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ABSTRACT

In the present paper, a decomposition formula for the call price due to Alòs is trans-
formed into a Taylor-type formula containing an infinite series with stochastic terms.
The new decomposition may be considered as an alternative to the decomposition
of the call price found in a recent paper by Alòs, Gatheral and Rodoičić. We use
the new decomposition to obtain various approximations to the call price in the
Heston model with sharper estimates of the error term than in previously known
approximations. One of the formulas obtained in the present paper has five signifi-
cant terms and an error estimate of the form O.�3.j�j C �//, where � and � are the
volatility-of-volatility and the correlation in the Heston model, respectively. Another
approximation formula contains seven more terms and the error estimate is of the
form O.�4.1 C j�j�//. For the uncorrelated Heston model (� D 0), we obtain a
formula with four significant terms and an error estimate O.�6/. Numerical experi-
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ments show that the new approximations to the call price perform especially well in
the high-volatility mode.

Keywords: computational finance; Heston model; option pricing; price approximations; stochastic
volatility models; vanilla options.

1 INTRODUCTION

Stochastic volatility models were introduced to account for the various flaws of
the constant volatility assumption, on which the celebrated Black–Scholes model
is based. One of the most popular stochastic volatility models is the Heston model,
developed in Heston (1993). For more information on stochastic volatility models,
see, for example, Gatheral (2006).

In the present paper, we derive sharp approximation formulas for the call option
price in the Heston model. These high-order approximations improve on previously
known ones. In Alòs (2006) and Alòs (2012), special decompositions of the call
option price in the Heston model were found using Malliavin calculus and Itô cal-
culus, respectively. The main difference between those two decompositions is that
the former uses the average of future variances, while the latter is based on the con-
ditional expectation of such an average. Note that the stochastic process consisting
of the conditional expectation of future variances is an adapted process, whereas the
process of the genuine average is an anticipating process.

In Alòs (2012), an approximation formula with a general error term was obtained
for the call option price in the Heston model. This error term was quantified in Alòs
et al (2015), where it was shown that the error term has the form O.�2.j�j C �/2/.
In the previous expression, � is the volatility-of-volatility (vol-vol) parameter and �
is the correlation coefficient in the Heston model. However, in the abovementioned
approximation formula, some terms of order �2 were ignored, whereas other terms of
the same order were kept. This may be considered a drawback of the approximation
formula obtained in Alòs et al (2015).

Among other earlier works, we would like to mention Merino and Vives (2015),
where the expansion obtained in Alòs (2012) was extended to general stochastic
volatility models of diffusion type. Moreover, in Merino et al (2018), a general
decomposition formula for a smooth functional of the log-price process was obtained
for a general stochastic volatility model, along with a decomposition formula for call
options in models with finite activity jumps in the spot. Merino et al (2018, Theo-
rem 3.1) is used recursively in the present paper to approximate the exact call option
price decomposition obtained in Alòs (2012) by an infinite series of stochastic terms.
The first two terms in the new expansion are the same as in Alòs (2012) and Alòs
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et al (2015). Moreover, our result is consistent with that obtained in Alòs et al (2019)
but is presented and obtained differently.

Using the new general approximation formula in the case of the Heston model, we
add two more significant terms to the abovementioned expansion to reach an error
estimate of the form O.�3.j�j C �// (see Theorem 4.1), and seven more significant
terms to obtain an error estimate of the form O.�4.1C j�j�// (see Theorem 4.2). In
the particular case of zero correlation, we derive an approximation formula with four
terms, obtaining an error estimate O.�6/ (see Theorem 4.3).

We will now briefly describe the structure of the paper. In Section 2, we provide
preliminary information and discuss the notation used throughout. In Section 3, we
establish a general decomposition formula and show how to use it recursively to
obtain higher-order approximation formulas for the call option price. In Section 4,
we obtain two new approximation formulas for the call option price in the Hes-
ton model (see Theorems 4.1 and 4.2). The error estimates in those formulas are of
order O.�3.j�j C �// and O.�4.1 C j�j�//, respectively. In addition, we derive an
approximation formula of order O.�6/ for the uncorrelated case (see Theorem 4.3).
In Section 5, we provide and discuss some numerical results. Our conclusions can be
found in Section 6.

2 PRELIMINARIES AND NOTATION

Let T > 0 be the time horizon, and let W and QW be two independent Brownian
motions defined on a complete probability space .˝;F ; P /. Denote by F W and
F
QW the completed natural filtrations generated byW and QW , respectively. Set Ft WD

F W
t _ F

QW
t , t 2 Œ0; T �.

Consider a stochastic volatility model in which the asset price process S D
fSt ; t 2 Œ0; T �g satisfies the stochastic differential equation

dSt D rSt dt C �tSt .� dWt C
p
1 � �2 d QWt /; (2.1)

where r > 0 is the interest rate and � 2 .�1; 1/. The volatility process � is a square-
integrable process adapted to the filtration generated by W , and it is assumed that
the paths of the process � are positive P almost surely. It is also assumed that P is a
risk-free measure, that is, the discounted asset price process t 7! e�rtSt , t 2 Œ0; T �,
is a martingale. The initial condition for the process S will be denoted by s0 > 0.

We will mostly work with the log-price process Xt D logSt , t 2 Œ0; T �. This
satisfies

dXt D .r � 1
2
�2t / dt C �t .� dWt C

p
1 � �2 d QWt /; (2.2)

and the initial condition is given by x0 D log s0.
The following notation will be used throughout the paper:
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� Et WD E.� j Ft /.

� The Black–Scholes function will be denoted by (BS). It is given by

.BS/.t; x; y/ D ex˚.dC/ �Ke�r�˚.d�/;

where � D T � t is the time to maturity, y is the constant volatility, K is the
strike price, r is the interest rate, and ˚ denotes the cumulative distribution
function of the standard normal law. The symbols dC and d� stand for the
following functions:

d˙ D
x � lnK C .r ˙ .y2=2//�

y
p
�

:

� The .fBS/ function is defined such that .fBS/.t; x; y2/ D .BS/.t; x; y/. Note
that, therefore,

.fBS/.t; x; y/ D ex˚. QdC/ �Ke�r�˚. Qd�/;

with
Qd˙ D

x � lnK C .r ˙ .y=2//�
p
y�

:

� Throughout the paper, for simplicity, the following notation will be used:

.BS/t WD .BS/.t; Xt ; vt /

and

.fBS/t WD .fBS/.t; Xt ; v2t /:

Note that, by definition, .BS/t D .fBS/t .

� The call option price is given by

Vt D e�r�Et Œ.eXT �K/C�:

� It is known that the function (BS) satisfies the Black–Scholes equation
Ly.BS/.t; x; y/ D 0 for any t , x, y, where

Ly WD @t C
1
2
y2@2x C .r �

1
2
y2/@x � r: (2.3)

Analogously, QLy.fBS/.t; x; y/ D 0 for any t , x, y, where

QLy WD @t C
1
2
y@2x C .r �

1
2
y/@x � r: (2.4)
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� The following differential operators will be used in this paper:� WD @x , � WD
.@2x � @x/ and � 2 D � ı � .

� We will say that a function A.t; x; y/ belongs to the space C1;2;2..0; T / �

.0;1/� .0;1// if A is one time differentiable with respect to t on .0; T / and
two times differentiable with respect to x and y on .0;1/. We also assume
that the derivatives are continuous.

� Given two continuous semimartingales X and Y , we have

LŒX; Y �t WD Et

� Z T

t

�u dŒX; Y �u

�
and

DŒX; Y �t WD Et

� Z T

t

dŒX; Y �u

�
;

where the process u 7! ŒX; Y �u, u 2 Œ0; T �, is the quadratic covariation of the
processes X and Y .

3 GENERAL EXPANSION FORMULAS

We know that under model (2.1), introduced above, in the uncorrelated case .� D 0/,
the following formula holds:

Vt D Et Œ.BS/.t; Xt ; N�t /�: (3.1)

Here, the symbol N�2.t/ stands for the average future variance defined by

N�2t WD
1

T � t

Z T

t

�2s ds:

The equality in (3.1) is called the Hull–White formula (see, for example, Fouque
et al 2000, p. 51). For correlated models – that is, models where � ¤ 0 – there is
a generalization of the Hull–White formula (see, for example, Fouque et al 2000,
Formula (2.31)). However, the latter formula is significantly more complicated than
the formula in (3.1).

Another way of generalizing the Hull–White formula was suggested in Alòs
(2006), the idea being to obtain an expansion of the random variable Vt with the
leading term equal to Et Œ.BS/.t; Xt ; N�t /� and to obtain extra terms using Malliavin
calculus techniques. In Alòs (2012), a similar formula was found: here, the leading
term contains the adapted projection of the future variance, that is, the quantity

v2t WD Et . N�
2
t / D

1

T � t

Z T

t

Et Œ�
2
s � ds;
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instead of the future variance N�2. The previous remark illustrates the important con-
cept of switching from an anticipative process t 7! N�t to a nonanticipative (adapted)
process t 7! vt . In Merino and Vives (2015), the latter call price expansion was
generalized to any stochastic volatility model.

Let us define

Mt D

Z T

0

Et Œ�
2
s � ds: (3.2)

It is not hard to see that the following equality holds:

dv2t D
1

T � t
ŒdMt C .v

2
t � �

2
t / dt �:

The next assertion contains the abovementioned decomposition formula due to
Alòs.

THEOREM 3.1 (BS expansion formula) For every t 2 Œ0; T �, define

.I/ WD
�

2
Et

� Z T

t

e�r.u�t/�� .BS/.u;Xu; vu/�u dŒW;M�u

�
and

.II/ WD 1
8
Et

� Z T

t

e�r.u�t/� 2.BS/.u;Xu; vu/ dŒM;M�u

�
:

Then, the call option price Vt can be written as

Vt D .BS/.t; Xt ; vt /C .I/C .II/: (3.3)

We will need the following statement, which was established in Merino et al
(2018).

THEOREM 3.2 (General expansion formula) Let fBt ; t 2 Œ0; T �g be a continuous
semimartingale with respect to the filtration F W , and let A.t; x; y/ be a continuous
function on the space Œ0; T �� Œ0;1/� Œ0;1/ such thatA 2 C 1;2;2..0; T /�.0;1/�
.0;1// (see the definition in Section 2). Let us also assume that QLyA D 0 and v2t
and Mt are as above. Then, for every t 2 Œ0; T �, the following formula holds:

Et Œe�r.T�t/A.T;XT ; v2T /BT �

D A.t; Xt ; v
2
t /Bt

CEt

� Z T

t

e�r.u�t/@yA.u;Xu; v2u/Bu
1

T � u
.v2u � �

2
u/ du

�
CEt

� Z T

t

e�r.u�t/A.u;Xu; v2u/ dBu

�
Journal of Computational Finance www.risk.net/journals
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C
1
2
Et

� Z T

t

e�r.u�t/.@2x � @x/A.u;Xu; v
2
u/Bu.�

2
u � v

2
u/ du

�
C

1
2
Et

� Z T

t

e�r.u�t/@2yA.u;Xu; v
2
u/Bu

1

.T � u/2
dŒM;M�u

�
C �Et

� Z T

t

e�r.u�t/@2x;yA.u;Xu; v
2
u/Bu

�u

T � u
dŒW;M�u

�
C �Et

� Z T

t

e�r.u�t/@xA.u;Xu; v2u/�u dŒW;B�u

�
CEt

� Z T

t

e�r.u�t/@yA.u;Xu; v2u/
1

T � u
dŒM;B�u

�
;

provided A.t; Xt ; v2t / and Bt satisfy enough integrability conditions to guarantee
the existence of all the conditional expectations.

The following statement can be derived from Theorem 3.2.

COROLLARY 3.3 Let function A and process B exist as in Theorem 3.2. Suppose
that function A satisfies

@yA.t; x; y/ D
T � t

2
.@2x � @x/A.t; x; y/: (3.4)

Let At WD A.t; Xt ; v
2
t / for all t 2 Œ0; T �. Then, for every t 2 Œ0; T �, the following

formula holds:

e�r.T�t/Et ŒATBT � D AtBt C
�

2
Et

� Z T

t

e�r.u�t/��AuBu�u dŒW;M�u

�
C

1
8
Et

� Z T

t

e�r.u�t/� 2AuBu dŒM;M�u

�
C �Et

� Z T

t

e�r.u�t/�Au�u dŒW;B�u

�
C

1
2
Et

� Z T

t

e�r.u�t/�Au dŒM;B�u

�
CEt

� Z T

t

e�r.u�t/Au dBu

�
:

PROOF By substituting (3.4) in Theorem 3.2 and using the definitions of� and � ,
the proof straightforward. �

REMARK 3.4 Note that .fBS/t or any of its derivatives with respect to x fulfills
the conditions of Corollary 3.3.

www.risk.net/journals Journal of Computational Finance
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REMARK 3.5 Theorem 3.1 follows from Corollary 3.3 with B � 1 and A D
.fBS/. Recall that .fBS/.t; x; y2/ D .BS/.t; x; y/ and that this equality holds, deriving
with respect to x.

The terms (I) and (II) in (3.3) are not easy to evaluate. Therefore, it becomes
important to find simpler approximations to (I) and (II) and to estimate the error
terms. Below, we will explain how to get an infinite expansion of the call price Vt ,
and in the next section, higher-order approximations to Vt will be obtained in the
case of the Heston model.

The starting point in the construction of an infinite expansion of Vt is the formula
in (3.3). In Alòs (2012), Corollary 3.3 was applied to the equality in (3.3). Only
the two main terms in the expansion were kept; the remaining terms were ignored.
The main idea used in the present paper is to apply Corollary 3.3 to each new term,
obtaining an infinite series with stochastic terms. By selecting which terms to keep
in the approximation formula and which ones to discard, the approximation error can
be controlled.

The process described above leads to the following expansion of Vt :

Vt D .BS/t C�� .BS/t

�
�

2
LŒW;M�t

�
C

1
2
�2� 2.BS/t

�
�

2
LŒW;M�t

�2
C � 2.BS/t .18DŒM;M�t /C

1
2
� 4.BS/t .18DŒM;M�t /

2

C�� 3.BS/t

�
�

2
LŒW;M�t

�
.1
8
DŒM;M�t /

C � � � : (3.5)

REMARK 3.6 Note that the approximation formula can be obtained without spec-
ifying the volatility process: that is, the formula is valid for a general stochastic
volatility model. In order to find an estimate of the error, a model must be spec-
ified. In the Heston model, Lemma 7.1 (in the online appendix) and the concrete
semimartingales used guarantee the integrability conditions of Theorem 3.2.

REMARK 3.7 In Alòs et al (2019), an exact representation of Vt is given in terms
of a forest of iterated integrals (which are also called diamonds). The expansion of
the call price found in the present section is equivalent to that obtained in Alòs et al
(2019).
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4 CALL PRICE APPROXIMATIONS IN THE HESTON MODEL

The log-price process X in the Heston model satisfies the following system of
stochastic differential equations:

dXt D .r � 1
2
�2t / dt C �t .� dWt C

p
1 � �2 d QWt /;

d�2t D �.� � �
2
t / dt C ��t dWt :

Here, the process �2 models the stochastic variance of the asset price, � > 0 is the
long-run mean level of the variance, � > 0 is the rate at which � reverts to the mean
� , � > 0 is the vol-vol parameter, and r > 0 is the interest rate. The initial conditions
for the volatility process � and the log-price process X will be denoted by �0 > 0

and x0, respectively.
In this section, the general results established in Section 3 are used to obtain new

approximation formulas for the call price in the Heston model. In this case, the terms
of the approximations can be calculated explicitly. The results in the present paper
generalize and sharpen the approximation formula obtained in Alòs (2012) and Alòs
et al (2015), providing more terms in the small vol-vol asymptotic expansion of the
call price. Moreover, the error terms in our formulas are of higher order than the error
term of the form O.�2.j�j C �/2/ appearing in Alòs (2012) and Alòs et al (2015).
The proofs of these results will be given in the online appendix.

We start with an assertion that provides an approximation of orderO.�3.j�jC�//.

THEOREM 4.1 (Second-order approximation formula) For every t 2 Œ0; T �, the
following formula holds:

Vt D .BS/.t; Xt ; vt /C � 2.BS/.t; Xt ; vt /.18DŒM;M�t /

C�� .BS/.t; Xt ; vt /
�
�

2
LŒW;M�t

�
C

1
2
�2� 2.BS/.t; Xt ; vt /

�
�

2
LŒW;M�t

�2
C ��2� .BS/.t; Xt ; vt /L

�
W;

�

2
LŒW;M�

�
t

C "t ;

where "t is the error term satisfying

j"t j 6 �3.j�j C j�j3 C �/
�
1

r
^ .T � t /

�
˘.�; �/;

and ˘.�; �/ is a positive constant depending on � and � .
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The next assertion contains an approximation formula with an error term of the
form O.�4.1C j�j�//.

THEOREM 4.2 (Third-order approximation formula) For every t 2 Œ0; T �, the
following formula holds:

Vt D .BS/t

C�� .BS/t

�
�

2
LŒW;M�t

�
C

1
2
�2� 2.BS/t

�
�

2
LŒW;M�t

�2
C

1
6
�3� 3.BS/t

�
�

2
LŒW;M�t

�3
C�� 3.BS/t

�
�

2
LŒW;M�t

�
.1
8
DŒM;M�t /

C ��2� .BS/tL
�
W;

�

2
LŒW;M�

�
t

C ��� 2.BS/tLŒW; 18DŒM;M��t

C
1
2
�� 2.BS/tD

�
M;

�

2
LŒW;M�

�
u

C ��3� 2.BS/t
�

2
LŒW;M�tL

�
W;

�

2
LŒW;M�

�
t

C ��3� .BS/tL
�
W; �L

�
W;

�

2
LŒW;M�

��
t

C � 2.BS/t .18DŒM;M�t /

C "t ;

where "t is the error term satisfying

j"t j 6 �4.1C �2.1C �2/C j�j�.1C �2//
�
1

r
^ .T � t /

�
˘.�; �/;

and ˘.�; �/ is a positive constant depending on � and � .

For the uncorrelated Heston model, we obtain a similar expansion with fewer
terms and a better error estimate.

THEOREM 4.3 Suppose � D 0. Then, for every t 2 Œ0; T �, the following formula
holds:

Vt D .BS/t C � 2.BS/t .18DŒM;M�t /C
1
2
� 4.BS/t .18DŒM;M�t /

2

C
1
2
� 3.BS/tDŒM; 18DŒM;M��t

C "t ;

Journal of Computational Finance www.risk.net/journals



High-order approximations to call option prices in the Heston model 11

where "t is the error term satisfying

j"t j 6 �6
�
1

r
^ .T � t /

�
˘.�; �/;

and ˘.�; �/ is a positive constant depending on � and � .

REMARK 4.4 The call option price approximations obtained above for the Heston
model can be easily extended to the more general Bates model following the ideas
developed in Merino et al (2018).

5 NUMERICAL RESULTS

In this section, we compare the performance of the call option price approximation
formula proposed in Alòs (2012) and Alòs et al (2015) with the new approximation
formulas obtained in the present paper. To simplify our notation, we call the formula
obtained in Alòs (2012) and Alòs et al (2015) the formula with an error estimate
O.�2/, while the two formulas obtained in the present paper are referred to as the
formulas with error estimates O.�3/ and O.�4/ (see Theorems 4.1 and 4.2). We
make a similar comparison in the uncorrelated case. Here, we compare the formula
with an error estimate O.�4/ established in Alòs (2012) and Alòs et al (2015) with
the new formula with an error estimate O.�6/ found in the present paper (see The-
orem 4.3). As our benchmark price, we choose a call option price obtained using a
Fourier transform-based pricing formula. This is one of the standard approaches to
pricing European options under stochastic volatility models. In particular, we use a
semi-closed-form solution with one numerical integration as a reference price (see
Mrázek and Pospı́šil 2017).1 The comparison between approximations is made with
two important aspects in mind: the practical precision of the pricing formula and the
efficiency of the formula expressed in terms of the computational time needed for
particular pricing tasks.

Analytical approximations of the implied volatility exist in the literature (see, for
example, Forde et al 2012; Lorig et al 2017). We will compare these approximations
with the implied volatilities obtained from the approximation formula with an error
estimate O.�4/ for the correlated case and the formula with an error estimate O.�6/
for the uncorrelated case.

Our next goal is to illustrate the quality of our new approximation formulas for the
call option price in the Heston model for various values of � and � while keeping the
other parameters fixed. Concretely, we choose the following parameters: S0 D 100,
r D 0:001, v0 D 0:25, � D 1:5 and � D 0:2. We understand the error in the

1 With a slight modification, mentioned in Gatheral (2006), in order not to suffer from the “Heston
trap” issues.

www.risk.net/journals Journal of Computational Finance



12 A. Gulisashvili et al

price as the relative error in a log10 scale. In the following figures, the blue line
illustrates the approximation with an error estimate O.�2/, the red line represents
the approximation with an error estimate O.�3/ and the yellow line corresponds to
the approximation with an error estimate O.�4/.

Figure 1 shows approximations of the call option price when the vol-vol, �, and
the absolute value of the correlation, �, are both small. In this case, � D 5% and
� D �0:2. We observe that, in general, the approximation formula with an error
estimate O.�3/ performs better than the formula with an error estimate O.�2/. In
some cases, however, there are exceptions, such as the in-the-money options for � D
3. The call option price approximation with an error estimate O.�4/ is much better,
with an error around 10�7–10�10.

In Figure 2, we discuss the case where � is small while j�j is close to 1. In this
case, � D 5% and � D �0:8. We observe that the new approximation formulas
perform better than the previously known formula. The approximation error is in the
range 10�4–10�8 for the formula with an error estimate O.�3/ and 10�7–10�10 for
the formula with an error estimate O.�4/.

Figure 3 refers to the case of high vol-vol and low absolute correlation. In this
case, � D 50% and � D �0:2. Here, we note that the three approximation formulas
show similar performances. The approximation formula where the error estimate is
O.�4/ seems to perform a little, but not significantly, better.

Figure 4 illustrates the performance of the formulas when both parameters are
not suitable for the approximation, eg, when � D 50% and � D �0:8. Here, we
observe that the approximations have a similar quality. The approximation formula
with an error estimate O.�4/ seems to perform better than the other formulas, while
the formula with an error estimate O.�3/ performs better only in the short term.

Comparing Figure 4 with Figure 3, we observe that the new approximation for-
mulas are more efficient in the former figure than in the latter. This can be explained
by the fact that most of the terms in the expansion include the parameter �. When j�j
is small, the new approximations are closer to the known ones than when j�j is close
to 1.

We have already observed that the approximation formulas obtained in the present
paper perform better than the previously known formula when j�j is close to 1 and �
is small. However, the improvement in the performance is not significant for large �.
This can be fixed by adding more terms. As an example, we compare the benchmark
prices with their approximations in the uncorrelated case. In Figures 5 and 6, the
blue line is the approximation with an error estimate O.�4/, while the red line is the
approximation with an error estimate O.�6/.

In Figure 5, we illustrate the case of low vol-vol. In this case, � D 5% and
� D 0. The formulas with error estimates O.�4/ and O.�6/ have a very small error,
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FIGURE 1 Comparison of the three different approximation formulas and reference prices
for � D 5% and � D �0.2.
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although the new approximation behaves much better. Figure 6 shows the approxi-
mations when � is large. In this case, � D 50% and � D 0. We can see that the new
approximation behaves better, especially in the long term.

One of the main advantages of the proposed option price approximations is their
computational efficiency. To compare the amount of time each method spent on
computations, we replicated the computational effort of performing in different cal-
ibration situations with three pricing tasks. We used a batch of 100 various call
options with different strikes and times to maturity, including out-of-the-money, at-
the-money and in-the-money options with short-, mid- and long-term times to matu-
rity. Our first task was to evaluate the option prices in the batch with respect to 100
(uniformly) randomly sampled parameter sets. This task has a similar number of
price evaluations to a market calibration task with a very good initial guess. Further
on, we repeated the same trials for 1000 and 10 000 parameter sets to mimic the
number of evaluations for a typical local-search calibration and a global-search cal-
ibration (for more information about calibration tasks, see, for example, Mikhailov
and Nögel (2003) and Pospı́šil and Sobotka (2016)).

Our results are listed in Table 1. The call prices were analytically calculated in all
cases. We observe that for the trials of 100 and 1000 parameter sets, the amounts
of time spent on computations were quite similar. For the trial of 10 000 sets, the
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FIGURE 2 Comparison of the three different approximation formulas and reference prices
for � D �0.8 and � D 5%.
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FIGURE 3 Comparison of the three different approximation formulas and reference prices
for � D �0.2 and � D 50%.
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FIGURE 4 Comparison of the three different approximation formulas and reference prices
for � D �0.8 and � D 50%.
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experiment based on the approximation with an error estimate O.�4/ was a little bit
slower than the other experiments.

This table shows that the approximations where the error estimate is O.�2/ or
O.�3/ are around forty-three to forty-five times faster than the approximation based
on the fast Fourier transform methodology, while the approximation with an error
estimateO.�4/ is around thirty-six times faster than the latter. Therefore, the approx-
imations with error estimates O.�2/ or O.�3/ are around 1.14–1.25 times less
time-consuming than the O.�4/ approximation.

Our next goal is to compare the approximation formulas presented in this paper
with other analytical approximation methods. In Forde et al (2012), based on saddle-
point methods, the authors derive a small-maturity expansion formula for prices
that are transformed into a closed-form implied volatility for the Heston model.
In Lorig et al (2017), the authors derive an explicit implied volatility for local-
stochastic volatility models, including the Heston case, using a perturbation tech-
nique for parabolic equations. We choose the following values for the Heston param-
eters: S0 D 100, r D 0, v0 D 0:20, � D 1:15, � D 0:04, � D 0:2 and � D �0:4. We
understand the error in the implied volatility to be the absolute error in a log10 scale.
The blue line illustrates the approximation with an error estimateO.�4/, the red line
is the third-order approximation of the implied volatility in Lorig et al (2017), the
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FIGURE 5 Comparison of the two different approximation formulas and reference prices
for � D 0 and � D 5%.
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yellow line is the second-order approximation of the implied volatility in Lorig et al
(2017) and the purple line corresponds to the approximation in Forde et al (2012).
We compare our methodology with that of Forde et al (2012) only for maturities less
than one year.

In Figure 7, we observe that our approximation is more accurate in almost all
cases. As expected, the Forde et al (2012) approximation is competitive for short-
term maturities, but the error increases with the time to maturity, and the third-order
approximation of the implied volatility generally behaves better than the second-
order approximation. We observe that the results of our approximation are very close
to the third-order expansion of the implied volatility in Lorig et al (2017).

In Figure 8, we compare all the approximations when � D 0. We observe that the
second- and third-order approximations coincide. In general, our approximation is
better than the other methods, especially when the time to maturity is increasing.

6 CONCLUSIONS

In the present paper, we develop a method to obtain approximations of a call option
price under a general stochastic volatility model. In the special case of the Heston
model, we derive sharp approximation formulas with error estimates for the call
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FIGURE 6 Comparison of the two different approximation formulas and reference prices
for � D 0 and � D 50%.
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TABLE 1 Efficiency of the Heston call price approximations.

Time� Speed-up
Pricing approach Task [sec] factor

Heston–Lewis #1 3.63 –
#2 33.52 –
#3 336.59 –

Approximation of #1 0.08 45�
order O.�2/ #2 0.76 44�

#3 7.41 45�

Approximation of #1 0.08 45�
order O.�3/ #2 0.78 43�

#3 7.77 43�

Approximation of #1 0.10 36�
order O.�4/ #2 0.91 37�

#3 8.87 38�

� The results were obtained on a PC with Intel Core i7-7700HQ CPU @ 2.80 GHz 2.80GHz and 16 GB RAM.

www.risk.net/journals Journal of Computational Finance



18 A. Gulisashvili et al

FIGURE 7 Comparison with other analytical approximation methods.
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FIGURE 8 Comparison with other analytical approximation methods when � D 0.
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option price. These formulas have a higher order of accuracy than previously known
ones. In Section 4, an exact second-order approximation formula is established for
the call option price in the Heston model that has an error estimate O.�3.j�j C �//,
where � is the vol-vol parameter and � is the correlation coefficient. We also find a
sharper formula with an error estimate O.�4.1C j�j�// and seven additional signif-
icant terms. In Section 5, the numerical performance of the approximation formulas
obtained in the present paper is illustrated. We observe that the new formulas are
very efficient for low values of the vol-vol parameter � or when the time to maturity
is small. We also observe that for the uncorrelated Heston model, the number of terms
that must be taken into account in computations decreases substantially. For the call
option price in the uncorrelated Heston model, we find an approximation that has an
error estimate of order O.�6/. The approximations to the call option price obtained
in the present paper are computationally more efficient than those proposed in Alòs
(2012) and Alòs et al (2015). We compare the implied volatility of the approximation
formula of an error estimate O.�4/ for the correlated case, and of an error estimate
O.�6/ for the uncorrelated case, with the implied volatility expansions of Forde et al
(2012) and Lorig et al (2017). In general, our approximation method is more accu-
rate, but in the correlated case it is of similar magnitude to the third-order expansion
of Lorig et al (2017). In the uncorrelated case, our approximation is much better,
especially when the time to maturity increases.
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