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Abstract

Abstract

The aim of this project is to study the basics of Quillen model structures as an essential tool in algebraic
topology and abstract homotopy theory.

In the first part, we will focus on the necessary background on category theory and homotopy theory
in order to understand the notion of model structure and some fundamental constructions and tools
within this framework.

The second part will deal with particular examples of model structures. Namely, we will study Thoma-
son’s model structure on the category of small categories and how it relates to Kan-Quillen’s model
structure on simplicial sets via an equivalence of homotopy categories, providing a model for the
homotopy theory of topological spaces.

Finally, we will describe how the category of partially ordered sets inherits this model structure, of-
fering yet another model for the homotopy theory of spaces. Moreover, we will analyze the relation
between this structure and T0 Alexandroff spaces.

Resumen

El objetivo de este proyecto es estudiar las nociones básicas de las estructuras de modelos de Quillen
como una herramienta esencial en topología algebraica y teoría de homotopía abstracta.

En la primera parte, nos centraremos en los conceptos necesarios en teoría de categorías y teoría de
homotopía para entender la noción de estructura de modelos y algunas construcciones y herramientas
fundamentales en este encuadre.

La segunda parte tratará con ejemplos particulares de estructuras de modelos. Concretamente, estu-
diaremos la estructura de modelos de Thomason en la categoría de categorías pequeñas y cómo se
relaciona con la estructura de modelos de Kan-Quillen en la categoría de conjuntos simpliciales vía
una equivalencia de categorías homotópicas, proporcionando un modelo para la teoría de homotopía
de los espacios topológicos.

Finalmente, describiremos cómo la categoría de conjuntos parcialmente ordenados hereda esta estruc-
tura de modelos, ofreciendo aún otro modelo para la teoría de homotopía de los espacios. Además,
analizaremos la relación entre esta estructura y los espacios T0 de Alexandroff.
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Resum

L’objectiu d’aquest projecte és estudiar les nocions bàsiques de les estructures de models de Quillen
com una eina essencial en topologia algebraica i teoria d’homotopia abstracta.

En la primera part, ens centrarem en els conceptes necessaris en teoria de categories i teoria d’homo-
topia per a entendre la noció d’estructura de models i algunes construccions i eines fonamentals en
aquest enquadrament.

La segona part tractarà amb exemples particulars d’estructures de models. Concretament, estudia-
rem l’estructura de models de Thomason en la categoria de categories petites i com es relaciona amb
l’estructura de models de Kan-Quillen en la categoria de conjunts simplicials via una equivalència de
categories homotòpiques, proveint un model per a la teoria d’homotopia dels espais topològics.

Finalment, descriurem com la categoria de conjunts parcialment ordenats hereta aquesta estructura de
models, oferint encara un altre model per a la teoria d’homotopia dels espais. A més, analitzarem la
relació entre aquesta estructura i la dels espais T0 d’Alexandroff.

Resumo

O obxectivo deste proxecto é estudar as nocións básicas das estruturas de modelos de Quillen coma
unha ferramenta esencial en topoloxía alxébrica e teoría de homotopía abstracta.

Na primeira parte, centrarémonos nos conceptos necesarios en teoría de categorías e teoría de homoto-
pía para entender a noción de estrutura de modelos e algunhas construcións e ferramentas fundamen-
tais neste encadre.

A segunda parte tratará con exemplos particulares de estruturas de modelos. Concretamente, estuda-
remos a estrutura de modelos de Thomason na categoría de categorías pequenas e como se relaciona
coa estrutura de modelos de Kan-Quillen na categoría de conxuntos simpliciais vía unha equivalencia
de categorías homotópicas, aportando un modelo para a teoría de homotopía dos espazos topolóxicos.

Finalmente, describiremos como a categoría de conxuntos parcialmente ordenados herda esta estru-
tura de modelos, ofrecendo aínda outro modelo para a teoría de homotopía dos espazos. Ademais,
analizaremos a relación entre esta estrutura e a dos espazos T0 de Alexandroff.
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Introduction

In our early years of the Bachelor, we learn algebraic structures: groups, rings, modules... For all of
them, we establish, for example, that the inverse of an isomorphism is unique, that there are some
isomorphism theorems... and once we prove it for one of them, the proof for the rest of them is
analogous (and often left as an exercise for the student). This not only happens in Algebra: also in
Topology, the inverse of a homeomorphism is unique. Once we have noticed this, a natural question
that can arise is: isn’t there a way to define groups, rings, modules, topological spaces... all together
and prove the results just once for all of them? Here is where Category Theory enters: a category (1.1.1)
would be a class of objects together with sets of morphisms verifying some properties. Groups (with
group homomorphisms), rings (with ring homomorphisms), modules (with module homomorphisms)
and topological spaces (with continuous maps) fit in this definition and hence we have solved our
apparently naive first question. But we can go far beyond that: Category Theory helps us to generalize
a lot of things, even up to a point that some people call “abstract nonsense”. The first chapter of
this memoir will be devoted to explain the most elementary notions on Category Theory (categories,
functors, natural transformations), as well as constructions that will be useful for us (limits, colimits,
adjoint functors) and the basic properties of the categories we will deal with: topological spaces,
simplicial sets, small categories, posets... The main references used for this chapter are [ML98], [DS95],
[Fri12] and [Hof].

H
X

X × {0}

X × {1}

Y

g

f

Figure 1: Sketch of a homotopy

In our case, we will deal with the generalization of a very well known topic in Algebraic Topology:
the concept of homotopy. In our fist lessons in General Topology, we deal with topological spaces and
continuous maps between them, outlining those continuous maps which have a continuous inverse, the
homeomorphisms. From that moment, we treat homeomorphic topological spaces as if they where the
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same, but this might not be enough for us: for example, an n-dimensional disc cannot be homeomor-
phic to a single point (since we cannot even establish a bijection between them), but we can think about
a point as an n-disc of infinitely small radius. That is where the notion of homotopy enters. If X and Y
are two topological spaces, we say that two continuous maps f , g : X → Y between them are homotopic
if there is a continuous map (homotopy) H : X × I → Y between the cylinder of X (X × I = X × [0, 1])
and Y such that H(x, 0) = f (x) and H(x, 1) = g(x) for every x ∈ X. Therefore, the set of homotopies
between X and Y will be the set of continuous maps from the cylinder of X, X × I, to Y. A sketch of
this notion can be seen in Figure 1.

Equivalently, by the Exponential Law, the set of homotopies between X and Y will be the set of continu-
ous maps from X to the topological space of continuous maps between I and Y, that is, the topological
space of paths in Y; see [Fox45, Theorem 2].

Φ : YX×[0,1] −−−−−−−−−−−−−−→ (Y[0,1])X

H : X× [0, 1]→ Y 7−−−−−−→ Φ(H) : X → Y[0,1]

(x, t) 7→ H(x, t) x 7→ Φ(H)(x) : [0, 1]→ Y

t 7→ Φ(H)(x)(t) = H(x, t).

From this point of view, a homotopy between X and Y would be a continuous map H : X → Y I such
that H(x)(0) = f (x) for every x ∈ X and H(x)(1) = g(x) for every x ∈ X. An illustrative sketch can
be seen in Figure 2.

X

Y Y

I

0

1

Y I

H

g

f

Figure 2: Sketch of a homotopy

We will say that two topological spaces X, Y are homotopy equivalent if there exists a homotopy equivalence
between them, that is, a continuous map f : X → Y such that there is another continuous map (homotopy
inverse) g : Y → X with g ◦ f and f ◦ g homotopic to the corresponding identities. Once we have
learned this, we consider homotopy equivalent topological spaces as if they were the same. But again,
this might not be sufficent for us and we can weaken our request by considering weak equivalences
(3.1.6) between topological spaces, that is, continuous maps that induce isomorphisms between their
homotopy groups. After that, we can consider weakly homotopy equivalent topological spaces as if
they were the same. But for being able to work with topological spaces in this contexts, we need
more tools than just the (weak) homotopy equivalences, and it turns out that we also have fibrations
and cofibrations, some special kind of continuous maps between topological spaces which are related
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among them and with (weak) homotopy equivalences and which help us to study topology within our
new setting.

Then, for generalizing these notions to general categories, we first need some structure on them. There-
fore, we will devote the second chapter of this memoir to study Quillen model categories (2.1.1), which
are categories with some distinguished morphisms (weak equivalences, fibrations and cofibrations)
satisfying certain properties. In this framework, we will be able to define cylinder objects and path
objects for our categories, for later developing the notions of left and right homotopy and finally ar-
riving to our goal of defining the concept of homotopy category, where our initial weak equivalences
will be isomorphisms. Moreover, we will see that if we are able to relate two model categories with
some special kind of functors called Quillen equivalences (2.5.3), we will get that their homotopy cate-
gories will be equivalent. This will be very useful for us since it will give us the freedom to study the
same homotopy category from the point of view of different model categories, which can arise more
naturally or be easier to understand in some cases, hence multiplying our possibilities when proving
conjectures in this situation. These structures were first studied by the American mathematician Dan
Quillen in [Qui67], but since they become a very important topic in Mathematics, a lot of topologists,
such as Mark Hovey or Philip Hirschhorn, summarized and completed this theory; see [Hov99] or
[Hir03]. Our main reference for this subject will be the survey by the American William Dwyer and
one of its students, the Polish Jan Spaliński [DS95].

Of course, the category of topological spaces admits a model structure (and hence a homotopy cate-
gory) with weak equivalences the weak homotopy equivalences. Moreover, the category of simplicial
sets will admit a model structure which will be Quillen-equivalent to the model category of topological
spaces. These facts were first studied by Quillen in [Qui67], and later, given its importance, by a lot of
more mathematicians, such as Philip Hirschhorn, Paul Goerss and Rick Jardine or Edward B. Curtis;
see [Hir03], [GJ09] or [Cur71]. We will give an overview of this in the first section of the third chapter.

Later on, the American mathematician Robert Wayne Thomason proved in [Tho80] that Quillen’s model
structure on simplicial sets can be lifted to the category of small categories with the help of two adjoint
functors, namely τSd2 : sSets ⇄ Cat : Ex2N. Some of the axioms for model categories are directly
derived from this lifting movement, but others require a bit of more work and the development of
a new kind of morphisms, the Dwyer morphisms (3.2.12), which will be very useful for us. We will
devote the second section of the third chapter to analyze in depth this construction and to prove that
the category of small categories admits indeed the aforesaid model structure.

But small categories, even though they are more simple than general categories, can have a lot of
morphisms and still be a bit difficult to understand. A handy kind of small categories are the ones that
come from partially ordered sets, since two objects in this kind of categories can only be linked by at
most one morphism. In his article, Thomason mentions that for every simplicial set X, τSd2X is one
of such categories, as well as the main objects used in his constructions. With this in mind, the Greek
mathematician George Raptis proved in [Rap10] that the category of posets inherits the model structure
of small categories in such a way that it is also Quillen-equivalent with Quillen’s model structure for
topological spaces. Thus, the first part of the third section of the third chapter of this memoir will be
devoted to state this clearly.

In this way, we have up to four different ways of interpreting weak homotopies for spaces and of
manipulating them in order to make new discoverings in the area. Nevertheless, in our long way we
lost a bit the intuition of the relation between topological spaces and posets. For example, we created
the notion of Dwyer morphisms for small categories, but we do not know what meaning they might
have in topological spaces. Therefore, in the last part of this memoir we will give a characterization of
Dwyer maps in topological spaces, also due to Raptis, making use of an equivalence between posets
and Alexandroff T0 spaces, as well as a chain of adjoint pairs between A-spaces and topological spaces.
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After all this performance, there is still a lot of work to be done. As Raptis mentions in his paper,
this equivalence between A-spaces and posets can be restricted to finite spaces and finite posets and is
related to a notion of simple homotopy type, developed in [BM08] by the Argentinian mathematicians
Jonathan Barmak and Gabriel Minian, which stands strictly between homotopy type and weak homo-
topy type and which is equivalent to a notion of simple homotopy type for finite simplicial complexes.
This fact makes us wonder if there is a model structure on (finite) posets such that in the homotopy
category posets with the same simple homotopy type are isomorphic. This and other lines of further
work are discussed on the conclusion chapter of the memoir.
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Chapter 1

Preliminaries on category theory

This first chapter is devoted, besides to set some notation, to introduce the basic notions on category
theory and the most useful constructions for us. Furthermore, we will present the particular categories
that we will deal with and some of their fundamental properties.

1.1. Categories, functors and natural transformations

The main objective of category theory is to set up an environment where we can frame a lot of math-
ematical features. In consequence, our first definitions will not be very demanding. Some references
about this subject are [ML98], [AHS06] or [HS07].

Definition 1.1.1. A category C consists of:

1. A class Ob(C) of objects.

2. Given objects A, B ∈ Ob(C), a set of morphisms (or arrows) C(A, B) with morphisms f ∈ C(A, B)
(or f : A→ B). All these sets are disjoint.

3. Given objects A, B, C ∈ Ob(C), a composition law

C(A, B)× C(B, C)→ C(A, C)

( f , g) 7→ g ◦ f

such that:

a) It is associative: (h ◦ g) ◦ f = h ◦ (g ◦ f ).

b) For any object A ∈ Ob(C) there exists IdA ∈ C(A, A) such that IdA ◦ f = f and g ◦ IdA = g
for any morphisms f and g. We call such a morphism the identity of A.

A category C is said to be small if Ob(C) is a set and finite if Ob(C) is a finite set and it has only a
finite number of morphisms between two objects.

Definition 1.1.2. Given a category C and two objects A, B ∈ Ob(C), we say that they are isomorphic
if there exist morphisms f ∈ C(A, B) and g ∈ C(B, A) (isomorphisms) such that g ◦ f = IdA and
f ◦ g = IdB. We write g = f−1 and A ∼= B.

Definition 1.1.3. Given two categories C and D, we say that C is a subcategory of D if:

1. Ob(C) ⊆ Ob(D).

1



2 1 Preliminaries on category theory

2. For any A, B ∈ Ob(C), C(A, B) ⊆ D(A, B).

3. The composition law in C is the restriction of the composition law in D.

Definition 1.1.4. Let C, D be two categories. We define the product category C × D in the following
way:

1. Ob(C ×D) = Ob(C)×Ob(D).

2. For any (C, D), (C′, D′) ∈ Ob(C ×D), C ×D((C, D), (C′, D′)) = C(C, C′)×D(D, D′).

3. The composition law is given by ( f , g) ◦ ( f ′, g′) = ( f ◦ f ′, g ◦ g′).

Definition 1.1.5. Let C be a category. We define the opposite category Cop in the following way:

1. Ob(Cop) = Ob(C).

2. For any A, B ∈ Ob(Cop) = Ob(C), Cop(A, B) = C(B, A).

3. The composition law is given by the composition law in C.

Definition 1.1.6. Let C be a category.

1. We say that an object A ∈ Ob(C) is initial in C if for any object B ∈ Ob(C), C(A, B) has only one
element.

2. We say that an object B ∈ Ob(C) is terminal in C if for any object A ∈ Ob(C), C(A, B) has only
element.

3. We say that an object A ∈ Ob(C) is zero in C if it is both initial and terminal.

Definition 1.1.7. Given categories C and D, a (covariant) functor F between C and D (F : C → D) is:

1. A law that assigns to each object A ∈ Ob(C) an object F(A) ∈ Ob(D).

2. For any two objects A, B ∈ Ob(C), a set map

F : C(A, B)→ D(F(A), F(B))

f 7→ F( f )

which satisfies:

a) Compatibility with the composition law: F(g ◦ f ) = F(g) ◦ F( f ).

b) Preservation of the identities: F(IdA) = IdF(A) for all A ∈ Ob(C).

We say that a functor F is:

1. faithful if for any two objects A, B ∈ Ob(C), the map F : C(A, B)→ D(F(A), F(B)) is injective.

2. full if for any two objects A, B ∈ Ob(C), the map F : C(A, B)→ D(F(A), F(B)) is surjective.

3. fully faithful if it is faithful and full.

Definition 1.1.8. Let C be a category. A subcategory D of C is said to be full if the inclusion i : D → C
is a full functor, that is, if for any A, B ∈ Ob(D) ⊆ Ob(C) we have that D(A, B) = C(A, B).



1.2 Limits and colimits 3

Example 1.1.9. Let C be a category. The following assignation is a functor for every X ∈ Ob(C):

C(X, ·) : C → Sets.

Y ∈ Ob(C) 7→ C(X, Y)

f ∈ C(Y1, Y2) 7→ C(X, ·)( f ) : C(X, Y1)→ C(X, Y2)

g 7→ f ◦ g

We will sometimes denote f∗ = C(X, ·)( f ).

Notice that if f ∈ C(Y1, Y2) is an isomorphism (with inverse f−1), then f∗ will be a bijection with
inverse ( f−1)∗.

Example 1.1.10. Let C be a category. The following assignation is a functor for every X ∈ Ob(C):

C(·, X) : Cop → Sets.

Y ∈ Ob(Cop) = Ob(C) 7→ C(Y, X)

f ∈ Cop(Y1, Y2) = C(Y2, Y1) 7→ C(·, X)( f ) : C(Y1, X)→ C(Y2, X)

g 7→ g ◦ f

We will sometimes denote f ∗ = C(·, X)( f ).

Notice that if f ∈ Cop(Y1, Y2) is an isomorphism (with inverse f−1), then f ∗ will be a bijection with
inverse ( f−1)∗.

Definition 1.1.11. Two categories C, D are isomorphic if there exist fuctors F : C → D, G : D → C such
that G ◦ F = IdC , F ◦ G = IdD .

Definition 1.1.12. Let C and D be two categories and F, G : C → D two functors between them. A
natural transformation t : F ⇒ G between F and G consists on a law which assigns to any object
A ∈ Ob(C) a morphism tA : F(A) → G(A) such that for any morphism f : A → B in C we have that
G( f ) ◦ tA = tB ◦ F( f ):

F(A) G(A)

F(B) G(B).

tA

F( f ) G( f )

tB

A natural transformation is a natural equivalence if tA is an isomorphism in D for every A ∈ Ob(C).

A functor F : C → D is said to be an equivalence of categories if there exists a functor G : D → C such
that G ◦ F is naturally equivalent to IdC and F ◦ G is naturally equivalent to IdD .

Remark 1.1.13. Let I = {0→ 1} be the category with two objects and only one non-identity morphism.
Having a natural transformation t : F ⇒ G is equivalent to having a functor H : C × I → D such
that H(C, 0) = F(C) and H(C, 1) = G(C) for every object C ∈ Ob(C) and H( f , Id0) = F( f ) and
H( f , Id1) = G( f ) for every morphism f in C.

1.2. Limits and colimits

Once we know what categories are, we can start playing with them. Here we present the most handy
constructions for us, following the guidelines of the second section of [DS95].

Definition 1.2.1. If C is a category and D is a small category, then there is a functor category (or
category of diagrams in C with the shape of D) CD in which the objects are the functors F : D → C
and the morphisms are the natural transformations between them.



4 1 Preliminaries on category theory

Example 1.2.2. In particular, if D = I = {0 → 1}, then the objects of CI are exactly the morphisms
f : X(0)→ X(1) of C and an arrow t : f → g in CI is a commutative diagram

X(0) Y(0)

X(1) Y(1).

t0

f g

t1

In this case, CI is called the category of morphisms of C and denoted by Mor(C).

Definition 1.2.3. An object A of a category C is said to be a retract of an object X if there exist
morphisms i : A→ X and r : X → A such that r ◦ i = IdA.

If f : A → B and g : X → Y are morphisms of C, we say that f is a retract of g if the object of Mor(C)
represented by f is a retract of the object of Mor(C) represented by g, that is, if there is a commutative
diagram

A X A

B Y B

t0

f g

s0

f
t1 s1

such that s0 ◦ t0 = IdA and s1 ◦ t1 = IdB.

Definition 1.2.4. Let C be a category and D a small category. We define the constant diagram functor
Const : C → CD as the one that carries an object X ∈ Ob(C) to the constant functor Const(X) : D → C
(which sends each object Y ∈ Ob(D) to X and each morphism in D to the identity morphism IdX) and
a morphism f ∈ C(X, X′) to the constant natural transformation Const( f ) : Const(X) → Const(X′)
(such that for each object Y ∈ Ob(D) we have the morphism Const( f )Y = f ).

Definition 1.2.5. Let C be a category, D a small category and F : D → C a functor. A colimit for F is
an object C = colim(F) ∈ Ob(C) together with a natural transformation t : F ⇒ Const(C) such that
for every object X ∈ Ob(C) and every natural transformation s : F ⇒ Const(X), there exists a unique
morphism s′ : C → X in C such that Const(s′) ◦ t = s.

Remark 1.2.6. If D has a terminal object ∗, then colim(F) = F(∗).

Example 1.2.7. If D is a category with a set I of objects and no nonidentity morphisms, a functor
X : D → C is just a collection {Xi}i∈I of objects of C. The colimit of X is called the coproduct of
the collection and written ⨿i∈I Xi. The natural transformation t : X ⇒ Const(⨿i∈I Xi) gives inclusion
morphisms ini : Xi → ⨿i∈I Xi, i ∈ I. Moreover, given morphisms fi : Xi → Y, i ∈ I (that is, a natural
transformation s : X ⇒ Const(Y)), there is a unique morphism f : ⨿i∈I Xi → Y such that f ◦ ini = fi for
i ∈ I. Furthermore, if we have {Ai}i∈I ⊆ Ob(C) and {Bi}i∈I ⊆ Ob(C) such that ⨿i∈I Ai and ⨿i∈I Bi exist
and fi : Ai → Bi for every i ∈ I, composing with the inclusions we get ini ◦ fi : Ai → ⨿i : I Bi for i ∈ I, so
by the universal property of the coproduct there exists a unique morphism ⨿i∈I fi : ⨿i∈I Ai → ⨿i∈I Bi
such that (⨿i∈I fi) ◦ ini = ini ◦ fi for every i ∈ I. For I = {0, 1}, we simplify the notation to X0 ⨿ X1,
f0 + f1 and f0 ⨿ f1.

Example 1.2.8. If D = {b← a→ c} is a category with three objects and the two indicated nonidentity
morphisms, a functor X : D → C is a diagram X(b) ← X(a) → X(c). The colimit of X is called the
pushout P = X(b) ⨿X(a) X(c) of the diagram, and it gives a natural commutative diagram (pushout
diagram)

X(a) X(c)

X(b) P.

i

j j′

i′
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The morphism i′ is called the cobase change of i along j and the morphism j′ is called the cobase
change of j along i. Due to the definition of colimit, we also have that given an object Y ∈ Ob(C)
and morphisms fb : X(b) → Y and fc : X(c) → Y such that fb ◦ j = fc ◦ i (or equivalently, a natural
transformation s : X ⇒ Const(Y)), there is a unique morphism f : P → Y such that f ◦ j′ = fc and
f ◦ i′ = fb. Furthermore, if we have A1, B1, C1, A2, B2 C2 ∈ Ob(C) such that B1 ⨿A1 C1 and B2 ⨿A2 C2
exist and f : A1 → A2, g : B1 → B2, h : C1 → C2 such that g ◦ j1 = j2 ◦ f and h ◦ i1 = i2 ◦ f , composing
with the canonical morphisms we get i′2 ◦ g : B1 → B2 ⨿A2 C2, j′2 ◦ h : C1 → B2 ⨿A2 C2 such that

i′2 ◦ g ◦ j1 = i′2 ◦ j2 ◦ f = j′2 ◦ i2 ◦ f = j′2 ◦ h ◦ i1,

and in consequence by the universal property of the pushout there exists a unique morphism

g⨿ f h : B1 ⨿A1 C1 → B2 ⨿A2 C2

such that (g⨿ f h) ◦ j′1 = j′2 ◦ h and (g⨿ f h) ◦ i′1 = i′2 ◦ g.

Remark 1.2.9. If C has an initial object ∅, then the coproduct X0 ⨿ X1 is the pushout of the diagram

X0
g0← ∅

g1→ X1 (with g0, g1 the unique morphisms that there are).

Remark 1.2.10. For any A, B ∈ Ob(C) and f : A → B, B = A ⨿A B is the pushout of the diagram

A
IdA← A

f→ B. Similarly, given any diagram B ← A → C and any morphism C → D, we have that
(B⨿A C)⨿C D = B⨿A D.

Example 1.2.11. If D = {0 → 1 → 2 → 3 → . . .} is a category with objects the nonnegative integers
and a single morphism i→ j for i ≤ j, a functor X : D → C is a diagram of the form

X(0)
f0,1−→ X(1)

f1,2−→ . . .→ X(n)→ . . .

in C. The colimit of X is called the sequential colimit of the objects X(n) and denoted by colimnX(n).
By definition of colimit, the natural transformation t : X ⇒ Const(colimnX(n)) gives us the natural
morphisms inn : X(n) → colimnX(n) verifying inn = inn+1 ◦ fn,n+1 for every n. Moreover, given mor-
phisms fn : X(n)→ Y such that fn = fn+1 ◦ fn,n+1 for every n (or equivalently, a natural transformation
s : X ⇒ Const(Y)), there is a unique morphism colimn fn : colimnX(n)→ Y such that colimn ◦ inn = fn
for every n.

Definition 1.2.12. Let D be a small category and F : D → C a functor. A limit for F is an object
L = lim(F) ∈ Ob(C) together with a natural transformation t : Const(L) ⇒ F such that for every
object X ∈ Ob(C) and every natural transformation s : Const(X)⇒ F, there exists a unique morphism
s′ : X → L in C such that t ◦Const(s′) = s.

Remark 1.2.13. If D has an initial object ∅, then lim(F) = F(∅).

Example 1.2.14. If D is a category with a set I of objects and no nonidentity morphisms, a functor
X : D → C is just a collection {Xi}i∈I of objects of C. The limit of X is called the product of the
collection and written ∏i∈I Xi. The natural transformation t : Const(∏i∈I Xi)⇒ X gives the projection
morphisms pri : ∏i∈I Xi → Xi, i ∈ I. Moreover, given morphisms fi : Y → Xi, i ∈ I (that is, a
natural transformation s : Const(Y) ⇒ X), there is a unique morphism f : Y → ∏i∈I Xi such that
pri ◦ f = fi for i ∈ I. Furthermore, if we have {Ai}i∈I ⊆ Ob(C) and {Bi}i∈I ⊆ Ob(C) such that
∏i∈I Ai and ∏i∈I Bi exist and fi : Ai → Bi for every i ∈ I, composing with the projections we get
fi ◦ pri : ∏i∈I Ai → Bi for i ∈ I, so by the universal property of the product there exists a unique
morphism ∏i∈I fi : ∏i∈I Ai → ∏i∈I Bi such that pri ◦ (∏i∈I fi) = fi ◦ pri for every i ∈ I. For I = {0, 1},
we simplify the notation to X0 × X1, ( f0, f1) and f0 × f1.

Example 1.2.15. If D = {b→ a← c} is a category with three objects and the two indicated nonidentity
morphisms, a functor X : D → C is a diagram X(b) → X(a) ← X(c). The limit of X is called the
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pullback P = X(b)∏X(a) X(c) of the diagram, and it gives a natural commutative diagram (pullback
diagram)

P X(c)

X(b) X(a).

i′

j′ j

i

The morphism i′ is called the base change of i along j and the morphism j′ is called the base change
of j along i. By the definition of limit, we also have that given an object Y ∈ Ob(C) and morphisms
fb : Y → X(b) and fc : Y → X(c) such that i ◦ fb = j ◦ fc (or equivalently, a natural transformation
s : Const(Y) ⇒ X), there is a unique morphism f : Y → P such that i′ ◦ f = fc and j′ ◦ f = fb.
Furthermore, if we have A1, B1, C1, A2, B2, C2 ∈ Ob(C) such that B1 ∏A1

C1 and B2 ∏A2
C2 exist and

f : A1 → A2, g : B1 → B2, h : C1 → C2 such that j2 ◦ h = f ◦ j1 and i2 ◦ g = f ◦ i1, composing with the
canonical morphisms we get g ◦ j′1 : B1 ∏A1

C1 → B2, h ◦ i′1 : B1 ∏A1
C1 → C2 such that

i2 ◦ j ◦ j′1 = f ◦ i1 ◦ j′1 = f ◦ j1 ◦ i′1 = j2 ◦ h ◦ i′1,

and in consequence by the universal property of the pushout there exists a unique morphism

g ∏ f h : B1 ∏A1
C1 → B2 ∏A2

C2

such that i′2 ◦ (g ∏ f h) = h ◦ i′1 and j′2 ◦ (g ∏ f h) = g ◦ j′1.

Remark 1.2.16. If C has a terminal object ∗, then the product X0 × X1 is the pullback of the diagram

X0
g0→ ∗ g1← X1 (with g0, g1 the only morphisms that there are).

Remark 1.2.17. For any A, B ∈ Ob(C) and f : A → B, A = A ∏B B is the pullback of the diagram

A
f→ B

IdB← B. Similarly, given any diagram B → A ← C and any morphism C ← D, we have that
(B ∏A C)∏C D = B ∏A D.

Example 1.2.18. If D = {0 ← 1 ← 2 ← 3 ← . . .} is a category with objects the nonnegative integers
and a single morphism i← j for i ≤ j, a functor X : D → C is a diagram of the form

X(0)
f1,0←− X(1)

f2,1←− . . .←− X(n)←− . . .

in C. The limit of X is called the sequential limit of the objects X(n) and denoted by limnX(n). By
definition of limit, the natural transformation t : Const(limnX(n))→ X gives us the natural morphisms
prn : limnX(n) → X(n) verifying fn+1,n ◦ prn+1 = prn for every n. In addition, given morphisms
fn : Y → X(n) such that fn+1,n ◦ fn+1 = fn for every n (or equivalently, a natural transformation
s : Const(Y) → X), there is a unique morphism limn fn : Y → limn X(n) such that prn ◦ limn = fn for
every n.

Proposition 1.2.19. Let C be a category, D the empty category (that is, the category with no objects nor
morphisms) and F : D → C the unique functor. Then, colim(F), if it exists, is an initial object of C and lim(F),
if it exists, is a terminal object of C.

Proof. Let us prove that colim(F) (consisting on an object C ∈ Ob(C) and a natural transformation
t : F ⇒ Const(C) satisfying all the premises) is an initial object, that is, that given X ∈ Ob(C), C(C, X)

has a unique element. It is clear that we have a unique natural transformation s : F ⇒ Const(X) (since
D is the empty category, Const(X) : D → C must be also the unique functor F, and then s is the
identity natural transformation), so by definition there exists a unique morphism s′ : C → X in C such
that Const(s′) ◦ t = s. This gives us C(C, X) ̸= ∅. Assume there exists a morphism s′′ : C → X. Then,
Const(s′′) ◦ t = s because s is the only natural transformation that there is. By the uniqueness of s′, we
get s′′ = s′ and C(C, X) has only one element.

The proof for the terminal object is analogous.
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Example 1.2.20. Limits and colimits exist in the category Sets. Indeed, let D be a small category and
F : D → Sets a functor.

The colimit of F is described as follows. Let C = ⨿d∈Ob(D)F(d)/ ∼∈ Ob(Sets) be the quotient set
of the disjoint union of the set of images of the objects of D under F with ∼ the equivalence relation
generated by:

x ∈ F(d) ∼ x′ ∈ F(d′) if there exists f ∈ D(d, d′) such that F( f )(x) = x′.

Consider also t : F ⇒ Const(C) the natural transformation that assigns to every X ∈ Ob(D) the map
which is the composition of the inclusion with the quotient map tX : F(X)→ ⨿d∈Ob(D)F(d)→ C.

The limit of F is described as follows. Let C ∈ Ob(D) be the following subset of the cartesian product
of the set of images of the objects of D under F:

C =

(xd)d∈Ob(D) ∈ ∏
d∈Ob(D)

F(d) : F( f )(xd) = xd′ ∀ f ∈ D(d, d′)

 .

Consider also t : Const(C) ⇒ F the natural transformation that assigns to every X ∈ Ob(D) the map
which is the composition of the inclusion with the projection map tX : C → ∏d∈Ob(D) F(d)→ F(X).

1.3. Adjoint functors

Now, we will present a special kind of functors between categories which will have many nice proper-
ties. As a consequence, we will always try to relate our categories with this kind of functors.

Definition 1.3.1. Let C, D be two categories and F : C → D, G : D → C a pair of functors. We say that
(F, G) is an adjoint pair if for any objects C ∈ Ob(C), D ∈ Ob(D) there exists a bijection

τCD : D(F(C), D)→ C(C, G(D))

providing the following two natural equivalences of functors:

D(·, D) ◦ F ≃ C(·, G(D)) : Cop → Sets,

D(F(C), ·) ≃ C(C, ·) ◦ G : D → Sets.

We will denote this by F : C ⇄ D : G, and say that F is left adjoint and G is right adjoint.

Remark 1.3.2. Let F : C ⇄ D : G be an adjoint pair and C ∈ Ob(C), D ∈ Ob(D). By definition of
adjointness, given the commutative diagrams (the first one in C, the second one in D):

A G(X)

B G(Y),

u

f G(g)

v

F(A) X

F(B) Y,

w

F( f ) g

z

we also have the following commutative diagrams (the first one in D, the second one in C):

F(A) X

F(B) Y,

τ−1
AX(u)

F( f ) g

τ−1
BY (v)

A G(X)

B G(Y).

τAX(w)

f G(g)

τBY(z)

We will sometimes denote u♭ = τ−1
AX(u), v♭ = τ−1

BY (v) and w♯ = τAX(w), z♯ = τBY(z).
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Definition 1.3.3. Let F : C ⇄ D : G be a pair of adjoint functors.

For any C ∈ Ob(C), Id♯
F(C) : C → G(F(C)) is called the unit morphism of the adjunction at C.

For any D ∈ Ob(D), Id♭
G(D) : F(G(D))→ D is called the counit morphism of the adjunction at D.

Proposition 1.3.4. Let F : C ⇄ D : G be a pair of adjoint functors. Then,

1. f ♯ = G( f ) ◦ Id♯
F(C) for every morphism f ∈ D(F(C), D) and f ♭ = Id♭

G(D) ◦ F( f ) for every morphism
f ∈ C(C, G(D)).

2. The unit morphisms give us a natural transformation η : IdC ⇒ G ◦ F with ηC = Id♯
F(C) for every

C ∈ Ob(C); similarly, the counit morphisms give us a natural transformation ϵ : F ◦ G ⇒ IdD with
ϵD = Id♭

G(D) for every D ∈ Ob(D).

3. IdF(C) = Id♭
G(F(C)) ◦ F(Id♯

F(C)) for every object C ∈ Ob(C),
IdG(D) = G(Id♭

G(D)) ◦ Id♯
F(G(D))

for every object D ∈ Ob(D).

Proof. The first assertion follows from the fact that the commutative diagrams

F(C) F(C)

F(C) D,

IdF(C)

F(IdC) f
f

C G(D)

G(D) G(D)

f

f G(IdD)

IdG(D)

yield by adjointness the commutative diagrams

C G(F(C))

C G(D),

Id♯
F(C)

IdC G( f )
f ♯

F(C) D

F(G(D)) D

f ♭

F( f ) IdD
Id♭

G(D)

and these diagrams show exactly what we wanted.

For proving the second assertion, we need to show the naturality of η and ϵ, but this follows from the
fact that the commutative diagrams

F(A) F(A)

F(B) F(B),

F( f )

IdF(A)

F( f )
IdF(B)

G(X) G(X)

G(Y) G(Y)

G(g)

IdG(X)

G(g)
IdG(Y)

yield by adjointness the commutative diagrams

A G(F(A))

B G(F(B)),

f

Id♯
F(A)

G(F( f ))
Id♯

F(B)

F(G(X)) X

F(G(Y)) Y

Id♭
G(X)

F(G(g)) g
Id♭

G(Y)

and these diagrams show exactly what we wanted.
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Finally, the third assertion follows from the computations below:

IdF(C) = (Id♯
F(C))

♭ =︸︷︷︸
(1)

IdG(F(C)) ◦ F(Id♯
F(C)),

IdG(D) = (Id♭
G(D))

♯ =︸︷︷︸
(1)

G(Id♭
G(D)) ◦ Id♯

F(G(D))
.

Proposition 1.3.5. Let F : C ⇄ D : G be a pair of adjoint functors. Then,

1. F preserves colimits: let E be a small category and H : E → C a functor. If (C, t) is a colimit for H, then
(F(C), F(t)) is a colimit for F ◦ H.

2. G preserves limits: let E be a small category and H : E → D a functor. If (L, t) is a limit for H, then
(G(L), G(t)) is a limit for G ◦ H.

Proof. Let us prove the first assertion. It is clear that F(C) ∈ Ob(D) and that F(t) : F ◦H ⇒ Const(F(C))
is a natural transformation. Now, let X ∈ Ob(D) be an object and s : F ◦ H ⇒ Const(X) a natural
transformation. Then, we also have an object G(X) ∈ Ob(C) and ŝ : H ⇒ Const(G(X)) a natural
transformation that assigns to every E ∈ Ob(E) the morphism s♯E. Indeed, let f ∈ E(E1, E2), then by
the naturality of s we have a commutative diagram

F(H(E1)) X

F(H(E2)) X,

sE1

(F◦H)( f ) IdX

sE2

which gives us the following commutative diagram by adjointness

H(E1) G(X)

H(E2) G(X),

s♯E1

H( f ) IdG(X)

s♯E2

and this last diagram proves the naturality of ŝ. Hence, by the universal property of the colimit, there
is a unique s′ : C → G(X) such that Const(s′) ◦ t = ŝ. In consequence, there is a unique s′♭ : F(C) → X
such that Const(s′♭) ◦ F(t) = s, which completes our proof.

The proof of the second assertion is analogous.

1.4. Some examples of categories

In this section, we present the particular categories we will be dealing with in the next chapters, study
their properties and see how they are related through some functors.

1.4.1. Topological spaces

Of course, as topologists, we need to take care of topological spaces.

Definition 1.4.1. The class of topological spaces together with continuous maps between them forms
the category of topological spaces T op.
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This category admits a lot of subcategories. The most important ones for us will be described below.

Definition 1.4.2. A topological space X is said to be T0 (or a Kolmogorov space) if for every pair of
distinct points of X there is an open neighborhood of one of them not containing the other one.

Definition 1.4.3. The class of T0 topological spaces together with continuous maps between them forms
the category of T0 topological spaces T op0, which is a full subcategory of T op.

There is an obvious inclusion functor i : T op0 → T op. Let us see that it has a left adjoint.

Definition 1.4.4. Let us define the Kolmogorov functor as

K : T op→ T op0,

(X, τ) 7→ K(X)

f ∈ T op(X, Y) 7→ K( f ) : K(X)→ K(Y)
[x] 7→ K( f )([x]) = [ f (x)]

with K(X) = X/ ∼ the quotient space (Kolmogorov quotient) given by:

x ∼ x′ ⇔ {U ⊆ X : x ∈ U ∈ τ} = {U ⊆ X : x′ ∈ U ∈ τ}

(that is, two points will be equivalent if and only if they have the same open neighborhoods).

Proposition 1.4.5. K : T op ⇄ T op0 : i form an adjoint pair.

Proof. Given X ∈ Ob(T op) and Y ∈ Ob(T op0), the desired natural bijection is

T op0(K(X), Y)
τXY∼= T op(X, i(Y)).

f 7→ τXY( f ) : X → i(Y)

x 7→ f ([x])

τ−1
XY(g) : K(X)→ Y ← [ g

[x] 7→ g(x)

Definition 1.4.6. A topological space X is called an Alexandroff T0 space (or A-space) if it is T0 and
every intersection of open sets in X is open.

Definition 1.4.7. The class of A-spaces together with continuous maps between them forms the cate-
gory of A-spaces A, which is a full subcategory of T op0.

There is an obvious inclusion functor i : A → T op0. Let us see that this time it has a right adjoint.

Definition 1.4.8. Let us define the Alexandroff functor as

A∞ : T op0 → A,

X 7→ A∞(X)

f ∈ T op0(X, Y) 7→ A∞( f ) : A∞(X)→ A∞(Y)

x 7→ f (x)

with A∞(X) the topological space whose underlying set is X and whose topology is given by arbitrary
intersections of open sets in X.

Proposition 1.4.9. i : A⇄ T op0 : A∞ form an adjoint pair.

Proof. Given X ∈ Ob(A) and Y ∈ Ob(T op0), the desired natural bijection

T op0(i(X), Y) ∼= A(X, A∞(Y))

is given by the identity.



1.4 Some examples of categories 11

1.4.2. Posets

Definition 1.4.10. An order relation over a set is a reflexive, antisymmetric and transitive relation
defined on it. A poset (partially order set) is a set with an order relation.

We will normally use “≤”, “≥” for denoting the order relation, although we wil sometimes employ
“⊆”, “⊇”. We will make use of “<”, “>”, “⊂”, “⊃” for indicating that the relation is strict.

A totally ordered set is a set with an order relation such that every pair of elements are comparable.
A chain of a poset is any totally ordered subset of it.

Definition 1.4.11. A morphism between posets f : P→ Q is an order-preserving set map, that is, such
that if p1 ≤ p2 in P, then f (p1) ≤ f (p2) in Q.

Definition 1.4.12. The class of posets together with order-preserving maps between them forms the
category of posets Pos.

Let us see a result that will be useful later.

Proposition 1.4.13. Limits and colimits exist in Pos.

Proof. Let D be a small category and F : D → Pos a functor. Composing with the forgetful functor
U : Pos → Sets (which sends each poset to its underlying set and each order-preserving map to
its underlying set map), we get a functor U ◦ F : D → Sets. Since limits and colimits exist in Sets
(see Example 1.2.20), we have C = colim(U ◦ F) ∈ Ob(Sets) and a universal natural transformation
t : U ◦ F ⇒ Const(C), as well as L = lim(U ◦ F) ∈ Ob(Sets) and a universal natural transformation
s : Const(L)⇒ U ◦ F.

Now, consider in C the following order:

[x] ≤ [x′]⇔ there are y ∈ [x], y′ ∈ [x′] such that y ≤ y′.

With it, C becomes a poset and td : F(d) → C becomes an order-preserving map for every d ∈ Ob(D),
as well as the morphisms derived from the universal property of t. We have therefore constructed our
colimit poset.

Similarly, consider in L the following order:

(xd)d∈Ob(D) ≤ (x′d)d∈Ob(D) ⇔ xd ≤ x′d ∀d ∈ Ob(D).

With it, L becomes a poset and sd : L → F(d) becomes an order-preserving map for every d ∈ Ob(D),
as well as the morphisms derived from the universal property of s. We have therefore constructed our
limit poset.

Isomorphism between posets and Alexandroff T0 spaces

Definition 1.4.14. Let us define the following functor:

T : Pos→ A,

P 7→ T (P)

f ∈ Pos(P, Q) 7→ T ( f ) : T (P)→ T (Q)

x 7→ f (x)

with T (P) the topological space whose underlying set is P and whose topology is given by the basis
{Up}p∈P with Up = {q ∈ P : q ≥ p}.
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Definition 1.4.15. Let us define the following functor:

P : A → Pos,

X 7→ P(X)

f ∈ T op(X, Y) 7→ P( f ) : P(X)→ P(Y)
x 7→ f (x)

with P(X) the poset whose underlying set is X and the order relation is given by:

x ≤ x′ ↔ ∩{U ⊆ X open : x′ ∈ U} ⊆ ∩{U ⊆ X open : x ∈ U}.

Proposition 1.4.16. P ◦ T = IdPos, T ◦ P = IdA. That is, the category of Alexandroff T0 spaces and the
category of posets are isomorphic.

1.4.3. Simplicial complexes

Definition 1.4.17. Given a set VK we can define a (abstract) simplicial complex K over the set of
vertices VK as a set K ⊆ 2VK \ {∅}, with 2VK the power set of VK, such that:

{v} ∈ K for every v ∈ VK.

if σ ∈ K and ∅ ̸= σ′ ⊆ σ, then σ′ ∈ K.

The elements of K are called its simplices and they will be called n-simplices if they have n + 1
elements. In particular, the 0-simplices of K are its vertices.

If VK is a totally ordered set, we will talk about an ordered abstract simplicial complex.

Remark 1.4.18. As we said, the set of vertices of a simplicial complex is completely determined by its
set of 0-simplices, so we usually will not pay attention to VK.

Definition 1.4.19. A morphism between simplicial complexes f : K → L is a set map f : VK → VL
such that if σ ∈ K, then f (σ) ∈ L.

Definition 1.4.20. The class of simplicial complexes together with morphisms between them forms the
category of simplicial complexes sComp. In the same way, the class of ordered simplicial complexes
together with morphisms between them forms the category of ordered simplicial complexes osComp,
which is a full subcategory of sComp.

Functors between simplicial complexes and posets

Definition 1.4.21. Let us define the functor

X : sComp→ Pos,

K ∈ Ob(sComp) 7→ X (K)

f ∈ sComp(K, L) 7→ X ( f ) : X (K)→ X (L)

σ 7→ f (σ)

with X (K) the poset given by K with the inclusion order, also called the poset of faces of K.
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Definition 1.4.22. Let us define the functor

K : Pos→ sComp,

P ∈ Ob(Pos) 7→ K(P)

f ∈ Pos(P, Q) 7→ K( f ) : K(P)→ K(Q)

{x} ∈ VK(P) 7→ { f (x)}

with K(P) the simplicial complex of the chains of P.

Example 1.4.23. Let [n] be the finite ordered set 0 ≤ 1 ≤ . . . ≤ n. Then, its associated simplicial
complex is 2[n] \ {∅}.

In general K ◦ X ̸= IdsComp and X ◦ K ̸= IdPos, which motivates the following definitions.

Definition 1.4.24. Let K ∈ Ob(sComp) be a simplicial complex. The barycentric subdivision of K is
the simplicial complex K(X (K)).

Definition 1.4.25. Let P ∈ Ob(Pos) be a poset. The barycentric subdivision of P is the poset X (K(P)).

1.4.4. Simplicial sets

Sometimes, simplicial complexes are too restrictive for us to work with them, so let us introduce the
category of simplicial sets. A very good reference for a first approach to them is [Fri12].

Definition 1.4.26. A simplicial set X consists of a sequence of sets {Xn}n≥0 and, for each n ≥ 0, maps
di : Xn → Xn−1 and si : Xn → Xn+1 for each 0 ≤ i ≤ n such that:

di ◦ dj = dj−1 ◦ di, i < j,

di ◦ sj = sj−1 ◦ di, i < j,

dj ◦ sj = dj+1 ◦ sj = Id,

di ◦ sj = sj ◦ di−1, i > j + 1,

si ◦ sj = sj+1 ◦ si, i ≤ j.

The elements of Xn are called n-simplices, the 0-simplices are called the vertices of X, the di’s are
called face operators and the si’s are called degeneracy operators. A simplex is called degenerate if it
is in the image of some si, and non-degenerate otherwise.

Definition 1.4.27. A morphism of simplicial sets f : X → Y is a collection of set maps

{ fn : Xn → Yn}n≥0

such that di ◦ fn = fn−1 ◦ di and si ◦ fn = fn+1 ◦ si for every n ≥ 0 and every 0 ≤ i ≤ n.

Definition 1.4.28. The class of simplicial sets together with morphisms between them forms the cate-
gory of simplicial sets sSets.

Example 1.4.29. Recall that an ordered abstract simplicial complex K is a set of subsets of some totally
ordered vertex set VK such that all the singletons of VK belong to K and such that any nonempty subset
of a subset of K also belongs to K. We can construct a simplicial set XK from it as follows:

Each set of n-simplices will be constituted by the ordered sequences of elements of VK (vk0 , . . . , vkn)

with k0 ≤ . . . ≤ kn (it may have repeated elements) such that the set {vk0 , . . . , vkn} (deleting re-
peated elements) belongs to K.
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The face and degeneracy maps are defined as follows:

di(vk0 , . . . , vkn) = (vk0 , . . . , v̂ki
, . . . , vkn) = (vk0 , . . . , vki−1

, vki+1
, . . . , vkn)

(deleting the i-th element)

si(vk0 , . . . , vkn) = (vk0 , . . . , vki
, vki

, . . . , vkn)

(repeating the i-th element)

It is clear that these maps verify the compatibility equations.

Moreover, given ordered simplicial complexes K and L such that K ⊆ L, we have an inclusion functor
between their associated simplicial sets i : XK → XL with in : (XK)n → (XL)n the inclusion, which
obviously commutes with the face and degeneracy maps.

Therefore, given the standard n-simplex K = 2[n] \ {∅}, there is an associated standard n-simplicial
set ∆[n] whose k-simplices will be of the form

[0, . . . , n]k = {(i0, . . . , ik) : 0 ≤ i0 ≤ . . . ≤ ik ≤ n} .

Moreover, given the simplicial complex

K = 2[n] \ {∅, {0, . . . , n}},

there is an associated simplicial set ∂∆[n] and a morphism in : ∂∆[n]→ ∆[n].

Finally, given the simplicial complex

K = 2[n] \ {∅, {0, . . . , n}, {0, . . . , k− 1, k + 1, . . . , n}},

there is an associated simplicial set ∆[n, k] and a morphism in,k : ∆[n, k]→ ∆[n].

Now let us explore an equivalent definition, more “category theoretical” and more useful for us in
some cases.

Definition 1.4.30. The simplicial category ∆ is the category that has as objects the finite ordered sets
[n] = {0 ≤ 1 ≤ . . . ≤ n} and as morphisms the order-preserving maps between them.

Remark 1.4.31. Let us highlight two special types of morphisms in this category:

Di : [n]→ [n + 1],

j 7→ Di(j) =
{

j, if j < i
j + 1, if j ≥ i

Si : [n]→ [n− 1].

j 7→ Si(j) =
{

j, if j ≤ i
j− 1, if j > i

Every order-preserving map f ∈ ∆([m], [n]) is a composition of Di’s and Si’s: if it is the identity, we
are done; otherwise, let i1 > . . . > is the elements of [n] not in f ([m]) and j1 < . . . < jt the elements of
[m] such that f (j) = f (j + 1) and notice that

f = Di1 ◦ . . . ◦ Dis ◦ Sj1 ◦ . . . ◦ Sjt .

Moreover, it is easy to see that:

Dj ◦ Di = Di ◦ Dj−1, i < j,

Sj ◦ Di = Di ◦ Sj−1, i < j,

Sj ◦ Dj = Sj ◦ Dj+1 = Id,

Sj ◦ Di = Di−1 ◦ Sj, i > j + 1,

Sj ◦ Si = Si ◦ Sj+1, i ≤ j.
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Definition 1.4.32. The category of simplicial sets will be sSets = Sets∆op
, whose elements are the

functors F : ∆op → Sets, the simplicial sets, and whose morphisms are the natural transformations
between those functors. For a simplicial set X : ∆op → Sets, the image X([n]) will be usually denoted
by Xn and called the set of n-simplices.

Example 1.4.33. In this setting, the n-simplicial set ∆[n] corresponds to the functor ∆(·, [n]).

1.4.5. Small categories

Definition 1.4.34. Let us consider the category Cat of small categories, whose objects are the small
categories and whose morphisms are the functors between them.

As we did for Pos, the existence of limits and colimits in Cat can also be derived from their existence
in Sets.

Proposition 1.4.35. Limits and colimits exist in Cat.

Proof. Let D be a small category and F : D → Cat a functor. Composing with the forgetful functor
U : Cat → Sets (which sends each small category to its set of objects and functor to its associated set
map between the sets of objects of the domain and the codomain), we get a functor U ◦ F : D → Sets.
Since limits and colimits exist in Sets (see Example 1.2.20), we have C = colim(U ◦ F) ∈ Ob(Sets) and
a universal natural transformation t : U ◦ F ⇒ Const(C), as well as L = lim(U ◦ F) ∈ Ob(Sets) and a
universal natural transformation s : Const(L)⇒ U ◦ F.

Now, consider the small category whose set of objects is C and it has a morphism [x] → [x′] for each
y ∈ [x], y′ ∈ [x′] such that there is a morphism y → y′. We will still call this category C. Then, given
d ∈ Ob(D), we can construct the following functor from td:

Td : F(d)→ C,

x 7→ td(x) = [x]

(x → x′) 7→ ([x]→ [x′])

and we can do the same with the set maps derived from the universal property of t. We have therefore
constructed our colimit small category.

In a resembling way, consider the small category whose set of objects is L and it has a morphism
(xd)d∈Ob(D) → (x′d)d∈Ob(D) if and only if there is a morphism xd → x′d for all d ∈ Ob(D). We will still
call this category L. Then, given d ∈ Ob(D), we can construct the following functor from sd:

Sd : L→ F(d),

(xd)d∈Ob(D) 7→ sd((xd)d∈Ob(D)) = xd

((xd)d∈Ob(D) → (x′d)d∈Ob(D)) 7→ (xd → x′d)

and we can do the same with the set maps derived from the universal property of s. We have therefore
constructed our limit small category.
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Functors between posets and small categories

Definition 1.4.36. Let us define the following functor:

i : Pos→ Cat,

P ∈ Ob(Pos) 7→ i(P)

f ∈ Pos(P, Q) 7→ i( f ) : i(P)→ i(Q)

p ∈ Ob(i(P)) = P 7→ f (p) ∈ Q = Ob(i(Q))

(p1 → p2) 7→ ( f (p1)→ f (p2))

with i(P) the small category that has as set of objects Ob(i(P)) = P and such that there is a morphism
r → s if and only if r ≤ s, and the composition law is given by the transitivity of ≤.

Example 1.4.37. In particular, for the full subcategory ∆ of Pos we have a functor i : ∆→ Cat such that
for [n] ∈ Ob(∆),

i([n]) = {0 f0→ 1
f1→ . . .

fn−1→ n},

i(Di) : i([n])→ i([n + 1]),

j 7→
{

j, if j < i
j + 1, if j ≥ i

f j 7→


f j, if j < i− 1
f j+1 ◦ f j, if j = i− 1
f j+1, if j ≥ i

i(Si) : i([n])→ i([n− 1]).

j 7→
{

j, if j ≤ i
j− 1, if j > i

f j 7→


f j, if j < i
Idi, if j = i
f j−1, if j > i

Definition 1.4.38. Let us define the following functor:

pos : Cat→ Pos,

C ∈ Ob(Cat) 7→ pos(C)

F ∈ Cat(C, D) 7→ pos(F) : pos(C)→ pos(D)

p 7→ F(p)

with pos(C) defined as follows: in the set Ob(C) we put a ≤ b if there is a morphism in C(a, b). This
gives us a reflexive and transitive relation. If in addition we put a = b if a ≤ b and b ≤ a we get
antisymmetry and therefore a poset pos(C).

Remark 1.4.39. Notice that pos(i(P)) = P for every poset P and that a small category is the inclusion
of some poset if and only if there is at most one morphism between every pair of objects.

Proposition 1.4.40. The functors i and pos form an adjoint pair pos : Cat ⇄ Pos : i.

Proof. Given C ∈ Ob(Cat) and P ∈ Ob(Pos), the desired natural bijection is

Pos(pos(C), P)
τCP∼= Cat(C, i(P)).

f 7→ τCP( f ) : C → i(P)

c ∈ Ob(C) 7→ f (c)

g ∈ C(c, d) 7→ ( f (c)→ f (d))

τ−1
CP (F) : pos(C)→ P← [ F

c 7→ F(c)
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1.4.6. Yoneda extension

Next, we will see a construction which will set more functors between our categories. More information
can be found in [Hof].

Definition 1.4.41. Let A be a small category. The Yoneda embedding will be the following functor:

Y : A → SetsA
op

.

A ∈ Ob(A) 7→ Y(A) = A(·, A)

h ∈ A(A1, A2) 7→ Y(h) : A(·, A1)⇒ A(·, a2)

A3 ∈ Ob(A) 7→ Y(h)A3 = A(A3, ·)(h) : A(A3, A1)→ A(A3, A2)

h1 7→ h ◦ h1

A functor F : Aop is called representable if it is the image under the Yoneda embedding for some object
of A.

We will see that the Yoneda embedding is dense, but for that we need to define a new category first.

Definition 1.4.42. Let A be a category and P : Aop → Sets a functor. We define the category of
elements of P (or Grothendieck construction)

∫
A P as follows:

The objects will be

Ob
(∫
A

P
)
= {(A, x) : A ∈ Ob(A), x ∈ P(C) ∈ Ob(Sets)} .

Given (A, x), (B, y) ∈ Ob(
∫
A P), the set of morphisms between them will be∫

A
P((A, x), (B, y)) = { f ∈ A(A, B) : P( f )(y) = x} .

Example 1.4.43. Let X : ∆op → Sets be a simplicial set. Its Grothendieck construction
∫

∆ X is defined
as follows:

Ob
(∫

∆ X
)
= {([n], x) : [n] ∈ Ob(∆), x ∈ X([n]) = Xn} = {([n], x) : x is a n− simplex}.∫

∆ X(([n], x), ([m], y)) = { f ∈ ∆([n], [m]) : X( f )(y) = x}.

Since the morphisms in ∆ are generated by the Si’s and the Di’s, the same will happen to the morphisms
in

∫
∆ X.

Remark 1.4.44. There is an obvious functor relating
∫
A P and A:

πA :
∫
A

P→ A.

(A, x) ∈ Ob
(∫
A

P
)
7→ A

f ∈
∫
A
((A, x), (B, y)) 7→ f

Proposition 1.4.45 (Density of the Yoneda embedding). Let A be a small category, P : Aop → Sets a
functor. Then, P = colim(Y ◦ πA). That is, every functor Aop → Sets is a colimit of representable functors.
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Proposition 1.4.46 (Fully faithfullness of the Yoneda embedding). Let A be a small category. Then, the
Yoneda embedding Y : A → SetsA

op
is fully faithfull.

Now let us see a useful setting for us to construct adjoint functors.

Proposition 1.4.47. Let A be a small category, C a category where colimits exist, and F : A → C a functor. Let
us define:

NF : C → SetsA
op

,

C ∈ Ob(C) 7→ NF(C) = C(·, C) ◦ F : Aop → Sets

A ∈ Ob(Aop) = Ob(A) 7→ NF(C)(A) = C(F(A), C)

g ∈ Aop(A1, A2) = A(A2, A1) 7→ NF( f ) : C(F(A1), C)→ C(F(A2), C)

h 7→ h ◦ F(g)

f ∈ C(C1, C2) 7→ NF( f ) : NF(C1)⇒ NF(C2)

X ∈ Ob(Aop) = Ob(A) 7→ NF( f )X = C(F(X), ·)( f ) : C(F(X), C1)→ C(F(X), C2)

k 7→ f ◦ k

τF : SetsA
op → C.

A(·, A) 7→ F(A)

t : A(·, A)⇒ A(·, B) 7→ F(tA(IdA))

(notice that defining τF for representable functors is enough because by Proposition 1.4.45 for P = colim(Y ◦πA)
we can put τF(P) = colim(F ◦πA) since colimits exist in C). Then τF : SetsA

op
⇄ C : NF form an adjoint pair

of functors.

Geometric realization and singular complex functors

Definition 1.4.48. Let us define the standard geometrical n-simplex as

|∆n| =
{
(x0, . . . , xn) ∈ Rn+1 : x0 + . . . + xn = 1, xi ≥ 0, 0 ≤ i ≤ n

}
,

with the euclidean subspace topology.

Let us also highlight the following family of continuous maps between them:

Si : |∆n+1| → |∆n|,

(x0, . . . , xn+1) 7→ (x0 +
xi

n + 1
, . . . , xi−1 +

xi
n + 1

, xi+1 +
xi

n + 1
, . . . , xn+1 +

xi
n + 1

)

Di : |∆n−1| → |∆n|.
(x0, . . . , xn−1) 7→ (x0, . . . , xi−1, 0, xi, . . . , xn−1)

On the above construction, let A = ∆, C = T op and

F : ∆→ T op

[n] ∈ Ob(∆) 7→ |∆n|
Di 7→ Di

Si 7→ Si

(remember that every order-preserving map is composition of Di’s and Si’s, so F is indeed a functor).
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Then we get the adjunction

| · | = τF : Sets∆op
= sSets ⇄ T op : NF = Sing

We will call | · | the geometric realization functor, and Sing the singular complex functor.

Notice that the geometric realization functor sends the representable functors, that is, the n-simplicial
sets ∆[n], to the standard geometrical n-simplices |∆n|. For an arbitrary simplicial set X, we are
considering a geometric n-simplex |∆n| for each n-simplex in Xn, and then we identify common faces
and suppress degenerate simplices.

Fundamental category and nerve functors

On the above construction, let A = ∆, C = Cat and F = i : ∆ → Cat (see Example 1.4.37). Then, we get
the adjunction

τ = τF : Sets∆op
= sSets ⇄ Cat : NF = N.

We will call τ the fundamental category functor, and N the nerve functor.

Notice that the fundamental category of a n-simplicial set (representable functor ∆[n]) is the small
category associated to [n]. For an arbitrary simplicial complex X, we are considering a sequence of
n-composable arrows for each n-simplex in Xn, and then we identify common arrows.

On the other hand, for C ∈ Ob(Cat) a small category, its nerve NC is the simplicial set that has as
n-simplices the sequences of n-composable morphisms in C and whose face and degeneracy maps are
given by the composition in C and the insertion of identities respectively.

For example, for a poset P, we have that the m-simplices of the nerve of its associated small category
i(P) are N(i(P))m = Cat(i([m]), i(P)), that is, the sequences of m composable arrows of i(P), which
come from m-chains in P. Then, N(i(P)) is the simplicial set corresponding to K(P).

Barycentric subdivision and extension functors

On the above construction, let A = ∆, C = sSets and F = N ◦ i ◦ X ◦ K : ∆ → sSets. Then, we get the
adjunction:

Sd = τF : sSets ⇄ sSets : NF = Ex.

We will call Sd the barycentric subdivision functor and Ex the extension functor.

Notice that the barycentric subdivision of a n-simplicial set ∆[n] Sd(∆[n]) = N(i(X (K([n])))) is the
simplicial set associated to the simplicial complex K(X (K([n]))), that is, to the (old) barycentric sub-
division of 2[n] \ {∅}. Now, for X an arbitrary simplicial set, we are considering the (old) barycentric
subdivision of an n-simplicial set for each n-simplex in Xn and then we identify common faces. In
particular, for simplicial sets derived from ordered simplicial complexes (see Example 1.4.29), their
barycentric subdivision will be the simplicial set associated to their (old) barycentric subdivision.

On the other hand, given X ∈ Ob(sSets) the n-simplices of Ex(X) will be the morphisms from Sd∆[n]
to X.





Chapter 2

Model categories and homotopy theory

Algebraic topologists use category theory for generalizing topological notions. The aim of this chapter
is to show how to generalize the concept of homotopy to general categories. This idea was first
developed by Quillen in [Qui67], but then widely used and interpreted by a lot of mathematicians. In
our case, we will use [DS95] as main reference because it summarizes very well all we need.

2.1. Model categories

For our goal, we first need to set some structure in our categories in order to manipulate homotopy in
a suitable way.

Definition 2.1.1. A model category is a category C with three distinguished classes of morphisms:

weak equivalences ( ∼→),

fibrations (↠), and

cofibrations (↪→),

each of which is closed under composition and contains all identity morphisms. A morphism which is
both a fibration and a weak equivalence is called an acyclic (or trivial) fibration; analogously, a mor-
phism which is both a cofibration and a weak equivalence is called an acyclic (or trivial) cofibration.

We require the following axioms:

MC1 Finite limits and colimits exist in C.

MC2 Two-out-of-three property: Let f and g be morphisms in C such that g ◦ f is defined. If two of
the three arrows f , g, g ◦ f are weak equivalences, then so is the third.

MC3 If f is a retract of g and g is a fibration, a cofibration or a weak equivalence, then so is f .

MC4 Given a commutative diagram

A X

B Y,

f

i p

g

21
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where either i is a cofibration and p is an acyclic fibration, or i is an acyclic cofibration and p is a
fibration, then there exists a lift, that is, a morphism h : B → X such that the resulting diagram
commutes: h ◦ i = f , p ◦ h = g.

A X

B Y.

f

i p

g

h

MC5 Any morphism f can be factored in two ways:

(i) f = p ◦ i, where i is a cofibration and p is an acyclic fibration.

(ii) f = p ◦ i, where i is a acyclic cofibration and p is a fibration.

Remark 2.1.2. By MC1 and Proposition 1.2.19, a model category C has both an initial object ∅ and
a terminal object ∗. An object A ∈ Ob(C) is said to be cofibrant if the only morphism ∅ → A is a
cofibration and fibrant if the only morphism A→ ∗ is a fibration.

Example 2.1.3. Let C be a category such that finite limits and colimits exist in it (so that MC1 holds).
It is easy to check that we can always establish the trivial model structure as follows:

The weak equivalences are the isomorphisms.

The fibrations are all the morphisms.

The cofibrations are all the morphisms.

With this model structure, every element is both fibrant and cofibrant.

Example 2.1.4. Let C be a model category. Then, the opposite category Cop admits a structure of a
model category given by defining a morphism f ∈ Cop(Y, X) = C(X, Y) to be

1. a weak equivalence if it is a weak equivalence in C,

2. a cofibration if it is a fibration in C, and

3. a fibration if it is a cofibration in C.

Remark 2.1.5. This example reflects the fact that the axioms for a model category are self-dual. Then
if a statement about model categories is true for all model categories, the dual statement (obtained by
reversing the arrows and switching “fibration” and “cofibration”) is also true.

2.2. Lifting properties

In MC4, we defined the notion of lift, which will be crucial in our definition of homotopy category.
Hence, let us develop a bit this idea and prove some results which will be useful later.

Definition 2.2.1. A morphism i : A → B is said to have the left lifting property (LLP) with respect to
another morphism p : X → Y or p is said to have the right lifting property (RLP) with respect to i if
there exists a lift for every diagram of the form

A X

B Y.

f

i p

g



2.2 Lifting properties 23

Proposition 2.2.2. Let C be a model category.

1. The cofibrations in C are the morphisms which have the LLP with respect to acyclic fibrations.

2. The acyclic cofibrations in C are the morphisms which have the LLP with respect to fibrations.

3. The fibrations in C are the morphisms which have the RLP with respect to acyclic cofibrations.

4. The acyclic fibrations in C are the morphisms which have the RLP with respect to cofibrations.

Proof. Let us prove the first assertion. By MC4, we know that cofibrations in C have the LLP property
with respect to acyclic fibrations. Now assume that f : A → B has the LLP property with respect to
acyclic fibrations and let us see that it is a cofibration. By MC5(i), we can factor f as A ↪→ B′

∼
↠ B,

where i : A ↪→ B′ is a cofibration and p : B′
∼
↠ B is an acyclic fibration. Then, by assumption, the

following commutative diagram has a lift:

A B′

B B.

i

f p∼
IdB

That is, there is g : B→ B′ such that p ◦ g = IdB and g ◦ f = i. This shows that f is a retract of i because
we have the following commutative diagram

A A A

B B′ B

IdA

f i

IdA

f
g p

with IdA ◦ IdA = IdA and p ◦ g = IdB. In consequence, by MC3, we have that f is a cofibration.

The proof of the second assertion is analogous. Furthermore, the third assertion is the dual (Re-
mark 2.1.5) property of the first one, and the forth assertion is the dual property of the second one.

Remark 2.2.3. As a corollary of the previous proposition, when trying to set up a model category
structure on some given category, if we have chosen the fibrations and the weak equivalences, then the
cofibrations are already chosen too: they will be the morphisms satisfying the LLP with respect to the
acyclic fibrations. Dually (Remark 2.1.5), if we have chosen the cofibrations and the weak equivalences,
then the fibrations are already chosen too: they will be the morphisms satisfying the RLP with respect
to the acyclic cofibrations.

In a similar way, fibrations and cofibrations determine weak equivalences in a model category. Indeed,
trivial cofibrations are the morphisms having the LLP with respect to fibrations, trivial fibrations are
the morphisms having the RLP with respect to cofibrations, and then the weak equivalences will be
the morphisms that can be factored by MC5 as the composition of a trivial cofibration and a trivial
fibration.

Proposition 2.2.4. Let C be a category.

1. If the morphism g : W → X is a base change of the morphism f : Y → Z and if f has the RLP with respect
to a morphism i : C → D, then g has the RLP with respect to i.

2. If the morphism j : C → D is a cobase change of the morphism i : A → B and i has the LLP with respect
to a morphism f : X → Y, then j also has the LLP with respect to f .
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Proof. Let us prove the first assertion. For any lifting problem for g, we have the following commutative
diagram (where the right square is a pullback diagram):

C W Y

D X Z.

s

i

t

g f

u v

We need to prove that there exists a lift for the left square, that is, a morphism j : D → W such that
g ◦ j = u and j ◦ i = s. Since f has the RLP with respect to i, we have that the diagram

C Y

D Z

t◦s

i f

v◦u

has a lift, that is, there exists w : D → Y such that f ◦ w = v ◦ u and w ◦ i = t ◦ s. In particular, we have
the diagram

D Y

X Z,

w

u f

v

which justifies by the universal property of the pullback that there is a morphism j : D → W such
that t ◦ j = w and g ◦ j = u. To prove that j is our desired lift, it is enough to check that j ◦ i = s,
but this holds because of the universal property of the pullback, since both s, j ◦ i : C → W satisfy that
t ◦ s = w ◦ i = t ◦ j ◦ i, g ◦ s = u ◦ i = g ◦ j ◦ i:

C

W Y

X Z.

s

j◦i

t◦s=w◦i

u◦i=g◦s

t

g f

v

The second assertion is is the dual (Remark 2.1.5) property of the first one.

Corollary 2.2.5. Let C be a model category.

1. The class of cofibrations in C is stable under cobase change.

2. The class of acyclic cofibrations in C is stable under cobase change.

3. The class of fibrations in C is stable under base change.

4. The class of acylic fibrations in C is stable under base change.

Proof. Let us prove the first assertion. Let i : A ↪→ B be a cofibration. Then by Proposition 2.2.2, it has
the LLP with respect to acyclic fibrations, so by Proposition 2.2.4 any cobase change will have the LLP
with respect to acyclic fibrations, which means by Proposition 2.2.2 that it will be a cofibration.

The proof of the second assertion is analogous. Furthermore, the third assertion is the dual (Re-
mark 2.1.5) property of the first one, and the forth assertion is the dual property of the second one.
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Proposition 2.2.6 (The retract argument). Let C be a category.

1. If the morphism g : X → Y can be factored as g = p ◦ i, where g has the LLP with respect to p : Z → Y,
then g is a retract of i : X → Z.

2. If the morphism g : X → Y can be factored as g = p ◦ i, where g has the RLP with respect to i : X → Z,
then g is a retract of p : Z → Y.

Proof. Let us prove the first assertion. We have the following commutative diagram:

X Z

Y Y.

i

g p

IdY

Since g has the LLP with respect to p by hypothesis, there exists q : Y → Z such that q ◦ g = i and
p ◦ q = IdY. In consequence, we have the following commutative diagram:

X X X

Y Z Y,

g

IdX

i

IdX

g

q p

with IdX ◦ IdX = IdX and p ◦ q = IdY, which proves that g is a retract of i.

The proof of the second assertion is analogous.

Lemma 2.2.7. Let C be a category, f ∈ C(X, Y). If S is a set such that for every s ∈ S we have a morphism
gs ∈ C(As, Bs) that has the LLP with respect to f , then the morphism induced by the universal property of the
coproduct ⨿s∈Sgs : ⨿s∈S As → ⨿s∈SBs also has the LLP with respect to f .

Proof. Let us consider the following lifting problem:

⨿s∈S A(s) X

⨿s∈SB(s) Y

a

⨿s∈Sgs f

b

.

Then, for each s ∈ S, we have the following commutative diagram

As X

Bs Y

a◦ins

gs f

b◦ins

,

and since gs has the LLP with respect to f there exists hs : Bs → X such that f ◦ hs = b ◦ ins and
hs ◦ fs = a ◦ ins. Now it is easy to see that the morphism induced by the universal property of the
coproduct h : ⨿s∈S Bs → X is the desired lift since for every s ∈ S

f ◦ h ◦ ins = f ◦ hs = b ◦ ins,

and hence by the universal property of the coproduct f ◦ h = b.
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Lemma 2.2.8. Let C be a category, f ∈ C(X, Y). If A0
f0,1−→ A1

f1,2−→ A2
f2,3−→ . . . is a diagram such that every

fn,n+1 : An → An+1 has the LLP with respect to f , then in0 : A0 → colimn An also has the LLP with respect
to f .

Proof. Consider the lifting problem

A0 X

colimn An Y,

g0

in0 f

h

which yields the following lifting problem:

A0 X

A1 Y.

g0

f0,1 f

h◦in1

Since f0,1 has the LLP with respect to f by hypothesis, there exists g1 : A1 → X such that f ◦ g1 = h ◦ in1
and g1 ◦ f0,1 = g0.

Assume now that we have gn : An → X such that f ◦ gn = h ◦ inn and gn ◦ fn−1,n = gn−1. Then we have
the commutative diagram

An X

An+1 Y.

gn

fn,n+1 f

h◦inn+1

Since fn,n+1 has the LLP with respect to f by hypothesis, there exists gn+1 : An+1 → X such that
f ◦ gn+1 = h ◦ inn+1 and gn+1 ◦ fn,n+1 = gn.

Summing up, we have inductively constructed a sequence of morphisms gn : An → X that verify
gn+1 ◦ fn,n+1 = gn. In consequence, by the universal property of the sequencial colimit, there exists a
morphism g : colimn An → X such that g ◦ inn = gn for every n ≥ 0. In particular g ◦ in0 = g0 and
f ◦ g = h since for every n ≥ 0 f ◦ g ◦ inn = f ◦ gn = h ◦ inn and by the universal property of the
sequential colimit.

2.3. Homotopy relation

As mentioned, the notions of cylinder and space of paths are crucial for the homotopy of topological
spaces. Now we are in conditions of defining categorically these concepts. Since they will be dual ideas
(Remark 2.1.5), it is enough to prove our results only for one of them. In order to differ from [DS95],
we will define right homotopy first.

2.3.1. Right homotopy

Definition 2.3.1. Let C be a model category. A path object for X ∈ Ob(C) is an object X I of C together
with a factorization of the diagonal morphism (IdX , IdX):

X X× X.

X I

(IdX ,IdX)

∼ p
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A path object X I is called a good path object if p : X I → X × X is a fibration, and a very good path
object if in addition the morphism X ∼→ X I is a (necessarily acyclic) cofibration.

If X I is a path object for X, we will denote the two structure morphisms X I → X by p0 = pr0 ◦ p and
p1 = pr1 ◦ p.

Remark 2.3.2. By MC5, for every object X ∈ Ob(C), there exists at least one very good path object.

Remark 2.3.3. If X I is a path object for X, then p0, p1 : X I → X are weak equivalences: the identity

morphism IdX : X → X factors as X ∼→ X I pk→ X, k = 0, 1 and both IdX and X ∼→ X I are weak
equivalences, so by MC2, pk also has to be for k = 0, 1.

Lemma 2.3.4. Let C be a model category. If X, Y ∈ Ob(C) are fibrant objets, we have that prX : X × Y → X
and prY : X×Y → Y are fibrations.

Proof. By Remark 1.2.16, we have the following pullback diagram:

X×Y X

Y ∗.

prX

prY

Since the lower horizontal arrow is a fibration because Y is a fibrant object and fibrations are stable
under base change by Corollary 2.2.5, prX is a fibration. Symmetrically, prY is also a fibration.

Lemma 2.3.5. Let C be a model category, X ∈ Ob(C). If X is fibrant and X I is a good path object for X, then
the morphisms p0, p1 : X I → X are acyclic fibrations.

Proof. By Lemma 2.3.4, pr0 and pr1 are fibrations. In consequence pk : X I
p
↠ X × X

prk
↠ X is a fibration

because it is a composition of fibrations (the first morphism is a fibration because X I is a good path
object for X). Moreover, since by Remark 2.3.3 pk, k = 0, 1 are weak equivalences, we get that they are
acyclic fibrations.

Definition 2.3.6. Let C be a model category, A, X ∈ Ob(C). Two morphisms f , g : A → X in C are
said to be right homotopic (written f r∼ g) if there exists a path object X I for X such that the product
morphism ( f , g) : A → X × X lifts to a morphism H : A → X I (right homotopy). The right homotopy
is said to be good if X I is a good path object forX and very good if X I is a very good path object for X:

X X× X

X I

A.

(IdX ,IdX)

∼ p

H

( f ,g)

Remark 2.3.7. If f r∼ g via the right homotopy H, f is a weak equivalence if and only if g is a weak
equivalence. This follows from MC2 and the fact that p0 and p1 are weak equivalences by Remark 2.3.3:
if f = p0 ◦ H is a weak equivalence, since p0 is also a weak equivalence, then H has to be a weak
equivalence, and hence g = p1 ◦ H will be a weak equivalence because p1 also is, and viceversa.
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Example 2.3.8. Let C be a category such that finite limits and colimits exist in it. By Example 2.1.3, we
can define a trivial model structure on C where every element is fibrant and cofibrant. With this model
structure, two morphisms are right homotopic if and only if they are equal.

Lemma 2.3.9. If f r∼ g : A → X, then there exists a good right homotopy from f to g. If in addition A is
cofibrant, then there exists a very good right homotopy from f to g.

Proof. Let us assume that f r∼ g. Applying MC5(ii) to p : X I → X× X, we get that it can be factored as

X I ∼↪→ Y ↠ X × X for some object Y, so Y will be a good path object for X and A H→ X I ∼→ Y will be
the desired good right homotopy:

X X I X× X.

Y

A

∼ p

∼

H ( f ,g)

Assume now that f r∼ g and A is cofibrant. We have just proved that we can take a good right
homotopy H : A → X I from f to g. By MC5(ii) and MC2, we may factor X ∼→ X I as X

∼
↪→ Y

∼
↠ X I

for some object Y. Then we have that Y is a very good path object for X and moreover we have the
following diagram

∅ Y

A X I ,

∼

H

where the left vertical arrow is a cofibration because A is cofibrant and the right vertical arrow is an
acyclic fibration. By MC4 we get the desired very good left homotopy A→ Y:

X X I X× X.

Y

A

∼

∼

p

∼

H
( f ,g)

Lemma 2.3.10. Let C be a model category. If X is a fibrant object, then r∼ is an equivalence relation on C(A, X)

for every A ∈ Ob(C).

Proof. Reflexivity is clear: f r∼ f : A → X taking X as path object for X (factoring (IdX , IdX) as

X
IdX→ X

(IdX ,IdX)→ X× X) and H = f : A→ X as right homotopy:

(IdX , IdX) ◦ H = (IdX , IdX) ◦ f = ( f , f ).

Next, let us prove symmetry. Assume f r∼ g for f , g ∈ C(A, X), then there exists a path object X I for X
and a homotopy H : A → X I such that p ◦ H = ( f , g). Notice that if X I is a path object for X with the

diagram X ∼→ X I p→ X × X factoring (IdX , IdX), then X I is also a path object for X with the diagram



2.3 Homotopy relation 29

X ∼→ X I (pr1,pr0)◦p−→ X×X factoring (IdX , IdX), and moreover (g, f ) = (pr1, pr0) ◦ ( f , g). In consequence,
the morphism H verifies ((pr1, pr0) ◦ p) ◦ H = (pr1, pr0) ◦ (p ◦ H) = (pr1, pr0)( f , g) = (g, f ) and then
g r∼ f .

Finally, let us prove transitivity. Assume that f r∼ g and g r∼ h, and let us see that f r∼ h. By Lemma
2.3.9, we can consider good right homotopies H : A → X I from f to g and H′ : A → (X I)′ from g to h.
We have the following commutative diagrams:

X

X X I X× X

A X,

u
∼

p

pr0

pr1H
( f ,g)

X

X (X I)′ X× X

A X.

u′
∼

p′

pr0

pr1
H′

(g,h)

Now let (X I)′′ be the pullback of the diagram (X I)′
p′1→ X

p0← X I :

(X I)′′ X I

(X I)′ X

v

v′ p0∼
p′1
∼

.

Since the morphisms p0 and p′1 are acyclic fibrations by Lemma 2.3.5 and acyclic fibrations are stable
under base change by Corollary 2.2.5, v and v′ are also acyclic fibrations. Moreover, given u : X ∼→ X I

and u′ : X ∼→ (X I)′, there is u′′ : X ∼→ (X I)′′ (which will be a weak equivalence because the u, u′ are
and so do v and v′, so we can apply MC2) such that v ◦ u′′ = u and v′ ◦ u′′ = u′. It is clear then that

X u′′→ (X I)′′
(p0◦v,p′1◦v′)−→ X× X factors (IdX , IdX):

pr0 ◦ (p0 ◦ v, p′1 ◦ v′) ◦ u′′ = p0 ◦ v ◦ u′′ = p0 ◦ u = IdX ,

pr1 ◦ (p0 ◦ v, p′1 ◦ v′) ◦ u′′ = p′1 ◦ v′ ◦ u′′ = p′1 ◦ u′ = IdX .

In consequence, (X I)′′ is a path object for X. Furthermore, given the morphisms H : A → X I and
H′ : A → (X I)′, there is H′′ : A → (X I)′′ such that v ◦ H′′ = H and v′ ◦ H′′ = H′. This is the desired
right homotopy since

(p0 ◦ v, p′1 ◦ v′) ◦ H′′ = (p0 ◦ v ◦ H′′, p′1 ◦ v′ ◦ H′′) = (p0 ◦ H, p′1 ◦ H′) = ( f , h).

As a result, f r∼ h.

Definition 2.3.11. Let C be a model category and A, X ∈ Ob(C) objects. We will denote the set of equiv-
alence classes of C(A, X) under the equivalence relation generated by right homotopy by πr(A, X).

Remark 2.3.12. The word "generated" in the above definition of πr(A, X) is important due to the
fact that we will sometimes consider this set even if X is not fibrant and the right homotopy is not
necessarily an equivalence relation on C(A, X).
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Lemma 2.3.13. Let C be a model category. If f , g : X → X′ are right homotopic morphisms and h : A → X is
another morphism, then, f ◦ h r∼ g ◦ h.

Proof. Since f r∼ g, there exists a homotopy H : X → X′I . Then, H ◦ h : A → X′I is our desired right
homotopy: p ◦ (H ◦ h) = (p ◦ H) ◦ h = ( f , g) ◦ h = ( f ◦ h, g ◦ h).

Lemma 2.3.14. Let C be a model category. If X is fibrant and i : A
∼
↪→ B is an acyclic cofibration, then

composition with i induces a bijection:

i∗ : πr(B, X)→ πr(A, X).

[ f ] 7→ i∗([ f ]) = [ f ◦ i]

Proof. First of all, i∗ is well defined because if f r∼ g, then f ◦ i r∼ g ◦ i by Lemma 2.3.13.

Next, let us check that i∗ is onto. Let [ f ] ∈ πr(A, X) and let us see that there is a class [g] ∈ πr(B, X)

such that i∗([g]) = [g ◦ i] = [ f ]. We have the following commutative diagram:

A X

B ∗,

∼i

f

where the left vertical arrow is an acyclic cofibration and the right vertical arrow is fibration because
X fibrant. Then, by MC4, there is a lift g : B → X such that in particular g ◦ i = f . It is then clear that
i∗([g]) = [g ◦ i] = [ f ].

Finally, let us verify that i∗ is one-to-one. Let f , g : B → X be two morphisms having the same image
i∗([ f ]) = [ f ◦ i] = [g ◦ i] = i∗([g]), that is, such that f ◦ i r∼ g ◦ i, and let us see that [ f ] = [g], that is, that
f r∼ g. Since f ◦ i r∼ g ◦ i : A → X, by Lemma 2.3.9 we can choose a good right homotopy H : A → X I

from f ◦ i to g ◦ i. We have the following commutative diagram

A X I

B X× X,

∼i

H

h
( f ,g)

where the left vertical arrow is a an acyclic cofibration and the right vertical arrow is a fibration
because H is a good right homotopy. Then, by MC4, there is a lift H′ : B → X I such that in particular
h ◦ H′ = ( f , g). Hence, H′ is the desired right homotopy from f to g.

Lemma 2.3.15. Let C be a model category. Suppose that A is cofibrant, that f , g : A → X are right homotopic
morphisms and that h : X → X′ is a morphism. Then h ◦ f r∼ h ◦ g.

Proof. By Lemma 2.3.9, we can choose a very good right homotopy H : A → X I between f and g.
Moreover, we can choose a good path object for X′ (see Remark 2.3.2) factoring the diagoral morphism

(IdX′ , IdX′) : X′ ∼→ X′I
q
↠ X′ × X′. We therefore have the following commutative diagram:

X X′ X′I

X I X× X X′ × X′,

∼

h ∼

q

p h×h
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where the left vertical arrow is an acyclic cofibration and the right vertical arrow is a fibration, so by
MC4 there exists a lift k : X I → X′I . We then get that k ◦ H is the desired homotopy, since

q ◦ (k ◦ H) = (q ◦ k) ◦ H = ((h× h) ◦ p) ◦ H

= (h× h) ◦ (p ◦ H) = (h× h) ◦ ( f , g) = (h ◦ f , h ◦ g).

Lemma 2.3.16. Let C be a model category. If A is cofibrant, then the composition in C induces a map:

πr(A, X)× πr(X, X′)→ πr(A, X′).

([h], [ f ]) 7→ [ f ◦ h]

Proof. We only need to see that this assignation does not depend on the chosen representative. Notice
that since we are not supposing X nor X′ fibrant, we don’t always have two representatives of the same
class related by a right homotopy, but by a sequence of them (see Remark 2.3.12).

If h, k : A→ X represent the same element on πr(A, X), we have a sequence

h r∼ h1
r∼ . . . r∼ hn

r∼ k.

For g : X → X′, by Lemma 2.3.15,

g ◦ h r∼ g ◦ h1
r∼ . . . r∼ g ◦ hn

r∼ g ◦ k,

so both g ◦ h and g ◦ k represent the same element on πr(A, X′).

Similarly,if f , g : X → X′ represent the same element on πr(X, X′), we have a sequence

f r∼ f1
r∼ . . . r∼ fn

r∼ g.

For h : A→ X, by Lemma 2.3.13,

f ◦ h r∼ f1 ◦ h r∼ . . . r∼ fn ◦ h r∼ g ◦ h,

so both f ◦ h and g ◦ h represent the same element on πr(A, X′).

2.3.2. Left homotopy

As we already mentioned, this will be the dual (Remark 2.1.5) notion of right homotopy and therefore
all the results are already proved, so we will just state them.

Definition 2.3.17. Let C be a model category. A cylinder object for A ∈ Ob(C) is an object A ∧ I of C
together with a factorization of the folding morphism IdA + IdA:

A⨿ A A.

A ∧ I

IdA+IdA

i ∼

A cylinder object A∧ I is called a good cylinder object if i : A⨿ A→ A∧ I is a cofibration, and a very
good cylinder object if in addition the morphism A ∧ I ∼→ A is a (necessarily acyclic) fibration.

If A∧ I is a cylinder object for A, we will denote the two structure morphisms A→ A∧ I by i0 = i ◦ in0
and i1 = i ◦ in1.

Remark 2.3.18. By MC5, for every object A ∈ Ob(C), there exists at least one very good cylinder.



32 2 Model categories and homotopy theory

Remark 2.3.19. If A ∧ I is a cylinder object for A, then i0, i1 : A→ A ∧ I are weak equivalences.

Lemma 2.3.20. Let C be a model category. If A, B are cofibrant objets, we have that inA : A → A ⨿ B and
inB : B→ A⨿ B are cofibrations.

Lemma 2.3.21. Let C be a model category. If A is cofibrant and A ∧ I is a good cylinder object for A, then the
morphisms i0, i1 : A→ A ∧ I are acyclic cofibrations.

Definition 2.3.22. Let C be a model category, A, X ∈ Ob(C). Two morphisms f , g : A → X in C are

said to be left homotopic (written f l∼ g) if there exists a cylinder object A ∧ I for A such that the sum
morphism f + g : A⨿ A → X extends to a morphism H : A ∧ I → X. That is, there exists a morphism
H : A ∧ I → X (left homotopy) with H ◦ i = f + g. The left homotopy is said to be good if A ∧ I is a
good cylinder object for A and very good if A ∧ I is a very good cylinder object for A:

A⨿ A A.

A ∧ I

X

i

f+g

IdA+IdA

∼

H

Remark 2.3.23. If f l∼ g via the left homotopy H, f is a weak equivalence if and only if g is a weak
equivalence.

Example 2.3.24. Let C be a category such that finite limits and colimits exist in it. By Example 2.1.3,
we can define a trivial model structure on C where every element is fibrant and cofibrant. With this
model structure, two morphisms are left homotopic if and only if they are equal.

Lemma 2.3.25. If f l∼ g : A→ X, then there exists a good left homotopy from f to g. If in addition X is fibrant,
then there exists a very good left homotopy from f to g.

Lemma 2.3.26. Let C be a model category. If A is a cofibrant object, then l∼ is an equivalence relation on
C(A, X) for every object X ∈ Ob(C).

Definition 2.3.27. Let C be a model category and A, X ∈ Ob(C) objects. We will denote the set of
equivalence classes of C(A, X) under the equivalence relation generated by left homotopy by πl(A, X).

Remark 2.3.28. Observe the importance of the word "generated" in the above definition of πl(A, X).

Lemma 2.3.29. Let C be a model category. If f , g : A′ → A are left homotopic morphisms and h : A → X is

another morphism, then h ◦ f l∼ h ◦ g.

Lemma 2.3.30. Let C be a model category. If A is cofibrant and p : X → Y is an acyclic fibration, then
composition with p induces a bijection:

p∗ : πl(A, X)→ πl(A, Y).

[ f ] 7→ p∗([ f ]) = [p ◦ f ]
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Lemma 2.3.31. Let C be a model category. Suppose that X is fibrant, that f , g : A → X are left homotopic

morphisms and that h : A′ → A is a morphism. Then f ◦ h l∼ g ◦ h.

Lemma 2.3.32. Let C be a model category. If X is fibrant, then the composition in C induces a map:

πl(A′, A)× πl(A, X)→ πl(A′, X).

([h], [ f ]) 7→ [ f ◦ h]

2.3.3. Relationship between left and right homotopy

Lemma 2.3.33. Let C be a model category, and f , g : A→ X morphisms.

1. If A is cofibrant and f l∼ g, then f r∼ g.

2. If X is fibrant and f r∼ g, then f l∼ g.

Proof. Let us prove the first assertion. By Lemma 2.3.25, there exists a good cylinder object A ∧ I for

A factoring IdA + IdA : A⨿ A
i0+i1
↪→ A ∧ I

j→
∼

A and a good homotopy H : A ∧ I → X from f to g. By
Lemma 2.3.21, i0 is an acyclic cofibration. Moreover, by Remark 2.3.2, we can choose a good path object

X I for X factoring the diagonal morphism (IdX , IdX) : X
q→ X I

(p0,p1)
↠ X× X. Then, since

(p0, p1) ◦ q ◦ f = (IdX , IdX) ◦ f = ( f , f ) = ( f ◦ IdA, H ◦ i0)

= ( f ◦ j ◦ i0, H ◦ i0) = ( f ◦ j, H) ◦ i0,

we have the following commutative diagram:

A X I

A ∧ I X× X.

q◦ f

∼i0 (p0,p1)

( f ◦j,H)

Therefore, by MC4, there exists a lift K : A ∧ I → X I for the diagram. The composite K ◦ i1 : A→ X I is
the desired right homotopy from f to g:

(p0, p1) ◦ (K ◦ i1) = ((p0, p1) ◦ K) ◦ i1 = ( f ◦ j, H) ◦ i1
= ( f ◦ j ◦ i1, H ◦ i1) = ( f ◦ IdA, H ◦ i1) = ( f , g).

The second assertion is the dual (Remark 2.1.5) property of the first one.

Corollary 2.3.34. Let C be a model category and f , g : A → X morphisms. If A is cofibrant and X is fibrant,
then the left and right homotopy relations on C(A, X) agree.

Definition 2.3.35. Let C be a model category, A, X ∈ Ob(C) objects and f , g : A→ X morphisms. If A is
cofibrant and X is fibrant, we will denote the identical right homotopy and left homotopy equivalence
relations on C(A, X) by the symbol “∼” and say that two morphisms related by this relation are
homotopic. The set of equivalence classes with respect to this relation is denoted by π(A, X).
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Definition 2.3.36. Let C be a model category, A, X ∈ Ob(C) both fibrant and cofibrant objects and
f : A → X a morphism. We will say that f is a homotopy equivalence if it has a homotopy inverse,
that is, if there exists a morphism g : X → A such that g ◦ f ∼ IdA, f ◦ g ∼ IdX .

Lemma 2.3.37. Let C be a model category, f : A → X a morphism in C between objects which are both fibrant
and cofibrant. Then f is a weak equivalence if and only if f is a homotopy equivalence.

Proof. Suppose that f is a weak equivalence. By MC5(ii), we can factor f as f : A
q
↪→
∼

C
p
↠ X, where, by

MC2, p is also a weak equivalence. We then have the following commutative diagram

A A

C ∗,

IdA

∼q

where q is an acyclic cofibration and the right vertical arrow is a fibration because A is fibrant. Then,
by MC4, there exists a lift for the diagram, that is, a morphism r : C → A such that in particular
r ◦ q = IdA.

Since C is fibrant and q is an acyclic cofibration, by Lemma 2.3.32, q induces a bijection

q∗ : πr(C, C)→ πr(A, C).

[g] 7→ [g ◦ q]

Since q∗([q ◦ r]) = [q ◦ r ◦ q] = [q ◦ IdA] = [q] = [IdC ◦ q] = p∗([IdC]) and q∗ is one-to-one, we get that
[q ◦ r] = [IdC], that is, that q ◦ r ∼ IdC. We can then conclude that r is a homotopy inverse for q.

A dual (Remark 2.1.5) argument will give us the existence of an arrow s : X → C such that s ◦ p ∼ IdC.

Finally, we can terminate saying that r ◦ s is a homotopy inverse for f = p ◦ q:

f ◦ r ◦ s = p ◦ q ◦ r ◦ s ∼︸︷︷︸
2.3.32,2.3.30

p ◦ IdC ◦ s = p ◦ s = IdX ,

r ◦ s ◦ f = r ◦ s ◦ p ◦ q ∼︸︷︷︸
2.3.32,2.3.30

r ◦ IdC ◦ q = r ◦ q = IdA.

Conversely, assume that f is a homotopy equivalence. By MC5(ii), we can factor f as the composition

f : A
q
↪→
∼

C
p
↠ X. Notice that C is both cofibrant (∅ → A

q
↪→ C is a cofibration because it is the

composition of cofibrations) and fibrant (C
p
↠ X → ∗ is a fibration because it is the composition of

fibrations). Since q is a weak equivalence, to prove that f also is a weak equivalence, it is enough to
show that p is a weak equivalence. Let g : X → A be a homotopy inverse for f and H : X∧ I → X a good
left homotopy between f ◦ g and IdX (exists by Lemma 2.3.25). We have the following commutative
diagram

X C

X ∧ I X,

q◦g

∼i0 p

H

where i0 is an acyclic cofibration by Lemma 2.3.21 and p is a fibration, so by MC4 there is a lift
H′ : X ∧ I → C commuting the diagram; in particular, H′ is a left homotopy between H′ ◦ i0 = q ◦ g
and H′ ◦ i1, so q ◦ g ∼ H′ ◦ i1. Let s = H′ ◦ i1, we have that p ◦ s = p ◦ H′ ◦ i1 = H ◦ i1 = IdX . Since
q is a weak equivalence, by previous implication we have that it has a homotopy inverse r. Since in
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particular q ◦ r ∼ IdC, by Lemma 2.3.29 we have that p = p ◦ IdC ∼ p ◦ q ◦ r = f ◦ r. We therefore have
(using Lemma 2.3.32)

s ◦ p ∼ q ◦ g ◦ p ∼ q ◦ g ◦ f ◦ r ∼ q ◦ IdA ◦ r = q ◦ r ∼ IdC.

Since IdC is a weak equivalence, by Remark 2.3.23, s ◦ p also is. Finally, the following commutative
diagram shows that p is a retract (1.2.3) of s ◦ p and hence a weak equivalence by MC3:

C C C

X C X.

IdC

p

IdC

s◦p p

s p

2.4. The homotopy category of a model category

As expected, fibrant and cofibrant objects are determinant in our context, and sometimes we will want
to consider only this kind of objects.

Definition 2.4.1. Let C be a model category. We will pay atention to the following categories associated
to it:

Cc: the full subcategory of C generated by the cofibrant objects in C.

C f : the full subcategory of C generated by the fibrant objects in C.

Cc f : the full subcategory of C generated by the objects of C which are both fibrant and cofibrant.

πCc: the category consisting of the cofibrant objects in C and whose morphisms are right homo-
topy classes of morphisms.

πC f : the category consisting of the fibrant objects in C and whose morphisms are left homotopy
classes of morphisms.

πCc f : the category consisting of the objects in C which are both fibrant and cofibrant and whose
morphisms are homotopy classes of morphisms.

Remark 2.4.2. Notice that πCc, πC f and πCc f are well defined because of Lemmas 2.3.32 and 2.3.30.

Moreover, it would be very nice to be able to relate every object in our category with some fibrant or
cofibrant object in a factorial way. Here is when the concepts of fibrant replacement and cofibrant
replacement come in handy.

Lemma 2.4.3. Let C be a model category and X, Y ∈ Ob(C). Then we can apply MC5(ii) to the only morphism
X → ∗ and obtain an acyclic cofibration iX : X

∼
↪→ RX with RX fibrant. Furthermore, given a morphism

f ∈ C(X, Y) there exists a morphism f ∈ C(RX, RY) such that the following diagram commutes:

X Y

RX RY.

f

∼iX iY∼
f

The morphism f depends up to right homotopy or up to left homotopy only on f , and it is a weak equivalence if
and only if f is. If X is cofibrant, then f depends up to right homotopy or up to left homotopy only on the right
homotopy class of f .
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Proof. We have the following commutative diagram:

X RY

RX ∗,

iY◦ f

∼iX

where iX is an acyclic cofibration and the right vertical arrow is a fibration because RY is fibrant.
Therefore, by MC4, there is a lift f : RX → RY such that f ◦ iX = iY ◦ f . This equation also tells us that
f is a weak equivalence if and only if f is by MC2 and the fact that iX and iY are weak equivalences.

Moreover, since RY is fibrant and iX : X → RX is an acyclic cofibration, by Lemma 2.3.32 there is a
bijection:

i∗X : πr(RX, RY)→ πr(X, RY).

[g] 7→ i∗X([g]) = [g ◦ iX ]

In particular, if there exist f , f satisfying f ◦ iX = iY ◦ f = f ◦ iX , then f r∼ f , which implies f l∼ f by
Lemma 2.3.33 since RY is fibrant. This proves the unicity up to right or left homotopy.

Moreover, if X is cofibrant and f r∼ g : X → Y, then by Lemma 2.3.15 f ◦ iX = iY ◦ f r∼ iY ◦ g = g ◦ iX .

Then, again by Lemma 2.3.32, f r∼ g, which implies f l∼ g by Lemma 2.3.33 since RY is fibrant. This
proves the dependence up to homotopy on the right homotopy class of f if X is cofibrant.

Corollary 2.4.4. We can define a functor R : C → πC f which sends X ∈ Ob(C) to RX and f ∈ C(X, Y) to
[ f ] ∈ πl(RX, RY).

Proof. The following diagram obviously commutes:

X X

RX RX.

IdX

iX iX

IdRX

Therefore, by the unicity of IdX up to left homotopy, we get that IdX
l∼ IdRX , or equivalently, that

[IdX ] = [IdRX ] ∈ πl(RX, RY).

Analogously, the following diagram obviously commutes:

X Y Z

RX RY Z.

f

iX

g

iY iZ

f g

Therefore, by the unicity of g ◦ f up to left homotopy, we get that g ◦ f l∼ g ◦ f , or equivalently, that
[g ◦ f ] = [g ◦ f ] = [g] ◦ [ f ]. We have thus proved the functoriality of R.

Lemma 2.4.5. The restriction of the functor R : C → πC f to the full subcategory of cofibrant objects Cc induces
a functor R′ : πCc → πCc f .

Proof. First, notice that if X is cofibrant, then RX is both fibrant and cofibrant. Indeed, it is fibrant

by definition and the only morphism ∅ → RX must be factorized as ∅ ↪→ X
iX
↪→ RX, which is a

composition of cofibrations and hence a cofibration. Moreover, we have already seen in Lemma 2.3.33
that, for cofibrant objects, the homotopy class of f depends only on the right homotopy class of f .
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We also have the dual (Remark 2.1.5) results, which we will only state.

Lemma 2.4.6. Let C be a model category and X, Y ∈ Ob(C). Then we can apply MC5 to the morphism ∅→ X
and obtain an acyclic fibration pX : QX

∼
↠ X with QX cofibrant. Moreover, given a morphism f ∈ C(X, Y)

there exists a morphism f̃ ∈ C(QX, QY) such that the following diagram commutes:

QX QY

X Y.

f̃

∼pX pY∼
f

The morphism f̃ depends up to left homotopy or up to right homotopy only on f , and it is a weak equivalence
if and only if f is. If Y is fibrant, then f̃ depends up to left homotopy or up to right homotopy only on the left
homotopy class of f .

Corollary 2.4.7. We can define a functor Q : C → πCc which sends X ∈ Ob(C) to QX and f ∈ C(X, Y) to
[ f̃ ] ∈ πr(QX, QY).

Lemma 2.4.8. The restriction of the functor Q : C → πCc to the full subcategory of fibrant objects C f induces a
functor Q′ : πC f → πCc f .

Now we have all the ingredients for defining the homotopy category related to our model category.

Definition 2.4.9. The homotopy category Ho(C) of a model category C is the category with the same
objects as C and with morphisms

Ho(C)(X, Y) = πCc f (R′QX, R′QY) = π(RQX, RQY)

for X, Y ∈ Ob(Ho(C)) = Ob(C).

Remark 2.4.10. It is clear that the following assignation is a functor:

γ : C → Ho(C).
X ∈ Ob(C) 7→ X ∈ Ob(Ho(C)) = Ob(C)

f ∈ C(X, Y) 7→ γ( f ) = [ f̃ ] ∈ π(RQX, RQY) = Ho(C)(X, Y)

Remark 2.4.11. When considering the homotopy category of a model category, we are basically con-
verting the weak equivalences in isomorphisms, and moreover we are doing so in the minimal way.
This has to do with the notion of localization of a category; see [DS95, section 6].

For example, if we consider C a category such that finite limits and colimits exist in it and the trivial
model structure seen on Example 2.1.3, we know by Example 2.3.8 that two morphisms are right homo-
topic (or equivalently, left homotopic by Corollary 2.3.34) if and only if they are the same. Furthermore,
notice that we can set RX = X and QX = X for every X ∈ Ob(X). In conclusion, Ho(C) has as objects
the same objects as C and for X, Y ∈ Ob(Ho(C)) = Ob(C),

Ho(C)(X, Y) = π(RQX, RQY) = π(X, Y) = {{ f } : f ∈ C(X, Y)} .

In conclusion, in this case C ∼= Ho(C). This makes sense because since isomorphisms are already
invertible, we do nothing by inverting them. But of course, all this theory of model categories was
developed in order to consider as weak equivalences more morphisms than just the isomorphisms.
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2.5. Quillen equivalences

Until now, we know that in some categories we can set a model structure that leads us to the homotopy
categories of our initial categories. Now we will see how the relations between our initial categories
determine the relations between their homotopy categories.

First of all, we will see two dual (2.1.5) lemmas that will be useful for us in the future.

Lemma 2.5.1 (K. Brown). Let F : C → D be a functor between model categories. If F carries acyclic cofibrations
between cofibrant objects to weak equivalences then F preserves all weak equivalences between cofibrant objects.

Lemma 2.5.2. Let F : C → D be a functor between model categories. If F carries acyclic fibrations between
fibrant objects to weak equivalences then F preserves all weak equivalences between fibrant objects.

Proof. Let f : A → B be a weak equivalence between fibrant objects, and let us see that its image
F( f ) : F(A)→ F(B) is also a weak equivalence. First, by MC5(ii) we can factor (IdA, f ) : A→ A× B as

a composite A
q
↪→
∼

C
p
↠ A× B. By Lemma 2.3.4, prA : A× B → A and prB : A× B → B are fibrations,

so prA ◦ p : C → A and prB ◦ p : C → B are also fibrations. Moreover, since f = prB ◦ p ◦ q and
IdA = inA ◦ p ◦ q are weak equivalences and q is also a weak equivalence, by MC2 prA ◦ p and prB ◦ p

are also weak equivalences. In addition, we have that C → ∗ equals the composite C
prA◦p
↠ A ↠ ∗,

so it will be a fibration and hence C will be a fibrant object. Summing up, prA ◦ p : C → A and
prB ◦ p : C → B are acyclic fibrations between fibrant objects, so by hypothesis, F(prA ◦ p), F(prB ◦ p)
are weak equivalences, and the same happens to F(IdA) = IdF(A). Then, since

F(IdA) = F(prA ◦ p ◦ q) = F(prA ◦ p) ◦ F(q),

by MC2, F(q) is a weak equivalence and then by MC2 again,

F( f ) = F(prB ◦ p ◦ q) = F(prB ◦ p) ◦ F(q)

is also a weak equivalence, as we wanted to prove.

Now, let us see that if we are able to relate two model categories in a certain way, then its homotopy
categories will be isomorphic. This will be very important for us, since it will give us freedom to study
the same homotopy category from the point of view of different model categories.

The following types of functors will be the most handy for us.

Definition 2.5.3. Let C, D be two model categories.

We call a functor F : C → D a left Quillen functor if it is a left adjoint and preserves cofibrations
and trivial cofibrations.

We call a functor G : D → C a right Quillen functor if it is a right adjoint and preserves fibrations
and trivial fibrations.

We will say that the adjoint pair F : C ⇄ D : G is a Quillen adjunction if F preserves cofibrations
and G preserves fibrations.

We will say that a Quillen adjunction F : C ⇄ D : G is a Quillen equivalence if for each cofibrant
A ∈ Ob(C) and fibrant X ∈ Ob(D), a morphism f : A → G(X) is a weak equivalence in C if and
only if its adjoint f ♭ : F(A)→ X is a weak equivalence in D.
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Proposition 2.5.4. Let F : C ⇄ D : G be an adjoint pair between model categories. Then the following are
equivalent:

1. F and G form a Quillen adjunction.

2. F is a left Quillen functor.

3. G is a right Quillen functor.

Proof. Let us see, for example, that the first assertion is equivalent to the second one, and the equiva-
lence between the first assertion and the third one will be dual (Remark 2.1.5).

First, let us see that if G preserves fibrations, then F preserves acyclic cofibrations. Let then f : A → B
be an acyclic cofibration in C and let us see that F( f ) is an acyclic cofibration in D, or equivalently
by Proposition 2.2.2, that it has the LLP with respect to fibrations. Consider then the following lifting
problem, with g a fibration:

F(A) X

F(B) Y.

u

F( f ) g

v

By adjointness, we have the following lifting problem, with G(g) a fibration (or equivalently by Propo-
sition 2.2.2, with the RLP with respect to acyclic cofibrations) because G preserves fibrations by hy-
pothesis:

A G(X)

B G(Y).

u♯

f G(g)

v♯

Hence, there is w : B → G(X) such that G(g) ◦ w = v♯, w ◦ f = u♯. In consequence, by adjointness, we
have w♭ : G(B) → X such that g ◦ w♭ = v, w♭ ◦ F( f ) = v, that is, our initial diagram has a lift, as we
wanted to prove.

Conversely, let us see that if F preserves acyclic cofibrations, then G preserves fibrations. Let g : X → Y
be a fibration in D and let us see that G(g) is a fibration in C, or equivalently by Proposition 2.2.2, that
it has the RLP with respect to acyclic cofibrations. Consider then the following lifting problem, with f
an acyclic cofibration:

A G(X)

B G(Y).

u

f G(g)

v

By adjointness, we have the following lifting problem, with F( f ) an acyclic cofibration (or equivalently
by Proposition 2.2.2, with the LLP with respect to fibrations) because F preserves acyclic cofibrations
by hypothesis:

F(A) X

F(B) Y.

u♭

F( f ) g

v♭

Hence, there is w : F(B) → X such that g ◦ w = v♭, w ◦ F( f ) = u♭. In consequence, by adjointness, we
have w♯ : B → G(X) such that G(g) ◦ w♯ = v, w♯ ◦ f = u, that is, our initial diagram has a lift, as we
wanted to prove.
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Proposition 2.5.5. Let C, D be model categories and F : C ⇄ D : G a Quillen adjunction. Then, the following
are equivalent:

1. F and G form a Quillen equivalence.

2. i♯F(X)
=︸︷︷︸

1.3.4

G(iF(X)) ◦ Id♯
F(X)

is a weak equivalence for every cofibrant object X ∈ Ob(C) and

p♭G(X) =︸︷︷︸
1.3.4

Id♭
G(X) ◦ F(pG(X)) is a weak equivalence for every fibrant object X ∈ Ob(D).

Proof. Let us begin by proving that the first assertion implies the second one. Let then F and G form
a Quillen equivalence. If X ∈ Ob(C) is a cofibrant object, iF(X) : F(X)

∼
↪→ RF(X) is a weak equivalence

with X cofibrant and RF(X) fibrant, so i♯F(X)
will also be a weak equivalence. Similarly, if X ∈ Ob(D)

is a fibrant object, pG(X) : QG(X) → G(X) is a weak equivalence with QG(X) cofibrant and X fibrant,
so p♭G(X) will also be a weak equivalence.

Conversely, assume that the second assertion holds and let A ∈ Ob(C) be cofibrant and X ∈ Ob(D)
fibrant. First, given f : A → G(X) a weak equivalence, let us see that f ♭ =︸︷︷︸

1.3.4

Id♭
G(X) ◦ F( f ) is a weak

equivalence. First, notice that since F preserves acyclic cofibrations, in particular takes acyclic cofi-
brations between cofibrant objects to weak equivalences, so by Lemma 2.5.1, F preserves all weak
equivalences between cofibrant objects. Moreover, since f is a weak equivalence, f̃ : QA → QG(X)

will also be a weak equivalence by Lemma 2.4.6, and since both QA and QF(X) are cofibrant objects,
G( f̃ ) will also be a weak equivalence. By assumption, we also have that Id♭

G(X) ◦ F(pG(X)) is a weak
equivalence, so

Id♭
G(X) ◦ F(pG(X)) ◦ F( f̃ ) = Id♭

G(X) ◦ F( f ) ◦ F(pA)

will also be a weak equivalence. Since pA : QA → A is a weak equivalence between cofibrant objects,
F(pA) will also be a weak equivalence and hence by MC2, f ♭ = Id♭

G(X) ◦ F( f ) is a weak equivalence.

Dually, given f : F(A) → X a weak equivalence, we get that f ♯ = G( f ) ◦ Id♯
F(A)

is a weak equivalence,
which finishes our proof.

Corollary 2.5.6. Let C, D be model categories and F : C ⇄ D : G a Quillen adjunction. Then, the following are
equivalent:

1. F and G form a Quillen equivalence.

2. Id♯
F(X)

is a weak equivalence for every cofibrant object X ∈ Ob(C) and Id♭
G(X) is a weak equivalence for

every fibrant object X ∈ Ob(D).

Proof. Since F and G form a Quillen adjunction, F preserves acyclic cofibrations. Since iF(X) is an acyclic
cofibration for every X ∈ Ob(C) (in particular for X cofibrant), G(iF(X)) will be an acyclic cofibration,
hence a weak equivalence. Dually, F(pG(X)) will also be a weak equivalence. Therefore, by MC2, the
second assertion of previous proposition is equivalent to the second assertion of this corollary.

Next theorem shows the importance of the functors that we have defined.

Theorem 2.5.7. Let C and D be model categories, and F : C ⇄ D : G a Quillen adjunction. Then we have
an adjoint pair LF : Ho(C) ⇄ Ho(D) : RG between their homotopy categories. Moreover, if F and G form a
Quillen equivalence, then LF and RG are inverse equivalences of categories.

Proof. See [DS95, section 9, Theorem 9.7]. The proof uses some special kind of functors called derived
functors.



Chapter 3

Modeling the homotopy theory of
spaces

Now that we have everything settled, let us see some examples of model categories. Of course, the
category of topological spaces admits a model structure with weak equivalences the weak homotopy
equivalences. Moreover, there are other different categories which are Quillen-equivalent to this one.
In particular, we will overview the case of simplicial sets and later we will focus on the category of
small categories and the category of posets.

3.1. Topological spaces and simplicial sets

The development of homotopy theory for model categories was mainly motivated by the existence of
this kind of structure in the category of topological spaces and the possibility to mimic it for simpli-
cial sets, for later seeing that both structures are closely related. This was originally studied by the
American mathematician Daniel Quillen in [Qui67].

3.1.1. The Quillen model structure for topological spaces

As we said before, this structure was firstly described by Quillen, and then completed and reviewed
by a lot of mathematicians, such as the American Philip S. Hirschhorn in [Hir19].

Let us first recall that the category of topological spaces is formed by the class of topological spaces
together with continuous maps between them. Now, let us briefly describe the classes of morphisms
involved in our structure.

Weak homotopy equivalences

Weak homotopy type is a widely used term by topologists. In this case, we will follow [Hat02] and
[Cro78].

Definition 3.1.1. Let X be a topological space, we define π0(X) as the set of the path-connected com-
ponents of X: π0(X) := X/ ∼, with ∼ the equivalence relation “being joint by a path”.

Definition 3.1.2. Let X be a topological space, x0 ∈ X and n ∈ Z≥1. We consider the set of continuous
maps from the n-cube In = [0, 1]n into X such that the image of the boundary ∂In (points with some
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of the coordinates equal to 1 or to 0) is x0:

Fn(X, x0) =

{
f : In = [0, 1]× (n). . . ×[0, 1]→ X :

f continuous
f (∂In) = x0

}
.

On this set, we define the following inner operation:

f ∗ g : In → X.

(t1, . . . , tn) 7→ ( f ∗ g)(t1, . . . , tn) =

{
f (2t1, . . . , tn), 0 ≤ t1 ≤ 1

2
g(2t1 − 1, . . . , tn), 1

2 ≤ t1 ≤ 1

Now, we consider the quotient set πn(X, x0) = Fn(X, x0)/ ∼, with ∼ the equivalence relation “being
homotopic relative to ∂In”. On it, we define the following inner operation:

[ f ] ◦ [g] := [ f ∗ g].

With it, πn(X, x0) is a group denominated the n-th homotopy group of X. It is abelian for n ≥ 2.

Remark 3.1.3. Since In/∂In ∼= Sn = {(x1, . . . , xn+1) ∈ Rn+1 : x2
1 + . . . + x2

n+1 = 1}, we can see the

elements of Fn(X, x0) as continuous maps from Sn to X such that the image of (0, (n). . ., 0, 1) is x0.

Remark 3.1.4. We can extend this definition for n = 0 if we take I0 a point and ∂I0 the empty set.

Definition 3.1.5. Let X, Y be topological spaces and f : X → Y a continuous map. Then, for every n ≥ 1
and every x0 ∈ X, the following map is a group homomorphism that we will call homomorphism
induced by f . For n = 0 it is just a map.

πn( f ) : πn(X, x0)→ πn(Y, f (x0)).

[g] 7→ πn( f )([g]) := [ f ◦ g]

Definition 3.1.6. Let X and Y be topological spaces. We say that a continuous map f : X → Y is a weak
homotopy equivalence if for every choice of basepoint x0 ∈ X, f induces isomorphisms between all
the homotopy groups of X and Y and π0( f ) : π0(X)→ π0(Y) is a bijection. In this case, we say that X
and Y have the same weak homotopy type.

Relative cell complexes

Definition 3.1.7. If X is a subspace of Y such that there is a pushout square

Sn−1 X

Dn Y

i

for some n ≥ 0, Dn = {(x1, . . . , xn) ∈ Rn : x2
1 + . . . + x2

n ≤ 1} and i the inclusion, then we will say that
Y is obtained from X by attaching a cell.

Definition 3.1.8. A (finite) relative cell complex is an inclusion of a subspace f : X → Y such that Y
can be constructed from X by a (finite) process of repeatedly attaching cells.

Serre fibrations

Definition 3.1.9. A continuous map f : X → Y between two topological spaces is called a Serre fi-
bration if it has the RLP with respect to the inclusion (IdDn , 0) : Dn → Dn × [0, 1] of the standard



3.1 Topological spaces and simplicial sets 43

topological n-disc into its cylinder for every n ≥ 0:

Dn X

Dn × [0, 1] Y.

(IdDn ,0) f

Now we are in conditions of establishing Quillen’s model structure.

Definition 3.1.10. We will say that a morphism f : X → Y in T op is:

A weak equivalence if it is a weak homotopy equivalence.

A cofibration if it is a relative cell complex or a retract of a relative cell complex.

A fibration if it is a Serre fibration.

Theorem 3.1.11. There is a model category structure on the category of topological spaces in which the weak
equivalences, cofibrations and fibrations are as above. All the topological spaces are fibrant and the cofibrant
objects are the retracts of CW-complexes.

Proof. See [Hir19, Theorem 2.5].

Remark 3.1.12. Of course, this is not the only non-trivial model structure on the category of topolog-
ical spaces. Strøm has shown in [Str72] that there is a model category structure on the category of
topological spaces in which the weak equivalences are the homotopy equivalences, the fibrations are
the Hurewicz fibrations and the cofibrations are the closed inclusions with the homotopy extension
property.

3.1.2. The Kan-Quillen model structure for simplicial sets

Quillen also established a model structure on the category of simplicial sets in [Qui67], and then again,
a lot of mathematicians, such as the Americans Paul Goerss and Rick Jardine or Edward B. Curtis,
summarized and enriched this theory, showing the similarities with the model category of topological
spaces; see [GJ09] or [Cur71]. A great reference for getting familiar with the basic notions of this topic
is the survey by Greg Friedman [Fri12].

Kan fibrations

Definition 3.1.13. A morphism f : X → Y of simplicial sets is called a Kan fibration if it has the RLP
with respect to all the inclusions in,k : ∆[n, k]→ ∆[n], 0 ≤ k ≤ n, n ≥ 0:

∆[n, k] X

∆[n] Y.

in,k f

A simplicial set X such that the only morphism X → ∆[0] is a Kan fibration is called a Kan complex.
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Definition 3.1.14. A morphism f : X → Y of simplicial sets is called an acyclic Kan fibration if it has
the RLP with respect to all the inclusions in : ∂∆[n]→ ∆[n], n ≥ 0:

∂∆[n] X

∆[n] Y.

in f

With the notion of Kan fibration in mind, we can define Kan-Quillen’s model structure.

Definition 3.1.15. We will say that a morphism f : X → Y in sSets is:

A fibration if it is a Kan fibration, and a trivial fibration if it is an acyclic Kan fibration.

A cofibration if it has the LLP with respect to acyclic Kan fibrations, and a trivial cofibration if it
has the LLP with respect to Kan fibrations.

A weak equivalence if it can be factored as the composition of a trivial cofibration followed by a
trivial fibration.

Remark 3.1.16. The cofibrations are exactly the monomorphisms, that is, the simplicial morphisms that
are injective set maps in each level; see [Qui67, Chapter II, section 3, Proposition 2].

Theorem 3.1.17. There is a model category structure on the category of simplicial sets in which the weak
equivalences, cofibrations and fibrations are as above. Every simplicial set will be a cofibrant object and the
fibrant objects will be the Kan complexes.

Proof. See [Qui67, Chapter II, section 3, Theorem 3].

Remark 3.1.18. Weak equivalences in this model structre verify that if we have a sequence of weak
equivalences Ai → Ai+1 for i ≥ 0, then the canonical morphism A0 → colimn An is also a weak
equivalence. They also verify that the coproduct of weak equivalences is a weak equivalence.

Moreover, the defined structures are closely related.

Theorem 3.1.19. The geometric realization and singular functors form a Quillen equivalence between Quillen’s
model structures in T op and sSets:

| · | : T op ⇄ sSets : Sing.

Proof. See [Hov99, Theorem 3.6.7] or [GJ09, Theorem 11.4].

As a consequence, we get two points of view for studying the same homotopy category: one topological
and another one purely combinatorial. Next sections will give us even more points of view to carry
out the same study.

3.2. The Thomason model structure for small categories

In this section, we will set up a model structure on the category of small categories which will be
Quillen-equivalent to the one defined on simplicial sets.
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The first candidate for the Quillen equivalence would be the adjunction

τ : sSets ⇄ Cat : N,

but this fails to give us what we want since Id♯
τ(X)

is not a weak equivalence for every (cofibrant) object
X in sSets (see Corollary 2.5.6). For example, for X = ∂∆[n] with n > 2, we have that

Id♯
τ∂∆[n] : ∂∆[n]→ Nτ∂∆[n] ∼= ∆[n]

cannot be a weak equivalence since the geometric realizations of the domain and the codomain do
not have the same homotopy groups, so the geometric realization of our morphism cannot induce
isomorphisms between them and hence it cannot be a weak equivalence of topological spaces.

The American mathematician Robert Wayne Thomason found in [Tho80] the solution for this problem
adding the Sd and Ex functors to our adjunction, being our new candidate for Quillen equivalence

τSd2 : sSets ⇄ Cat : Ex2N.

Let us then define how our classes of morphisms will be.

Definition 3.2.1. A morphism f in Cat is:

A weak equivalence if Ex2N f is a weak equivalence in sSets.

A fibration if Ex2N f is a fibration in sSets.

A cofibration if it has the LLP with respect to trivial fibrations.

Next, let us analyze how the functor τSd2 will behave in some particular cases.

Remark 3.2.2. Let XK be a simplicial set arising from an ordered simplicial complex K (see Example
1.4.29). Then we know that its barycentric subdivision SdXK is the simplicial set associated to the (old)
barycentric subdivision of K. In particular, the 0-simplices of SdXk are the non-degenerate simplices of
XK (that is, the simplices of K), and there is a 1-simplex e ∈ (XK)1 such that d0(e) = v and d1(e) = w
if and only if v ⊆ w as simplices of K. In conclusion, τSdXK = i(X (K)) and in addition we have that
NτSdXK = N(i(X (K))) is the simplicial set associated to K(X (K)), the (old) barycentric subdivision
of K, so NτSdXK = SdXK.

Specifically, for

K =


2[n] \ {∅}
2[n] \ {∅, {0, . . . , n}}
2[n] \ {∅, {0, . . . , n}, {0, . . . , k− 1, k + 1, . . . , n}},

XK =


∆[n]
∂∆[n]
∆[n, k],

we have that τSd2∆[n], τSd2∂∆[n] and τSd2∆[n, k] are the small categories associated to the posets of
faces of the barycentric subdivisions of their respective K’s.

Furthermore, for in,k : ∆[n, k]→ ∆[n] the inclusion morphism seen on Example 1.4.29,

τSd2(in,k) : τSd2∆[n, k]→ τSd2∆[n]

is the obvious inclusion.

The morphisms mentioned in this remark will be very useful for us.

Definition 3.2.3. We define the categorical horns as:

τSd2∆[n, k]
τSd2(in,k)−→ τSd2∆[n].
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Let us see a characterization of fibrations in Cat in terms of the categorial horns.

Proposition 3.2.4. Let p ∈ Cat(C, D). Then p is a fibration if and only if for every categorical horn τSd2(in,k),
the following diagram has a lift:

τSd2∆[n, k] C

τSd2∆[n] D.

τSd2(in,k) p

Proof. By definition, p is a fibration if and only if Ex2Np is a fibration in sSets, which is equivalent to
all the diagrams of the form

∆[n, k] Ex2NC

∆[n] Ex2ND

in,k Ex2Np

having a lift, which by adjointness is equivalent to all diagrams of the form

τSd2∆[n, k] C

τSd2∆[n] D

τSd2(in,k) p

having a lift.

Acyclic fibrations also admit an analogous characterization.

Proposition 3.2.5. Let p ∈ Cat(C, D). Then p is a trivial fibration if and only if every diagram of the following
form has a lift:

τSd2∂∆[n] X

τSd2∆[n] Y.

τSd2(in) p

Proof. By definition, p is a trivial fibration if and only if Ex2Np is a trivial fibration in sSets, which is
equivalent to all the diagrams of the form

∂∆[n] Ex2NX

∆[n] Ex2NY

in Ex2Np

having a lift, which by adjointness is equivalent to all diagrams of the form

τSd2∂∆[n] X

τSd2∆[n] Y

τSd2(in) p

having a lift.
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Next, let us see an equivalent, but more simple, characterization of weak equivalences.

Proposition 3.2.6. Let f ∈ Cat(C, D) be a morphism. Then, Ex2N( f ) is a weak equivalence if and only if N( f )
is a weak equivalence.

Proof. Dan Kan proved in [Kan57] that there is a natural transformation e : IdsSets ⇒ Ex such that
eX is a weak equivalence for every X ∈ Ob(sSets). In consequence, a morphism in sSets is a weak
equivalence if and only if its extension is a weak equivalence. Indeed, let f ∈ sSets(X, Y) and consider
the following commutative diagram, derived from the naturality of e:

X ExX

Y ExY.

eX
∼

f Ex( f )
eY
∼

By MC2, we have that f is a weak equivalence if and only if eY ◦ f = Ex( f ) ◦ eX is a weak equivalence,
and this is equivalent again by MC2 to Ex( f ) being a weak equivalence.

In consequence, N( f ) is a weak equivalence if and only if ExN( f ) is a weak equivalence, fact that
happens if and only if Ex2N( f ) is a weak equivalence.

Corollary 3.2.7. Categorical horns τSd2(in,k) : τSd2∆[n, k]→ τSd2∆[n] are weak equivalences.

Proof. We have that their nerves

NτSd2(in,k) : NτSd2∆[n, k] = Sd2∆[n, k]→ NτSd2∆[n] = Sd2∆[n]

(see Remark 3.2.2) are weak equivalences since their geometric realization is a continuous function
between two contractible spaces and hence a weak homotopy equivalence.

Now, for understanding our next steps, we need to introduce a certain type of morphisms in Cat, as
well as some previous notions.

Definition 3.2.8. Let B be a category and A a subcategory of B. We say that A is a sieve of B if for
every morphism f ∈ B(b, b′) such that b′ ∈ Ob(A), we have that b ∈ Ob(A) and f ∈ A(b, b′). Dually,
A is a cosieve of B if for every morphism f ∈ B(b, b′) such that b ∈ Ob(A), we have that b′ ∈ Ob(A)
and f ∈ A(b, b′). In particular, sieves and cosieves are full subcategories.

Remark 3.2.9. Let B be a category and A a sieve of B. Then, V , the full subcategory of B of objects not
in Ob(A) is a cosieve of B. Indeed, if f ∈ B(b, b′) is such that b ∈ Ob(V), then b′ ∈ Ob(V) (otherwise,
b′ ∈ Ob(A) and then by definition of cosieve b ∈ Ob(A) and we would get to a contradiction) and
since V is a full subcategory, f ∈ V(b, b′). Dually, if A is a cosieve of B, V is a sieve of B.

Example 3.2.10. For I = {0 → 1}, the subcategory 0 which has 0 as only object and Id0 as only
morphism is a sieve of I . Indeed, the only morphism in I which has 0 as codomain is Id0, which is a
morphism in 0 and whose domain is also an object of 0. Dually, the subcategory 1 which has 1 as only
object and Id1 as only morphism is a cosieve of I .

Let us see the following characterization of sieves and cosieves.

Lemma 3.2.11. Let B be a category and A a subcategory of B. Then, A is a sieve of B if and only if there exists
a functor χ : B → I such that χ−1(0) = A. Dually, A is a cosieve of B if and only if there exists a functor
χ : B → I such that χ−1(1) = A.



48 3 Modeling the homotopy theory of spaces

Proof. Assume that A is a sieve of B and let us define:

χ : B → I .

b ∈ Ob(B) 7→
{

0 if b ∈ Ob(A)
1 if b /∈ Ob(A)

f ∈ B(b, b′) 7→


Id0 if b′ ∈ Ob(A)(⇒ b ∈ Ob(A))
Id1 if b /∈ Ob(A)(⇒ b′ /∈ Ob(A))
0→ 1 if b ∈ Ob(A), b′ /∈ Ob(A)

This is obviously a functor and moreover χ−1(0) = A.

Conversely, suppose that we have a functor χ : B → I such that χ−1(0) = A and let us see that A is a
sieve of B. Let f ∈ B(b, b′) be a morphism such that b′ ∈ Ob(A) = χ−1(0). Then, χ( f ) ∈ I(χ(b), 0),
and since 0 is a cosieve of I (see Example 3.2.10), χ(b) = 0 and χ( f ) = Id0, so b ∈ χ−1(0) = Ob(A)
and f ∈ A(b, b′).

Definition 3.2.12. An inclusion i ∈ Cat(A, B) is a Dwyer map if i embeds A as a sieve in B and factors
as composite of inclusions f ∈ Cat(A, W), j ∈ Cat(W, B) such that:

f admits a deformation retraction, that is, there exists r ∈ Cat(W, A) such that r ◦ f = IdA
together with a natural transformation t : f ◦ r ⇒ IdW such that for every a ∈ Ob(A) we have
t f (a) = Id f (a).

j embeds W as a cosieve of B.

Remark 3.2.13. Originally, Thomason’s definition of Dwyer morphism asked r to be right adjoint,
but this restriction caused problems on proving that this model structure is left proper. The French
mathematician Denis-Charles Cisinski noticed this in [Cis99] and gave this new definition of “pseudo-
Dwyer morphism”, which nowadays is much more useful, so we will omit the term “pseudo”.

Next proposition shows us an example of Dwyer maps.

Proposition 3.2.14. Let L ⊆ K be an inclusion of simplicial complexes and i : XL → XK the inclusion between
their associated simplicial sets. Then, τSd2i : τSd2XL → τSd2XK is a Dwyer map.

Proof. First, by Remark 3.2.2, τSd2XK = i(X (K(X (K)))) is the small category associated to the poset
of faces of the (old) barycentric subdivision of K, K(X (K)) and, in the same way, τSd2XL is the small
category associated to the poset of faces of the old barycentric subdivision of L. Moreover, τSd2i will
be the functor induced by the inclusion between these posets.

Let us first see that τSd2XL is a sieve in τSd2XK. A morphism in τSd2XK(σ, σ′) will mean that σ ⊆ σ′.
If σ′ ∈ Ob(τSd2XL), by definition of simplicial complex, σ ∈ Ob(τSd2L) and σ ⊆ σ′ in τSd2XL too.

Now, let W = {σ ∈ K(X (K)) : σ ∩ K(X (L)) ̸= ∅} be the subposet of X (K(X (K))) containing all
the simplices of K(X (K)) that meet K(X (L)). Let us see that i(W) is a cosieve in τSd2XK which
obviously contains τSd2XL. A morphism in τSd2XK(σ, σ′) will mean that σ ⊆ σ′. If σ ∈ Ob(i(W)),
then σ ∩K(X (L)) ̸= ∅, so σ′ ∩K(X (L)) ̸= ∅ and σ ⊆ σ′ in W too.

Finally, let us see that the inclusion f : τSd2XL → i(W) admits a deformation retraction. Let us define

r : i(W)→ τSd2XL,

σ 7→ σ ∩K(X (L))

(σ→ σ′) 7→ (σ ∩K(X (L))→ σ′ ∩K(X (L)))
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which obviously verifies r ◦ f = Id
τSd2XL

. Moreover, we can define t : f ◦ r ⇒ Idi(W) a natural trans-
formation assigning to every σ ∈ Ob(i(W)) the inclusion morphism tσ : i(rσ) = σ ∩ K(X (L)) → σ.
The naturality is clear, and in addition it is obvious that for σ ∈ Ob(τSd2XL), tσ is the identity, which
finishes our proof.

Next, let us see a lemma that will be useful later.

Lemma 3.2.15 (Gluing/Pasting lemma). Given a commutative cube in sSets

A B

A′ B′

C D,

C′ D′

∼ ∼

∼

where the front and back faces are pushout diagrams with all arrows cofibrations, if A ∼→ A′, B ∼→ B′ and
C ∼→ C′ are weak equivalences, then so is D→ D′.

Proof. First, it is worth to mention that this lemma holds for model categories in general if the objects
involved in the diagram are cofibrant; see [And78, Lemma 2.5].

We will see a proof of it that uses some of the results we have already seen. If D is a small category and
C is a cofibrantly generated model category (such as sSets), then the category CD admits a projective
model structure, where given two objects X, Y : D → C, a morphism t : X ⇒ Y between them is a
weak equivalence (or respectively, a fibration) if and only if for every d ∈ Ob(C), td : X(d) → Y(d)
is a weak equivalence (or respectively, a fibration) in C. Cofibrations will be those morphisms having
the LLP with respect to acyclic fibrations; see [nLa22a]. In particular, a morphism s : X ⇒ Y between
two functors X, Y : D → C such that sd : X(d) → Y(d) is a cofibration for every d ∈ Ob(D) will be
a cofibration. Moreover, our model categories are Quillen-equivalent: colim: CD ⇄ C : Const; see
[nLa22b]. In particular, the colimit functor is a left Quillen functor, so it preserves acyclic cofibrations.
Specifically, it carries trivial cofibrations between cofibrant objects to weak equivalences, so by Lemma
2.5.1, it preserves all weak equivalences between cofibrant objects.

In our case, we have D = {c← a→ b} and the colimit will be the pushout. Our diagrams C ← A→ B
and C′ ← A′ → B′ will be cofibrant objects since the only natural transformation from the initial
diagram ∅ ← ∅ → ∅ to them will have only cofibrations, so it will be a cofibration in CD . Moreover,
the natural transformation s formed by the three weak equivalences in the formulation of the lemma
will of course be a weak equivalence, so it is a weak equivalence between cofibrant objects and hence
colim(s) (the induced morphism between the pushouts) will be a weak equivalence, as we wanted to
prove.

Now consider a pushout diagram in Cat:

A C

B B⨿A C.

f

i j
g
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Applying the nerve functor N we get the following commutative diagram in sSets:

NA NC

NB N(B⨿A C).

N( f )

N(i) N(j)
N(g)

Then, by the universal property of the pushout NB⨿NA NC there is a morphism

φ : NB⨿NA NC → N(B⨿A C).

Let us see that this morphism is very important for us.

Proposition 3.2.16. In a pushout diagram as above in Cat, if i is a Dwyer map, then j is a Dwyer map and φ

is a weak equivalence.

Proof. Since i is a Dwyer map, we have that it embeds A as a sieve in B and it factors as a composite
of i1 ∈ Cat(A, W), i2 ∈ Cat(W, B) such that i1 admits a deformation retraction r ∈ Cat(W, A) (with
associated natural transformation t : i1 ◦ r ⇒ IdW) and i2 embeds W as a cosieve of B.

First, we will see that j is a Dwyer map. Let us consider the following commutative diagram:

A C

W W ⨿A C = W ′

B B⨿A C.

f

i1 j1

h

i2 j2
g

We claim that j is a Dwyer map with the factorization j = j2 ◦ j1. First, let us see that C is a sieve in
D. Since A is a sieve in B, by Lemma 3.2.11 there exists a functor χ : B→ I such that χ−1(0) = A. We
also have the functor Const(0) : C → I , which makes the following diagram commutative:

A C

B I ,

f

i Const(0)
χ

so by the universal property of the pushout, there exists a functor χ′ : B ⨿A C → I such that in
particular χ′−1(0) = C, which by Lemma 3.2.11 shows what we wanted.

In a similar way, let us see that W ′ is a cosieve in D. Since W is a cosieve in B, by Lemma 3.2.11 there
exists a functor µ : B → I such that µ−1(1) = W. We also have the functor Const(1) : C → I , which
makes the following diagram commutative:

A C

B I ,

f

i Const(1)
µ

so by the universal property of the pushout, there exists a functor µ′ : B ⨿A C → I such that in
particular µ′−1(1) = W ′, which by Lemma 3.2.11 shows what we wanted.
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Moreover, we have a morphism r′ = r⨿IdA IdC : W ′ → A⨿A C = C such that r′ ◦ j1 = IdC ◦ IdC = IdC:

A C

A C

W W ⨿A C = W ′.

A A⨿A C = C.

IdA

i1

f

IdC
j1

f

IdA

IdC

h

r r′

f

Similarly, we have a natural transformation t′ = t ⨿Id Id : j1 ◦ r′ ⇒ Id′W such that for x ∈ Ob(C),
t′j1(x) = Idj1(x), which finishes the first part of our proof.

Next, we will see that φ is a weak equivalence. Notice that that by Remark 1.1.13, having a natu-
ral transformation t : i1 ◦ r ⇒ IdW is equivalent to having a functor H : W × {0 → 1} → W such
that H(w, 0) = r(i1(w)) and H(w, 1) = w for every object w ∈ Ob(W) and H( f , Id0) = r(i1( f )) and
H( f , Id1) = G( f ) for every morphism f in W. The geometric realization of the nerve of this func-
tor |NH| : |NW| × [0, 1] → |NW| is a continuous map such that |NH|(w, 0) = |Nr|(|Ni1|(w)) and
|NH|(w, 1) = w for every w ∈ |NW|, that is, a homotopy between |Nr| ◦ |Ni1| and Id|NW|. In addition,
we have that |Ni1| ◦ |Nr| = |N(i1 ◦ r)| = |N(IdA)| = Id|NA|. In consequence, |Ni1| : |NA| → |NW|
is a homotopy equivalence (with homotopy inverse |Nr|) between both fibrant and cofibrant objects
(CW-complexes), and hence by Lemma 2.3.37 a weak equivalence. Therefore, Ni1 : NA → NW is a
weak equivalence. Similarly, Nj1 : NC → NW ′ is also a weak equivalence. We then have the following
commutative cube

NA NC

NW NW ′

NB NB⨿NA NC,

NB NB⨿NW NW ′

∼
Ni1

N f

Ni

∼
Nj1

Nh

Ni2

∼
IdNB

ψ

where we can apply the Gluing lemma 3.2.15 to claim that the canonical morphism ψ is a weak equiv-
alence.

Now let V be the full subcategory of objects of B not in A, which is a cosieve in B since A is a sieve
by Remark 3.2.9. Notice that W ∩V is a cosieve in W. Indeed, if f ∈ W(w, w′) ⊆ B(w, w′) is such that
w ∈ Ob(W ∩ V) ⊆ Ob(V), since V is a cosieve in B we have that w′ ∈ Ob(V) and f ∈ V(w, w′) so
w′ ∈ Ob(W ∩V) and f ∈ W ∩V(w, w′). By symmetry, W ∩V is a cosieve in V. For the same reasons,
if we put V′ the full subcategory of objects of B⨿A C not in C, we will have a cosieve in B⨿A C and
W ′ ∩V′ will be a cosieve in both V′ and W ′.

Take a look at the following diagram (see Remark 1.2.10):

A C ∗

B B⨿A C ∗ ⨿A B = ∗ ⨿C (B⨿A C).

f

i
g
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But observe that ∗ ⨿A B is the category V with one more object ∗ and a morphism ∗ → v if and only if
v ∈ Ob(V ∩W). Indeed, since A is a sieve of B, morphisms with codomain in A are collapsed; since V
is a cosieve of B, morphisms with domain in V go to themselves; hence, only morphisms with domain
in A ⊆ W and codomain in V will be of our interest, but since W is a cosieve in B, the codomain will
also have to be in W, so there will only be morphisms ∗ → v if v ∈ Ob(V ∩W). Conversely, given
v ∈ Ob(V ∩W) we have tv : i1(r(v)) = r(v) → v with r(v) ∈ A, so in the pushout we will have a
morphism ∗ → v. In an analogous way, ∗ ⨿C (B⨿A C) is the category V′ with one more object ∗ and a
morphism ∗ → v if and only if v ∈ Ob(V′ ∩W ′). This shows V ∼= V′, V ∩W ∼= V′ ∩W ′.

Notice also that B = B⨿W∩V V. Indeed, the inclusions between this categories commute:

W ∩V V

W B.

v

w

Moreover, let C ∈ Ob(Cat) and f : V → C, g : W → C functors such that the following diagram
commutes (or equivalently, such that f (x) = g(x) for every x ∈ Ob(W ∩V) and f (z) = g(z) for every
z ∈W ∩V(x, x′)):

W ∩V V

W C.

f
g

Then, there is a well defined functor

h : B→ C

b ∈ Ob(B) 7→
{

g(b) if b ∈ A ⊆W
f (b) if b ∈ V

h ∈ B(b, b′) 7→
{

g(h) if b′ ∈ A ⊆W
f (h) if b ∈ V

such that h ◦ v = f , h ◦ w = g.

In a similar way, NB = NW ⨿N(W∩V) NV. Indeed, the nerves of the inclusions commute:

N(W ∩V) NV

NW NB.

N(v)

N(w)

Moreover, let S ∈ Ob(sSets) and f : NV → S, g : NW → S morphisms such that the following diagram
commutes

N(W ∩V) NV

NW S.

f

g

Then, there is a well defined morphism h : NB→ S with

hn : (NB)n → Sn

(b0 → . . .→ bn) 7→
{

g(b0 → . . .→ bn) if bn ∈ A ⊆W
f (b0 → . . .→ bn) if b0 ∈ V

which obviously commutes with face and degeneracy maps and such that h ◦N(v) = f , h ◦N(w) = g.
In a resembling way, N(B⨿A C) = NW ′ ⨿N(W ′∩V′) NV′.
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Putting all this together, we get that

NB⨿NW NW ′ = NV ⨿N(V∩W) NW ⨿NW NW ′ = NV ⨿N(V∩W) NW ′

= NV′ ⨿N(V′∩W ′) NW ′ = N(B⨿A C),

and we can conclude that the canonical morphism φ = ψ is a weak equivalence.

Corollary 3.2.17. In a pushout diagram as above in Cat with i a Dwyer map, if i is a weak equivalence then j is
also a weak equivalence.

Proof. Pay attention to the diagram derived of the universal property of the pushout:

NA NC

NB NB⨿NA NC

N(B⨿A C).

N( f )

N(i) α N(j)

N(g)

φ

Since i is a Dwyer map, in particular it is an inclusion, so N(i) will be a monomorphism and hence a
cofibration in sSets (see Remark 3.1.16). Moreover, since i is a weak equivalence, by Proposition 3.2.4,
N(i) will also be a weak equivalence. Since acyclic cofibrations are stable under cobase change by
Corollary 2.2.5, α will be an acyclic cofibration, and in particular a weak equivalence. Moreover, by
Proposition 3.2.16 φ will also be a weak equivalence, so in consequence N(j) will be a weak equivalence,
which means again by Proposition 3.2.4 that j is a weak equivalence in Cat.

Let us now see some properties of the cofibrations in Cat.

Lemma 3.2.18. Let f ∈ sSets(X, Y) be a cofibration. Then τSd2 f ∈ Cat(τSd2X, τSd2Y) is a cofibration.

Proof. We need to see that τSd2 f has the LLP with respect to trivial fibrations. Let us then consider the
following lifting problem:

τSd2X C

τSd2Y D,

τSd2 f p

where p is a trivial fibration in Cat (that is, Ex2Np is a trivial fibration in sSets). By adjointness, we
have the following diagram:

X Ex2NC

Y Ex2ND,

f Ex2Np

which, since f is a cofibration and Ex2Np is an acyclic fibration, has a lift h : Y → Ex2NC, which by
adjointess gives us our desired lift h♭ : τSd2Y → C.

Corollary 3.2.19. The categorical horns are trivial cofibrations.
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Proof. They are cofibrations by Proposition 3.2.18 and weak equivalences by Corollary 3.2.7.

Lemma 3.2.20. The following hold:

1. If A → B is a cofibration in Cat and A → C is any morphism, the induced morphism into the pushout
C → B⨿A C is a cofibration.

2. If A0 → A1 → A2 → . . . is a sequence of cofibrations in Cat, then the morphism A0 → colimn(An) is a
cofibration. If in addition each morphism is a weak equivalence, so does A0 → colimn(An).

3. If Ai → Bi is a cofibration in Cat, then their coproduct ⨿i Ai → ⨿iBi is a cofibration. If moreover each
Ai → Bi is a weak equivalence, then ⨿i Ai → ⨿iBi is also a weak equivalence.

Proof. The first assertion holds by Proposition 2.2.4: if A → B is a cofibration, it has the LLP with
respecto to trival fibrations, and in consequence its cobase change will have the same property, so it
will also be a cofibration.

The first part of the second assertion holds by Lemma 2.2.8: if An → An+1 is a cofibration, it has the
LLP with respect to trivial fibrations, and in consequence A0 → colimn An will have the same property,
so it will also be a cofibration. Moreover, if each An → An+1 is a weak equivalence, by Propositon
3.2.6 we have a sequence of weak equivalences NAn → NAn+1, so by Remark 3.1.18 the canonical
morphism NA0 → colimnNAn is also a weak equivalence. But colimnNAn = N(colimn An) because
of how sequential colimits work for simplicial sets and categories and because of the definition of the
nerve functor. Consequently, by Proposition 3.2.6 the canonical morphism A0 → colimn An is also a
weak equivalence.

The first part of the third assertion holds by Lemma 2.2.7: if Ai → Bi is a cofibration, it has the LLP
with respect to trivial fibrations, and in consequence ⨿i Ai → ⨿iBi will have the same property, so
it will also be a cofibration. Moreover, if each Ai → Bi is a weak equivalence, by Proposition 3.2.6
NAi → NBi will also be weak equivalences, so by Remark 3.1.18 its coproduct will also be a weak
equivalence. But by construction, the coproduct of the nerves will be the nerve of the coproducts and
then our coproduct will be a weak equivalence.

Now we have all the ingredients in order to prove our aimed theorems.

Theorem 3.2.21. There is a model category structure on the category of small categories in which the weak
equivalences, cofibrations and fibrations are as in Definition 3.2.1.

Proof. The axiom MC1 follows from Proposition 1.4.13.

Let us now check the closure under composition and the contention of the identity of the different
classes of morphisms. First of all, for weak equivalences and fibrations it holds because it does for
simplicial sets. Now, for cofibrations, let us see that the identity morphisms are cofibrations. If we
have the following lifting problem (p ◦ f = g ◦ IdA), with p an acyclic fibration

A X

A Y,

f

IdA p

g

it is clear that there is a morphism f : A → X such that p ◦ f = g and f ◦ IdA = f , so the identities are
cofibrations. Let us now check the closure under composition. Assume that i : A → B and j : B → C
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are cofibrations, and let us see that j ◦ i is a cofibration, that is, that it has the left lifting property with
respect to trivial fibrations. Consider then the following lifting problem, with p an acyclic fibration:

A X

C Y

f

j◦i p

g

.

Then, we also have the following lifting problem, with p an acyclic fibration:

A X

B Y.

f

i p

g◦j

Since i is a cofibration, there is u : B → X such that p ◦ u = g ◦ j and u ◦ i = f . This yields another
lifting problem, with p an acyclic fibration:

B X

C Y.

u

j p

g

Since j is a cofibration, there is w : C → X such that p ◦ w = g and w ◦ j = u. In conclusion, there is
w : C → X such that p ◦ w = g and w ◦ j ◦ i = u ◦ i = f , which is what we wanted to see. Hence, the
composition of cofibrations is also a cofibration.

The second axiom MC2 holds because it does for simplicial sets: if we have f : A → B, g : B → C
such that two out the three f , g, g ◦ f are weak equivalences, then two out of the three Ex2N f , Ex2Ng,
Ex2N( f ◦ g) = Ex2N f ◦ Ex2Ng are weak equivalences, so by MC2 for sSets, the third one will also be
a weak equivalence and hence so will be the third of our initial morphisms.

The third axiom MC3 holds for weak equivalences and fibrations because it does for simplicial sets,
and for cofibrations because of Lemma 2.3.20.

Let us now prove that this structure verifies the fifth axiom MC5 because we will use it for proving
MC4 next. Let then f : A→ B be any morphism in Cat.

Let us first see that we can factor f = p ◦ i with p a fibration and i a trivial cofibration.

First, consider the set I of all diagrams involving the categorical horns

τSd2∆[n, k] A

τSd2∆[k] B

τSd2(in,k)

a

f

b

and take the coproducts ⨿IτSd2∆[n, k], ⨿IτSd2∆[n]. The morphism

⨿IτSd2(in,k) : ⨿I τSd2∆[n, k]→ ⨿IτSd2∆[n]

is a trivial cofibration because categorical horns are trivial cofibrations by Corollary 3.2.19 and the
coproduct of trivial cofibrations is a trivial cofibration by Lemma 3.2.20. Moreover, it is a Dwyer map
by Proposition 3.2.14, since the coproduct of the inclusions will also be a inclusion of simplicial sets
coming from ordered simplicial complexes.

Now let a : ⨿I τSd2∆[n, k] → A be the morphism induced by the universal property of the coproduct
and take the pushout A1 = A⨿⨿I τSd2∆[n,k] ⨿IτSd2∆[n]. Then the canonical morphism α1 : A→ A1 is a
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cofibration by Lemma 3.2.20, a weak equivalence by Corollary 3.2.17 and a Dwyer map by Proposition
3.2.16. Now let b : ⨿I τSd2∆[n] → B be the morphism induced by the universal property of the
coproduct. We are in the following situation:

τSd2∆[n, k]

⨿IτSd2∆[n, k] A

⨿IτSd2∆[n] A1

τSd2∆[n] B.

j

τSd2(in,k)

a

⨿I τSd2(in,k)

a

α1
f

β1

b

p1i

b

It is clear that f = p1 ◦ α1. Moreover, by construction, any of the initial morphisms b : τSd2∆[n] → B
lifts to β1 ◦ i : τSd2∆[n]→ A1 extending α1 ◦ a : τSd2∂∆[n]→ A1:

τSd2∆[n, k] A1

τSd2∆[n] B.

τSd2(in,k)

α1◦a

p1

b
β1◦i

Notice also that α1 has the LLP with respect to fibrations. Indeed, consider the lifting problem

A X

A1 Y,

c

α1 w

d

where w : X → Y is a fibration (that is, has the RLP with respect to categorical horns by Proposi-
tion 3.2.4). For every commutative diagram in I, consider the composite commutative diagram

τSd2∆[n, k] A X

τSd2∆[n] A1 Y.

τSd2(in,k)

a

α1

c

w

β1◦i d

Since w is a fibration, there is a lift l : τSd2∆[n]→ X such that w ◦ l = d ◦ β1 ◦ i and l ◦ τSd2(in,k) = c ◦ a.
Let L : ⨿I τSd2∆[n]→ X be the morphism induced by these lifts in the coproduct, so that L ◦ i = l. By
the universal property of the pushout, there is k : A1 → X such that k ◦ α1 = c and k ◦ β1 = L. This is
the lift we were looking for, since k ◦ α1 = c is clear and moreover w ◦ k = d by the universal property
of the pushout and the fact that

w ◦ k ◦ α1 = w ◦ c = d ◦ α1,

w ◦ k ◦ β1 = w ◦ L = d ◦ β1,

with this last equality derived from the universal property of the coproduct and the fact that

w ◦ L ◦ i = w ◦ l = d ◦ β1 ◦ i.
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Now we can apply all this method to the morphism p1 : A1 → B, obtaining a factorization p1 = p2 ◦ α2,
so f = p2 ◦ α2 ◦ α1, and such that α2 has the LLP with respect to fibrations and by construction,
any of the initial morphisms b : τSd2∆[n] → B lifts to a morphism β2 ◦ i : τSd2∆[n] → A2 extending
α2 ◦ a : τSd2∆[n, k]→ A1:

τSd2∆[n, k] A2

τSd2∆[n] B.

τSd2(in,k)

α2◦a

p2

b
β2◦i

Repeating the operation countably many times we obtain a sequence of cofibrations and weak equiva-
lences

A
α1→ A1

α2→ A2
α3→ . . .

and a family of morphisms pi : Ai → B such that pi+1 ◦ αi+1 = pi. Then, for A∞ = colimn An we have a
morphism p : A∞ → B which is a fibration by Proposition 3.2.4. Indeed, given a commutative diagram

τSd2∆[n, k] A∞

τSd2∆[n] B,

ã

τSd2(in,k) p

b

since τSd2∆[n, k] is a finite category, by the construction of the sequential colimit we get that ã factors
through some Am, that is, ã = inm ◦ a for some a : τSd2∆[n, k] → Am, which yields the commutative
diagram

τSd2∆[n, k] Am

τSd2∆[n] B,

a

τSd2(in,k) p◦inm=pm

b

which as observed has a lift βm ◦ i : τSd2∆[n] → Am. In consequence, we have a lift for our initial
problem inm ◦ βm ◦ i : τSd2∆[n]→ A∞.

Moreover, i : A → A∞ is a cofibration and a weak equivalence by Lemma 3.2.20, and in addition has
the LLP with respect to fibrations by Lemma 2.2.7. Hence, we have finally reached our factorization
(notice that f = p ◦ i by construction).

Now let us see that we can factor f = p ◦ i with p a trivial fibration and i a cofibration.

First, consider the set I of all diagrams of the form

τSd2∂∆[n] A

τSd2∆[n] B

a

τSd2(in) f

b

and take the coproducts ⨿IτSd2∂∆[n], ⨿IτSd2∆[n]. The morphism

⨿IτSd2(in) : ⨿I τSd2∂∆[n]→ ⨿IτSd2∆[n]

is a cofibration by Lemma 3.2.18 since the coproduct of the inclusions will also be a inclusion of
simplicial sets coming from ordered simplicial complexes.

Now let a : ⨿I τSd2∂∆[n] → A be the morphism induced by the universal property of the coproduct
and take the pushout A1 = A⨿⨿I τSd2∂∆[n] ⨿IτSd2∆[n]. Then the canonical morphism α1 : A→ A1 is a
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cofibration by Lemma 3.2.20. Now let b : ⨿I τSd2∆[n]→ B be the morphism induced by the universal
property of the coproduct. We are in the following situation:

τSd2∂∆[n]

⨿IτSd2∂∆[n] A

⨿IτSd2∆[n] A1

τSd2∆[n] B.

j

τSd2(δin)

a

⨿I τSd2(in)

a

α1
f

β1

b

p1i

b

It is clear that f = p1 ◦ α1. Moreover, by construction, any of the initial morphisms b : τSd2∆[n] → B
lifts to β1 ◦ i : τSd2∆[n]→ A1 extending α1 ◦ a : τSd2∂∆[n]→ A1:

τSd2∂∆[n] A1

τSd2∆[n] B.

τSd2(in)

α1◦a

p1

b
β1◦i

Now we can apply all this method to the morphism p1 : A1 → B, obtaining a factorization p1 = p2 ◦ α2,
so f = p2 ◦ α2 ◦ α1, and such that by construction, any of the initial morphisms b : τSd2∆[n] → B lifts
to a morphism β2 ◦ i : τSd2∆[n]→ A2 extending α2 ◦ a : τSd2∆[n, k]→ A1:

τSd2∂∆[n] A2

τSd2∆[n] B.

τSd2(in)

α2◦a

p2

b
β2◦i

Repeating the operation countably many times we obtain a sequence of cofibrations

A
α1→ A1

α2→ A2
α3→ . . .

and a family of morphisms pi : Ai → B such that pi+1 ◦ αi+1 = pi. Then, for A∞ = colimn An we have
a morphism p : A∞ → B which is a trivial fibration by Proposition 3.2.5. Indeed, given a commutative
diagram

τSd2∂∆[n] A∞

τSd2∆[n] B,

ã

τSd2(in) p

b

since τSd2∆[n] is a finite category, we get that ã factors through some Am, that is, ã = inm ◦ a for some
a : τSd2∂∆[n]→ Am, which yields the commutative diagram

τSd2∂∆[n] Am

τSd2∆[n] B,

a

τSd2(in) p◦inm=pm

b
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which as observed has a lift βm ◦ i : τSd2∆[n] → Am. In consequence, we have a lift for our initial
problem inm ◦ βm ◦ i : τSd2∆[n]→ A∞.

Moreover, i : A → A∞ is a cofibration by Lemma 3.2.20. Hence, we have finally reached our factoriza-
tion (notice that f = p ◦ i by construction).

There is only left to check the forth axiom MC4. Half of it holds by definition of cofibration, so let us
prove the other half. Let us consider the following lifting problem

A X

B Y,

a

k q

b

where k is a trivial cofibration and q a fibration. By the proof of MC5(i) above, we know that we can
factor k as k = p ◦ i, with i a trivial cofibration and p a fibration (which will also be trivial by MC2 and
the fact that i and k are weak equivalences). Now consider the following lifting problem:

A X

A∞ Y.

a

i q

b◦p

As observed earlier, i has the LLP with respect to fibrations, so there is a morphism h : A∞ → X such
that q ◦ h = b ◦ p and h ◦ i = a. Next, consider the following lifting problem:

A A∞

B B.

i

k p

IdB

Since k is a cofibration and p is an acyclic fibration, by definition of cofibration there exists s : B→ A∞

such that p ◦ s = IdB and s ◦ k = i. In consequence, we have h ◦ s : B→ X verifying

q ◦ h ◦ s = b ◦ p ◦ s = b ◦ IdB = b,

h ◦ s ◦ k = h ◦ i = a,

so our initial diagram has a lift.

We have finished the checking of all the axioms of model categories, and with it, our proof.

From this theorem we can extract a corollary which will be useful in a bit.

Corollary 3.2.22. Let f : A → B be a cofibration in Cat, and f = p ◦ i the factorization described above, with
i : A→ A∞ a cofibration and p : A∞ → B a trivial fibration. Then f is a retract of i.

Proof. This holds by the first part of Proposition 2.2.6 since f has the LLP with respect to the trivial
fibration p by definition of cofibration.

Theorem 3.2.23. The category of small categories and the category of simplicial sets with the described model
structures, are Quillen equivalent under the adjunction

τSd2 : sSets ⇄ Cat : Ex2N.

Proof. First, we need to see that we are dealing with a Quillen adjunction. Indeed, τSd2 preserves
cofibrations by Lemma 3.2.18 and Ex2N preserves fibrations by definition of fibration in Cat.

The fact that it is indeed a Quillen equivalence was proved by the German topologist Rudolf Fritsch
and the American mathematician Dana May Latch in [FL81].



60 3 Modeling the homotopy theory of spaces

3.3. The Raptis-Thomason model structure for posets

Previous theorems tell us that now we have the option of studying the homotopy theory of spaces from
the point of view of small categories. But we can refine this result with just a couple of steps in order
to get even another model for the homotopy category of spaces: the category of partially ordered sets.
Thomason already mentioned some of these results in his paper [Tho80], and the Greek mathematician
George Raptis analyzed them more deeply in [Rap10].

Lemma 3.3.1. The following hold:

1. Consider a sequence i(P0) → i(P1) → . . . in Cat with Pj a poset for every j ≥ 0. Then, the sequencial
colimit colimni(Pn) is equal to i(P) for some poset P.

2. Let P be a poset. Then any subcategory C of i(P) is equal to i(Q) for some Q.

3. Let i(PA), i(PB), i(PC) ∈ Ob(Cat) with PA, PB, PC ∈ Ob(Pos) and f : i(PA) → i(PB) a Dwyer map.
Then, for any morphism i(PA)→ i(PC), the pushout i(PB)⨿i(PA)

i(PC) equals i(P) for some poset P.

Proof. The first assertion follows from the fact that the inclusions of posets have at most one morphism
between two objects and then their sequential colimit by construction (see Proposition 1.4.35) has at
most one morphism between two objects, so it will be an inclusion of some poset (see Remark 1.4.39).

The second assertion follows from the fact that the inclusions of posets have at most one morphism
between two objects and then any subcategory will have the same property, so it will also be the
inclusion of some poset (see Remark 1.4.39).

For the third assertion, let us set the same notation as in Proposition 3.2.16. We have that i(PC) is a
sieve of i(PB)⨿i(PA)

i(PC) and that W ′ and V′ are cosieves of i(PB)⨿i(PA)
i(PC). Moreover, i(PC) is the

inclusion of a poset by hypothesis, and W ′ ∼= W, V′ ∼= V will also be inclusions of posets since W
and V are subcategories of i(PB) and then we can apply the second part of this lemma. Let us now
take two different objects x, x′ in i(PB) ⨿i(PA)

i(PC). If there is not any morphism between them, we
would be done. Assume now, for example, that there is w ∈ i(PB)⨿i(PA)

i(PC)(x, x′). If x′ ∈ Ob(i(Pc)),
since i(PC) is a sieve of i(PB)⨿i(PA)

i(PC), x ∈ Ob(i(PC)) and then there is only one morphism in i(PC)

between our objects. Since i(PC) is a full subcategory of i(PB)⨿i(PA)
i(PC), there is only one morphism

in i(PB) ⨿i(PA)
i(PC) between our objects. In a similar way, if x ∈ Ob(V′), since V′ is a cosieve of

i(PB)⨿i(PA)
i(PC), x′ ∈ Ob(V′) and then there is only one morphism in V′ between our objects. Since

V′ is a full subcategory of i(PB)⨿i(PA)
i(PC), there is only one morphism in i(PB)⨿i(PA)

i(PC) between
our objects. Finally, if x ∈ i(PC) ⊆ W ′ and x′ ∈ V′, since W ′ is a cosieve of i(PB)⨿i(PA)

i(PC), x′ ∈ W ′

and then there is only one morphism in W ′ between our objects. Since W ′ is a full subcategory of
i(PB)⨿i(PA)

i(PC), there is only one morphism in i(PB)⨿i(PA)
i(PC) between our objects.

Proposition 3.3.2. Every cofibrant object in Cat is equal to i(P) for some poset P.

Proof. Let C ∈ Ob(Cat) be a cofibrant category. Then, the empty morphism from the empty category
∅ → C is a cofibration. By Corollary 3.2.22, ∅ → C is a retract of i : ∅ → ∅∞. In particular, C is a
subcategory of ∅∞. Then, by the second assertion of Lemma 3.3.1, it is enough to see that ∅∞ is the
inclusion of some poset, and by the first assertion of Lemma 3.3.1, for seeing this is enough to see that
every ∅n is the inclusion of some poset. Let us then prove this by induction. First of all, we have that
∅0 = ∅ is the inclusion of the empty poset. Now suppose that ∅n−1 is the inclusion of some poset.
Then, by the third assertion of Lemma 3.3.1,

∅n = ∅n−1 ⨿⨿τSd2∆[n] (⨿τSd2∂∆[n])
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is the inclusion of some poset since ⨿τSd2∂∆[n] and ⨿τSd2∆[n] are inclusions of posets by Remark
3.2.2 and ⨿τSd2(in) is a Dwyer map by Proposition 3.2.14.

Remark 3.3.3. We just learned that cofibrant objects in Cat are inclusions of posets. In consequence,
if a category has more than one morphism between two objects, it cannot be cofibrant. Nevertheless,
the reciprocal result does not hold in general. The German mathematicians Roman Bruckner and
Christoph Pegel published the article [BP16] where they show that every finite semilattice, every chain,
every countable tree, every finite zigzag and every poset with five or less elements is cofibrant in all of
those structures.

In a similar way, cofibrations in Thomason’s model structure do not carry a very intuitive meaning. In
his paper [Rap10], Raptis shows that there exist different choices of cofibrations (and hence, of fibra-
tions) that yields a model structure in Cat and Pos with the same weak equivalences as Thomason’s
structure.

Previous proposition has a corollary that will be crucial for us.

Corollary 3.3.4. For every simplicial set X, τSd2X is the inclusion of some poset.

Proof. Let X be a simplicial set. Since every object in sSets is cofibrant, ∅→ X is a cofibration in sSets
and then by Proposition 3.2.18, ∅ = τSd2∅ → τSd2X will be a cofibration in Cat. Hence, τSd2X is a
cofibrant object and in consequence, by Proposition 3.3.2, τSd2X is the inclusion of some poset.

This corollary suggests that Pos can inherit the model structure from Cat, as we will see in the following
theorem.

Definition 3.3.5. We say that an order-preserving map f : P→ Q between posets is:

A weak equivalence if i( f ) is a weak equivalence in Cat.

A cofibration if i( f ) is a cofibration in Cat.

A fibration if i( f ) is a fibration in Cat.

Theorem 3.3.6. There is a model category structure on the category of posets with the classes of morphisms as
above.

Proof. The first axiom MC1 follows from Proposition 1.4.13.

The closure under composition, the contention of the identities and the second and third axioms MC2
and MC3 are verified because they hold for small categories.

Let us now check that the forth axiom MC4 holds. Consider a lifting problem in Pos

P R

Q S,

a

f g

b

with f a cofibration and g an acyclic fibration (or with f an acyclic cofibration and g a fibration). Then,
applying i we get another lifting problem

i(P) i(R)

i(Q) i(S),

i(a)

i( f ) i(g)

i(b)
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with i( f ) a cofibration and i(g) an acyclic fibration (or with i( f ) an acyclic cofibration and i(g) a
fibration). Then, there exists h : i(Q)→ i(R) such that i(g) ◦ h = i(b) and h ◦ i( f ) = i(a)

i(P) i(R)

i(Q) i(S),

i(a)

i( f ) i(g)h

i(b)

and applying pos we get pos(h) : Q→ R such that g ◦ pos(h) = b and pos(h) ◦ f = a

pos(i(P)) = P pos(i(R)) = R

pos(i(Q)) = Q pos(i(S)) = S,

pos(i(a))=a

pos(i( f ))= f pos(i(g))=g
pos(h)

pos(i(b))=b

that is, a lift for our initial problem.

Let us now check that the fifth axiom MC5 holds. Let f : A → B be a morphism in Pos. Then i( f ) is
a morphism in Cat, which we can factor as i( f ) = p̃ ◦ j̃ with j̃ an acyclic cofibration and p̃ a fibration
(or j̃ a cofibration and p̃ an acyclic fibration). Moreover, by Lemma 3.3.1 and the construction of these
factorizations, we have that A∞ is an inclusion of some poset and since i : Pos → Cat is a full functor,
p̃ = i(p) for some p and j̃ = i(j) for some j. In consequence,

f = pos(i( f )) = pos(i(p)) ◦ pos(i(j)) = p ◦ j

with j an ayclic cofibration and p a fibration (or j a cofibration and p an acyclic fibration).

All the axioms of model categories are satisfied, and hence our proof is finished.

Theorem 3.3.7. The adjunction pos : Cat ⇄ Pos : i forms a Quillen equivalence.

Proof. It is a Quillen adjunction because i is right adjoint and preserves fibrations and trivial fibrations.
It is a Quillen equivalence by Corollary 2.5.6 since Id♯

pos(X)
= IdX is a weak equivalence for every

object X ∈ Ob(Cat) (in particular for cofibrants) and Id♭
i(X) = IdX is a weak equivalence for every

object X ∈ Ob(Pos) (in particular for fibrants) by Proposition 1.4.40.

So we finally are able to model the homotopy theory of spaces via posets! Nevertheless, with all the
steps done, we have lost a bit the intuition about the relation between posets and topological spaces.
For example, we do not have the notion of Dwyer morphisms in topological spaces, but we will see a
nice characterization of them using the isomorphism between posets and Alexandroff T0 spaces. Recall
that an open map is a continuous map between topological spaces that takes open sets into open sets,
and a closed map is a continuous map between topological spaces that takes closed sets into closed
sets.

Lemma 3.3.8. Let f : P → Q be a morphism in Pos. Then i( f ) embeds i(P) as a cosieve of i(Q) if and only if
T ( f ) is an open inclusion of spaces. Dually, i( f ) embeds i(P) as a sieve of i(Q) if and only if T ( f ) is a closed
inclusion of spaces.

Proof. By construction of the T functor (see Definition 1.4.14), f is a inclusion of posets if and only if
T ( f ) is also an inclusion of topological spaces. Moreover, the fact that i( f ) embeds i(P) as a cosieve of
i(Q) is equivalent to the condition that if q1 ≤ q2 in Q and q1 = f (p1) ∈ f (P), then q2 = f (p2) ∈ f (P)
and p1 ≤ p2 in P.
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On the other hand, we have that T ( f ) is an open map if and only if the image of every basic open set
Up is an open set. But this is equivalent to see that for every x = f (x′) ∈ f (Up), Ux ⊆ f (Up); that is,
that for every y ≥ x, y = f (y′) for y′ ≥ p.

But this is equivalent to the cosieve condition. Indeed, if y ≥ x = f (x′) ∈ f (Up) ⊆ f (P), then y = f (y′)
and y′ ≥ x′ ≥ p. Conversely, if q1 ≤ q2 in Q and q1 = f (p1) ∈ f (Up1), then q2 = f (p2) and p2 ≥ p1.

This lemma tells us how the notion of sieve is translated to Alexandroff T0 spaces. Now, let us see how
to rephrase the whole definition of Dwyer morphism in topological terms. Recall that the Sierpiński
topological space S is the set {0, 1} with the topology {∅, {1}, {0, 1}}, and notice that it coincides with
T (0 ≤ 1).

Proposition 3.3.9. A morphism f : P → Q is such that i( f ) is a Dwyer morphism if and only if T ( f ) is
a closed inclusion and there exists an open neigborhood U of T (P) in T (Q) and a Sierpiński homotopy
H : U × S → T (Q) with H(u, 1) = u for every u ∈ U, H(u, 0) ∈ T (P) and H(p, t) = p for every
(p, t) ∈ T (P)× S.

Proof. f : P→ Q is such that i( f ) is a Dwyer morphism if and only if, by Lemma 3.3.1 and the fact that
i : Pos→ Cat is a full functor, the inclusion f : P ⊆ Q can be decomposed as f1 : P ⊆ W, f2 : W ⊆ Q in
such a way that:

If we have u ≤ v in Q and v ∈ P, then u ∈ P and u ≤ v in P.

If we have u ≤ v in Q and u ∈W, then v ∈W and u ≤ v in W.

There is an order-preserving map r : W → P such that r(p) = p for every p ∈ P and there is a
natural transformation t : i( f1 ◦ r)⇒ Idi(W) such that tp = Idp for every p ∈ P.

By previous lemma, the first condition is equivalent to T ( f ) being a closed inclusion.

Also by previous lemma, the second condition is equivalent to having an open inclusion of spaces
T (W) ⊆ T (Q) with T (P) ⊆ T (W). In particular, T (W) will be an open set of T (Q) containing T (P).
Conversely, if we have an open neighbourhood U of T (P) in T (Q), we have that X (U) is a cosieve
of Q which obviously contains P. Indeed, if u ≤ v in Q and u ∈ X (U), then v ∈ Uu ⊆ U and hence
v ∈ X (U) and u ≤ v in X (U).

Finally, the natural transformation t : i( f1 ◦ r) ⇒ Idi(W) is equivalent by Remark 1.1.13 to a functor
H : i(W)× {0→ 1} → i(W) such that H(u, 0) = f1(r(u)) and H(u, 1) = u for every u ∈ Ob(i(W)) and
H(g, Id0) = f1(r(g)) and H(g, Id1) = g for every morphism g in i(W), with the additional condition of
H(p, t) = p for every (p, t) ∈ i(P)× {0 → 1}. Since i : Pos → Cat is a full functor, this is equivalent
to having an order preserving map H : W × {0 ≤ 1} → W such that H(u, 0) = f1(r(u)) ∈ P and
H(u, 1) = u for every u ∈ W and H(p, t) = p for every (p, t) ∈ P × {0 ≤ 1}. This implies the
existence of the desired Sierpiński homotopy T (H). Conversely, if we have one such map H, then its
associated order-preserving map P(H) : P(U)× {0 ≤ 1} → Q is such that P(H)(u, 1) = u ∈ P(U)

and P(H)(u, 0) ∈ P ⊆ P(U) for every u ∈ P(U) and P(H)(p, t) = p for all (p, t) ∈ P × {0 ≤ 1}.
Therefore, first of all, we can restrict P(H) : P(U) × {0 ≤ 1} → P(U) and moreover, this yields a
functor i(P(H)) : i(P(U)) × {0 → 1} → i(P(U)), which again by Remark 1.1.13 brings a natural
transformation between the restriction of the functor to the subcategory 0 and the restriction of the
functor to the subcategory 1. Since H(u, 1) = u for every u ∈ P(U), the restriction of the functor to
the subcategory 1 is the identity functor. Moreover, since H(u, 0) ∈ P for every u ∈ P(U), we can
consider r : P(U)→ P the order-preserving map associated to the restriction of the functor i(P(H)) to
the subcategory 0 and restricting the codomain to P, and hence our functor i(P(H)) yields a natural
transformation t between f1 ◦ r and the identity, and moreover, this natural transformation is such
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that tp = i(P(H))(Idp, 0 → 1) = Idp for every p ∈ P and moreover our morphism r verifies that
r( f1(p)) = r(p) = H(p, 0) = p for every p ∈ P.

This completes our proof.

So, after all this long way, we are back in our initial setting of topological spaces, cylinders and ho-
motopies, showing once more the importance of all this theory and giving even more reasons to try to
understand it.



Conclusion

This work has allowed the student to widely increase her mathematical knowledge and now gives her
a lot of options for further work.

First of all, the background on category theory acquired enables the student to face a lot of topics, not
only topological, but even also more algebraic.

More concretely, the student introduced herself in the world of homotopy theory, one of the most
popular matters in Algebraic Topology nowadays. Even though she focused on a model structure for
small categories, she learned the basic properties of the categories that are used by most topologists,
as well as the functors relating them. All notions learned will help her to understand more articles
and talks on the field. For example, on the one hand, she could keep studying the Thomason model
structure for small categories and posets and deal with topics such as the characterization of fibrant and
cofibrant objects, which we already mentioned is non-trivial. On the other hand, she should be ready
to tackle the basics on ∞-categories and operads, concepts handled by her supervisor for example in
[CG19] or [CG20]. For instance, she could try to generalize the relations between simplicial sets, small
categories and posets to dendroidal sets (dSets), operads (Oper) and broad posets (BrPos) in order to
set model structures there too.

Also, the topic dealt with here has to do with the Bachelor Final Project of the student [SB21]. As
Raptis mentions in his article [Rap10], the equivalence between A-spaces and posets can be restricted
to finite spaces and finite posets and is related to a notion of simple homotopy type, developed by
the Argentinian mathematicians Jonathan Barmak and Gabriel Minian in [BM08], which stands strictly
between homotopy type and weak homotopy type and which is equivalent to a notion of simple
homotopy type for finite simplicial complexes. This fact makes us wonder if there is a model structure
on finite posets such that in the homotopy category posets with the same simple homotopy type are
isomorphic; and if so, if it can be extended to A-spaces in general and related to simplicial sets and
small categories via Quillen equivalences. Furthermore, as a result of a collaboration scholarship
with the Mathematics and Computer Science Department at Universitat de Barcelona, the student is
analyzing if there is a relation between the simple homotopy type of finite simplicial complexes and
their associated Stanley-Reisner rings; see [HH11]. In case there is, we could also even study the
possibility of having the category of rings as a model for the simple homotopy type of finite spaces.

In conclusion, this work resulted to be very fruitful for the student, who now knows a bit about
homotopy theory and is very eager to use this knowledge and expand it!
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