B2 = A1 = 1

2 − 1
p
, the third item of Lemma 3.5.9 together

with Lemma 3.5.10 provide a contradiction, so that necessarily B2 > A1.
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