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Abstract

Background Alzheimer’s disease (AD) is characterized by a polyetiological origin. Despite the global burden of AD
and the advances made in AD drug research and development, the cure of the disease remains elusive, since any
developed drug has demonstrated effectiveness to cure AD. Strikingly, an increasing number of studies indicate a
linkage between AD and type 2 diabetes mellitus (T2DM), as both diseases share some common pathophysiologi-

cal features. In fact, B-secretase (BACE1) and acetylcholinesterase (AChE), two enzymes involved in both conditions,
have been considered promising targets for both pathologies. In this regard, due to the multifactorial origin of these
diseases, current research efforts are focusing on the development of multi-target drugs as a very promising option to
derive effective treatments for both conditions.

In the present study, we evaluated the effect of rhein-huprine hybrid (RHE-HUP), a synthesized BACE1 and AChE
inhibitor, both considered key factors not only in AD but also in metabolic pathologies. Thus, the aim of this study is
to evaluate the effects of this compound in APP/PS1 female mice, a well-established familial AD mouse model, chal-
lenged by high-fat diet (HFD) consumption to concomitantly simulate a T2DM-like condition.

Results Intraperitoneal treatment with RHE-HUP in APP/PS1 mice for 4 weeks reduced the main hallmarks of AD,
including Tau hyperphosphorylation, AB,, peptide levels and plaque formation. Moreover, we found a decreased
inflammatory response together with an increase in different synaptic proteins, such as drebrin 1 (DBN1) or synapto-
physin, and in neurotrophic factors, especially in BDNF levels, correlated with a recovery in the number of dendritic
spines, which resulted in memory improvement. Notably, the improvement observed in this model can be attributed
directly to a protein regulation at central level, since no peripheral modification of those alterations induced by HFD
consumption was observed.

Conclusions Our results suggest that RHE-HUP could be a new candidate for the treatment of AD, even for individu-
als with high risk due to peripheral metabolic disturbances, given its multi-target profile which allows for the improve-
ment of some of the most important hallmarks of the disease.
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Background

Alzheimer’s disease (AD) is defined as a chronic neu-
rodegenerative disease that involves a progressive and
irreversible memory loss, followed by a state of total
dementia, as well as behavioral disturbances [1, 2]. This
neurodegenerative disorder considered the most com-
mon form of dementia worldwide [3], displays a high
prevalence and increasing incidence, especially among
elderly people. In fact, about 33.9 million people world-
wide are suffering from AD, and it is expected to triple
over the next 40 years [4, 5].

AD is mainly characterized by the presence of abun-
dant extracellular amyloid-beta peptide deposits (AP)
and intracellular hyperphosphorylated Tau protein
(p-Tau), that accumulate to form senile plaques and neu-
rofibrillary tangles (NFTs) respectively, both contributing
to neuronal loss [6, 7]. AP plaques are produced by the
proteolytic cleavages of the amyloid precursor protein
(APP) by the beta-secretase 1 (BACE1) enzyme activity
and subsequently by y-secretase, resulting in AP peptides
of different length, including 38, 40 and 42 amino acids
(aa). Specifically, those AP composed by 42 aa readily
tend to aggregate, resulting in AP plaque formation [8,
9]. Phosphorylation is the major modification of Tau pro-
tein and it has been described as a critical step in the for-
mation of NFTs [10]. Evidence suggests that AP plaques
could be involved in the induction of aberrant Tau phos-
phorylation, thus supporting a causal crosslink between
these two pathogenic processes [11-13]. In addition,
the aggregation of AP into oligomers and fibrils in the
brain is also modified by factors such as acetylcholinest-
erase (AChE), which precipitates the formation of toxic
aggregates by accelerating A deposition and increasing
its neurotoxicity, contributing to neuroinflammation,
oxidative stress and synaptic dysfunction [14, 15]. Addi-
tionally, the role of AChE in AD goes much further, since
numerous studies have shown the existence of a cholin-
ergic deficit in AD patients due to the modification in the
activity of AChE and the decrease in acetylcholine levels
[16, 17]. In fact, some of the compounds used as anti-AD
drugs like donepezil, galantamine and rivastigmine are
ACKhE inhibitors [18]. However, none of them have been
able to totally stop the progression of pathology. For this
reason, new approaches to its etiology are being studied
nowadays [19]. In addition, it has been described that
elevated AChE concentrations could also trigger the sys-
temic inflammation, key in T2DM and AD, representing
an interesting therapeutic target for both diseases, which

support previous studies that described the possible rela-
tionship between AD and metabolic alterations [20-22],
stressing AD as a multifactorial disease. In fact, obesity,
type 2 diabetes mellitus (T2DM) and metabolic syn-
drome, all associated with insulin resistance, are recog-
nized risk factors for cognitive disturbances [23-25] and
type 3 diabetes has been proposed as a term to describe
the complex interlink between insulin resistance and AD
[26-28].

Hence, the regulation of metabolic alterations could
be an effective strategy to reduce cognitive decline and
dementia [29]. In this way, some studies have shown the
role of BACE1 in AD progression, not only as a key regu-
lator of the formation of the A peptide but also its func-
tion in metabolic regulation [30, 31]. In fact, it has been
demonstrated that subtle neuronal expression of human
BACEL resulted in AD phenotypes alongside systemic
T2DM-like symptoms, suggesting that BACE1L inhibi-
tors could be used for the treatment of T2DM-associated
pathologies [32].

Taken together, evidence suggests that AD is a complex
disorder that arises from multiple molecular alterations,
therefore, the design of drugs with multiple biological
targets could be key for an effective treatment [33]. A
recent developed multi-target RHE-HUP hybrid com-
pounds [34] combine the pharmacophores of rhein, a
natural product structurally related to some hydroxy-
anthraquinones with tau anti-aggregating activity, and
huprine Y, a strong AChE inhibitor. RHE-HUP displays
a strong in vitro activity against its primary targets (tau
aggregation and AChE) and a not less strong BACE1
inhibitory activity. Studies conducted in vivo [35] have
demonstrated that RHE-HUP reduced AP levels, Tau
phosphorylation and memory impairment in an APPswe/
PS-1dE9 double transgenic mouse model. However, the
effect of RHE-HUP on metabolic dysregulation associ-
ated to AD has not been evaluated yet. For this reason,
the aim of our study was to evaluate the efficacy of this
new compound in the progression of AD when it is
comorbid with metabolic alterations generated by the
chronic consumption of a high-fat diet (HFD).

Methods

Animals and treatment

6 month old female APPswe/PS1dE9 (APP/PS1) double
transgenic mice and wild-type (WT) littermates with
the same genetic background (C57BL/6) were used.
This animal model was chosen according to previous
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studies reporting that female mice develop higher pro-
gressive memory impairment and AD-like neuropathol-
ogy compared to male mice [36, 37]. These transgenic
mice express a Swedish (K594M/N595L) mutation of
a chimeric mouse/human APP (mo/huAPP695swe),
together with the human exon-9-deleted variant of
PS1 (PS1-dE9). In all cases, animals were obtained
from established breeding couples in the animal facil-
ity (Animal facility from the Faculty of Pharmacy and
Food Sciences of the University of Barcelona; approval
number C-0032). After the weaning, at 21 days old, and
throughout their growth, animals were fed with conven-
tional chow (control diet, CT; ENVIGO, Madison, Wt
53744-4220) or with a palmitic acid-enriched diet con-
taining 60% of fat mainly from hydrogenated coconut oil
(HFD) (Research Diets Inc., NB, US). RHE-HUP hybrid
(+)-(7R,11R)-N-{9-[(3-chloro-6,7,10,11-tetrahydro-9-
methyl-7,11-methanocycloocta[b]quinolin-12-yl)amino]
nonyl}-9,10-dihydro-4,5-dihydroxy-9,10-dioxoanthra-
cene-2-carboxamide was prepared as previously reported
[38]. When animals were 5 months old, they were treated
intraperitoneally (i.p.), either with saline solution or with
RHE-HUP at a dose of 2.0 mg/Kg and diluted in bidis-
tilled water with 3% DMSO, three times per week during
4 weeks (Fig. 1). Thus, the study included three experi-
mental groups: WT CT SALINE, APP/PS1 HFD SALINE
and APP/PS1 HFD RHE-HUP.
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All animals were kept under stable conditions of
humidity and temperature, standard light-dark cycle
(12 h light/dark cycle) and food and water ad libitum fol-
lowing the ethical guidelines defined by the European
Committee (European Communities Council Directive
2010/63/EU). Manipulation protocols were previously
approved by the ethics committee from the University of
Barcelona, and, at all times, it was made sure that animal
numbers, their stress, and pain were kept under a neces-
sary minimum following the appropriate animal manipu-
lation ethical methodologies. All the experiments were
performed in accordance with the European Community
Council Directive 86/609/EEC and the procedures were
established by the Department d’Agricultura, Ramaderia
i Pesca of the Generalitat de Catalunya.

Glucose and insulin tolerance tests

Mice were fasted for 6 h and the tests were performed in
a room preheated to+ 28 °C. For the glucose tolerance
test (GTT), glucose was administered at a dose of 1 g/Kg
i.p. For the insulin tolerance test (ITT), a dose of 0.75 U/
Kg was used. Samples from the tail vein were extracted
in consecutive periods. Glucose was measured using
an Accu-check® Aviva glucometer at 5, 15, 30, 60 and
120 min after glucose administration and at 15, 30, 45,
60 and 90 min after the insulin administration. To those
animals in which blood glucose levels dropped under a
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Fig. 1 Graphical representation of experimental design. 6 month-old female APP/PS1 and WT littermates were used. After the weaning, animals
were fed either control or HFD. When animals were 5 months old, they were treated intraperitoneally (i.p.), either with saline solution or with
RHE-HUP at a dose of 2.0 mg/Kg. Then, animals were subjected to two different behavioral tests: MWM and NORT. After that, GTT and ITT were
performed and animals were sacrificed by cervical dislocation in order to obtain tissue samples and to perform Golgi Staining Kit, or by intracardially

perfusion for immunochemistry/ThS
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concentration of 20 mg/dl in the ITT, a dosage of 1 g/Kg
of glucose was administered i.p. 13 animals per group
were used.

Behavioral tests assessments
» Morris water maze (MWM)

Hippocampal spatial memory and learning memory
were assessed by the Morris Water Maze (MWM)
test, which was performed as previously reported
[39]. Acquired data was analyzed using SMART V3.0
(Panlab Harvard Apparatus, Germany) video track-
ing system. 13 animals per group were utilized.

+ Novel object recognition test (NORT)

NORT was used to assess the hippocampal-dependent
recognition memory. 13 animals per group were evalu-
ated in a room with a circular open-field arena of 40 cm
in diameter surrounded by black curtains and constant
illumination (30 lx) as it has been previously detailed
[40]. Data were analyzed by discrimination index (DI)
which was calculated using the following equation:

DI - Bexploration time — A exploration time

Total exploration time

All spaces were properly cleaned with 96% ethanol
between animals, in order to eliminate odor or other
cues. Data was measured and represented in seconds.

Immunoblot analysis

At 6 months, 4-5 animals of each group were sacrificed
by cervical dislocation and the liver and hippocampus
were dissected and kept at — 80 °C until use. To perform
hippocampi and liver extractions, tissues were homog-
enized in lysis buffer (Tris HCl 1 M pH 7.4, NaCl 5 M,
EDTA 0.5 M pH 8, Triton, distilled H20) containing
protease and phosphatase inhibitor cocktails (Complete
Mini, EDTA-free; Protease Inhibitor cocktail tablets).
Total protein concentration was determined using the
Pierce”™ BCA Protein Assay Kit (Thermo ScientificTM).
Samples containing 10 pg of protein were analyzed by
Western Blot as previously described [41]. Measure-
ments were expressed in arbitrary units and all results
were normalized with the corresponding loading control
(Glyceraldehyde-3-phosphate dehydrogenase; GAPDH).
The used antibodies are detailed in Table 1.

Enzyme-linked immunosorbent assay (ELISA)
BDNF (Cusabio, China; CSB-E04505m) and amyloid f;.
4 (ThermoFisher Scientific; kit KHB3441) levels in the
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Table 1 Primary and secondary antibodies for Western Blotting

Protein Antibody

ADAM10 ab124695 (abcam)
App SIG-39152 (Convance)

App C terminal fragment SIG-39152 (Convance)

DBN1 ABN 207 (Merck Millipore)
GAPDH MAB374 (Merck Millipore)
GSK3p3 #9315 (Cell Signaling Technology)
P-GSK3p (TYR216) ab75745 (abcam)

IDE ab32216 (abcam)

IRS2 45025 (Cell Signaling)
Neurexin ab34245 (abcam)

PTP1B GTX55767 (Genetex)
SAPP( SIG-39138-0 (Covance)
Synaptophisin MO776 (Dako)

Tau GTX112981 (Genetex)

P-Tau(ser396)
P-Tau(ser404)

TLR4

B-actin

2nd-ary Goat anti-Rabbit
2nd-ary Goat anti-Mouse

44752G (Invitrogen)
44-758G(Invitrogen)

Sc-293072 (Santa Cruz Biotechnology)
A5441 (Sigma)

31460 (Invitrogen)

31430 (Invitrogen)

cerebral cortex homogenate were detected by ELISA
according to manufacturer’s instruction. In both cases,
7 animals per group were analyzed and absorbances
were read in a Varioskan LUX Multimode Micro-
plate Reader (Thermo Fisher Scientific). Amyloid B4,
data is expressed in pg/ug protein and BDNF levels are
expressed in pg/mg protein.

B-secretase activity assay kit

Hippocampal tissue from 7 animals were homogenized
according to the manufacturer protocol (Abcam; Kit
ab282921), and 35 pL of each sample were placed into a
96 well black plate. BACE1 Positive Control and EDANS
Standard Curve were also added to the plate. Following
the addition of the Reaction Mix, the plate was measured
at Ex’Em=345/500 nm in a kinetic mode for 60 min at
37 °C. Data was treated as specified in the manufacturer’s
instructions.

Immunofluorescence and thioflavin-S staining

15 animals were previously anesthetized by i.p. injec-
tion of ketamine (100 mg/Kg) and xylazine (10 mg/Kg).
When they were in the no-pain sleep phase, they were
intracardially perfused with 4% paraformaldehyde (PFA)
diluted in 0.1 M phosphate buffer (PB). After perfusion,
brains were removed and stored in 4% PFA at 4 °C over-
night (O/N). The next day, the solution was replaced
by 4% PFA+30% sucrose. Coronal sections of 20 um



Espinosa-Jiménez et al. Cell & Bioscience (2023) 13:52

were obtained by a cryostat (Leica Microsystems, Wet-
zlar, Germany) and they were kept in a cryoprotectant
solution and stored at — 20 °C until use. To perform
the experiments, the free-floating technique was used.
Briefly, free-floating sections were rinsed in 0.1 M phos-
phate-buffered saline (PBS) pH 7.35, and after that in
PBS-T (PBS 0.1 M, 0.2% Triton X-100). Then they were
incubated in a blocking solution (10% fetal bovine serum
(FBS), 1% Triton X-100, PBS 0.1 M+0.2% gelatin) for
1-2 h at room temperature. Later, sections were washed
with PBS-T and incubated O/N at 4 °C with the corre-
sponding primary antibody (Table 2). Brain slices were
washed with PBS-T and incubated with the correspond-
ing secondary antibody (Table 2) for 2 h at room tem-
perature. Thioflavin-S (ThS) protocol was carried out as
previously described [42]. Finally, sections were treated
with 0.1 pg/mL Hoechst (Sigma-Aldrich, St Louis, MO,
United States), used for cell nuclei staining, for 8 min in
the dark at room temperature and washed with 0.1 M
PBS. All reagents, containers and materials exposed to
Hoechst were properly handled and processed to avoid
any cytotoxic contamination. Ultimately, all the samples
were mounted in Superfrost® microscope slides using
Fluoromount medium (EMS) and were left to dry O/N.
Image acquisition was obtained using an epifluorescence
microscope (BX61 Laboratory Microscope, Melville, NY
OlympusAmerica Inc.) and quantified by Image]. 5 ani-
mals per group were analyzed.

Hippocampal dendritic spine density analysis

To carry out the spine density analysis, 5 mice in each
group were sacrificed by cervical dislocation. Brains were
isolated and processed following the instructions of the
GolgiStainTM Kit purchased from FD Neurotechnolo-
gies, Inc. (FD Rapid GolgiStainTM Kit; Cat #PK401).
Images were obtained with a Leica Thunder Microscope
(Leica Thunder Imager; Leica Microsystems). The quanti-
fication was carried out in 2 different zones, dentate gyrus
(DG) and CA1, and 5 neurons per zone and animal were
selected. DG was quantified in the secondary branches
of the final fragment of the dendrites. In the DG, when
analyzing the terminal fragment, 20 um of dendrite were
always left uncounted, and the counting was performed

Table 2 Primary and secondary antibodies for
Immunofluorescence

Protein Antibody

GFAP 70334 (Dako)

IBA1 019-19741 (Wako)

2nd-ary Alexa Fluor 488 (Goat-AntiMouse)
2nd-ary Alexa Fluor 594 (Goat-Anti Rabbit)

A11001 (Life Technologies)
A11080 (Life Technologies)
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in the following 30 um. In secondary branches, 20 um
from the ramification were left uncounted and the fol-
lowing 30 pm were analyzed. In CAl, two zones of the
neuron were distinguished: CA1 basal and CA1 apical.
In CA1 basal, the final part of the dendrite was selected,
and again 20 pm of dendrite were always left uncounted,
and the counting were performed in the following 30 pm.
In CA1l apical, the secondary branches were selected,
leaving 20 um uncounted and analyzing the next 30 pm.
Spine density was expressed as the number of spines per
30 um of dendrite. 5 animals per group were analyzed.

Statistical analysis

All results are presented as mean=standard deviation
(SD). Normality test was performed, when data followed
a parametric distribution and more than two groups
were compared, significant differences were determined
by one-way analysis of variances (ANOVA), followed
by Tukey’s post hoc test for comparison among groups.
When only two groups were compared, Student’s t test
was performed. However, when data followed a non-par-
ametric distribution, Mann—Whitney and Kruskal-Wal-
lis tests were performed to compare two or more than
three groups, respectively. All analyses were obtained
using Graph Pad Prism software for Mac version 6.01;
Graph Pad Software, Inc.

Results

RHE-HUP does not reverse the body weight increase

and glucose pathway alterations induced by HFD

at peripheral level

As it has been widely described, the consumption of HFD
is related to the increase in body weight, as well as to
hyperglycemia and insulin resistance in mice [43, 44]. As
expected, animals following a HFD showed a significant
6 month increased body weight compared with WT CT
SALINE group (p <0.0001) (Fig. 2a). The RHE-HUP treat-
ment did not attenuate the weight gain induced by the
HFD. Regarding glucose and insulin metabolism, HFD
feeding showed a significant effect in both GTT (WT
CT SALINE vs APP/PS1 HFD SALINE p<0.001; WT CT
SALINE vs APP/PS1 HFD RHE-HUP p<0.001) and ITT
(WT CT SALINE vs APP/PS1 HFD SALINE p<0.001;
WT CT SALINE vs APP/PS1 HFD RHE-HUP p<0.001),
regardless of the treatment (Fig. 2b—e). Because the insu-
lin receptor substrate protein 2 (IRS2) is a key target
in the hormonal control of metabolism, we measured
the hepatic IRS2 protein level. A significant decrease in
APP/PS1 HFD SALINE compared with WT CT SALINE
(p<0.01) was detected. However, no significant reduction
was observed after the RHE-HUP treatment (Fig. 2f) sug-
gesting that RHE-HUP does not regulate metabolic alter-
ations observed after HFD consumption.
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Fig. 2 a. Analysis and representation of changes in body weight (n=13 animals per group). b. GTT and d. ITT experiment profiles (n =13 animals
per group). Area under curve (AUC) data were calculated from the time point 0 until the end of the experiment for both ¢. GTT and e. ITT. f.
Semi-quantification of IRS2 levels in the liver where two representative samples out of four or five per group are shown (n =4-5). All results were
represented as mean = SD. Statistical analysis was conducted through one-way ANOVA and Tukey post-test, except in the case of the analysis of
weights, where the Kruskal-Wallis test was performed. In all cases, ** p <0.01, *** p<0.001 and **** p <0.0001

RHE-HUP treatment improves brain insulin signaling

and attenuates Tau hyperphosphorylation

Alterations in the insulin signaling pathway have been
observed in brains of AD patients [45, 46], in which IRS2
represents an important component. Our results dem-
onstrated that the hippocampal levels of IRS2 were sig-
nificantly decreased in the group APP/PS1 HFD SALINE
compared with the control group (p<0.05). Surpris-
ingly, a recovery in IRS2 was observed after RHE-HUP
treatment (p<0.05) (Fig. 3). Since the increase in IRS2
levels has been related with an attenuation in Tau hyper-
phosphorylation [47], we evaluated the glycogen syn-
thase kinase-3p (GSK3p), a main Tau kinase converging
between AD and insulin resistance. Our results displayed
a non-significant upward trend in the group APP/PS1
HFD SALINE when compared with WT CT SALINE.
By contrast, those animals treated with RHE-HUP
showed a significant decrease of GSK3f phosphoryla-
tion levels in tyrosine 216 when compared to the APP/
PS1 HFD SALINE mice (p<0.05) (Fig. 3). Regarding Tau

phosphorylation in the hippocampus, our results showed
a significant increase in P-Tau levels at serine 404 and
serine 396 in APP/PS1 HFD SALINE mice when compar-
ing with WT CT SALINE (P-Tauyg404 P < 0.05; P-Taug, 396
p<0.001) and this effect was significantly reduced after
RHE-HUP treatment (P-Taugy,, Pp<0.01; P-Taug,see
p<0.05). Our data did not show any significant changes
in total Tau protein levels (Fig. 3).

RHE-HUP reduces A plaques by regulating APP
processing and AP degradation in APP/PS1 mice fed

with HFD

To assess the state of AP burden in the hippocampus
and cortex, ThS was used for detection of senile plaques.
Our results demonstrated a significant decrease in the
number of plaques after treatment in both regions, as
shown in the images (Fig. 4a—c) and in the graphic rep-
resentation (p<0.05) (Fig. 4d—e). This result was cor-
roborated with the significant reduction of Ap (1-42)
levels (p<0.05) observed in the cortex after RHE-HUP
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of AR, peptide in the cortex (n=7). Statistical analysis was performed by T-test, where * p <0.05. g. Determination of 3-secretase activity in the
hippocampus (n=7). Data were analyzed by one-way ANOVA and Tukey's post-test, where * p <0.05 and ** p<0.01 h. APP processing related
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administration (Fig. 4f). To elucidate the mechanisms
by which RHE-HUP induced AP reduction, the analysis
of APP processing and AP degradation was performed.
Regarding the first one, full-length APP was analyzed. As
expected, non-treated transgenic mice showed a signifi-
cant increase in this protein level (p <0.05) whereas these
levels were reduced in those animals treated with RHE-
HUP (p<0.05) (Fig. 4h). In this line, BACE1 activity also
showed a significant increase in APP/PS1 HFD SALINE
when compared with WT CT SALINE (p<0.01) and
decreased after treatment (p <0.05) (Fig. 4g).

APP-C-terminal fragment (APP-CTF) was significantly
increased in non-treated transgenic mice compared to
control group whereas soluble amyloid precursor pro-
tein B fragment (sAPPP) did not show differences in WT
vs APP/PS1 HFD. However, both proteins were reduced
after treatment (APP-CTF: WT CT SALINE vs APP/PS1
HFD RHE-HUP p<0.05; APP/PS1 HFD SALINE vs APP/
PS1 HFD RHE-HUP p<0.0001; sAPPB: WT CT SALINE
vs APP/PS1 HFD RHE-HUP p<0.05; APP/PS1 HFD
SALINE vs APP/PS1 HFD RHE-HUP p <0.05).

The insulin-degrading enzyme (IDE) is one of the main
proteases involved not only in the degradation of insulin
but also in that of AP peptide [48]. Our results showed

WT CT SALINE

APP/PS1 HFD SALINE

WT CT SALINE APP/PS1 HFD SALINE

Protein level (A.U)

TLR4 PTP1B

APP/PS1 HFD RHE-HUP
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a significant reduction in the hippocampus of APP/PS1
HFD SALINE mice compared to WT CT SALINE, lev-
els which were recovered after RHE-HUP treatment (WT
CT SALINE vs APP/PS1 HFD SALINE p<0.01; APP/
PS1 HFD SALINE vs APP/PS1 HFD RHE-HUP p<0.05).
Similarly, ADAM10, a neuroprotective protein involved
in the non-amyloidogenic pathway, experimented a sig-
nificant reduction in APP/PS1 HFD SALINE (p<0.05)
when compared with WT CT SALINE mice, levels that
were recovered after RHE-HUP treatment, reaching val-
ues similar to those of controls (p <0.05) (Fig. 4h).

RHE-HUP treatment decreases glial reactivity in APP/PS1
HFD mice

Increasing evidence correlates neuroinflammation with
the development of AD [49, 50]. In our study, the evalua-
tion of astrocytes and microglial reactive profile was stud-
ied in the dentate gyrus of the hippocampus by detecting
glial fibrillary acidic protein (GFAP) and ionized calcium-
binding adapter molecule 1 (IBA1), astrocyte and micro-
glial markers, respectively (Fig. 5a—f). Our results showed
a glial activation in those transgenic animals fed with
HFD compared to WT and a clear reduction of this reac-
tivity after the RHE-HUP treatment. These results were

®
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Fig. 5 Evaluation of inflammatory responses. Representative images for the detection of astrocytes a—¢, and microglia d—f, co-stained with Hoechst
for the detection of cellular nucleus (blue). Scale bar: 200 um. Graphic representation of fluorescence intensity quantification for GFAP g and IBA1 h.
In both cases, statistical analysis was performed through one-way ANOVA (n=5) and Tukey's post hoc test, * p<0.05. ** p<0.01 and *** p<0.001. i.
protein levels for TLR4 and PTP1B where two representative samples out of four or five per group are shown (n=4-5). All results were represented
as mean = SD. Groups were compared against each other using one-way ANOVA and Tukey post-test, * p <0.05 and ** p<0.01
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corroborated by the fluorescence intensity quantification
data. A significant increase in astrogliosis and microglial
activation in transgenic mice fed with HFD in compari-
son to the WT CT SALINE groups was found (p <0.001).
By contrast, this increase was significantly attenuated
when these animals were treated with RHE-HUP (GFAP:
APP/PS1 HFD SALINE vs APP/PS1 HFD RHE-HUP
p<0.05; IBA1: APP/PS1 HFD SALINE vs APP/PS1 HFD
RHE-HUP p<0.01) (Fig. 5 g-h).

Toll-like receptor 4 (TLR4) and protein tyrosine phos-
phatase (PTP1B), both related with neuroinflamma-
tion, were analyzed in the hippocampus. In agreement
with glial profile, our results showed a similar pattern
where concentrations of both proteins were significantly
increased in the APP/PS1 HFD SALINE group compared
to WT CT SALINE (TLR4: p<0.01; PTP1B: p<0.05),
returning to baseline levels after treatment with RHE-
HUP (p<0.01, in both cases) (Fig. 5i).

RHE-HUP increases dendritic spines density and synaptic
biomarkers in APP/PS1 HFD mice

The reduction in the number of dendritic spines
together with alterations in cognition has been widely
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demonstrated in AD patients, suggesting that they could
play a key pathogenic role [51, 52]. Optical microscope
images of the hippocampus are shown in Fig. 6a—c,
accompanied by a representative magnification image of
dendritic spines of each experimental group (Fig. 6d—f).
A significant decrease in the number of dendritic spines
was observed in APP/PS1 HFD SALINE when compar-
ing with the control group (Fig. 6g—j), while in those ani-
mals treated with RHE-HUPD, this reduction was reverted
reaching levels similar to the control regardless of the
studied area in the hippocampus (DG TERMINAL: WT
CT SALINE vs APP/PS1 HFD SALINE p<0.001; APP/
PS1 HED SALINE vs APP/PS1 HFD RHE-HUP p<0.05.
DG RAMIFICATION: WT CT SALINE vs APP/PS1
HFD SALINE p<0.0001; APP/PS1 HFD SALINE vs
APP/PS1 HFD RHE-HUP p<0.01. CA1 BASAL: WT
CT SALINE vs APP/PS1 HFD SALINE p<0.0001; APP/
PS1 HFD SALINE vs APP/PS1 HFD RHE-HUP p <0.001.
CA1 APICAL: WT CT SALINE vs APP/PS1 HED
SALINE p<0.001; APP/PS1 HFD SALINE vs APP/PS1
HFD RHE-HUP p<0.01.).

Different synaptic proteins involved in memory process
and plasticity, such as drebrin 1 (DBN1), synaptophysin

W WT CT SALINE
mm APP/PS1 HFD SALINE
B APP/PS1HFD RHE-HUP

[

150
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a
3
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Fig. 6 Optical microscope images of the hippocampus a—c and representative magnification images of dendritic spines of each experimental
group d-e. g-j. Quantification of dendritic spines of each 30 um of dendrite in different areas of the hippocampus (n=5). Groups were compared
against each other using one-way ANOVA and Tukey post-test, * p <0.05, ** p<0.01, *** p<0.001 and **** p<0.0001 k. Representative images

of synaptic proteins levels were determined, where two representative samples out of four or five per group are shown (n=4-5). Graphs barts
represent mean =+ SD. Data were analyzed by one-way ANOVA and Tukey's post-test, * p <0.05, ** p<0.01 and *** p<0.001. |. Quantification of BDNF
protein levels in the cortex (n=7). Data were analyzed by one-way ANOVA and Tukey's post-test, ** p <0.01



Espinosa-Jiménez et al. Cell & Bioscience (2023) 13:52

and neurexin, were measured by Western Blot. Our
results showed a significant decrease in DBN1 protein
levels in the APP HFD SALINE group when they were
compared with the control group (p <0.001), while DBN1
levels were rescued after RHE-HUP administration
(p<0.01). A similar pattern was observed for the other
synaptic proteins studied, but in the case of synaptophy-
sin the values did not reach statistical significance, and
only a positive trend was observed (Synaptophysin: APP/
PS1 HFD SALINE vs APP/PS1 HFD RHE-HUP P <0.05;
Neurexin: WT CT SALINE vs APP/PS1 HFD SALINE
p<0.01; APP/PS1 HFD SALINE vs APP/PS1 HFD RHE-
HUP p<0.05) (Fig. 6k).

Moreover, one protein that deserves special men-
tion is BDNF plays a critical role not only in the growth
and development of the nervous system, but also as a
modulator of synaptic plasticity, suggesting that its reg-
ulation could play a key role in the preservation of cog-
nitive function [53]. In this line and, in accordance with
the results shown above, the analysis of BDNF levels in
the cortex demonstrated a significant decrease in APP/
PS1 HED SALINE in comparison with WT CT SALINE
(p<0.01). Nevertheless, the treatment with RHE-HUP
resulted in an increase of BDNF (p <0.01) (Fig. 6l).

The treatment with RHE-HUP improves the cognitive
process in APP/PS1 HFD mice

It has been described that one of the most important
features of APP/PS1 mice is cognitive decline in terms
of memory and spatial memory [54, 55]. To demon-
strate the efficacy of RHE-HUP treatment in the recov-
ery of cognitive decline, MWM and NORT tests were
performed. Regarding MWM, APP/PS1 HFD SALINE
mice showed an obviously more erratic trajectory, being
unable to find the platform compared with WT CT
SALINE mice. However, after RHE-HUP treatment, the
trajectory of APP/PS1 HFD RHE-HUP tended to return
to normality (Fig. 7a—c). In Fig. 7d, the escape latency
of all groups throughout the training period is shown.
The training performed by the different groups demon-
strated an improvement of the learning ability in those
animals treated with RHE-HUP in comparison to those
treated with saline. In the same line, the results obtained
on the test day showed a significant increase in escape
latency in the APP/PS1 HFD SALINE when they were
compared with control group (p <0.05), effect which was
reverted in those animals treated with the drug (p <0.05)
(Fig. 7e). Moreover, other parameters studied in the same
test, such as the number of entries on the platform or
the mean distance traveled to reach it, showed the same
tendency toward improvement of cognitive function
after RHE-HUP administration. Regarding the num-
ber of entries, the time of crossing through the target
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platform was significantly reduced in non-treated ani-
mals (p<0.01), whereas after treatment that number was
recovered, reaching similar values to WT CT (p<0.01)
(Fig. 7f). In the case of the mean distance traveled to
find the platform, non-treated animals swam a longer
distance compared to the control group (p<0.05), while
after treatment, they reached the platform more easily
(p<0.05) (Fig. 7g). In agreement, in the NORT APP/PS1
HFD SALINE mice presented a decreased DI compared
to the control group (p<0.001), whereas the DI was
recovered after treatment (p<0.001), clearly indicating
that RHE-HUP rescued mice from the memory deficit
observed in this pathological model (Fig. 7h).

Discussion

AD is nowadays recognized as a multifactorial and het-
erogeneous disease in which metabolic alterations play
an important role [56—58]. Previous work has shown that
RHE-HUP improves the main hallmarks of AD in APP/
PS1 mice [35]. However, the effect of RHE-HUP in an AD
familial model of mice with a metabolic syndrome-like
was not evaluated, yet. Our results demonstrated that
RHE-HUP significantly reduces neuroinflammation, Ap
deposition and Tau phosphorylation, considered some of
the main underlying disease mechanisms. Additionally,
RHE-HUP treatment succeeded in increasing the levels
of BDNF and other synapse-related proteins in the brain,
which resulted in an increase in the number of dendritic
spines, improving memory and learning. However, these
changes were not associated with modifications in the
metabolic peripheral parameters.

HFD consumption leads to metabolic alterations,
including insulin resistance and T2DM [59, 60], both
conditions frequently associated with the develop-
ment of dementia [41, 61]. T2DM is a complex disorder
that begins with a state of insulin resistance, leading to
hyperinsulinemia and hyperglycemia, which is known to
cause different alterations in the brain. Our study con-
firmed that HFD induces an increase in body weight,
hyperglycemia and insulin resistance in APP/PS1 mice
accompanied by the downregulation of IRS2 protein
levels in the liver, a protein involved in insulin signaling
regulation. However, the treatment with RHE-HUP did
not reverse these effects, leading us to the conclusion
that the observed benefits provided by RHE-HUP may
not be due to a peripheral metabolic regulation, rather
to a central effect. One of the possible answers could be
that this molecule was designed to hit multiple targets
involved in the pathogenesis of AD, i.e., to reach biologi-
cal targets located at the central nervous system. Indeed,
studies performed in parallel artificial membrane per-
meability assays for blood-brain barrier (PAMPA-BBB)
clearly demonstrated that this compound was able to
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Fig. 7 a-c. Representative swim paths on the memory test. Learning curves of MWM during the spatial acquisition phase d and escape latency e,
entries in platform f and mean distance traveled g on test day (n = 13). One-way ANOVA and Tukey's post- test were performed, except in the case
of the analysis of entries in the platform where Krushal-Wallis was conducted. In all cases, * p <0.05 and ** p<0.01. h. NORT, Discrimination Index
(D) expressed in seconds (n=13). Statistical analysis was performed by one-way ANOVA and Tukey post-test, *** p <0.001

enter the brain [34]. This fact was supported by the
results obtained in previous studies where a reduction of
AP levels and Tau phosphorylation leading to a memory
amelioration, was observed after chronic administration
of RHE-HUP to APPswe/PS-1dE9 mice [35]. Moreover,
ex vivo [62-64] and in vivo biodistribution [65] stud-
ies with other hybrid compounds, closely related to
RHE-HUP in terms of chemical structure and physico-
chemical properties, have demonstrated that this type of
compounds readily enters the brain, some of them with
more favorable brain/plasma ratio than the most pre-
scribed anti-Alzheimer drug donepezil [65]. Very likely,
this could be also the case for RHE-HUP, which might

account for its preferential central vs peripheral effects
observed in this work using the familial AD mouse
model, challenged by high-fat diet.

Brain insulin, apart from controlling energy metab-
olism, is also involved in other multiple functions
including synaptogenesis, synaptic remodeling, and neu-
rotransmitter level modulation. Thus, unbalanced insulin
signaling, and metabolism may lead to cognitive decline
and AD [66]. IRS2, a major component of the insulin/
insulin-like growth factor-1 signaling pathway and a key
factor in T2DM, also has a role in synaptic plasticity,
learning and memory. A study carried out by Tanoka-
shira and colleagues found that young adult C57BL/6 ]
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mice lacking IRS2 displayed hippocampus-associated
behavioral alterations due to IRS2 deficiency-induced
impairments of brain energy metabolism [67]. Our
results agree with these data, since a IRS2 reduction was
observed in the APP/PS1 HFD SALINE group recovering
its levels after the RHE-HUP treatment. It has been also
described that IRS2 signaling promotes the dephospho-
rylation of Tau, suggesting that failure on this pathway
could lead to an hyperphosphorylation of Tau protein,
considered one of the main early mechanisms of AD.
Therefore, Tau phosphorylation might be a direct con-
sequence of reduced insulin—IGF signaling during aging
[47, 68]. Likewise, one of the main kinases responsible for
Tau phosphorylation is GSK3p [69]. The phosphorylation
of this kinase in Tyr216 leads to its own activation which
results not only in the increase in Tau phosphorylation
levels [70], but also contributes to neuronal death inde-
pendently of Tau [71]. In agreement with this, the pre-
sent study demonstrated that RHE-HUP administration
significantly reduced Tau phosphorylation, by IRS2 and
p-GSK3p regulation, which could explain the restoration
of dendritic spine number and the resulting behavioral
improvement observed in A PP/PS1 HFD mice after the
treatment.

In addition to hyperphosphorylated Tau, another well-
known hallmark of AD is the accumulation of B-amyloid
deposits. Several studies have interconnected both pro-
cesses defining AP plaques as the main triggers of Tau
hyperphosphorylation and Tau tangle formation, as a
result of an imbalance between AP production and AP
clearance [14, 72]. In agreement with these previous data,
we observed a significant reduction in the number of hip-
pocampal and cortical AP plaques induced by RHE-HUP
due to BACEL] inhibition. In turn, this correlated with
the reduction of the levels of ApB,,, the most hydropho-
bic and aggregation-prone form of this peptide and, the
predominant one in senile plaques [73, 74]. This event
also explained the reduction in hyperphosphorylated Tau
observed in this group.

As described by Pérez-Areales and coworkers, RHE-
HUP seems to inhibit AChE [38], a prime target in AD,
since the cholinergic deficit has been widely observed
in AD patients and is directly responsible for the cog-
nitive decline [75, 76]. However, the importance of this
enzyme in the disease goes much further, since it has
been described that it might bind to Ap and promote its
deposition [77], turning the combination of AChE+ AP
into more toxic to cells than A alone [78].

Taking all this into account and according to our find-
ings, the effect of RHE-HUP on decreasing the Af
production and subsequent accumulation might be
attributed to four main factors: (i) the inhibition of AChE,
avoiding the interaction with AP and the consequent
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formation of the toxic aggregates; (ii) the inhibition of
the amyloidogenic pathway by decreasing hippocampal
BACEL activity; (iii) the direct reduction of APP pro-
tein levels and (iv) the activation of the non-amyloido-
genic pathway by increasing ADAMI10 levels [79-83].
In addition, our results show that RHE-HUP treatment
increased IDE levels in the hippocampus, an enzyme that
not only participates in AP elimination, but also plays a
key role in insulin degradation, all together contributing
to a reduction in AP deposition and cognitive improve-
ment [84].

The glial activation in the brain is also an important
pathological feature of neurodegenerative diseases,
including AD [85-87]. Although early in the disease neu-
roinflammation may represent a protective response, an
excessive reaction can cause or contribute to the pathol-
ogy [88]. Several reports have described that the presence
of AP and Tau hyperphosphorylation activate microglia
and astrocytes [89-91], demonstrating that microglia can
play dual roles in A pathogenesis. Microglia may help to
eliminate AP aggregation, and it may facilitate Ap accu-
mulation through the release of neurotoxic proteases and
pro-inflammatory factors, which contribute to the neuro-
inflammation [92-96]. Thus, it generates a vicious circle
in which AP plaques potentiate the release of inflamma-
tory molecules and, at the same time, these molecules
stimulate the formation and accumulation of Ap [97, 98].
Moreover, it is well-known that the chronic consumption
of HED increases stress in different pathways including
neuroinflammation [99], contributing to the development
of cognitive impairment. In this line, Wieckowska-Gacek
et al. demonstrated that 4-months-old APPswe trans-
genic mice fed with western diet exhibited such brain
neuroinflammation and accelerated amyloid pathol-
ogy comparable to that induced by the administration
of pro-inflammatory lipopolysaccharide (LPS). Hence,
it highlighted the role that diet can play in neuroinflam-
mation and, consequently, in AD [100]. In this sense,
the observed decrease in the activation of microglia and
astrocytes after RHE-HUP treatment might be due to
the reduction in Tau phosphorylation and in AP deposi-
tion, but also to the improvement in the insulin signal-
ing pathway at the central level observed upon treatment.
Toll-like receptors play a pivotal role in brain injury
and neurodegeneration, and, in CNS, they are mainly
expressed in glial cells [101]. Specifically, the activa-
tion of TLR4 triggers the downstream stimulation of the
nuclear factor kappa-light-chain-enhancer of activated
B cells (NFK-B) and the induction of genes that encode
inflammation-associated molecules and cytokines, such
as IL-6 and TNF-« [102, 103]. Furthermore, it has been
demonstrated that TLR4 deficiency protects against eth-
anol-induced glial activation, induction of inflammatory
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mediators, and apoptosis [101]. For this reason, the
attenuation of the neuroinflammation observed after the
RHE-HUP treatment could be related with the decrease
of TLR4 levels, in agreement with previous studies which
demonstrated that the treatment with resveratrol attenu-
ated the increase in protein levels and the downstream
activation of the pathway [104, 105].

In the same way, PTP1B also demonstrated a signifi-
cant decrease in the RHE-HUP treated mice. Several
studies have reported that the inhibition of PTP1B favors
the inactivation of unfolded protein response (UPR) and
neuroinflammation, thereby protecting against cogni-
tive decline [106]. For this reason, PTP inhibitors have
been suggested as a promising therapeutic modulation
of microglial activation in neuroinflammatory diseases,
including AD [107]. In addition, PTP1B not only has
been related to this group of pathologies, but also repre-
sents a convergent point between AD and T2DM. In fact,
preclinical studies have demonstrated that mice lacking
PTP1B were resistant to weight gain and remained sensi-
tive to insulin after HFD consumption [108, 109] suggest-
ing that PTP1B downregulation could be key in order to
improve the features observed in AD pathogenesis by the
regulation of insulin signaling pathway and neuroinflam-
matory processes [110].

Moreover, in a pathological environment the released
cytokines and chemokines contribute to an excessive
pruning of synaptic terminals causing synaptic dysfunc-
tion and neuronal loss [111]. In fact, another important
pathway in which PTP1B is involved is the BDNF/TrkB
pathway [112]: PTP1B down-regulates neuronal BDNF-
TrkB pathway, whereas the PTP1B inhibition stimulates
BDNF signaling [113, 114]. Considering that preclini-
cal studies suggest that the increase in BDNF levels is a
suitable strategy to enhance the cognitive process [115],
the decrease in PTP1B levels induced by RHE-HUP
treatment observed in our results and the consequent
increase in BDNF levels could explain the recovery in
dendritic spines number caused by the treatment. In
addition, dendritic spines loss is also related with Ap and
Tau pathology, since a study performed by Bittner et al.,
demonstrated that mice coexpressing mutant APP, PS1
and Tau, presented a strong loss of dendritic spines with
accumulation of hyperphosphorylated Tau protein as
well as soluble AP [116]. Therefore, the reduction already
discussed in AP accumulation and Tau hyperphospho-
rylation caused by the treatment might also be contrib-
uting to the recovery of dendritic spines. These results
were also accompanied by an increase in DBNI1 levels.
DBNI1 is typically located in postsynaptic regions of
excitatory synapses, and it is responsible for controlling
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spine function and morphology [117, 118]. Its preserva-
tion has been related to neuroprotection, and, by con-
trast, its reduction in the hippocampus has been linked
to cognitive deficits [119, 120]. Thus, our data confirm
that the increase in DBN1 could be associated with the
improvement observed in cognitive functioning. In the
same way, synaptophysin and neurexin showed a similar
profile. Synaptophysin is a glycoprotein present in synap-
tic vesicles which is related to synaptic plasticity. Thus, a
decrease in its levels has been related to cognitive impair-
ment [121]. At the same time, neurexin downregulation
has also been associated with cognitive impairments
since it has been found to be active in synapse matura-
tion and adaptation of synaptic strength [122]. In addi-
tion, it has been demonstrated that Ap,, oligomers bind
to neurexin, and this interaction leads to a decrease in its
expression, inducing synapse pathology [123]. This would
explain the increase in neurexin protein levels produced
by the decrease in AP, levels observed after treatment
with RHE-HUP.

Recent postmortem studies in people with AD have
shown that the number of dendritic spines is lower in
patients with clinically evident AD compared to con-
trols, and similar between control subjects and subjects
that are cognitively normal but present the underlying
biological features of AD. Thus, these observations pro-
vide cellular evidence supporting the hypothesis that
dendritic spine plasticity provides a mechanism of cog-
nitive resilience that protects people with an early stage
of dementia from developing AD [124, 125]. In fact,
numerous preclinical studies have related the loss of den-
dritic spines with hippocampus-dependent learning and
memory ability impairments [126—-128]. In the present
study, RHE-HUP treatment induced the recovery in the
number of dendritic spines, which was accompanied by
an improvement in hippocampal-dependent recognition
memory assessed by NORT, as well as spatial and learn-
ing memory evaluated by MWM.

In conclusion, the present study demonstrates that the
multi-target compound RHE-HUP restores the number
of dendritic spines and enhances cognition in APP/PS1
mice, whose pathology is exacerbated with HFD con-
sumption, by regulation of brain insulin signaling and
neuroinflammation, which contributes to the reduction
of hyperphosphorylated Tau and Ap levels (Fig. 8). How-
ever, we did not observe peripheral metabolic regulation
induced by the drug administration, suggesting that the
improvement observed in our model is exclusively due
to a regulation at central level. These results support
RHE-HUP as a new promising molecule for the treat-
ment of AD, also in those individuals with metabolic
disturbances.
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Fig. 8 Schematic representation of the effects of RHE-HUP treatment in APP/PS1 mice fed with HFD. The figure shows the pathological
mechanisms targeted by RHE-HUP that could explain the improvement in cognition observed in this double pathological model
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