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Introduction and Summary

The main actor of this project is the Fourier transform, which, for f integrable is defined
as

f©) = [ r@)etda.

This object, and its discrete counterpart, the Fourier series, are extremely important,
not only in Mathematics but also in Physics and Engineering. In spite of its simple
definition, the relation between f and f is not at all easy to understand. To this end,
we can use norm inequalities, like the Hausdorft-Young inequality, which, for 1 < p < 2
states that

7], < K151, (1)

or Uncertainty Principle relations, which, roughly speaking, assert that the Fourier trans-
form of a localized function is not localized. The most famous of these is the Heisenberg
Uncertainty Principle:

lefll, |67, = K 11715 (2)

From a qualitative point of view, these inequalities tell us that that the Fourier transform
of an integrable function can not have important blow-ups and that the transform of a
concentrated function can not be concentrated around one point.

The goal of this thesis is to present generalizations of the aforementioned inequalities.
First, to obtain relations between the distribution of f and f in their domain, we study
Weighted Fourier inequalities, that is, inequalities of the form

I

EE N (3)

where u,v are weights, that is, non-negative measurable functions. Observe that in-
equality is clearly a generalization of .

Second, there are many ways in which the idea behind the Uncertainty Principle, that
is, transforms of localized functions must be spread over their domain, can be quantified.
For instance, we can measure the degree of localization of a function by studying its rate
of decay, by computing the fraction of its mass which lies outside of some region, or by
studying generalizations of inequality , namely,

1]

il = K, (4)

The work is devoted to surveying known results and obtaining new ones on the pre-
viously mentioned problems. The thesis is organized as follows. Chapter (1] is devoted
to introducing some preliminary results and concepts which are used in this work. In
Chapter 2| we review the conditions on u and v obtained in [4] which guarantee that
inequality holds. Next, we review classical necessary conditions and obtain new ones
(Theorems [2.3.6] and [2.3.7), thereby showing that the conditions in [4] are necessary
when u and v satisfy a natural monotonicity condition. To conclude this chapter, we
further explore the topic by studying the case of non-monotonous u,v and obtain new
results. Finally, in Chapter [3| we survey several forms of the Uncertainty Principle (UP):
the Hardy UP, the Amrein-Berthier UP and the Nazarov UP. We also study UP of the
type , extending the results obtained in [28] for the whole range of parameters, (see




Theorem . Moreover, we fully characterize a symmetric Heisenberg type UP with
broken power weights, see Theorem [3.5.1]

Finally, I would like to thank my supervisor, Sergey Tikhonov, for his guidance and also
Kristina Oganesyan for numerous helpful remarks.
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Chapter 1

Preliminaries

1.1 Notation

Throughout the whole text we shall make use of the following notation and terminology

o A weight is a non-negative measurable function;

For a weight v, a function f and p > 0,

= ([ 150

L7 is the weighted Lebesgue space of measurable functions f for which || f|[, , < oo;

* _ _DP .
D _p—l’

1g is the indicator function of the measurable set E.

Finally, we say that two expressions I} and F; are equivalent (we write Fy &~ Fy) if there
exists a constant K > 0 only dependent on p and ¢ such that K—'F, < F, < KF,.

1.2 Some auxiliary inequalities

The first result is the well-known Chebyshev inequality
Lemma 1.2.1. Let f > 0 be measurable, then for A > 0,
{z: f(x) > M A< | f]; -
The following two results are classical inequalities, see for instance [6] |13], [18] or [19)].

Lemma 1.2.2 (Hardy’s Lemma). Let a,b be two non-negative functions and assume
that for any x > 0

/Om a(s)ds < /Ow b(s)ds.

Then, for any non-increasing function f,

/OOO f(s)a(s)ds < /OOO F(s)b(s)ds.
7



8 CHAPTER 1. PRELIMINARIES

Theorem 1.2.3 (Continuous Hardy’s Inequality). Let 1 < p,q < oo and let u,v be
weights. Then, the inequality

(/Ooou(a:) (/Oxf(s)ds)qdm); <K|fl,. (1.1)

holds for any f if and only if K < oo, where

1. ifq>p, 1 1
K =~ sup </ u)q (/ Ul_p*>p* ; (1.2)
>0 s 0

K~ (/Ooov(x)lp* (/;ou)g (/Ozvlp*)qr*dx>i, (1.3)

with r~t =q¢ ' —p L.

2. if g <p,

Theorem 1.2.4 (Discrete Hardy inequality).

1. Let r > 1 and p > 1. Then, there exists a constant K(r,p) such that for any
non-negative sequence (T, )nez and p > 1

oo o o p o0
doortak < Y ” (Z xj) < K(r,p) > r"ab.

n=-—00 n=-—00 j=n n=-—00
2. Assume that ¢ < 1 and let u,v be weights with v non-increasing. Then, the in-

equality
(Zun(Z%)) SKZvnwn

n=-—00 j=—00 n=-—00

holds for any non-negative x,, if and only if

_ L
o) ZOO— W —q* q*
n=—oo Un

Moreover, the best constant K is equivalent to the previous expression.
We also need the following result about the boundedness of the Riesz potential:

Theorem 1.2.5 (Theorem 1 in [25]). Let u be a non-negative measurable function. If
for some r > 1, the supremum over all intervals I satisfies

a -1 r %
sup [1]* (1] /u < 00,
I I

then, there exists K such that for any g

ol 3] 55



1.3. DECREASING REARRANGEMENT FUNCTION 9

1.3 Decreasing rearrangement function

In this work we will need some facts about the rearrangement function. The interested
reader can learn more about this function in [6].

Definition 1.3.1. Let (X, u) be a measure space and let f : X — C be a measurable
function. The distribution function of f is given by

Dy(s) = {o € X : 1f(@)] > s},
and the decreasing rearrangement of f, by
f*(t) =inf{s > 0: Dy(s) < t}.
Proposition 1.3.2. The following properties hold:
1. Dy and f* are non-increasing,
2. 4f (tn)0y C Ry is a decreasing sequence with limit s, then Dy(s) = lim,, Dy(t,);
3. Dy(s) = Dy(s);
4. for any p >0,
J f)Fauts) = p [ Dy(s)ds = [ (ot
5. foranyp >0
(fP) =)
Proof. (1) and (5) are clear. (2) is the Monotone Convergence Theorem for measures.
To prove (3), unpacking definitions, we obtain
Dp(s) =z >0: f(x) > s} ={z>0:inf{t >0: Ds(t) <z} > s}}|.
Next, we show that
{x>0:inf{t >0: Ds(t) <z} >s}={x>0:Ds(s) >x}=1[0,D¢(s)),
whence the result follows. Clearly,
{x>0:inf{t >0: Ds(t) <} >s} C{x>0:Ds(s) > z};

for the reverse inclusion, for the sake of contradiction assume that for some x with
Dy¢(s) >z, inf{t > 0: Df(t) < z} = s. Then, there exists a decreasing sequence (,)5>,
such that lim, ¢, = s and Dy(t,,) < x < D{(s), which contradicts (2).

For (4) an application of Fubini’s Theorem yields

/ |f(5)[Pdp(s) p/ /|f P dwdp(s) p/ pis : |f(s)] > x}a? ™ dx

= p/oo Df(l‘)l’p_ldS,
0

and the result follows by noting that by (3), f and f* have the same distribution function.
O

Lemma 1.3.3 (Hardy-Littlewood rearrangament, [4], [6]). Let f, g be non-negative func-
tions. Then, the following inequalities hold

|t [ e [T
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1.4 The Khintchine inequality

The last preliminary result is the Khintchine inequality.

Theorem 1.4.1 ([1]). For any p > 0, there exist 0 < Ay, B, < 0o > such that for all n

and all ay,...,a, € C,
P\ > " 3
]) < B, (Z\%‘P) : (1.4)
j=1

Ap (Z ’%”2) < (E
j=1

where 1, ..., &, are independent random variables which take the values £1 which prob-
ability % We remark that, here

p

n
Z i€

Jj=1

n
Z a;c;
j=1

P
=92 >
e1==%1 +1

77777777

Proof. Before we begin, note that by considering separately the real and the imaginary
part, it suffices to prove the theorem for a; € R. First, assume that p > 2. In this case,
the LHS is follows from Holder’s inequality by noting that

o)

For the RHS, put S, = >%_; a;e;. Then, for A > 0 and using the independence of the
€;, we obtain

1
2 2

n

[e57] H [ei%] = H cosh(Aa;).

J=1
Next, expanding in power series, and using that (2)! > 27!
)\

oo )\ 22 oo >\2a2.
a; a; J
.7 .7 _
cosh(Aaj) = E g =e 2 .
i=0 ! =0

Thus, from Chebyshev’s inequality,

222

P(S, > t)eM < E[eM"] <e 2
Here, setting A = W7 we get,
all2

+2

P(S, >t) <e 23,

Finally, using that .S, is symmetric, we deduce that

2

P(|S,| > t) < 2e 2113

and

00 00 _ 2 o] 2
BlISu] =p [ 0P > i < 2p [ ot B ar = fallg2p [ tens = By all.
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Second, if p < 2, the RHS is trivial. For the LHS, by Hoélder’s inequality,
1 £\ 2F 1
lall3 = ElIS.P) < (B[S.F)? (EIS.P])™ < (ElIS.P)? B

so that the result follows with A, = Bz;l. ]

This result allows us to construct various counterexamples in harmonic analysis. For
instance,

Corollary 1.4.2. The Hausdorff- Young inequality

1. < i,
does not hold for p > 2.
Proof. Let ¢ be a smooth function with support in [—%, %] Let a1,...,a, € C and
consider .
x) = a;p(xr — ).
j=1
Clearly,

j=1

n
L£15 = Nlellp > lal;
=

177 = [ 1ot mzae

Hence, if the Hausdorff-Young inequality holds7 for any choice of signs ¢,

[ 166) (W)HZZ raj\p) ,
j=1

and by taking expected values, applying Fubini’s Theorem we deduce that

IRGle

so that using the Khintchine inequality, we deduce that

lall? [ 181 5 (Hasnzj;\am) .

Taking a; = 1, we obtain that the LHS behaves like N & and the RHS like NV p?, which
is a contradiction since p > 2. O]

ja;e

LS (HdﬁHfZ > \aj!”) :
j=1

n
|3 e
j=1
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Chapter 2

Weighted Fourier inequalities

Given an integrable function f, its Fourier transform f is defined as

f&) = [ fa)ear.
It is well known that for f integrable, we have that

Il < 0l 2.1)

Moreover, if f is also square-integrable, the Parseval identity,

171, = 141, 22)

holds. Since L' N L? is a dense subspace of L?, we can extend by continuity the Fourier
transform to the whole L?. In this case, for f € L?, it is true that f € L? and the

~

Fourier inversion formula, f(z) = f(—x), holds.

In order to define the Fourier transform in other spaces by using the same method, for
instance, between the weighted Lebesgue spaces LP and LI, one needs to first establish
a Pitt inequality (after Pitt, who obtained analogous inequalities for Fourier Series and
power weights in [23], see also [26]), that is, an inequality of the form

7]

for f belonging to a suitable dense subspace of L?, what motivates the study of (2.3),
the main object of this chapter. It must also be mentioned that the Pitt inequality is a
crucial tool in the study of Uncertainty Principles, see also [11], the theme of the third
chapter of this work, as well as in many other areas of Analysis and PDE’s; see [3], [§]

and [9].

< K|/l

q7u p7’U )

(2.3)

This chapter is divided in four sections. In the first one, we explain the method of
rearrangements due to Heinig and Benedetto (|4]), in which sufficient conditions on
u,v in terms of their non-increasing rearrangements for the inequality to hold are
obtained. It is interesting to note that the only properties of the Fourier transform which
are used are equations and . This, in particular, implies that any inequality
obtained by this method must also be satisfied by any rearrangement of the Fourier

13



14 CHAPTER 2. WEIGHTED FOURIER INEQUALITIES

transform. Therefore, it is not expected that, in general, sufficient conditions thus
obtained are necessary. However, when the weights satisfy some monotonicity conditions,
it is possible to show that these conditions are indeed necessary. In the second section, we
comment briefly on classical necessary conditions and obtain new ones, thereby showing
that the conditions in [4] are sufficient and necessary for monotonous weights.

The third section illustrates what is lost by only using the aforementioned bounded-

ness properties of the Fourier transform. We obtain instances in which the sufficient
conditions of |4] do not hold, yet for which (2.3)) is satisfied.

2.1 Definition and duality

As mentioned before, inequality ([2.3) is needed to define the Fourier Transform as an
operator from LP to LI. More precisely,

Proposition 2.1.1. Assume that for given p, q and non-negative u, v the inequality
holds for f € L'. Then, there exists a unique bounded linear operator which extends
the Fourier transform as an operator from LP to L%, i.e, there exists a linear bounded
operator T : LP — L2 such that T(f) = f whenever f € L' N L.

Proof. We show that L' N LF is dense in L2, whence the result will follow. To this end,
let f be such that | f||,, < oo and, for each N, define

In(®) = f(@)jgj<nljf@)<N-

Clearly, fy € L' and, by the Dominated Convergence Theorem, limy .o ||f — f]| o =
0.

Lemma 2.1.2 (Duality). Inequality (2.3) holds for any f € L' (and a posteriori for
any f € LP) if and only if, for any ¢ € L' (and a posteriori for any ¢ € LY, ) the

following holds

L (2.4)

q*7’u’17q

|4

Observe that the previous statement can be rephrased in a more compact way as

L <Ko

p*7/U17p -

A

su HJ?Hq’u:su ’
T T T

1
p*vl-p

1
q*ul=d

Proof. First, observe that if we let V = 05 and U = ul%q, we have that V=% = v and

Ure =U , so applying twice the transformation takes us back to the original inequality.
Hence, it suffices to prove one implication.
Assume that inequality (2.4) holds and that u is finite everywhere. Let

Av={pe L’ :|¢ pui

o =1L LS N}.
Then, using Holder’s inequality, we obtain that for f € L', and since u is finite every-
where,

/R]f]qu = sup /Rfu5¢ = sup [ fuigp=:1 (2.5)

€Lyl ll 3+ =1 NgeAy /R
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Here, since for each N, f and u%qb belong to L', an application of Fubini’s Theorem and
then Holder’s inequality yield

(i) (2.6)

1
I= sup | fluig)* < sup [f[l,.,
N,peAN

N,peAy /R p*ul=p

Finally, the assumption implies that

su
sup 1l

1
o o <K s Il
N JPEAN

p*ul-p N

1
(wio)] .ty = K s> S ol

q*,u

and since [|¢[|,. =1 we obtain that (2.3) holds.
For general u, let uy = min(N,u). Since u > wuy, we have that inequality (2.4) holds
for uy. Thus, for f € L' we have

1. <Kl

and the result follows by applying the Monotone Convergence Theorem. O

2.2 Sufficient conditions

In this section we describe the method used in [4] to obtain conditions on u, v for ([2.3))
to hold. The main tool is the following Calderén-type result, which was obtained in [16].

Lemma 2.2.1. Let T be a linear operator of type (1,00) and (2,2) with norm < 1. That
is, for any f € L*,
ITfll < 11l

and for any f € L?,
ITflly < [If1ls-

Then, for any f € L' + L? and any x > 0,

/Oz(Tf)*(t)th < 4/036 (/Ot f*(s)ds>2dt. (2.7)

Proof. For u > 0, define f, = fljf<y +u(l — 1j5<,) and f* = f — f,. Observe that

(fu)” = min(f*, u) = (f)u-
Then, by the triangle inequality and the (1, 00) boundedness of T,

Tf|(z) < [Tful(x) + [Tf|(2) < |Tful (@) + (1], -

Hence,
(Tf) (@) < (Tfu)"(z) + /1l
and

kz(ﬁﬂTﬁ%$WQU2§<A%Tﬁr@ﬂkfﬂ+wmnﬂm

< (/OOO(Tfu)*(S)st> 1/2 n x1/2 ||fu||1 < (/Om(fu)*(3)2d3> 1/2 L Il/Q ||fu||1 :



16 CHAPTER 2. WEIGHTED FOURIER INEQUALITIES

where the last inequality follows from T being of type (2,2). Set u = f*(z~'), then

[T = [ Uuspas = a @ [T ks

and
x*l

170 = [ £ = s
Putting everything together and applying the change of variable y = x

I<y'2p (/ £ _12_2ds) 4/ (/0
( / ’ f*(sl)%?dsf a2 ( / f*(s)ds) .

Finally, since f* is non-increasing, we deduce that

/(—1f ds</ (/ dt) ds
. (/ f*(S)ds>2 <[ (/OS f*(t)dt>2,

whence the result follows. OJ

~1. we obtain

—1

f*(S)dS> ) =

and
1

Next, we want to replace the power by a different ¢ > 2. For this, the following lemma
is fundamental.

Lemma 2.2.2 (|17]). Let h be a positive function and define ®(x) = [7 [5 h(u)duds.
Then if f, g are non-increasing positive functions such that for any x

| r)as < [ g(s)ds
| etrnas < [ egs)ds

Proof. Observe that an application of Fubini’s Theorem yields

O(x) = /0 h(u)(z — u)du = /0” hu)(z — ), du.

holds, we have that

Thus,
[ e@nde = [ [ b))~ 0y dude = [T h() [T (@) - 0 dodu,

and the result follows because for any u

/0 (f(x) —u+dx</ x) —u)ydx.

Indeed, since f is non-increasing, there exists a oo > x* > 0 such that

/Ooo(f(x) —u)ydr = /0$*<f($) —u)dr < /Ogc*(g( —u)dzr < / — ) dr.
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Corollary 2.2.3. Let T be a linear operator of type (1,00) and (2,2) with norm < 1.
Let ¢ > 2. Then, for any f € L' + L? and any x > 0,

[nreras ([ f(s)*ds>th. .

Proof. From Lemma [2.2.1| we know that

[@praras [ ( [ f(S)*d8>2dt,

and note that for h(z) = (£ —1)42272 > 0, ®(z) = z%. Hence, an application of Lemma

4 2
2.2.2{ with T ,)(Tf)*(¢)* and Tjg 4 (f(f f(s)*ds) yields the result. O

Using the previous results, we proceed to state and prove the central results of this
section.

Theorem 2.2.4. Let 1 < p,q < oo with ¢ > 2 and u,v be weights and T as before.
Then, the inequality

([T ey wa) < & ([Taprar rera)’ (29)
holds with:
1. Ifq=p, 1
ko () ([7Q)) < e
2. Ifq<p,

1
0o 1/s q s /1N* F /1\* . T
o (L) ) ) () o) o e
0 0 0 \v v
Proof. From Corollary we deduce that

/OI(Tf)*(t)th < /0 (/0 h f(s)*ds)th.

and using Hardy’s Lemma (Lemma [1.2.2)) and the change of variable formula, we obtain

[T e s [Tuw ( / o f(s)*ds)q at= [Ty ( / t f(s)*ds)q dt.

Finally, from Hardy’s Inequality (Theorem|1.2.3|) and the conditions on u*.v* we conclude

that 1 |
([ ([ a) < ([ sl

whence the result follows. O]
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Theorem 2.2.5 (Pitt inequality, [4]). Let 1 < p,q < oo and u,v be weights. Then,
inequality (2.3|) holds with:

1. If ¢ > p,

s 1 /s /71N\* , pi*
([ (L)) e em
s 0 0 (%

2. If ¢ < p and either 2 < p,q or 2 > p,q,

s (L) ) ) () o) <

equivalently,

(/Ooou*(t) (/Otu) </01 (11})3*—1);;611&) < o0, (2.14)

where ! =gt —p7!

Proof. First, if ¢ > 2, we obtain the result from Theorem with Tf = f and the
following chain of rearrangement inequalities:

o= “*“)(Tf)*(t)thf s /f(l/v)*(t)*f*(t)pdt)’l’ < Ul

If ¢ < 2, by Lemma [2.1.2] we obtain that

A

f
sup % — gu
£l s

Since in this case ¢* > 2, we deduce the result by observing that the transformation
(p, q,u,v) = (¢*,p*,v?"/P, u~7/7) does not transform the previous estimates for K.

Indeed,

p*7fu_p* /p

q*,u*q*/q

1. First, since —p*/p=1—p* and ¢*/q = q%v

1
£

s % X 1/s 1 * % s i /s /71\* P
-p*/p|" )" -1} _ )¢ Z) -1
e (/o [v ] ) </0 (uq*/q> ) P </0 u) </0 (U) ) '
2. Second, since ¢ < 2, r/q =r/p+ 1, applying Fubini’s Theorem, we obtain
FU ) G )7 G) eras
0 0 v

oo 1/s t % * p

/ [/ (/u)dtl( ()”‘l)

0 0 0 v
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O

Remark 2.2.6. In 4], it was stated that the conclusions of Theorem hold in the
case ¢ < 2 < p too. However, as it was noted in |24)] this is not true. In [24], the
authors obtained extra conditions which, together with the condition of Theorem (2.2.

are sufficient for ([2.3|) to hold.

As a counterexample, we also have

Proposition 2.2.7. Let p > 2 and v = x* with 0 < a = § — 1. Then, the inequality

([17

does not hold. However, condition[9 of Theorem holds.

1

") S 1l (215)

Proof. Condition [2] of Theorem [2.2.5] is here

1 T % * pL* 1 T r ra
/tE / s =) dt%/ TR dE < oo,
0 0 0

where we have used that (1 — £)(p* — 1) > —1. Since 1 = z% - %, we deduce that this
condition holds.

However, using the same method we used in Corollary [1.4.2) we deduce that inequality
implies that there exists a constant K such that for any sequence (a,,)°

n=1

- 1
p
||a||QSK(Z |an|pna) |

n=1

which, by Holder’s inequality, implies that

[e.e] « o0
Zn_m = Zn_l < 00,
n=1 n=1

which is not true.

2.3 Necessary conditions

Now we set on to find necessary conditions for inequality to hold. We shall show
that if ¢ > p, u is non-increasing and v is non-decreasing, the conditions obtained in [2.2.5]
are necessary. We also obtain, by using results in Banach Space theory, new necessary
conditions for the case p > ¢, which match conditions [2] in Theorem when v and v
are monotonic.

The following result is well-known:
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Proposition 2.3.1. Assume that inequality (2.3)) holds. Then,

1 Bl
sup </ u>q </ v1117>p < K, (2.16)
I,J intervals, |I||J|=(2r)—1t \JI J
1

1
q 1\ p*
sup (/u) </vlv> < K.
1,J intervals, |I]|J]|<(2m)~1 I J

In particular, if u is non-increasing and v is non-decreasing

equivalently,

N .
Sup(/su> (/ vlipdx>p < K.
s>0 0 0

Hence, in this case, and if ¢ > p, Theorem |2.2.5 is sharp.

Proof. Assume first that v > 0. For s > 0 and M > 0, define f, p(z) = v(:v)ﬁﬂwM]l[o’S].
Observe that f; s is integrable and || fsa|,, < oo, Then,

A~ s 1
Foar(€) = [ 0@) 7 Lo e der
In particular, if |27s¢| < 1, the real part of the Fourier transform satisfies
Re four(€) 2 [ v(a)™ Lsasda.
0

Hence, inequality (2.3) implies

</0 " </° U(x)llpﬂv>m>q df) % > K (/0 o(@)™ 1v>de) g

whence we deduce that, independently of M,

1 : s L
sup ([ 0) ([ o)™ 1 mas)” £
5>0 0 0

and by letting M — 0 and using the Monotone Convergence Theorem, we deduce that,
since v > 0

ili}g </0271rs u(§)>; (/Osv(x)lipdx>pl* < K.

Now, if v vanishes at some points, inequality ([2.3)) clearly holds with the same constant
if we replace v by v 4 ¢ for any € > 0. Then, we have that for any € > 0

s f ” u(f))}’ ([ + )" <.

and by letting ¢ — 0 and applying the Monotone Convergence Theorem, we deduce that

also in this case .
L q s 1 pi*
ap ( [ u<s>) ([ varsas)” < i
s>0 0 0




2.3. NECESSARY CONDITIONS 21

Next, the behaviour of the Fourier Transform with respect to translations implies that
(2.3) holds if and only if for v and v replaced by any of its translates. Therefore, we

have
1
q 1
o </ u) (/ Ulp)
1,J intervals, |I||J]|=(27)"! I J

Remark 2.3.2. Observe that condition [1] of Theorem[2.2.5 may be rephrased as

1
3

<K.

bS]

1 1
q 1\ p*
sup (/ u) (/ vl—p> 2 K,
E,F measurable, |E||F|=(2m)~1 \JE F

while the necessary condition we have just obtained is

1 1
q 1\ p*
1,J intervals, |I]|J]|=(2m)~1 I J

This is not surprising, since in the proof of Theorem we used rearrangements, o
that any “geometrical structure” of the Fourier Transform is neglected.

Lemma and Theorems [2.3.4] and [2.3.5] are classical Banach Space results and are
related to the notions of type and cotype, see for instance [1] and also [22].

Lemma 2.3.3. Let p > 2. Then, there exists a constant K, which only depends on p,
such that for any N and any sequence of functions fi,..., fx € LE there exists a choice
of signs €1, ...,en such that the following holds:

P\ ¥

) . (2.17)

gK(/v

3=

N
> entn
n=1

N
(S imz.)

Proof. First, observe that since p > 2,

() o)

Next, the Khintchine inequality (Theorem [1.4.1)) and Fubini’s Theorem imply that

N £ N P N p
AP U/(Z’fnP) S/’U]E anfn =K /v anfn )
n=1 n=1 n=1
Thus, there exists a choice of signs ¢,, for which
N 7 N P\ »
(Sink.) < ( [v]S et ) .
n=1 n=1
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Theorem 2.3.4. Letp <2 and let T : LY — L% be a bounded linear operator with norm
1. Then there exits a constant K, which only depends on p, such that for any sequence
of functions fi,..., fn € L2 the following holds:

N v
s ], < x (1) .19

q,

Moreover, by the Monotone we can remove the assumption on finiteness, that is, we also
have

<K (zl anuﬁ,v)” , (2.19)

sUp T(fn)]

q,

for infinite sequences of functions.

Proof. Let Ei, ..., E, be a disjoint partition of the domain for which max, |T'(f,)| =
‘22[:1 ]lEnT(fn>‘ Then, we have

|max[7(/,)

N
z_: ILE‘nT(fn)

q?u

Next, by Holder’s inequality, it suffices to show that for any g € Lq*11 with norm 1, we
utlt—9q
have

N N 7
[oS 1t <& (Sinl.)
n=1 n=1

By definition of the adjoint T and Hoélder’s inequality, we have

N N N
[o X 1eT() =3 [T (grs)h < ST 08, oty 1l

L

N % N p*
< (Sal) (e L)

n=1
Here, since p* > 2, by Lemma [2.3.3| we know that there exists a choice of signs for which

1
*

p*) p

N N N
JrY et (91s) =Y e [g1e, 7)< Y [ lolte, [T
n=1 n=1 n=1

N
> T (915,)
n=1

1
N P )
(Z 1T (g5 I 11) SK( [
n=1 proiTP

Finally, since for h € L? with norm 1, we have that

using that the E, are disjoint and that g, h and 7" have norm 1, we conclude that

L NT (R g < 1.

q*,u I—¢q q,u

S [lole ] < [lolT)1 < llg
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The result follows by noting that, by Holder’s inequality,

(/m;

N

n=1

p* pi* N
) = sup /hz e T*(glg,) < 1.
n=1

1Pl =1

For p > 2, the analogous result reads as follows

Theorem 2.3.5 (Theorem 7.13 in |1]). Let p > 2 and let T : LP? — LI be a bounded
linear operator with norm 1. Then there exits a constant K, which only depends on p,
such that for any sequence of functions f1,..., fn € LP the following holds:

(inmmﬁ% SK(iymm;)é (220

q7u

Moreover, by the Monotone Convergence Theorem, we can remove the assumption on
finiteness, that is, we also have

Now, we are going to show that a condition analogous to condition [2| of Theorem [2.2.5
is indeed necessary.

<i( 3 I (221)

n=-—00
q7u

(iﬂﬂmﬂé

n=—oo

Theorem 2.3.6. Let 1 < ¢ < p <2 and assume that inequality (2.3)) holds. Then

([ () () )

Proof. Since inequality ([2.3) holds, applying Theorem [2.3.4] we have that for any se-

quence f; in LP? we have

[

</}Rusgp ’fz’q>; S K <Xl: Hfin’v>p : (2.22)

Now, by Lemma [2.3.1 we know that

1 1
q 1\ pF
sup u vi-p S K,
I,J intervals, |I||J]|=(2m)~1 \JI J

in particular, v and VTP are locally integrable. Hence, for every M > 0 there exists a
partition of the interval [0, M], (a,)n¥_o with a,,, = M such that

Xn 1
Vi, ::/ vi-r = 2™,
0
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Let A, € R, be arbitrary. Consider the sequence ( fn)n__oo, where f, = /\nvﬁ]l[()’an}.
Recall, that, as we showed in Lemma [2.3.1} for 0 < § < 5

701 2 A /0 VT = A

Hence, inequality (2.22)) implies that for any A,

% ny—1 21 ny %
v [T S g [T s ke (3 )

n=-—00 27ro¢n+1 n=-—00

Here, by Holder’s inequality, we deduce that, by formally setting «,,,,11 = oo in order
to simplify the notation,

S v (/ u) <K.

n=—oo 27ran+1

Q3

Next, using that V7™ ~ 2%, and setting 3, = ( 2”“” u> we use the discrete Hardy
inequality (Theorem [1.2.4)

Z 25 ﬂn > i 2 (i@)

n=—oo n=—oo

to deduce that

Qn g r 1 7 v
7 2T
> i ( I ) S K.
n=—oo
Finally, since V,, =~ 2"
na—1 L 7 nu-1 g F
Tan e Tan r
S v ([T s ([T s
n=—oo n=—oo
and N
TL]\/I—l = 27r10¢ a
r I n
K" 2 Z n+1 / u
n=—oo 0
r
ml o a5 2 \T Tmam )¢
~ oy v(s)Tr vi=r | ds u
o Jo 0 0
r
i an+1 s 1 \7 Tan | °
Z vi=p ds U
Rl i s A N\T [ [z )¢
Z vi-p u| ds

)
:/OMU(S)IIP </05U11p)q* (/02’1” u)qu,

and the result follows by letting M — oo.
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Likewise, we obtain

Theorem 2.3.7. Let 1 < ¢ < 2 < p and assume that inequality (2.3) holds. Then

o ([ (o) () )

Proof. In a similar way, let f, = )\nvflp Ljo,a,]; Where a,, are such that (assuming by
simplicity that [ VT

00, otherwise a limiting argument like the one used int he
previous result yields the result)

Then, if 0 < & < L

2may,

1 2 20 [ 0T =MV,

(i Ifj(ﬁ)IQ) > (Z A?Vf) -

Thus, if inequality (2.3) holds, we also have that for any sequence of A,

and

N

[e.9]

1
> ( > A?Vﬁ) s(z szi)z-
n=—00 " 2ran j=—00

n=—oo

N

Hence, the characterization of the discrete Hardy inequality (Theorem [1.2.4)) implies
that

R
00 5 1 5 1 2 R
Ty, 1 T, _1 -
Z /1 " / ) Vi < oo,
Nn=—0o0 ~ 2man 0

where R™! = ¢~! — 271 Thus, using that V,, ~ 2" and that R/2 + 1 = R/q, we deduce
that

R
00 R L Kl
e TQn
Z \ 7% / Lou < 0.
n=—00 2man11

270y 1

Finally, since by Lemma we know that

1 1
e 2T
sup Vi / u| < oo,
" 2T 41

[e'e) " %

¥ T
SOV / ou| <o,

n=—oo 27Oy 1

and the result follows as in the previous theorem.

Q=

we deduce that

QI3
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Corollary 2.3.8. Let 1 < p,q < oo and u,v be weights. Assume that v and v~ are

non-increasing. Then, inequality (2.3|) holds if and only if

1
s % 1/s 1 \ P*
sup (/ u> (/ vlv> < 0o0; (2.23)
s 0 0

2. if g < p and either 2 < p,q or2 > p,q,

() () o) < oo

1. ifq > p,

equivalently,

( () ( /Oul.z)*dt) . .

where r~! = ¢t —p1.
3. if ¢ <2 < p, condition (2.24) is necessary but not sufficient.
Moreover, the best constant in (2.3)) is equivalent to the corresponding expression above.

Proof. The sufficiency is Theorem [2.2.5] For the necessity, the case 1 < g < p < 2 is
Theorem and using duality (Lemma, we deduce the result for 2 < g < p, just
like we did in Theorem [2.2.5 If ¢ > p, we obtain the result from Lemma [2.3.1] Finally,
the necessity of case ¢ < 2 < p follows from Theorem [2.3.7/ and the non-sufficiency, from
Proposition [2.2.7] O

As an easy consequence, we characterize inequality ([2.3]) for power weights.

Corollary 2.3.9. Let o, 3 > 0 and u(§) = €79 and v(z) = 2PP. Then, inequality ([2.3)),
that s,

HfH 5 ||f||mpﬁ7p7

holdsifandonlyiqup,a<é,ﬁ<#andﬁ—azl—

§-1%q

1
E

Sl

2.4 Inequalities without rearrangements

In the previous sections we observed the "gap” (Remark existing between necessary
and sufficient conditions for non-monotonic weights in even the simplest case p = 2 = q.
Here we describe instances in which the Pitt inequality holds but the conditions of
Theorem do not. Proposition [2.4.2] is specially illustrative because it shows that,
for u the indicator function of a measurable set E and v = /x, a type of density of
E determines whether the Pitt inequality holds. It is obvious that any information
of this kind is lost in the method of rearrangements of Heinig and Benedetto, thereby
demonstrating an important weakness of this method.
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Proposition 2.4.1. Set v = (1+22)? and p = q = 2. Then, for any u, condition (2.16)
is also sufficient for inequality (2.3|) to hold. Moreover, condition in Theorem 22§
18 not necessary.

Proof. Let v = (142?)% and u arbitrary. Observe that f € S if and only if (1+2%)f € S.
Hence, inequality (2.3)) holds for any f € S, and a posteriori for any f € L2, if and only
if for any f € S

[u@](ra+a27)" @) de < 151,

holds.

Next, using the Parseval relation, and that

(Fa+a)) @ =a (Fxe ) (o),

we conclude that our original inequality is equivalent to

[ uta)

for any g. This last inequality can be dealt with by using the Hardy inequality (Theorem
1.2.3)) as follows (it is clear that we may assume that g > 0)

/Ru(x)

2
[ gy da S ol

2
/R e'”'g(y)dy‘ dx

x 2 00 2
~ / u(z)e > / eYg(y)dy| dx +/ u(z)e*” / e Yg(y)dy| dx.
R —o0 R T
Now, using Hardy’s inequality (Theorem [1.2.3]), we conclude that
x 2
Lu@e| [ gy dv 5 Nl
and )
Lu@e| [ e gty do S gl
hold for any ¢ if and only if both
sup e2y/ u(z)e *dx
Yy Yy
and
—2y Y 2x
sup e / u(z)e**dx
y —o0
are finite. That is, the latter conditions hold if and only if
sup/ u(x)e 2 Vdr < 0. (2.26)
Y R

Finally, all that remains to be shown is that condition (2.26)) is implied by

1 1
3 1\ 2
sup u v < 0.
I,J intervals, |I||J]|=(27)~! I J



28 CHAPTER 2. WEIGHTED FOURIER INEQUALITIES

To begin with, observe that since v~! is decreasing, the supremum over J is attained

when J = [0, s] for s > 0. Hence, we have that there exists a constant K such that for

all I interval
(2m) 11|~ pen )
/ugK/ (1+2%)2dz| .
I 0

Thus, for any y,

/Ru(:r)e_m_y'dx = /Ru(zv +y)e Hldr =3 / u(x +y)e 2 dr

n+1 (Qﬂ.)—l -1
<N e / u(x +y)de S e (/ (1+ x2)2dx> < o0.
n 0

nez nez

For the second part, consider u(§) = >0, N1 nin-1]- A simple computation shows that
condition (2.26)) holds but u* = co. O

Proposition 2.4.2. Let E C R measurable and p = ¢ = 2. Set u = 1g and v = |£L‘|%
Then, if there exists v > 1 such that

[ENT|<|I|'%

inequality (2.3|) holds.

Proof. Observe that by a limiting argument it suffices to consider f € C2° supported
away from zero. Indeed, assume that inequality holds for f € C2° supported away
from zero. Then, by density, there exists an operator T' defined on L? which coincides
with the Fourier Transform on the previous subspace of functions and which satisfies

IT()l2 < K gl

It remains to show that if ¢ € L' N L2, T(g) = ¢ in L?. To do so, take a sequence
(fa)n C Cg° supported away from zero such that lim, || f, — gl|, = lim,, || f, — gll,, = 0.
Then, T'(f,) converges to T(g) in L2, so there exists a subsequence of T(f,) = f, that
converges u-almost everywhere to T'(g); besides, since f,, — g in L*, fn converges almost
everywhere to g, so T'(g) = ¢ in L2.

Now, analogously to the previous proposition and if we let ®(§) = [p |:B|’ie’2”‘”5dx
inequality holds if and only if for any ¢

[ ux)

Observe that a change of variable yields that for any || > 0,

O(£) = €[ TP(1).

Hence, the inequality that needs to be dealt with is

/Ru(:v)

2
/R ®(x — y)g(y)dy| dz < llgll3.

9(y) ’
/3dy| dz < |lgll3 -
R |z —y|i
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By Theorem [1.2.5] it suffices to show that there exists a r > 1 for which

sup|]|%_$|EﬂI|§ < 0,
I

that is,
ENT| < |I|'z.

If we dualize the previous result (Lemma [2.1.2]) we obtain the following uncertainty type
result:
Corollary 2.4.3. Let E be a measurable set. Then, for all f such that f is supported
in E .
_1\2 A
([1r@re) s )], (2.27)
R

if there exists r > 1 such that
ENT| < |1V s. (2.28)
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Chapter 3

Uncertainty Principles

Roughly speaking, the Uncertanty Principle (UP) asserts that it is not possible to si-
multaneously localize a function and its Fourier Transform. The most famous instances
of this phenomenon are the following:

Theorem A (Heisenberg Uncertainty Principle). Let f be a square-integrable function.
Then, the following holds:

112 S 11l | 7,

Theorem B. Let f be a compactly supported integrable function such that f s also
compactly supported. Then, f is the zero function.

Theorem B’ (Benedicks Theorem, [5]). Let f be a square integrable function such that
f and f are supported in sets of finite measure. Then, f is the zero function.

The first three sections of this chapter are devoted to surveying generalizations of The-
orems B and B’, using the book [14] as the main source. First, in Section we shall
discuss the Hardy UP (see [12] and Theorem [3.1.2), which restricts the simultaneous
decay of a function and its Fourier Transform.

Then, in Section [3.2] we explain and prove the Amrein-Berthier Theorems, which can
also be found in [2], (Theorems [3.2.11| and [3.2.12)). Theorem can be understood
as a more robust version of Theorem B’, in which the conclusion that f is identically
zero is not drawn from the vanishing of both f and f outside of a small set but just
from their "smallness” outside of a suitable set. Theorem shows that there are
no restrictions on the simultaneous behaviour of f and f in small sets, thus limiting the
type of UP which can be obtained.

The main topic of Section [3.3|is a multidimensional version of the Nazarov UP (see [15]
and [21]), which is a sharpened version of Theorem [3.2.11]

The last two sections deal with generalizations of Theorem A. In Section [3.4] we complete
and generalize the characterization of the inequality

1,1 1,1
Il <yl T

&

p

for 1 < p,qg < oo and «, > 0, which was started in [28]; and, in Section we
characterize the parameters for which the inequality

11,11, < J+47], Je27

p* p*

31
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holds, where 24 and &7 are a generalization of power weights.

3.1 Hardy uncertainty principle

As mentioned in the introduction, the Hardy UP restricts the simultaneous decay of f
and f ; more precisely, it asserts that it is impossible for both f and f' to decay more
rapidly than the gaussian function e~ This result was obtained by Hardy in 1933
and published in [12]. The proof we give is close to the original and is based on Complex
Analysis, more exactly, on the Lindel6f-Phragmen principle. There are also proofs using
real-variable methods; for instance, in [7], the result is obtained by using estimates for
the norms of the solutions of the Schrodinger equation.

Lemma 3.1.1. Let F be an entire function, and a,C € R,. Assume that
1. |F(z)| < Ce ™ for0 <z €R;
2. |F(2)] < Ce®l for z € C.
Then there exists a C" such that
F(z)=C'e™ .
Proof. To begin with, if F' = 0 we are done. From now on, assume that F' # 0.

Let ;
(D5<Z) _ F(Z)e(a+iatan 5)%

for 6 > 0 and small.

Then, if 0 < z € R,
[@5(x)| = [F(x)elrio= D) < |F(z)]e™ < C.

Likewise, if z = ze/"9 for 0 < z € R,
4 o _ 5
Re |a(1 + itan 5)2 = —ax(cosd + sin 0 tan 5) = —ax,
so that
q)g Al = |F(z e(a—&-iatan%)z < Cee™ 9% — (.
|

Next, we apply a version of the Lindel6f-Phragmen principle to conclude that |®s| < C
in the sector Ss := {re? : 0 <0 <7 —4d}. Choose 1 < 8 < Z:g;;, e > 0 and for z € Sj,
define

G(z) := ®s(z) exp (is(zeig)ﬁ) :

Note that since zei? is in the upper-half-plane, we can take an holomorphic branch of
the function z + 27,
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Observe that if we put z = re? for 0 < 0 < 7 — 4§, then
Re (is(zeig)ﬁ) = —rPesin(B(046/2)) < —rPesin(B(r —6/2)) < —rPesin(m —6/4) < 0.
Therefore, the non-zero holomorphic function G satisfies

lim G(z) =0,

|z| =00

and consequently there exists a z* € S5 such that sup,.5, G(2) = G(z*) and, by the
Maximum Modulus principle, z* € 0S5. Since for z € 0S5, |G(2)| < |Ps(2)| < C, we
conclude that for any € > 0 and z € Sj

’(I)(;(z) exp (ie(zei%)ﬁ)’ <C.
Then, letting ¢ — 0, we deduce that for any § > 0 and z € Sy

‘F<z)e(a+iatan g)z

=|Ps(2)| < C.
Thus, letting 6 — 0, we have that for any z € {re? : 0 <0 < 7},
|F(2)e”] < C.

Finally, by continuity we extend the previous inequality to the whole upper-half-plane
and repeating the same argumentation for F(z), we obtain

[F(2)e”[ < C
in the whole complex plane, and by Liouville’s Theorem,
F(z)=C'e .
O

Theorem 3.1.2 (Hardy uncertainty principle, [12]). Let f € L'(R) be such that for
A, C € Ry, the following hold

L |f(2)] < CemAe,
2. |f(6) < Ce ™.
—rAx?

Then, f(z) is a multiple of e
Proof. First, the decay of f implies that

f) = [ flayemeda
R
is defined for any z € C and defines an entire function such that |f(z)| < C" e, Indeed,

/R ‘f(l,>e—27rimz

7|z

dx S C/ e—A7r:v2+27ermzd:L, S C/e 2
R

Now, assume that f is even. Then, f is even and f(z) = F(z?) for some holomorphic
function F', which satisfies
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1. |F(z)| < Ce™™ for 0 < x € R;
2. |F(z)] < C'e™ for z € C.

Using Lemma [3.1.1) we conclude that

If fis odd, f(0) = 0. Therefore, G(z) := f(z)z~' is holomorphic and even. Hence
G(z) = F(2?) for some holomorphic function which satisfies

L. |F(z)| < Cle™™x for 0 < z € R;

2. |[F(2)] < C'e™3 for z € C.

N ) .2 ) N
Once again, this implies that f(z?)z= = C”e ™ a. However, if C" # 0, |f(2)] =
2

L2 . ..
ze”™a £ Ce ™4, a contradiction. Hence, f = 0.

In the general case, put f = f. + f, with f. even and f, odd. It is clear that the bounds
for f transform into suitable bounds for f., f, so that we can conclude that

F(€) = 1.(6) + fole) = C"e ™,

and, by the Fourier inversion formula,

f($) _ C///@—waQ‘

Corollary 3.1.3. Let f € L'(R) be such that for A, B,C € R, the following hold
1 |f(x)| < Ce4,
2. 1f(©) < Ce.
Then, if B< A, f=0.
Proof. Observe that, since B < A
|f(z)] < Ce ™% < Ce ™87,

Thus, an application of Theorem implies that f(z) = C"e~™P**. This contradicts
the hypothesis on f unless C' = 0. n
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3.2 Amrein-Berthier Theorems

The main results of this section, Theorems [3.2.11| and [3.2.12], were obtained in 1977 by
the quantum physicists Amrein and Berthier. In this subfield of physics, for a suitable
normalized f, the probability density for the position of a particle is given by | f|?, and the
probability of finding a particle in a given zone of space C' is computed as [, |f]?*; while
the probability density for the momentum is | f |>. Tt is thus not surprising that these
results are of interest to physicists, for whom the integral [p\ g |f|? found in Theorem
describes the probability of finding a particle outside of S, and the fact, proved
in Theorem that for S and ¥ with |S] + || < oo the restriction of f to S and
the restriction of f to X are independent limits the conclusions about the momentum of
a particle which can be drawn by observing its behaviour in a small zone of the space.

It is remarkable that the proof proceeds by studying a more general problem, in which
the Fourier Transform does not play any role, namely, given M, N two closed subspaces
of a Hilbert space H, with orthogonal projections P, @), it is discussed when it is possible

to obtain the inequality
loll 5 |70 + @]

for any v € H; and when it is possible to find a solution f to the system of equations

1.
Pf=fi;

Qf = fo.

After discussing this abstract setting, the results are applied to the Fourier Transform
setting by taking H = L*(R?) and suitable P, Q. It is clear that for the previous results
to be true it is necessary that M NN = {0}, and if H is finite dimensional it is also
sufficient. However, in the infinite-dimensional case, the relevant setting for the Fourier
Transform, more restrictive conditions are needed.

3.2.1 Hilbert-Schmidt operators

In this section we give some necessary background about Hilbert-Schmidt operators.

Definition 3.2.1. We say that a continuous operator T : L*(R?) — L?(R?) is a Hilbert-
Schmidt operator if

2
1T s = (ZIITejIIQ) < o0,

jel
where {e;,j € I} is an orthonormal basis.

Proposition 3.2.2. Let T be defined as follows:
Tf@) = [ K.y)f)dy.

with K € L*(R? x RY). Then T is a Hilbert-Schmidt operator.
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Proof. To begin with, an application of Holder’s inequality and Fubini’s Theorem yield
that the operator is continuous.

Next, let {e;,j € I} be an orthonormal basis of L?(R?). Then, the functions f;;(z,y) :=
ei(x)e;(y) for (i,7) € I x I are orthonormal.

Observe that

(fij, K) :/

R4 xRd

Ko, )e,)eaydndy = [ a@) [ K y)e iy = (e, Te,).
Thus, since K € L?(R? x RY), Parseval’s Theorem yields

00 > 37 [(fi, KNP = 37 [, Tey)[* = D" ||Tey)”.

ijel ijel jel

O
Proposition 3.2.3. Let T' be a Hilbert-Schmidt operator. Then it is compact.
Proof. First, we know that L*(R?) has a countable orthonormal basis {e; : i € N}.
We are going to show that the finite-rank operators

To(z) = (ew,z)T(ex)
k=1
approximate T', whence the result will follow.
Observe that for any z € L*(R) with ||z||=1,
1 1
00 9] ) 00 2
(T = T)@) < X2 T (el [{ew, 2)| < ( > IT(en)] ) ( > \(%@\2)
k=n+1 k=n+1 k=n-+1
1
oo 2
2
< ( > T (el ) :
k=n+1
1

Hence, since (Z?’zl HT(ek)H2) * < 00, T, — T in the operator norm. O

3.2.2 Characterization of strong annihilating pars

Let M, N be two closed subspaces of a Hilbert space H and let P, () be their corre-
sponding projectors. As it was said in the introduction, a goal of this section was to find
conditions on M and N which guarantee that the inequality

o]l < e([Pro] + ] @)

holds for v € H. Such pair M, N shall be called a strong annihilating Pair or strong
a-Pair.

Definition 3.2.4. We say that P,Q are an a-Pair whenever M N N = {0}.
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Definition 3.2.5. We say that P, Q) are a strong a-Pair whenever there is ¢ > 1 such
that for any v € H

o]l < e(| PHo| + |[@*v])). (3.1)
Clearly, strong a-Pairs are a-Pairs.
Next we outline some equivalent definitions of strong a-Pairs.

Example. The following are strong a-pairs:
1. for H=R", if M NN = {0}, P,Q are a strong a-Pair;
2. for any H, if P+ = Q, P,Q are a strong a-Pair.
Lemma 3.2.6. Let I be the identity operator. Then, the following are equivalent
1 |PQll < 1;
2. R:=1— PQ is invertible;

3. there is ¢ > 1 such that for any v, ||v|| < C(HPJ"UH + HQLUH).

4. there is ¢ > 1 such that for any v, ||Qu|| <

PLQUH .
0. |QP| < 1;
6. R* :=1— QP is invertible.

Note that (3) is the definition of strong a-pair. Moreover, in (4) = (3), we may take
c=c+1.

Proof. (1) = (2) is known. For the reverse, note that RQ = (I — PQ)Q = Q — PQ =
(I — P)Q = P*Q, which implies that

1Qul? = 1 PQuI* + || PLQu|| = IPQuIP + IRQuI = |1PQulP* + R lIQu]?,

so that L .
1PQu|* < (1= ||R7| ) Qull* < Jloll* (1 = &Y ),

whence the result follows, since ||[R™]| ™" 0.
If (4) holds then

2
I1PQuI* + ¢~ [ Qu]l* < [|PQu|* + | PAQu|| = [[Qu]?,
so that
1PQul* < [Qul* (1 = ¢2) < IQI Iv]l* (1 = ¢=2) < [Jo* (1 = ¢72),

that is, (1) holds.
If (1) holds, we have (4) as follows:

0 < (1- PRI IQuI* = 1Qu]* ~ IPQI* QI < Qul* ~ 1PQu]* = | P*Qu|".
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Finally, (3) clearly implies (4) and we can obtain (3) from (4) as follows:
ol < el + @] < [P @] + @] = | P4 = @] + @]

< cf[pr@to| + ef[ptof + @ < ([P + o] + [P,

whence the result follows (note that HPLH = 1 unless it is zero).
To finish the proof, note that since (PQ)* = QP, (1) and (5) are equivalent; and (5)
and (6) are equivalent just like (1) and (2). O

Remark 3.2.7. Observe that in general, M NN = {0} does not imply that M, N are
a strong a-pair, or equivalently, by the previous lemma, that ||PQ| < 1. Indeed, let
M = {x € l5(N) : 29,41 =0,n € N} and N = {z € l5(N) : x93, = (n + 1)x9,41,n € N}.
They are clearly closed subspaces and if x € M NN, then 0 = x9,1(n+1) = 9, for all
n, sox = 0.

Howewver, if e, is the sequence with zeros at every position except at the n-th, where it

has a 1,
€an+1 €on+1
PQ (e + 25 ) = P e+ (B ) = em
Qeg +7’L—|—1 (&) +n+1 €9
since
le2nll =1
and
€an+1
n =/1 1 _27
€on + n 1 +(n+1)
1PQ| = 1.

Hence, M, N is an a-Pair which is not strong.

Lemma 3.2.8. Let K be a compact operator. Then, there exists v € H with ||v]| = 1
such that ||Kv|| = || K||.

Proof. To begin with, if || K|| = 0 the result is obvious, so we may assume that || K| > 0.
Let (x,)22, be a sequence of elements with norm 1 such that ||Kz,|| — || K||. Since K
is compact, by extracting a subsequence, we may assume that Kz, converges to some
y € H with [ly|| = | K]

Next, we have that, for K* the adjoint of K,

|K*y|| = sup (z, K*y) = sup (Kz,y) = | K|,

l[zl=1 l[=ll=1
where the last inequality is true because (Kz,y) < ||K|| ||yl = || K| and the sequence
z, has norm 1 and Kz, converges to y.
Finally,
* * * * * 4
KKKyl = [lyll [ KKyl = {y, KK y) = (K*y, K*y) = || K]| (3.2)
so that

K| < IKEy| < 1Kyl = 1157
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In conclusion, since
3
KKyl = [ K]

and | K*y|| = || K|, we can take
v=Ky|K|7.
[l

Lemma 3.2.9. Let P,Q be an a-Pair. If PQ is a compact operator, then it is a strong
a-Pair.

Proof. For the sake of contradiction, assume that |PQ|| = 1. By Lemma there
exists a v with norm 1 such that ||PQu|| = ||PQ|| = 1. Then,

|P-Qu]* + 1PQul? = [Qul? < flolf? = 1.

Thus,
2
|PrQu|” <1—|PQul* =0,
whence we deduce that Qu € M N N.

Since P, (@ is an a-Pair, we have that Qv = 0, which contradicts the fact that ||PQu]|| =
1. [

Lemma 3.2.10. Let P,Q be a strong a-Pair. Then, for any m € M and n € N, there
exists a v € H such that Pv =m and Qv = n.

Proof. Since P, (@) is a strong a-Pair, we know that R = I — PQ) and R* = [ — QP are
invertible. Put
v=Q "R 'm+ P-(R*") 'n.
Then,
Pv=PQ R™'m=PR"'m—PQR 'm=P(I - PQ)R"'m = PRR"'m =m,

and by symmetry, Qv = n. O

3.2.3 Application to Fourier Analysis

We are now going to apply the previous abstract results to some special problems in
Fourier Analysis. Here and in this whole subsection, H = L*(RY) and S, C R? are
measurable sets of finite measure.
Let

M ={f € H :suppess f C S};

N:{fEH:suppesstE},

where supp ess denotes the essential support. Note that these are closed subspaces of
H. We denote by P the projection onto M and by @) the projection onto N.
The goal of this section is to show that P, form a strong a-Pair (this will be shown in

Lemma [3.2.16)), what will imply that
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Theorem 3.2.11 ([2]). There exists ¢ > 0 such that for any f € L*(R?), the following

holds: . L
ety ([ 1)+ (L) 33)

Theorem 3.2.12 ([2]). Let f; € L*(S) and fo € L*(X), then there exists f € L*(RY)
such that the following hold:

f]S:fl;

A

f|E = fo.

Lemma 3.2.13. Using the previous notation, PQ is a compact operator.

Proof. For f € §, the Schwartz class, Q is given by

Qf@) = [ ([ pemvday)dg = [ p) ([ e o) dy.

Hence, for f € S,
PQf(@) = [ F@)is(y - 2)Ls(x)dy.

Rd

Next, since

L (/Rdf(y)ﬂz(y—:E)Ils(x)dy>2dx:/S</Rdf(y)ﬂg(y—m)dy)2dx

< [(Lr@r)- ([, sty = o)Pdy) de =811 1515,

by continuity, for any f € L?(R%),

PQI@) = [ FW)isy—o)Ls(x)dy.

Rd
Finally, PQ is a Hilbert-Schmidt operator, and thus, compact (see Section [3.2.1). [

Remark 3.2.14. Note that if |S||X| < 1, the previous calculations show that ||PQ|| < 1,
so that we already have that P,(Q is a strong a-Pair.

Besides, if S and X are bounded, it is a consequence of the Theorem B that P,() is an
a-Pair, so by Lemma it is also a strong one.

To show the result in the general case, that is, the case covered by Theorem B’ we still
need to do some additional work.

Lemma 3.2.15. Using the previous notation, P, () is an a-Pair and, by Lemma

it is a strong a-Pair.

Proof. Recall that we need to show that M N N = {0}, equivalently, that if f is such

that suppess f C S and supp essf C %, then f =0.
Put

€ i=kerl(l - PQ) ={ve H: PQu=v} = {f € LX(R") : f(a) = [ f()in(y—o)1s(x)dy}.
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Note that if v € M NN, then PQuv = v, so that M NN C £. We are going to show that
dim & = 0, what implies M N N = {0}.

Step 1:
To begin with, we show that dim& < oo. Let fi,..., fy be an orthonormal system of
elements in €. Then, if g; = f;(x)fi(y), g1, .., gn is an orthogonal system of functions

in L?(R? x R?). Indeed,
L @ fwh@fwdedy = [ @@ [ ) fidy = = 5.

Put K(z,y) = Iy(y—2)sls(z)dy. We have shown that 1K 12gaxray < 1/IS]|Z]. Hence,
the Parseval inequality gives

N
S =D (g5, K)*.
j=1

Finally, since f; € £ we have that

G K = [ SR @K@ydedy = [ F@) ([ S@E@ydy)de= [ Fia)f@ =1
In conclusion, N < |S||X|, what implies that

dim & < |S|[Z]| < .

Step 2:

Next, we show that if for some S, Y we have that dim & > 0, then we can find S C S*
with |S*| < |S|+ 1, such that dim £* = co (where £* is the obvious modification of £).
Since by doing this we obtain a contradiction with Step 1, we conclude the proof.

We shall make use of the following lemma:

Lemma 3.2.16. Let Sy C T be measurable sets of RY. Further assume that 0 < |Sy| <
|T| < oo. Then, for any e > 0, there exists a v € R such that |T|+& > [T U(Sy—v)| >
7]

Proof. Put
h(v) = |T| + |So| — |T U (S — v)| = |T'N (Sp — v)].

Clearly, h(0) = Sp.
Observe that h(v) = [;1g,(x + v)dz, from where we deduce that h is a continuous
function. Indeed,

hen) = ()] < [ (o +v1) = Lsg(a+v)lde < [ [Lgy(2) = Ly + 02— vr)lde,

—v1

and it is known that as v, — vy, this last expression has limit zero, because 1g, € L*(R?).
Finally, we show that lim, . |7'N (Sy —v)| = 0.



42 CHAPTER 3. UNCERTAINTY PRINCIPLES

It is known that for any measurable 7" and any 0 > 0, there exists a compact set K C T
such that |T"\ K| < . Then,

h(v) = /Tﬂso(x +v)dr <6+ /]Rd Lsni (x + v)de.

Since K is bounded, for any = € K, lim, o Lls,nx(x + v) = 0. Hence, the Dominated
Convergence Theorem yields

limsup h(v) < § + lim/d Lsyni(x +v)de =0
R

for any 0 > 0, whence the claim follows.
In conclusion, h is a continuous function for which h(0) = |Sg| > 0 and lim,_,, h(v) = 0.
This implies that the function

9(v) = |T'U (So — v)]

is also continuous and satisfies ¢(0) = |T'| and lim,_,o g(v) = |T| + |So|- Thus, by the
Mean Value Theorem, any value between |T'| and |T|+|Sp| is attained, whence the result
follows. 0

We resume the proof of Step 2.
Let ¢¢ be a non-zero function in £ and put Sy = supp ess ¢y.
We proceed by induction as follows: set Ty = Sy and let v, € R? be such that

’Tk| < |Tk U (SO — Uk)| < |Tk’ + 2ik+1,

which exists by the previous lemma, with 7 = T}, and ¢ = 27%*1. Define T}, =
Ty, U (Sp — vg). Observe that [Ty 1| < Ty + 2751 so |Th| < |So| + 1 for all k.
Put §* = Uz Ty Observe that since T C Tj.1, the Monotone Convergence Theorem
yields

|5 < So| + 1.

Finally, set ¢r(x) = ¢o(x + vi). Note that suppess @, = suppesspg — vp = Sop — vy C
Ty+1 C S*. Besides, supp ess ¢Ak = supp ess ¢A0 C X. Hence, ¢ € £*.

To finish the proof, we show that ¢, ¢1, ... are linearly independent, and consequently,
&* is infinite dimensional. For the sake of contradiction, let N be the minimal number
such that there exist Ao, \1,... Ay for which

Xodo + Md1 + -+ Anv_1On—1 = Andn,

clearly, since ¢y # 0, N > 1 and, by minimality, Ay # 0..

Recall that suppess ¢, C T). Hence, the LHS is supported in Ty _1, whence we deduce
that suppess Ayo¢ny C Tv_1. However, if Ay #£ 0, suppess A\y¢ny = suppess oy = Sg —
vy. This is a contradiction, because we defined vy to satisty |Tn_1U(So—vn)| > [Tn-1],
what implies that (Sy — vy) is not contained in Ty_;. O
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3.3 Nazarov uncertainty principle

For applications, the main drawback of Theorem is that the value of ¢ is com-
pletely unspecified. In this section we reproduce the proof of the Nazarov UP, originally
proved in the 1-dimensional case by Nazarov himself in [21] and later generalized to the
multidimensional case in [15], which shows that ¢ can be taken to be A1l for A a con-
stant, whose value can be traced dawn by going carefully over the proof; in particular,
its value depends only on the sizes of S and .

3.3.1 The Nazarov-Turan Lemma

A fundamental step in the proof of this UP is Nazarov’s generalization of the Turan
Lemma: the Nazarov-Turan Lemma (see Lemma below). It allows us to estimate
the Fourier coefficients of a 1-dimensional trigonometric polynomial by controlling the
polynomial in a small subset of the torus T and the number of non-zero coefficients.
Further, we will deal with a generalization of the lemma to the multidimensional case
(see Lemma [3.3.6), due to Fontes-Merz.

Lemma 3.3.1 (Weak boundedness of the Hilbert transform, [27]). Let f € C*°(T). For
z €T, define
1
H(f)(2) = — lim (w)

2mir 1T w —r2

dw.

Then,

1. For any z € T the previous limit exists. Moreover, if f is real-valued then H f(z) =
w +if(2), for f(2) real-valued.

2. The following weak-type inequality holds:

; I£11,
{17 > tf| < 5
or, equivalently,
1)1 > 1) < 1 (3.4)

Proof. First, we show that the limit does actually exist. For » < 1, define

s 2 s (T) aw =302 0

where as usual 1 o
fiy =5 [ fe)e " ao.
21 Jo

Hence, as the smoothness of f implies that >72 | f(j)] < o0, the Dominated Convergence
Theorem yields

Hf(z) = ffoszm
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In the particular case where f is real valued, the Fourier Inversion formula yields

= IO =10 + S 1) = 11(6) + TTE - F0)
whence we deduce that R
Re(t () = 120,

Second, we show that if f > 0, then for r < 1, Re H,(f) > 0. For this, note that

f(w) dwzl/;”f‘"(e”)d@:l/oz“M(l_rzeie)de,

21t JT w —rz 2 1 —rze om 11— TZG_Z6|2

and since Re(1 — rze®) > 0, the result follows.
Third, note that for z € D, the map

Py L[ A

27rz ’]I‘UJ—Z

is holomorphic in D and, as we saw before, if f > 0 Re F'(z) > 0. Thus, for each s,
log |1 4 sF'(z)| is harmonic in D. Hence, for each r < 1,

) 1 o -
10g‘1+3f(0)‘zlogll—l—sF(O)]:%/o log’l—l—sF(re’e)‘dQ.

Here, since
2 2
‘1 + sF(rew)‘ > (1 +5 Re(F(rew))) >1

the integrand is non-negative, so we can apply Fatou’s Lemma to conclude that

log‘l +sf(0)‘ > 217T/02ﬂ10g’1 —l—st(ew)’d@

Now, since
. 2 ~, .
L4 sHF(E)| > 14 52f2(e),
an application of Chebyshev’s inequality yields

sF(0) > log [L+ sf(0)| = [{|f| > t}]\/log(1 + 5°¢?),

whence the result follows by setting s = ¢~ and recalling that f(0) = = 1 f -
Observe that for general smooth f and ®,, a non-negative, smooth approximation of the
identity,

H(@, % )(2) = i&nmfo)zf

Thus, the Dominated convergence Lemma yields that

lim H(®, i Hf(z).
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For a general smooth f, write f = f1 — fo + i f3 — i fs4, with each f; > 0, then

HIHF(2)| > t}] = lim {[H (P x f)(2)] > 1}] < 117511;!{\17?(%*&)(2)! > t/4}|

t t

SJ hﬁni H(I)n:f]‘h _ i HfJH1 _ ”f“l
=1 j=1

O
Lemma 3.3.2 ([14]). Let P,Q be polynomials and let R = P/Q. Then there exists
B > 0 such that for all R # 0, and for any t, the following holds:

(=€ T: [RE) >t 7RG <

(3.5)
where r = deg P + deg ().
Proof. Clearly, the form of ]I;(é)) shows that it suffices to prove that for any ¢y, ..., ¢, € C,
possibly repeated,

1 r
eT: >t S -
First, assume that |c;| > 1, then for |z| < 1,
1 t dt 1 1 dt
PRy S I S
2miJr |t — Pt —2z  2miJr(t—c¢)(1—té)t— 2

Now, since i is holomorphic in the disk and
J

11 -1 Lo -l
l—tet—2z l1—cz\t—c¢t t—2z)’

the Cauchy integral formula yields

—1 1 —1 1 1
I] = — —] —I'— —=
1—cjz\¢; " —g¢ Z—¢j

1—|¢]?z—¢
Hence, if -
£6 = (1 ~1eF) =
we have )
H, fj(2) = —— &
Hfyz) = —
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and

]
163l = (el = 1) [,

|t = ¢;f? b
Thus, using Lemma [3.3.1] we have

|{ZET: >t}§

Moreover, we can extend the previous result to the ¢; with modulus 1. Indeed,

HZET: >t}‘=lim|{z€'ﬂ‘:
N1

Finally, if |¢;| < 1,
1
— + fj<z)7

T

2.

J=1,|ej[>1

<

.

Z—Cj

r

2

j:]-:‘cjlzl

XT: 1

j:17‘6j|:1

Z—Cj Z—TC]'

Hfj(2) = —
J
and since || f;||, = 1, we obtain the result by repeating the previous considerations. [

Definition 3.3.3. A trigonometric polynomial is a function of the form

N
P:chz"’“
k=1
forze T, ng €Z, ny <ng <---<ny and ¢ € C\ {0}.

We say that ord P = N and HPH1 =N e

Lemma 3.3.4 (One dimensional Nazarov-Turan Lemma, [20]). Let P be a trigonometric
polynomial. Then, there exists A > 0 such that for any measurable set I' C T, the

following holds
A ord P—1
< | = sup |P|. 3.6
<m) e (39)

Proof. Put N = ord P. Note that in the trivial case |I'| = 1, we have supp |P| =
supy | P| > maxy |cx|. Hence,

A

ord P—1
HPH < Nsup|P| < <\F|> SLF1p|P|,

if A > 2. From now on, we assume that |I'| < 1.

Step 1: We construct a sequence of trigonometric polynomials P, ..., Py which satisfy
the following:

2. ord P, =k, for 1 <k < N;

(the same B as in Lemma |3.3.2) ;

A, 2 a5 (1A
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4. {z€T:|Pa| >t|Pl} <1, fort>0and 2<k<N.

Using the notation of Definition [3.3.3] we proceed as follows: put

Q_(2) = (z_"lp)/ (z) = > cplng —ng)2™ ™

=1

o

nk—nN—l

|
o

ce(ng —ny)z

Q)= (=7P) (2) =

Clearly, both ord @)~ =ord@, = N — 1 and

1

p

=

N
HQ_H1 + HQJFH1 - kz: ekl (ny —n1) = (ny —n1)
=1

Put Qy_, = Q_, if 2 HQ_Hl > (ny — n1) HPHl and Qy_1 = Q. otherwise.
Finally, for B as in Lemma define

Py_1 = (3B(ny —n1)) 'Qn_1.

Repeating the same procedure for Py_; in place of P, we obtain Py_o until we reach P,
with order 1.
We now verify that the constructed sequence satisfies properties 1-4:

1. Clear.
2. Also clear.

3. By definition of Q;_1, we have Hpk,lHl = (3B(ny —ny))7t

Q] = a5 | A,

4. By construction, if n, is the power of z chosen in the definition of Q);_1, we have
/
1Pl > tPY = [ (=P | > 3Bl — )tz Pil}|

Here we use Lemma with R(z) = 27" Py(z). Observe that if ny, = ny, then

R is a polynomial with r = ny — ny; and if ny, = ny,

S cpT™M

2NN

R

)

so that r = 2(nxy — ny). Thus, the estimate (3.5)) gives

2(7’LN—’I’L1)B 1
Pr_1| > t| P <=t < —.
1Pl > HAD] < Fpo—tst < 2

Step 2: Since P, = Cz™ for some m € Z, we have, iterating property (3),

c1=[A], = 7], €37
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Now we proceed to estimate C. Put ¢, = log(|Pr—1|/|Px|). Then, property (4) gives
{z : |gr(2)] >t} < e *. Also

C] _ |7 Al
— = = exp( ¢k)
Pl P 2;

Finally, for a € Ry, put px = ¢ — min(¢y, @) > ¢ — a. Then

{Se->w-1}

k=2

X = <

{§;¢ >+ V- 1)} =

(Eneo )

Using the Chebyshev inequality, we deduce that

x< b (fj [ neyint).

Now, for each k, and using Fubini’s Theorem,

/Tpk(z)dm(z) = /ﬂ‘ﬂ{¢k>a} </jk<z> 1dt> dm(z) = /:O /{Z:¢k(z)>t} ldm(z)dt = /:O {pr > t}|dt.

So that using the estimate [{¢r > t}| < e7*, we conclude that X < e ®. Setting
a = —log(|l'|), we have that X < |I'| < 1. Thus, we deduce that there must exist a
z € I for which

N
D> dr(z) < (N = 1)(=log(|T)) + 1).
k=2

This implies that

C <sup |P|6(N_1)(1_1°g(lr‘) = sup |P| - (€/|F|)N_1-
r r

In conclusion,

A

6Be\ " !
Pl < (225 .
1"<|F\>

Definition 3.3.5. A d-dimensional trigonometric polynomial is a function of the form

[]

N
P(z) = Z Crzy Bt
k=1

for z; € T, nga,...,nka € Z and ¢, € C\ {0} for k=1,...N. Note that we can write

N’ ,
P(Z) = ZC;Z?ka(Zl, ce ey R 15 Ry - - .Zd),
k=1

with n} < ...,nfy, so that, if we “freeze” z; for j # i, we obtain a trigonometric
polynomial of order at most N'. We define ord; P = N'. Observe that ord; P > 1 unless
P=0.
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Lemma 3.3.6 (Multidimensional Nazarov-Turan by Fontes-Merz, [10]). Let P be a d-
dimensional trigonometric polynomial and E C T a measurable set. Then, there exists
A > 0 independent of d such that

sup [ P(z)].

zeE

Ad) —d+Y 0 ord; P

sup|P] < <
B

Proof. We proceed by induction on the dimension d. For d = 1 it has already been
proved, because HP H > supT |P | Now we assume the result for d > 1 and prove it for

Ez:{(zl,--.,Zd) : (Zl,...7Zd,Z) EE}CTd

and let B = {z € T : |E.| > |E|/C}, for C = “1. At the end of the proof, we shall
show that |B| > 0.

Let w = (w1, ..., wq, wqy1) be the point of T?*! at which the maximum of P is attained.
Then, an application of Lemma [3.3.4| with B in place of I' and the univariate polynomial

Q(z) = P(wy, ..., wg, z) yields

sup |P(w17 - W, Z)|
2€B

—1+ord P
A ) d+1

A —1+01‘dd+1P
sup |P| = su <[ — su =
sup 71 = w1 < (7] sup )] = (1

This means that for any ¢ > 0, there exists z(¢) in B such that

A —1+ordd+1P
1STC%R|P| < (\B[) (e 4+ |P(wy, ..., wa 2(e)]).

Next, we apply the induction hypothesis to the polynomial (21, ..., z4) = P(z1,. .., 24, 2(€))
and the set (). Then,

sup |P<Zla"'7’zdaz(€))|‘
(215e-e) Zd)GEZ(E>

Ad >d+Z?_lordiP

sup  |P(z1,...,24,2(€))] < (
|E. ()]

(21,...24)€TH

Now, clearly

|P(w1""7wd7z(6)| < sup |P(Zl7"'7zdaz(€))|
(Zl,...zd)e’]rd

and

sup |P(z1,...,24,2(€))] < sup|P(2)].
(21501, Zd)eEz(a) zelE

Besides, since z(e) € B, we have that |E, )| > |E|/C, so putting everything together,
we have

d
A —14ordgyq P CAd —d+zi:1 ord; P
Pl < — P
! <|B|> ”(|E|> SpPEn

and letting ¢ — 0,
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sup |P| <

Td+1

sup | P(2)].

z€R

< A )—1+ordd+1 P (OAd) —d+Z:l:1 ord; P
| B |E|
Finally, to estimate |B|, note that, by Fubini’s Theorem,

E
)= [ |BJam(:) < 18]+ (- 18)'2] < 51+ 12
so that o1 |
B| > |E|—— = :
B2 18 S =

In conclusion,

sup |P| <

Td+1

sup | P(z)].

z€E

d+1 )

(A(d i 1)>(d+1)+zi:1 ord; P
|Z]

[

Before proving Nazarov’s Uncertainty Theorem, we first show a similar result which uses
the same tools while avoiding some technical difficulties.

Theorem 3.3.7 (Nazarov’s uncertainty for Fourier Series). Let f € L*([0,1]) and let
S =suppess f. Then, if I is a finite subset of Z,

) 4 M 3
s 1ol < () @ﬂﬂzu ).

nel ngl

Proof. Put
= 3 Fm)em ™ = 3 )+ 3 ) = () + o).

neZ nel ngl
Observe that since f vanishes outside of .S,
2 2
= <
Joups AP = oo 12 < S V0P

Then, by Chebyshev,

1—ISI
1 : .
Hence, in a set of measure at least 1= ‘S |
2 -
Al < 1_|S|Z|f

nel
so that by Lemma [3.3.4]

1

ZWW%(?%Qm@ﬂaZU )3

n¢l ngl
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Finally, using Lemma |3.2.6| we obtain the following corollary:

Corollary 3.3.8. There exists a B such that for f € L*([0,1]), S C [0,1] and I C Z
finite, the following holds:

B\ M+ ) 1 . 3
<[ — + . 3.7
= () (L) + (1w 37
Proof. First, observe that from Theorem [3.3.7, we deduce that for f supported in S,

S 1f () . 24 " S 1 n)? .
(Svor) < ()

nel n¢l

Clearly, this implies that for f supported in S,

11]+3 )
7 < (125) (Z If(n)|2)

ngl

D=

Now, if we define

and

we have that for any f,

17]+3
sl < (25) [P,

This is item 4 in Lemma [3.2.6 which implies item 3 from the same Lemma, that is, that

for any f, 1
1+ 1A "
15|

so that the result follows with B = max(2,10A4).

Ifl < (|P4f] + @£

),

O

Observe that if we want to prove an analogous theorem for the Fourier transform we
have the problem that the sum of the values of a function at a discrete set of points need
not be related to the integral of the function. What we are going to prove is that there
exist some points for which it is true. More precisely,

Lemma 3.3.9 (Lattice averaging, [15]). Let ¢ € L'(RY), ¢ > 0. Then,

/sod /2 > d(p(vk)) dvdm(p) ~ / $(x) dm(z). (3.8)

1 kEZd\{O} lz)|>1

We remark that the integral over SO is with respect to its Haar measure normalized
so that the total measure is 1, since we are not going to use any deep result about this
theory, the reader can simply think of a uniform measure on SO which is left-invariant
under the action of the group.
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Proof. The picture of the situation is the following: Z?\ {0} is the (punctured) lattice
with integer coordinates, multiplying by v € (1, 2) dilate the lattice; and, applying p, we
rotate the lattice.

Now we begin the proof.

For each k,

I _/Sod/ p(vk)) dv dm(p) = ||k]| ™ /sm/a”i”” ”ZH))dvdm( ).

Then, since for a fixed n € S, the orbit of n by SO is the whole S~ (with equivalent
measure), we deduce that

k
/5 o ¢(vp(m)) dm(p) ~ /S L ¢lvn) dm(n).

Hence, a change of variable yields

DIk /[kzk] gas O0m) dvdmin) & Ik /Ilkslm||§2llkll Ple)dm(z)

Finally,

> [kN/ x)dm(x),

keZa\{0}

where

—d
K(x)= Y |kl Lppy<ye)<2iey ().
kEZd\{O}

Since for each x,

K(z) = > [l

{keza\{o}:Lgl <[k < )|z}

which is zero if ||z|| < 1 and, if ||z| > 1,
K(x) ~ ol ™ # {k € Z\ {0} : ||k]| < [lal| < 2]k} = 1,

as the number of integer points in a spherical region is approximately its volume, we
conclude the proof. O

Definition 3.3.10 (Periodization). Given f € S(RY), p € SO and 2 > v > 1, we

define, fort € [0,1]4,
+1)
T,.(1) f ( )
\/_ kgzjd

Proposition 3.3.11. The following hold:
L(f)pw(m) = v~ f(vp(m));

2. For S C R? of finite measure and f supported in S
[{t € (0,1) : T, (t) # 0} < 29S];

1. Form € 74,
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Proof. For (1), assume first that v = 1 and p is the identity. Then, for m € Z%, a
computation shows that

A

Jo S S0 = 3 [ p(ae e = [ f(e e < fom),
0,1)4 k+[0,1] Re

kezd kezd

Now, in the general case, given p and v, define f,,(z) = f(2 (Ux)) Clearly,

1

5T r)1aa(8) = D(F)pul),

and

A

fow(m) = v* f(up(m)),

whence the result follows.
For (2), note that
[{t € (0,1) : Ty o) # 0} € |Upeza(vS — k) N [0,1)7] = [Upeze v 0 (k + 0, 1)) = [0S] = 08,

whence the result follows from the fact that v < 2.

[
Proposition 3.3.12. For F : SO x [1,2] — R put
/ / (v, p)dvdp.
504
Then, there exists C' > 0 such that for 0 € ¥ a measurable set of finite measure and
M,, ={k e€Z:vp(k) € X},
the following hold:
1.
E(#Mpﬂ) - 1) S C’|E|7
El > If(vp(/f)l2> I
(keZd\Mp,v RAZ
Proof. Using Lemma [3.3.9| and recalling that 0 € X,
E(#M,, 1) = [ / Ls(vp(k))dvdp [ 15 < |Z|,
504 kezzd\:{o} ) >1
whence (1) follows. For (2), similarly,
1D ( > 1A ) / / S 1 wp(k)PIms(vp(k)) dvdp ~ / “Trys.
kEZINM SOTIL ez foy llzl|>1
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Theorem 3.3.13 (Nazarov’s uncertainty principle, [15]). There exists A > 0 such that
for any f € L*(R?) and any S,% C R of finite measure, the following holds:

=115 F
[lre s ([ e [ 17R). (3.9)

Proof. Before we begin with the proof, some simplifications are in order.
First, if |X||S]| is small, the results of Section suffice to obtain the result. Indeed,
using the notation of that section,

f=RYPI-Q)f+I-P)f),
so that

It < Jl== (e o + [P 1])
Since by Lemma we know that ||PQ| < |S||X], and

9IZlIsI.

)

- - : 1
|77 < 2 1PQP < s =

if |Z[|S| < 3, we may assume that |3]|S] > 3.
Second, by a change of scale, we may assume that |S| = 27971, Indeed, given f consider

foalx) = Af(Ax). Then,
y

ATHIES = LA < APS (HMMASHj + | Alrasrs

A (! + [P

so that it suffices to obtain the result for f) for a given A.

Third, by a density argument, we may assume that f € S(R?).

Fourth, it suffices to obtain the result for f supported in S. Indeed, this is implication
(4) = (3) of Lemma (note that we are assuming that |3|[S| > 3, and this means
that AFISI 41 ~ APISTY,

Fifth, if we prove, that for f supported in S,

|7 5[ < 4™ || Frss],. (3.10)

we can conclude the proof. Indeed, if (3.10) holds,

171 = | Fazas], + 71 s, < 4%+ 1) | Frzas], < (A7) | Figas]],

where the last estimate follows from |X| > ﬁ =24,

Now we begin the proof. For each p, v, put

Tou(t)= Y T,u(k)e™ 0 4 S T, (k)e*™®0 = T (1) + Ta(t).
kEMypo kEgMp,o
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We want to estimate 1'/‘,;,(0) ~ f(0). Clearly, |I/‘p\v(0)| < supyeqo e [Tpwl- To estimate
this last quantity we shall make use Lemma [3.3.6|

Using Proposition [3.3.12| and the Chebyshev inequality, we deduce that

1
P(#M,, —1>20]5)) < 5

i ba) 1
P ( > f ek >20 [ ,f|2) <3

kEZN\M,, v

so that there is a choice of v, p such that the following hold simultaneously

1.
#M,, — 1205,

> |fwek)? <2C 1%

d
kEZN\M, RAZ

Now, by Proposition [3.3.11) and that |S| = 2797!, we know that I, vanishes in a set F
of measure at least 1/2. Thus |T'1(¢)| = |T'2(¢)| whenever ¢ € F. Once again, since

LI@P< [ noP=c X (feew)P <20 [

d d
[0.1] kEZAAM,., RAD

the Chebyshev inequality guarantees that |T'y(2)[* < 8CC” [y | f|? in a set G of measure
1/4 inside F', consequently, the same holds for I';. Finally, applying Lemma to I'y
with

d
—d+ ZOI’di FZ S HOI’di Fl = #MPJJ S 20|Z’ +1

i=1 %

and F = (G, we obtain that
FORsA™ [ P
RS
and repeating the proof by changing the role of 0 by any other point in Y, we obtain

[fy)F < A¥ i

RA\ %

for y € ¥, so that integrating over > we deduce that

A< imia [ afe s a1

RIS

that is, equation (3.10]) holds. ]

Finally, using Corollary we can obtain similar results even in the case of |X| = oc.
Indeed,
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Proposition 3.3.14. Assume that ¥ is a measurable set that satisfies |X N I| < |I|'~%
for some r > 1 and every interval I. Then, there exists a 0 > 0 for which the inequality

) .
WS [+ [ 1fP
R\ /5 R\X

holds whenever Is is an interval of length 9.

Proof. By Corollary we know that there exists a K such that whenever f is sup-
ported in X,

5 [P < [Pt < KL
Let 4 be such that 5
2 [ 177 < 1713
Then,

2</ 2‘
13 [ 1

In the notation of Section let () be the projection onto X in the frequency side
and P the projection onto [0, d]. Then, we have

IQull < [PHQu|

and by Lemma
loll 5 [[Po] + @t

3.4 LP Heisenberg type uncertainty inequalities

The Heisenberg UP A
1A < D7l | 7]

is a crucial result both in mathematics and physics, with numerous applications in both
sciences. It is thus natural to consider the question of whether the L?-norm or the
weights x, £ can be be replaced.

In [28], the following result was obtained

Theorem 3.4.1. The inequality

A1 S 112 | Fe?

’ 3.11
. (3.11)
holds in the following cases:
1_ 1.
1. q<2and6>a—5,
2. q22and0<a<é.
Observe that the Heisenberg UP is recovered by setting p=¢=2and a =3 = 1.

The main theorem of this section is the following generalization of inequality (3.11):
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Theorem 3.4.2. Let 1 < p,q < o0 and o, B > 0. Then, the inequality

8- +2 B—k+2
Il S el T

ool 12
holds if and only if B > 1 — é — % and one of the following conditions holds:

1. q > 2;

2. p,g<2;

3. q<2§pand6>%—%.

Remark 3.4.3. It is worth mentioning that 1 — % — % q%
Remark 3.4.4. Note that if f — q% —i—% < 0, inequality (3.12) does not hold. Indeed, for
any f, consider fx(x) = f(x + N) and let N — oo. If § — qi* -+ % = 0, the inequality

becomes

1711, < | 7€°) (3.13)
which holds, assuming p = 1 — % — %, if and only if ¢ > p (see Corollary . In
conclusion, in Theorem we may always assume that > 1 — % — %.

Remark 3.4.5. The exponents of the norms which appear in inequality (3.12)) are seen
to be necessary by scaling arguments. Indeed, for a given f consider fy(z) := Cf(A\x).
Then, simple computations show that

_1
LAy = CA= (11,5
2. lfxxly = CATa || f22 5

5. [he?], = oati

e

)
P
and one can check that the exponents of the norm must be the ones appearing in inequality

(13.12). Moreover, note that by choosing suitable C; X we may always assume that two of
the previous three norms in items 1-8 are equal to 1.

3.4.1 Proof of sufficiency

Lemma 3.4.6. Let 1 < p,q < o0 and «, > 0. Assume that f > max(0,1 — % -1

p
Then, inequality (3.12)) holds if one of the following conditions holds:

1.q=>2;

2. p,q <2

3. q<2§pand5>%—%.
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Proof. Step 1:
First, assume that = — = < 153 < , the inequality

( [ mq)q sl

holds if ¢ > 2 or if p,q < 2. Indeed, by Pitt’s Theorem (Theorem [2.2.5) it suffices to
check that

« Forq >p,

1
1/s
sup (/0 |t<1dt> s < 0.

o For g < p, (recall that r=! = ¢~ —p71)

00 1/s a ,
/ (/ |t|<1dt> s s < oo,
0 0

Since y
/0 1jyj<1dt < min(2, s,

some computations show that both these conditions hold.
Second, if ¢ < 2 < p, and = > [ > = 5, an application of Holder’s inequality and the
previous result shows that

1

(L) = ([ 1e) <],
also holds.

Step 2: Continuing with the proof, by considering f\(z) = Cf(Az) for suitable C, A
instead of f, normalize f so that || fll, = H ffﬁH = 1. After this normalization, inequality

(3-12) becomes [fzll, 2 1 We show that fo"‘H can’t be too small.
Let € > 0 be such that p— — % < pP-e< pl*, then for a fixed N € N, applying the
inequalities proved in Step 1 to the function

AN f = Z 1) f x+]h)<jjv> (3.14)

with the Fourier transform
(AN F)NE) = f(O(1 — e 2memN,

we deduce that

</|IS1 ’Ath‘fJ); 5 (/R’ﬂp’g‘p(ﬁs)( e2mich pN)ll’ </ ‘f‘p’ﬂp mln(l ’é-h')pN)

1
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Further, using that if N > &, then min(1, |h&|Y) < ||, we obtain

([ i) <

1
Finally, let hy be small enough such that (f|z|§1 |Ath|q) "< tand 4ho < 1. If

q % 3
</|z|<ho 7 ) s

oo b
|72, > =

&) =

then

and the result follows.
Otherwise, we have that

I=

q ! 3
</x<ho /] ) s

Then, by our choice of hy, we have

q s 1.1
([ - sr) " = § - =5
Since
1 N q é_ - (VY q % q %
3= ([, 1800 - rar) —(Z(j) /”h|<h0|f<x>|> (/)
< by a1
we conclude the proof. n

3.4.2 Proof of necessity
Lemma 3.4.7. Assume that inequality (3.12) holds for p > 2 > q. Then, > % —

1
-

Proof. Let ® be a C* function with support contained in [—1/2,1/2]. We know that &
belongs to the Schwartz class of rapidly decreasing functions.
For M € N and ¢; € R to be fixed, consider the following function:

f(z) = &(z) %é‘jcje*%”,
7=0

where each ¢ is either +1 or —1.

Observe that
[ @)z = |
R™ R™

q

M
D(x) Y ejcje ™
=0
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Next, by Fubini and Khintchine’s inequality (Theorem |1.4.1)), averaging over all possible
values for £, we obtain
q
] - [El®
R

q

%/R P(z) (;}\%\2) dr ~ (;}!Cjﬁ)

B[ [ o s ~ (Zw)

Next, a straightforward computation shows that

dx

o q
x) > ejeie ™
=0

M ..
x) Y ejcie ™
=0

Similarly,

ZE]C] (€+7).

Thus,

3 =
3 =

HffﬁHp—(/ (\sr > i €+J)) —(/R ;rcjrpnsﬂ%(s)\p)

S (Z(Ijl +1)6”|0j|”) ,

j=0

=

where the last equality is true because the supports of the translates are pairwise disjoint.
Finally, if

-
a+B—1/q¢*+1/p
)

9 < @ q% Fepl?
112 5 7l e

taking expected values and noting that for any X > 0 random variable,

B—1/q*+1/p B—1/q"+1/p

E[X a+i-1/7+175] < E[X]a-1/7+1/5

we obtain
q B—1/q*+1/p ¢ a q
M 2 M a+B—1/¢*+1/p 2 M atB—1/¢*+1/p p
(Z\Cﬁ) < (Z!Cﬁ) (Z 1)7|e; V’) ,
Jj=0 Jj=0 j=0
that is,
1 1
M 2 M P
(Z |Cj\2) (Z 1)e; \p) :
§=0 §=0
equivalently,
o % . v
Z CJ|2 Z j + 1 ﬂp|c |p )
7=0 7=0
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uniformly on ¢;.
Since 2 < p, by Holder’s inequality, this condition holds for all ¢; if and only if

) __B
> +1) 2 <o,
=0

which is known to converge if and only if —2+ < —1, which is equivalent to § >

2 p

1_ 1
2 : O

p

3.5 Broken power weights

Another possible generalization of the Heisenberg UP is the following family of inequal-
ities:

Al <[4 B2
171, ). < s 7). (3.15)
where A = (A;, A2) and B = (B, By) are broken weights, that is,
A |I|A17 |$| <1
{|a:|A2, o > 1 (310

with Ay, As, By, By > 0. Indeed, setting p = p* =2 and A1 = Ay = By = By = 1, we
obtain

115 = 1£1 | 7], < el |l€F]

the classical Heisenberg UP.

It is worth mentioning that in [§], the authors used the Pitt inequality to obtain sufficient
conditions for inequalities similar to to hold for general weights. Nevertheless, if
one wants to fully characterize the previous inequality, it is necessary to use more delicate
arguments.

) )

The main results of this section is the following:

Theorem 3.5.1. Let p > 2. Then, inequality (3.15)) holds if and only if By > Ay, Ay >
By and one the following holds:

1. A2>%—%,A1<%—%cmdB§>(%—l)A1,
2. A2>%—%,A1>%—%;

3. Ay > g — 25— 5 =A< By

4. Ay <

N[

—%,Alz()andBl:O.

In particular, for p =2, inequality (3.15) holds if and only if Ay < By, Ay > By.

Remark 3.5.2. Note that replacing f by f in inequality (3.15)) has the effect of exchang-
ing the roles of p by p* and A by B. Hence, the condition p > 2 is not restrictive.
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Remark 3.5.3. Observe that the Hausdorff- Young inequality yields
2 A A 2
1715 < 0, ] < 1
so that inequality (3.15) is in between the type of inequalities described by (3.11) for
a=f.
Corollary 3.5.4. For usual power weights, that is, A= A; = Ay and B = By = B, we
have that the inequality (3.15)) holds if and only if A= B =0 or A=B > % -1

p

The proof of the theorem is given in the two following sections.

3.5.1 Proofs of sufficiency

Lemma 3.5.5. Assume p = 2 and that that inequality (3.15)) holds for A, B, then it also
holds for NA, AB for all A > 1.

Proof. We use Holder’s inequality to obtain

1 1
A 3 |24
[ ]|, < 1A =21
B 7 ks3 AB [ X
Hffngfz £f2’
where, as usual, % + /\i =1.
So from formula (3.15)) we deduce
1 1L 1
? A B} 3 |24 A3 || eaB 7
11 | Al < =2, €27, < s =22 |17 €2 )

whence the result follows. O

Lemma 3.5.6. Let A = (Al,AQ) and At = (AQ,AI) with 0 S Al,AQ < 1/2, then

[17PIelag < [ 1Pl a.
R R

Proof. 1t follows from

1/s s :
sup < §_2Ad§> (/ 24 dx) <1
s 0 0

and Pitt’s inequality (Theorem [2.2.5)). O
Lemma 3.5.7. Forp =2, if Ay < By and Ay > By, then inequality (3.15) holds.

Proof. Observe that by monotonicity it suffices to prove the result for A; = By and
Ay = By, that is, for B = A’. Besides, an application of Lemma shows that it
suffices to prove the result for A;, Ay < 1/2.

Then, by Holder’s inequality and Lemma, |3.5.6}

113 = [ 7@ <[], |52, < |72, | Fe*

5"
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Lemma 3.5.8. Let p > 2. Inequality (3.15)) holds if By > Ay, Ay > B and one the
following conditions holds:

1. A2>%—%,A1<%—}DandB22>(%—l)A1,
2 Ay>iolA 1oL

1 1 1 1
3. A2>§—§7§—§:A1<BQ7

4. A2§l—%,A1:0and31:O.

Proof. Before we begin, note that the fourth item is clear because in this case both
weights are pointwise greater than 1; the third item follows from the second one as
follows: let %—]% = A < B,, then there exists € > 0 such that %—]% < Aj4e= A < By
and by item (2),

[V AR e R Vs S s (N
p p p p p
We use further the normalization ||f|l, = 1 and assume throughout that A, > 1 — %.
We use several tools.
Tool 1:
From Holder’s inequality, we deduce that, for ¢ > 0
2 1
t/2 .\ P 11 b2 .o\ 2 a1 1. 11
[o0ir) <o ([ p) <o | g, = ok
—t/2 —t/2 2
This means that (recall the definition of broken weights in equation (3.16)))
Juge P12 200 (|7 %)
[€1>t/2 p
11
and setting 2t = || f||;. *, we establish that
A A A~ IB 1
172 2 |17 |l (3.17)
p p p

Tool 2:
Next, once again by Holder’s inequality, we deduce that

([ 1) st

S =

and using that A, > % — %,

</$'2t ’f|2>2 < | £, </:c|2tx_%Aé>2 y

and combining these estimates, we obtain for ¢ > 0 that

L=l S 00,55 + e ( / ) g (3.18)
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Tool 3:
First, for t < 1, and k£ € N, the triangle inequality yields

(1) < ([ 16 x+t|p) F(Lr) < ([rake) ()

where AY f is as in equation (3 . Thus, using the inequality

([710) <] e

1
t > -
71,5 ([ 1aksp)" + o] e
Now, Pitt’s inequality (Theorem ) implies that for D = (0, Ds), if Dy < %,

([ |f|”>; <om|f] ..
C(t) = sup (/OS 1[07t]>; (/08_1 ggl’D>; ~ th2.

Therefore, just like we did in the previous section,
1
Yok e\ < 4D
([ 1aksr)" s em
—t

A1l < 7

we deduce that

with

f(l _ 62m‘xt)kxﬁHp* '

Hence, for t < 1,

fea - emt)’ngHp* +| foprAl. (3.19)

Now, we find it convenient to split the proof into four cases.
Case 1. Assume Hpr* > 1 and foAHp > || fll,- From (3.17) we have that HffBHp* =

H f Hp*, and consequently,

7=, 1€, 2 11, 111, 17

L 1 ~
=1 1,04,

Al

Iy

|72

I/

Case 2: Assume Hpr < 1land foAHp > [l Lett = <

(3.18) becomes

Ag
”) > 1, then equation

"s\H

1
2 p

LS A1, (If’ )

Hf||p “g 7). 2 17

and from (3.17)) we deduce

l
2

zT
p*
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Finally, using that Ay > B; and Hpr* < 1,

inequality that
17

p
1 _ 1

(note that £ —
Case 3.0: Assume Hpr > 1 and foAHp > ‘

— 3) whence the result

7%, 2 171,17

Finally, from the Hausdorff-Young inequality

deduce

7221, 172",

Case 3.1: Assume Hpr > 1, foAHp <|[I£1l,
then implies that

B S

Indeed, since t < 1,

LS U1, 575 + a7, (/|

8

and all that remains is to substitute ¢t = <

(13.17) we deduce

65

we have by using the Hausdorff-Young

Ag A
f*% > | fll5
follows.
feb Hp*. From we derive that
B
w2,
p* p*

(5

—rAr\ET 1_1 Al L i_a,
PE) 7 b s e

|72
B

and the hypothesis Hfa:AHp 2 foBHp* we

1
fA Ay
|- ||p> -

2 |\, i,

and A; > %—%. Let t = (HfH
P

)

@\»—‘

1
2 p

I1£1L,

],

+£=,

Al

1
2 ) . Continuing with the proof, from

e
(ff“ et e, 2 ), AT
equivalently,
LG AR s A : o
(( ) e [ 21

Finally, since By > A; and Hpr* > 1, by the

Tk

Hausdorft-Young inequality,

HfHAl s

HAl -t
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and since A; > %—% and foAH <[l £l,

I :
(ff l, ) I L ' L

11, AL AL,

whence the result follkos. A
Case 3.2: Assume HfH L >1, Hf:BAH < HfSBH B foAH < £l A2 > %—% > A,
p P P P
B> Ai(z — ).
Write By = Dy + r with » > 0 and Dy < 217. Now, applying inequality (3.19) with
r < k € N, and applying the inequality
(1 — ¥ % < min(1, 2t)" < (xt)",
we deduce that, for R = (r, By) (see (3.16))),

£, < ¢

ger] + ] o2

Besides, since Hpr > 1, from inequality , we conclude that Hf”p < Hf{BHp*.

Hence,

o, <11, 57, .
so we have that
e, < e, .
and equation becomes for ¢t < 1,

£, < ¢

fSBHp* + Hf;pAHp A1

1], \
Setting 1 >t = , we get

171)..
< A % £¢B ﬁ
1711, S |l 20 | FeP| 2 (3.21)
Finally, equation (3.17))
B
77, 2 141, 1717
is equivalent to .
I, < e 7
and since A; < % - % < Ay,
L= 1£ll, S ||/«
we arrive at L N
I, =l F7
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Combining this estimate with (3.21)), we obtain
1 1
A “ Ay R 2P
Hf pr 5 foA‘ fﬁB B;2+A1 ng j*fﬁJrBz fﬁIZ'A
p p
Finally, since B > Al(% — }D), we have that (to simplify the computations, note that
the sum of the fractions below is 2)

Ba
Bt A
p

Bo
1_1
3 ptB2
p

p*

1
p
By’

N | =

BQ BQ Al

+ >1> +
Bo+ A 5= ,+DB~ T Bt A 5-

1
p
and since foAHp < HfISBHp*, the result follows.

Case 4.1: Assume that Hpr < 1 and foAHp <|[|fll, and A; < z— %. By setting ¢t =0

in equation (3.18]) we obtain

LS|t <l S | F

<1,
p*

so that A
L | fat] & Al =~ L
so that from equation we deduce

[riss

21
p*

whence the result follgws.
Case 4.2: Assume HfH <1
p

Here we have

1
"

2 < p g
(ﬁgJﬂ> N<ASJH) <ifll,

<4»1VF>25<A;NkaW)psnfm,

=15l S 171, <],

and HfH ~ 1, so that the result follows from Case 3.1.
p*

fat| < S, and Ay > § -

N

and

SO

3.5.2 Proofs of necessity
Lemma 3.5.9. Assume that inequality (3.15)) holds for A, B. Then, the following hold:

1. For any A > 0 we have

D=

111, F

< (v [ s e |
p* |z|<A

Pl ac)
p*B1 £
(e [V

1
*

p* p* g‘p*Bzd£> ! (3.22)

£

vBag N [ ()

[€]=A—1
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2. Ay < By and By < Ay;
3. If Ay = By, then, inequality (3.15)) also holds for A = (As, As) and B = (B, By);
4. If Ay = By, then, inequality also holds for A = (A1, A1) and B = (Bs, By).
Proof. For a function f and A\ > 0, define
iulx) = Af(Ax).
Then, f(€) = f(¢/). Thus,

[ £x11,
and A
15, - 1A,
p p
Also,
1
|2t = (A [ 1f@pleptidr+ x| |f(x)|p|w|p“‘2dx>,
|z| <A [z|>A

1
*

* *

p%&+w&/ Af©P 5%%>,
[€|>A—1

§

Bl \/p" [ \P"Bu £(e|P
R (I

whence (1) follows.
Next, taking f a Schwartz function, note that

A [ @ Pede < [ @)
|| <A |z[<A

and for any n € N
lim )\"/ |f(2)|P|z|P2dx = 0,
>

A—00

and similarly for f .
Hence, since A™42 [, o, | f(2)P|z[P42dx decays faster than any polynomial as A — oo, we
have that for A large enough,

=

Thus,

lpat, N
A1, S e 7 ([ )

7 1
=
*BZ
da:) ,

and similarly

fa®|

A

P ([ IR er

p*
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whence we deduce that By > Ay and similarly when A — 0, A; > By, and (2) follows.
Besides, note that if B, = A;, multiplying the two last equations we deduce that

U, = (f L rowernar)” ([ ior i)

whence (3) follows by letting A\ — oo. (4) follows in the same fashion. O

Lemma [3.5.9] implies some easy restrictions on parameters. We now give an idea of the
proof of necessity of the remaining conditions. The next three lemmas are variations
of the following construction. For a smooth and compactly supported ¢, we consider
functions of the form

M
f=f+fo=No(Nx)+ Z EnCn®(T — 1),
n=1

for ¢, to be chosen later and N, M large. This function consists of two parts: a sharp
peak and a tail which ressembles a step function. Clearly, if N is substantially large,

1Al > Hfle’p

Y

(by > we mean "much greater than” in an informal way) and if we chose ¢, for which
for every M,

|72, %
p

we will have

171, > [l£=4)] . (3.23)
The Fourier transform of f,

f:f1+f2 = (f/N +¢ (Zgncn 27r1£n>’

also has two parts: a wide component and a component roughly concentrated around
the origin. It is easy to see that if N is large Hf1§BH > . in such a way that

|
V4

< A
, S lfe

The crucial point is to choose the ¢, so that
|20, > 157,
p p
If we can accomplish that, since fg is concentrated around the origin,
fl . ~|7| . 2|7
p p p

and we obtain a violation of inequality (3.15]) from (3.23)).
As a final remark, our ¢, must satisfy both

15l < | fet], S 1< 1A,
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and

A

fa

A

S

>
p

Y

flfBHp* > .

since it is easy to see that

Jil, ~ 15,
we conclude (see Corollary that

1 £ell, << | 7

P
We are now ready to make the previous considerations precise.

Lemma 3.5.10. Assume that inequality (3.15) holds for p > 2 and Ay > 0. Then,

1 1
A2>§—5

Proof. For the sake of contradiction, assume that A, < % — %. Choose M, N > 0,

1 > ¢ > 0 smooth and supported in (0,1), ¢1,...,cy € R and define
M
f(l‘) = fl + f2 = Ngb(N‘T) + Z EnCnQb(Jf - TZ),
n=1

where ¢, is either 1 or —1. A computation shows that

M
F&) = Ffi+ foi=0(E/N) + 6(¢) <Z encneZ”’f”) .
n=1

Thus, raising inequality (3.15]) to p*, we have

p*

dé <

~Y

I11E | ]és(é/zv) +6(¢) (z s)

*

p

p* A « M , )
|22 /R‘eb(é/fmm (Zancnemn> €8 .
n=1

Taking expectations over all possible values of € (see Theorem |1.4.1]), we deduce that

p*
E dé| <

U e 66 (35w

*

p

E

frerl? [ foter e (35 cunee)

gBP*dgl . (3.24)

For the RHS of (3.24)), we have

E

. M P’
FA [ 1AE/N) +6(6) [ S encne®™ )| Prag| <
p R
n=1

P+ E

/ ’@(@ (ﬁjj e

| ( [ 18t/

SB”*CKD :
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and applying Fubini’s and Khintchine’s (or simply Holder’s) inequality, we deduce that

Y z
5| (Z |cn|2)
p n=1

For the LHS of (3.24)), using the reverse triangle inequality for the norm X — E[
we deduce that
PP x

A M .
|¢(€) (Z encnemé")
n=1

nis < ]!

(3.25)

P

E |{é(e/) + 666 (3 e

*

> | fI ] —|o(&/N)| | d&p. (3.26)

Continuing the estimates for the LHS, we have that, by the Khintchine inequality (The-
orem |1.4.1]) and the reverse triangle inequality we conclude that

Ap:|
p*

*

141, 2 141, /(M) (Dcnr?) ¢€/N)) ai >

.
F

I£1, (Ap 14].. (Z |cn|2)2 - f) - (3.27)

Hence, using both the estimates for the LHS and the RHS, we deduce that

M 3 ) M 3
7 2\ |7 < o 2 B
171, {4081, (St} =1, ) 5 5], {1667 (5 1) -
(3.28)
Next, some easy computations show that (here ~ is allowed to depend on ¢)
1
Bl M g
I, = WAl + el 9 o (X Je)
=4, v
p
1
1 A M ;
foAH < waAl + Hfza:A2 ~ N ™M 4 (Z |cn|pnpA2> ;
p p p
n=1
’ { ¢B <Np%+Bl+Bz.
Finally, define ¢, = 11 ot Note that 72, c; = oo but, since Ay < % — %, S =
nlog(n
1
(ij’:l cﬁnpAQ)P <y W < 0. Fix N such that N+ ~ || f1ll, = S, so that we
nlog(n
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have | f||, ~ N z%*, then letting M — oo, inequality (3.28) becomes

1

N# < (N 8) |ée?|
p* p*
and since A; > 0, we obtain a contradiction by letting N — oc. O]
Lemma 3.5.11. Assume that inequality - ) holds for p > 2. If Ay < - — 13 it is

necessary that By = A; = 0.

Proof. We already know that it is necessary that A; = 0. For the sake of contradiction
assume that By > 0. Then, let ¢ be a non-negative Schwartz function supported in
0,1]. Take cg,...,c, -+ € R. For each M, N > A\~! > 1 define

f(z) = No(Nzx) + Z EnCnd(T —m).

n=2
Then,
F(&) = d(&/N) + (¢ Zgncn Zrine,

where ¢; = £1. Clearly,
VTR
I~ 8 + (3 e
n=2

Besides, as we did in the previous proof (equation (3.27)),

eIA,) 2 ( (35kr) -1 ) - |4, ( (3510) N;*) |

From equation (3.22) in Lemma , we have

p —pA2 P|p|PA2 !
o[ r@passxes [ fplepa)

i f P g™ B p* B2 P p* B i*
<>\ /|£|§A1 [FIEFTrde + X /|§|Z)\1 A3l dé) .

Because of our choice of f, (observe that ¢(Nz) vanishes for x > A > N71)

111, £

*

i

[ 1f@rdz)" < N3
<A
5 M »
(A_pA2/| |f($)|p|x|pA2d:1:> ~ <)\—pA2 Z |cn|pnpA2> ;
z|>A

n=2
p*B1 N
@ [l

1
S

) < Nw 4+ 2B

)
p*

A M .
¢ Z Encne%rmz
n=2
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p* B2 p*|¢|p" B2
(e [ e e ) )

Analogously to the previous lemma, raising inequality (3.22)) to the p*-th power, taking
expectations, using the Khintchine inequality and then taking p*-th roots, we get

1
*

1‘§|>)\ 1¢ Z EnCn€ 27r'mz

n=2

<)\BQ (N 2—p+‘

*|

1 M % N M % 1
NP+(z\cn|p) 19 . 4 (Z|cn|2) —l1¢ll,- N+ | S
n=2 n=1

) M
N»™ + <)\_pA2 > |cn|pnpA2> X

n=2

1

N»

*|

+ AP

Mo Mo\
chp* <Z Icn|2> +AB [ NBepe 4 Hﬂ‘gm,w@ ‘p* (Z Icn|2> (3.29)
n=1 o

Here, since Ay < 1 — %, there exists a sequence ¢, such that %%, cPnP42 = SP < oo and
Yonts len|? = o0
1
Choosing N such that N»* > S and letting M — oo, we deduce that
’p*)'

N¥ < (N%* +A7425) (AP 4 AP 16

Letting N — oo and then letting A — 0 we obtain the desired contradiction. [

Lemma 3.5.12. Assume that inequality (3.15) holds for p > 2. If Ay < L — 1 then

1
2 p’
By > Az — )

Proof. Before we begin, note that if B, = 0, Lemma [3.5.9 implies that A; = 0, so that
the conclusion holds. From now on assume that By > 0. Once again, for any A > 0,

11, 7], (A o[ @Rt [ |f(x)|p|x|pA2dx>p
<)\p*Bl /|£|§>\1 FOP g Prdg + 3 /5|2A1 NGl *BZCE)

We are going to use a modification of the previous argument.
Choose A, N > 2 integers, ¢ > 0 smooth and supported in (0, 1). Let further ¢y, ..., ¢, -
R and define

A—1

f(l’) =fi+ for= N¢(Nx) + Zgncn¢(x_n)a

n=1

where ¢, is either 1 or —1. It is easy to see that

F&) = fi+ fo = ¢(E/N) + ¢(€ <Z EnCne 27”5”> :
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Since f is supported in [0, A],

3=

(3o [ e bas s xo [ fPlepac)
lz]<A [z[>A

1

5 A-1 v
- ()\_pAl /|x|<>\ |f(x)|p|x|p‘41dx> ~ AT (Npl*Al + <Z ]Cn|pnp’41> ) :

n=1

Likewise,
1

1 A—1
1f1l, = (1 f2ll, + W f2ll, = NP™ + (Z |Cn\”>
n=1

By monotonicity and using Hélder’s inequality,

f ” ~14! 11 A—1 3
(o [ e Pa) ™ o (m+(z))

We also have

Gl O ¢l

[g/=A—1

SN / (&)= 7" |3 encne®™ | du;
R n=1

and in the usual way (equation ({3.27)),

T2, ((Eer) -4

So that raising equation (3.22)) to p*, applying Khitchine’s inequality and taking p*-th
root, we deduce that

. A-1 3 ) ) A-1 7
A <Z Icn|2> — N | | N7 + <Z !cn|p> (3.30)
n=1 n=1
1
) A-1 »
<A (Np*A1 + (Z ]cn|pnpA1> ) X
n=1

1 1
A—1 2 A—-1 2
{Apl*% (Né + (Z cn]2> ) + \B2 (Npl’”LB2 + HQ%BQ " (Z |Cn|2) )}
n=1 n=1
o 3
A5 )

i

1

<A (Npl*Al + (Z Cn pnPA1>p) A2 (NPI*J“BQ + |6e”

because as p* < 2,
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A1 3
* (Z w)
p n=1

L
&

A p

1
A1 2
o (vt 4 (z |cn|2> <A [N
n=1
Choose ¢,, such that

- L
() <
n=1

and such that the Holder inequality

A—1 % A—1 % A—-1 1A11 %
) <) (£
n=1 n=1

becomes an equality. This implies that

N
(5] vt s
n=1

Finally, we take A and N to be related by

1
1 1 1_1 Al 2
NP = N At (Z Icn|2> ,
n=1
o

that is, A\ = N27»~ "1,
To finish the proof, let us examine the effect of the previous choices in each term of
equation (3.30). Recall that, as stated in the beginning of the proof, By > 0.

A—1 3 L
" (Z \Cn!2> ~ Nv 02
n=1

Np%+32 + H$532

1

A-1 2
19 . <Z|cn\2> — N | = N
P n=1

S

A-1
N4y (Z \cn|pnpA1> ~ N~

n=1

1 Al % 1
N# + ( d;;) ~ N,

n=1

Hence, inequality (3.30) implies

(Bo—A1)(A1+Bg) —A,

1< B-AN-4 N 3 5A

Y
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and letting N — oo we conclude that

(By — A1)(A1 + By)

0< — Ay
-4
That is,
1 1
B — A} > A} + A1(§ - 277)7
whence the result follows. O]

We are now in posicion to conclude the proof of the Theorem.

Proof of necessity in Theorem|[3.5.1. To begin with, the conditions By > A; and Ay >
B follow from the second item of Lemma . Second, if Ay < 1 — ]13, Lemmas [3.5.10

and 3.5.11{ show that By = A; = 0. Third, if Ay > %—I% and A; < %— ]%, Lemma |3.5.12
shows that B2 > Al(% — ]%); if Bp=A; = % — ]%, the third item of Lemma |3.5.9| together
with Lemma [3.5.10| provide a contradiction, so that necessarily By, > Aj. O




Bibliography

1]

[12]
[13]
[14]

[15]

F Albiac and N. Kalton. Topics in Banach space theory. 2nd revised and updated
edition. Vol. 233. Grad. Texts Math. Cham: Springer, 2016.

W Amrein and A Berthier. “On support properties of LP-functions and their
Fourier transforms”. J. Funct. Anal. 24 (1977), pp. 258-267.

W Beckner. “Pitt’s inequality and the fractional Laplacian: Sharp error estimates”.
Forum Math. 24.1 (2012), pp. 177-209.

J Benedetto and H. Heinig. “Weighted Fourier inequalities: New proofs and gen-
eralizations.” J. Fourier Anal. Appl. 9.1 (2003), pp. 1-37.

M Benedicks. “On Fourier transforms of functions supported on sets of finite
Lebesgue measure”. J. Math. Anal. Appl. 106 (1985), pp. 180-183.

C Bennett and R Sharpley. Interpolation of operators. Boston, MA: Academic
Press, Inc., 1988.

M Cowling et al. “The Hardy uncertainty principle revisited”. Indiana Univ. Math.
J. 59.6 (2010), pp. 2007-2026.

L De Carli, D Gorbachev, and S Tikhonov. “Pitt inequalities and restriction the-
orems for the Fourier transform”. Rev. Mat. Iberoam. 33.3 (2017), pp. 789-808.

L De Carli, D Gorbachev, and S Tikhonov. “Weighted gradient inequalities and
unique continuation problems”. Cale. Var. Partial Differ. Equ. 59.3 (2020), p. 24.

N Fontes-Merz. “A multidimensional version of Turan’s Lemma”. J. Approz. The-
ory 140.1 (2006), pp. 27-30.

D Gorbachev, V Ivanov, and S Tikhonov. “Pitt’s inequalities and uncertainty
principle for generalized Fourier transforms”. Int. Math. Res. Not. 2016.23 (2016),
pp. 7179-7200.

G Hardy. “A theorem concerning Fourier transforms”. J. Lond. Math. Soc. 8
(1933), pp. 227-231.

G Hardy, J Littlewood, and G Podlya. Inequalities. 2nd ed., 1st. paperback ed.
Camb. Math. Libr. Cambridge University Press, 1988.

V Havin and B Joricke. The uncertainty principle in harmonic analysis. Vol. 28.
Ergeb. Math. Grenzgeb., 3. Folge. Berlin: Springer-Verlag, 1994.

P Jaming. “Nazarov’s uncertainty principles in higher dimension”. J. Approx. The-
ory 149.1 (2007), pp. 30—41.

7



78

[16]
[17]
[18]
[19]

[20]

[21]

BIBLIOGRAPHY

M Jodeit and A Torchinsky. “Inequalities for Fourier transforms”. Stud. Math. 37
(1971), pp. 245-276.

W Jurkat and G Sampson. “On maximal rearrangement inequalities for the Fourier
transform”. Trans. Am. Math. Soc. 282 (1984), pp. 625-643.

A Kufner, L. Maligranda, and L Persson. The Hardy inequality. About its history
and some related results. Pilsen: Vydavatelsky Servis, 2007.

A Kufner, L Persson, and N Samko. Weighted inequalities of Hardy type. 2nd
updated edition. Hackensack, NJ: World Scientific, 2017.

F Nazarov. “Complete version of Turan’s lemma for trigonometric polynomials on
the unit circumference”. Complex analysis, operators, and related topics. The S.
A. Vinogradov memorial volume. Basel: Birkhauser, 2000, pp. 239-246.

F Nazarov. “Local estimates of exponential polynomials and their applications to
inequalities of the type of the uncertainty principle”. Algebra Anal. 5.4 (1993),
pp. 3-66.

G Pisier. “Factorization of operators through L, or L,; and non- commutative
generalizations”. Math. Ann. 276 (1986), pp. 105-136.

H Pitt. “Theorems on Fourier series and power series.” Duke Math. J. 3 (1937),
pp. 747-755.

J Rastegari and G Sinnamon. “Weighted Fourier inequalities via rearrangements”.
J. Fourier Anal. Appl. 24.5 (2018), pp. 1225-1248.

E Sawyer and R Wheeden. “Weighted inequalities for fractional integrals on Eu-
clidean and homogeneous spaces”. Am. J. Math. 114.4 (1992), pp. 813-874.

E Stein. “Interpolation of linear operators”. Trans. Am. Math. Soc. 83 (1956),
pp- 482-492.

E Stein and G Weiss. Introduction to Fourier analysis on Euclidean spaces. Vol. 32.
Princeton Math. Ser. 1971.

J Xiao. “LP-uncertainty principle via fractional Schrodinger equation”. J. Differ.
FEquations 313 (2022), pp. 269-284.



	Preliminaries
	Notation
	Some auxiliary inequalities
	Decreasing rearrangement function
	The Khintchine inequality

	Weighted Fourier inequalities
	Definition and duality
	Sufficient conditions
	Necessary conditions
	Inequalities without rearrangements

	Uncertainty Principles
	Hardy uncertainty principle
	Amrein-Berthier Theorems
	Hilbert-Schmidt operators
	Characterization of strong annihilating pars
	Application to Fourier Analysis

	Nazarov uncertainty principle
	The Nazarov-Turán Lemma

	Lp Heisenberg type uncertainty inequalities
	Proof of sufficiency
	Proof of necessity

	Broken power weights
	Proofs of sufficiency
	Proofs of necessity



