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Joint estimation of survival 
and dispersal effectively corrects 
the permanent emigration bias 
in mark‑recapture analyses
Jaume A. Badia‑Boher 1*, Joan Real 1, Joan Lluís Riera 1, Frederic Bartumeus 2,3,4, 
Francesc Parés 1, Josep Maria Bas 5 & Antonio Hernández‑Matías 1

Robust and reliable estimates of demographic parameters are essential to understand population 
dynamics. Natal dispersal is a common process in monitored populations and can cause 
underestimations of survival and dispersal due to permanent emigration. Here, we present a 
multistate Bayesian capture‑mark‑recapture approach based on a joint estimation of natal dispersal 
kernel and detection probabilities to address biases in survival, dispersal, and related demographic 
parameters when dispersal information is limited. We implement this approach to long‑term data 
of a threatened population: the Bonelli’s eagle in Catalonia (SW Europe). To assess the method’s 
performance, we compare demographic estimates structured by sex, age, and breeding status in 
cases of limited versus large data scales, with those of classical models where dispersal and detection 
probabilities are estimated separately. Results show substantial corrections of demographic 
estimates. Natal dispersal and permanent emigration probabilities were larger in females, and 
consequently, female non‑breeder survival showed larger differences between separate and joint 
estimation models. Moreover, our results suggest that estimates are sensitive to the choice of the 
dispersal kernel, fat‑tailed kernels providing larger values in cases of data limitation. This study 
provides a general multistate framework to model demographic parameters while correcting 
permanent emigration biases caused by natal dispersal.

Understanding the drivers of population dynamics is key in basic and applied ecology. Survival is a vital rate 
that describes the probability of an individual to survive for a given time period and is a major contributor to 
population growth  rate1. Dispersal is the movement of individuals from their birth site to their breeding site (natal 
dispersal) as well as among breeding sites (breeding dispersal)2 and has deep implications in population dynam-
ics, from determining emigration to regulating gene flow, inbreeding avoidance, responses to environmental 
pressures, metapopulation persistence, and source-sink  dynamics3–6. Consequently, both survival and dispersal 
processes are central demographic features that carry serious eco-evolutionary  implications1,4. Thus, obtaining 
robust and unbiased estimates of both parameters in ecological studies is essential to increase our knowledge 
about population processes. In addition, this knowledge is crucial to correctly assess the conservation status of 
populations and design effective case-specific management  actions7,8, which is essential to guide conservation 
measures in the urge to alleviate the global biodiversity  crisis9.

The capture-mark-recapture (CMR) method is widely used in survival  estimation10. This approach is based 
on the statistical analysis of monitoring data of marked populations and permits a separate estimation of sur-
vival and detection probabilities, which is an essential first step to provide unbiased estimates of survival. In the 
last decades, analytical advances addressed some limitations and violations of the traditional assumptions of 
CMR models, such as tag  loss11, detection and survival  heterogeneity12, and instantaneous sampling  periods13. 
In addition, multistate models allowed for greater flexibility in modelling complex systems, while multievent 
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models enabled dealing with uncertainty in states’  assignments14. However, a still problematic limitation of CMR 
analyses that may lead to considerable biases in demographic parameters is the presence of emigration from the 
study area, which is a very common process in animal  populations15,16. If emigration is temporary and random, 
only detection probabilities become  biased17. Instead, if emigration is permanent (that is, individuals that leave 
the study area do not return), models cannot distinguish between emigration and mortality, which leads to an 
underestimation of  survival18. Traditionally, this has been accounted for by reporting apparent survival, which is 
the product of true survival and study area  fidelity10. In populations where permanent emigration is present, site 
fidelity is always lower than 1, which makes apparent survival be lower than true survival. In addition, apparent 
survival has no clear biological meaning, and if estimated with time, sex or age variation, differences in appar-
ent survival among population fractions might correspond to variations in dispersal behaviour and not to true 
survival  differences18,19. In the last decades, solutions that estimate survival and site fidelity without explicitly 
modelling dispersal have been  presented20–22. However, such designs rely on the availability of additional data, 
such as observations outside the study area or within sampling occasions, or tag recoveries.

Other alternatives to overcome this bias have focused on explicitly modelling dispersal processes in survival 
 analyses23. However, the main challenge in modelling dispersal data obtained from the monitoring of ringed 
populations is that the resulting dispersal distances generally lead to underestimations of the dispersal kernels of 
study populations, as some dispersal events (typically the ones ending outside the study area) are rarely detected. 
Indeed, observed dispersal kernels are a result of the interplay between the true dispersal kernel and detection 
probabilities, which may be heterogeneous and highly variable across the dispersal range of the  species24,25. This 
is due to (1) the border effect, which makes individuals born closer to the limit of the study area more likely to 
emigrate permanently and therefore remain undetected in subsequent sampling  periods24,26; and (2) because 
study areas are finite and limited in respect to the species dispersal capacity, which makes long-distance dispersal 
events impossible or unlikely to be observed and accounted for in dispersal  kernels8.

The development of Bayesian hierarchical CMR models (e.g.,27) has provided a novel, powerful framework 
to address these  biases28. A good example is the Bayesian spatial extension of the Cormack–Jolly–Seber CMR 
model developed  by26. This method links the dispersal and observation processes to obtain true survival esti-
mates accounting for emigration probabilities along with corrected dispersal kernels. Nevertheless, spatial CMR 
models rarely differentiate between natal and breeding dispersal (but  see6). This apparently subtle difference can 
have important implications for the robustness of the estimated demographic parameters, as in most species 
breeding and natal dispersal have different implications for population  dynamics2,8,29. Generally, natal dispersal 
distances are larger and involve most or all long-distance movements in a population, which are more likely 
to fall outside the boundaries of study areas and remain  unobserved5,8,29. Therefore, natal dispersal is most 
often the main driver of permanent emigration and may have dramatic effects on the overall dynamics of local 
populations and metapopulations over broad  areas3. As a result, kernels of breeding and natal dispersal usually 
differ in shape, with natal dispersal ones being heavy-tailed and right-skewed30. Therefore, if natal dispersal is 
not explicitly modelled with adequate long-tailed distributions, dispersal kernels may fail to predict unobserved 
long-distance natal dispersal movements, which may significantly underestimate the dispersal capacity of the 
species, and consequently, emigration and survival  probabilities8,29,30. On the other hand, natal dispersal in 
birds is usually sex-biased, with females usually dispersing farther away than  males31. In addition, because natal 
dispersal is intrinsically linked to sexual maturation, dispersal and related processes can show an age trend in 
long-lived species. Therefore, such processes should be modelled using age and sex structures to avoid biases in 
demographic estimates.

The aim of this study is to provide a method to minimize the biases in survival and natal dispersal estima-
tions caused by permanent emigration in CMR analyses. For a widely applicable solution to the issue of per-
manent emigration, it is essential to design a modelling framework that deals with the most common factors 
that generate this source of bias: (1) natal dispersal, and (2) the restricted sizes of most study areas, which make 
such movements unlikely or impossible to be detected, and consequently, generate the biases in dispersal and 
survival estimates. To do so, we perform a joint estimation of natal dispersal and detection probabilities to infer 
the true natal dispersal kernel, permanent emigration probabilities, and survival estimates in a Bayesian spatial 
multistate CMR  framework16,24,26,32. In addition, we model dispersal under two different statistical distributions, 
i.e., gamma (short-to-fat tailed depending on parameters) and lognormal (heavier and longer tail than gamma), 
to stress the importance of distribution choice in generating unbiased parameter  estimates8. To implement 
this approach, we used as a case study a population of a long-lived territorial bird, the Bonelli’s eagle, located 
in Catalonia, NE Iberian Peninsula. This study population provides an exceptional scenario to apply the joint 
estimation approach because: (1) the species shows a very large natal dispersal capacity that can easily exceed 
the limits of most study  areas33,34; (2) we carried out an intensive ringing programme over 13 years (ca. 70% of 
all fledged chicks were tagged in a population holding ca. 6% of the European population); and (3) we benefited 
from the intensive monitoring of all neighbouring populations of this species, meaning that we could extend 
our capacity to detect tagged individuals over a broad region covering almost the entire range of this species in 
Western Europe. In this context, we fitted three different models to assess the performance of our correction 
method under gamma and lognormal natal dispersal distributions. First, we modelled a scenario in which we 
included only observations from the study population and performed a classical estimation where detection, 
survival, and natal dispersal probabilities were not linked for a joint estimation (i.e., “separate estimation”—the 
SEP-CAT models). Second, we considered only observations from the study population but performed a joint 
estimation of these parameters (the JOINT-CAT models). Third, we implemented a joint estimation in which all 
observations of breeding individuals inside and outside the study population were considered (the JOINT-ALL 
models). This third scenario is expected to provide us the closest approximation to true estimates of survival and 
natal dispersal kernels, since it is informed by more data on encounters and natal dispersal events over a larger 
range. Therefore, to assess the effectiveness of the joint estimation method when encounter and natal dispersal 
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data are restricted to the study population, we compared the estimates of JOINT-CAT against those of JOINT-
ALL. All models included age and sex structures in survival, recruitment, natal dispersal, and other parameters. 
Finally, based on the kernels estimated by the models, we performed simulations of natal dispersal movements 
for each territory and sex to estimate and map continuous probabilities of permanent emigration. The aim of 
these simulations was to allow a finer-scale evaluation of the sex-specific probabilities of individuals born in 
each territory to either leave or remain in the study area after natal dispersal.

Results
Global JMV goodness-of-fit tests indicated an adequate fit to the data for both models with observations from the 
study area only (CAT;  x2 = 26.613, df = 26, p = 0.430) and models with observations everywhere (ALL;  x2 = 29.791, 
df = 28, p = 0.373). All 6 models (i.e., SEP-CAT-Lognormal, SEP-CAT-Gamma, JOINT-CAT-Lognormal, JOINT-
CAT-Gamma, JOINT-ALL-Lognormal, and JOINT-ALL-Gamma) reached adequate convergence based on the 
Gelman-Rubin statistic (Rhat ≤ 1.10 for all parameters) and visual inspection of chain  mixing35.

Natal dispersal estimation showed consistent differences among sexes, with larger distances for females than 
for males in all scenarios (Tables S1, S2, S3; Figs. 1, 2). Dispersal distances and kernel shapes in JOINT-CAT 
models approached the estimates provided by JOINT-ALL models and were substantially larger—and consider-
ably more uncertain—than those of SEP-CAT, especially when using lognormal distributions (Fig. 1, Table S2). 
Female average dispersal distance increased by 16.6 km (89%Highest Posterior Density Interval, HPDI, of the 
difference = − 34.3–74.2) from SEP-CAT to JOINT-CAT models when using gamma distributions, and by 68.7 km 
(− 60.2–237.8) in lognormal models. The average dispersal distance of females estimated by JOINT-CAT with log-
normal distributions was higher than that of JOINT-ALL when using gamma distributions (30.4 km difference, 
− 79.8–190.2). In the case of males, distances estimated by JOINT-CAT models increased by 1.6 km (− 10.1–13.3) 
and 8.9 km (− 19.9–39.5) in gamma and lognormal distributions respectively, compared to SEP-CAT models.

Estimates of permanent emigration probabilities in the population notably increased from SEP-CAT to 
JOINT-CAT models but fell short of the values estimated by JOINT-ALL models. Lognormal distributions 
provided closer values between JOINT-CAT and JOINT-ALL estimates (Fig. 3). Using gamma distributions, 
estimates increased from 0.23 (89% HPDI = 0.18–0.30) in SEP-CAT to 0.28 (0.21–0.35) in JOINT-CAT and 0.40 
(0.34–0.45) in JOINT-ALL, while when using lognormal distributions values grew from 0.26 (0.20–0.33) to 0.35 
(0.27–0.43) and 0.39 (0.33–0.44) respectively. Mapped permanent emigration probabilities between sexes showed 
differences by sex and higher chances of leaving the study area closer to its boundaries (Fig. 4). Males born in 
central areas showed permanent emigration probabilities below 7%, which increased up to 28% in females. In 
areas closer to boundaries, probabilities peaked to 40% in males and 60% in females.

Survival estimates of non-breeders showed a clear increase when using joint estimation models, especially 
in females (Table S1, Fig. 5). Namely, when comparing SEP-CAT and JOINT-CAT lognormal models, female 
non-breeder survival increased by 0.04 in 1-year-olds (89%HPDI of the difference = − 0.1–0.17), 0.06 in 2 and 
3-year-olds (− 0.08–0.2) and 0.04 (− 0.2–0.28) in adults. In males, differences were smaller, with increases of 0.02 
(− 0.11–0.15) in 1-year-olds, 0.02 (− 0.12–0.17) in 2 and 3-year-olds, and 0.01 (− 0.15–0.17) in adults. Differences 
in non-breeder survival between models using gamma and lognormal distributions were especially visible in 
females. JOINT-CAT lognormal models provided moderately higher values, and closer to those of JOINT-ALL 
models. On the other hand, survival of breeding birds showed no differences among models and was estimated 
at 0.87 (0.8–0.94) in females and 0.88 (0.83–0.94) in males (Table S1). Recruitment into the breeding population 
also showed remarkable differences between separate and joint estimation models in females (Figure S5), while 

Figure 1.  Average natal dispersal distance (km) by model, sex, and distribution (gamma: GA, lognormal: LN). 
Circles and squares indicate median values. Thick lines indicate the 66% HPDI and fine lines show the 89% 
HPDI.



4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6970  | https://doi.org/10.1038/s41598-023-32866-0

www.nature.com/scientificreports/

male differences were smaller. In all scenarios, females showed the highest recruitment probabilities for 3-year-
olds (JOINT-ALL lognormal model, 0.54; 89%HPDI = 0.39–0.70) and adults (0.41; 0.24–0.58). Male recruitment 
probabilities peaked in 3-year-olds (JOINT-ALL lognormal, 0.46; 0.31–0.61), but considerably decreased in 
adults (0.13; 0.06–0.37).

Recapture probabilities were estimated at 0.85 (0.65–0.98) for breeders  (PB) and 0.045 (0.035–0.056) for non-
breeders  (PNB) in all models. Recovery probabilities of dead non-breeders were estimated very similarly across 

Figure 2.  Median natal dispersal kernels (Y: probability density, X: km) by model type, sex, and dispersal 
distribution.

Figure 3.  Permanent emigration probability by model and dispersal distribution (gamma: GA, lognormal: 
LN). Circles and squares indicate median values. Thick lines indicate the 66% HPDI and fine lines show the 89% 
HPDI.
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models as well, with around 0.21 (0.18–0.26). Similarly, in breeders, models estimated recovery at around 0.22 
(0.12–0.33). Estimates of the effectiveness of different surveying methods at detecting and identifying individuals 
in territories, which were calculated to deal with breeder detection heterogeneity and incorporated into first-time 
recapture probabilities of breeders  PB1 (see Methods and subsection Recapture parameters for further details), 
provided a 0.39 (0.37–0.42) probability of detecting a ring when using conventional territory monitoring, 0.84 
(0.81–0.88) when using camera-trapping alone, and 0.989 when using both methods altogether (0.985–0.994).

Discussion
Survival and dispersal processes are central demographic features of  populations1,4, though their estimation can 
be seriously biased by permanent emigration when the dispersal capacities of individuals exceed the dimensions 
of monitoring areas, a common issue in ecological studies. Here, we present a spatial capture-mark-recapture 
(CMR) joint estimation approach to model permanent emigration generated by natal dispersal and address 
subsequent biases in the estimation of dispersal, survival, and other demographic parameters of wild popula-
tions. The crucial aspect of this approach is estimating the probabilities of leaving the study area for each marked 
individual, conditional on their location of birth and natal dispersal distance, and accounting for all modelled 
sources of uncertainty about the states of the individuals. We applied this method to estimate demographic 
parameters in a population of a territorial long-lived bird, the Bonelli’s eagle, in which permanent emigration 
was represented as breeding recruitment outside the study area. We utilized an intensive monitoring campaign 
that covered the entire range of this species in western Europe to compare the estimates of survival and dispersal 
kernel under three scenarios: (1) models that formulate a classical separate estimation of data restricted to the 
focal study area (SEP-CAT models), the most common scenario in monitoring schemes; (2) joint estimation of 
CMR data and dispersal parameters from the focal study area (JOINT-CAT models); and (3) joint estimation 
of data from the whole W European distribution (JOINT-ALL models), which is expected to provide us the 
closest approximation to the true parameter estimates. Our results illustrate that the joint estimation approach 
provides substantial corrections of survival and dispersal estimates even when only data of the focal study area 
are considered compared to those of the classical separate estimation approach (Figs. 1, 2, 3, 5).

Figure 4.  Mean Bonelli’s eagle permanent emigration probabilities mapped by sex following a spatial kriging 
interpolation across the distribution of the study population. Map source: Natural Earth.

Figure 5.  Non-breeder survival by model, age, sex, and distribution. Circles and squares indicate median 
values. Thick lines indicate the 66% HPDI and fine lines show the 89% HPDI.
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Our confidence in the effectiveness of the joint estimation approach is based on the fundamental assumption 
that JOINT-ALL models provide the closest approximation to the true estimates. Indeed, JOINT-ALL models 
include dispersal and recapture data from the whole range of the Bonelli’s eagle in W Europe. This fact diminishes 
the effects of censoring on dispersal data: as the study area expands, the chance of observing more dispersal move-
ments and at longer distances increases. In the case of our study, maximum observed natal dispersal distances in 
the focal study area were 95 km for males and 271 km for females but increased to 500 and 490 km respectively 
when all data were considered. Hence, the ability of the models that link survival and observation processes to 
approximate true survival, natal dispersal kernels, and permanent emigration probabilities is  enhanced24,26,32. 
Thus, we consider that using JOINT-ALL as a reference model from which to assess the effectiveness of joint 
estimation methods in cases of limited and truncated data (i.e., JOINT-CAT models) is a robust strategy.

Animal populations are composed of individuals that may show differences in survival and dispersal accord-
ing to their age, sex, and breeding status. Such intrapopulation heterogeneity may carry important consequences 
for population  dynamics36. Our results highlight that the permanent emigration biases may be more intense in 
specific age classes (Table S1, Fig. 5). In addition, we found that survival estimates of non-breeders are sensi-
tive to the permanent emigration bias. This fact should be expected for many animal species, as non-breeders 
often undertake the longest movements in their lives (natal dispersal) right before first breeding. Non-breeding 
fractions of populations have a key role in population regulation and stability, and therefore biased survival esti-
mates may lead to inaccurate assessments of the status and prospects of whole animal  populations37. Specifically, 
Hernández-Matías et al.38 showed that a survival increase of ca. 8% in non-breeders would turn our study popu-
lation from decreasing to self-sustaining. According to our results, survival differences of such magnitude can 
be generated by permanent emigration biases, especially in females. Indeed, female survival was systematically 
higher in JOINT-CAT compared to SEP-CAT models, differing by 0.04 in 1-year-olds, 0.06 in 2 and 3-year-olds 
and 0.04 in adults when using lognormal models, and differences with JOINT-ALL models are around 0.08 in 2 
and 3-year-olds and adults. In this line, our results showed more intense survival biases in females than in males, 
which is related to the fact that females show larger natal dispersal and thus higher propensity to permanent emi-
gration. Sex differences in natal dispersal are common in wild  populations39. Thus, if demographic parameters are 
estimated without considering permanent emigration and sex-structured dispersal, the resulting sex differences 
in apparent survival estimates may actually be signalling differences in dispersal behaviour and site fidelity rather 
than true survival  differences19. Furthermore, our results show that permanent emigration biases can also affect 
estimates of the age of sexual maturity (i.e., recruitment in this study). Unbiased estimates of sexual maturity 
are essential in models of population viability, as population growth rates may be very sensitive to  them40. In 
summary, our findings suggest that the potential of permanent emigration to cause bias in ecological studies, 
as well as population and species assessments, should not be neglected. Hence, study designs accounting for 
permanent emigration should be implemented in demographic studies whenever possible, especially in species 
with long dispersal capacities. It is true that bias correction in demographic parameters may not be complete in 
cases of limited data as in the JOINT-CAT scenario (Table S1). However, substantial bias reductions as the ones 
found here may help improving the accuracy of subsequent analyses based on these estimates, such as population 
viability analyses, integrated population models or assessments of conservation status.

Dispersal has deep implications in eco-evolutionary  processes5,6. However, long-distance dispersal movements 
are difficult to detect in many study systems, and therefore, obtaining unbiased estimates of dispersal kernels 
may be challenging. Interestingly, our findings emphasize that the method presented here is sensitive to the 
choice of the dispersal distribution. In the case of JOINT-ALL models, results are almost identical when using 
gamma and lognormal distributions. This suggests that whenever larger amounts of data are available from a 
wider geographical range, both distributions provide very similar corrections of demographic parameters, even 
if the shapes of the dispersal kernels differ (Tables S1, S2, S3; Figs. 2, 3). However, our results show that when 
the dispersal data are strongly truncated as a result of only having data from the focal study area available (i.e., 
the most common scenario in ecological studies, represented by SEP-CAT and JOINT-CAT), joint-estimation 
models (JOINT-CAT) provide closer estimates of all demographic estimates to JOINT-ALL when lognormal 
distributions are used. This effect is particularly visible in average natal dispersal and permanent emigration 
estimates, which are considerably higher in JOINT-CAT lognormal than in JOINT-CAT gamma, and notably 
closer to JOINT-ALL estimates. A reasonable explanation is that lognormal distributions are heavy-tailed and 
thus may provide larger probabilities for long-distance dispersal movements even when these have been poorly 
 detected8,25,29. This rationale would match the recent findings of Fandos et al.41, who found that long-distance 
dispersal movements were frequent across bird species, and dispersal kernels were generally better represented 
by heavy-tailed distributions. This suggests that heavy-tailed distributions can generally be more adequate when 
modelling natal dispersal in joint estimation formulations. However, given that in many study cases there may 
be little to no information about the shape and the tail-end of the true natal dispersal kernel, providing model 
results under different dispersal distributions may be a more conservative  choice3,8,29,41. In ideal cases where 
unbiased dispersal data are available (i.e., telemetry or different dispersal estimation methods), these should be 
primarily considered for the choice of adequate natal dispersal distributions.

For a widely applicable solution to the issue of permanent emigration, it is essential that our modelling 
framework is easily extrapolated to other study systems. In basic terms, our modelling approach consists of a 
multistate CMR submodel and a spatial submodel appropriately linked to infer permanent emigration prob-
abilities. Here, we incorporated some modelling specificities to account for the particularities of our study 
system such as territorial behaviour, delayed maturity, detection heterogeneity in breeders, or the possibility 
to encounter dead individuals. However, all these characteristics can be easily modified to handle a wide range 
of multistate formulations either simpler or more complex, taking advantage of the wide flexibility of Bayesian 
hierarchical models (see Appendix S3 and Figures S6 to S11 therein, where we present a brief guide to adapt 
the joint estimation formulation to other study designs, starting by the simplest possible designs and moving to 
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examples without detection heterogeneity and dead recoveries). The Joint Estimation approach may be useful 
for species where individuals are tagged at the natal site, and for which a fraction of all dispersing individuals 
may disperse outside the study area. A key point is to be able to model a species or population distribution range 
to the extent it encompasses the dispersal capacity of the population. In cases where the range is not known, 
multiple methods are available to estimate  it42. In our example, territory locations were known with certainty 
or simulated following distribution and census data. In territorial species where territory locations cannot be 
estimated, or in species whose space use is not structured into territories, space may be divided into grids with 
detection probabilities assigned depending on their location (i.e., inside or outside a study area;26). Isotropical 
dispersal kernels are often assumed, but many other options can be implemented in a Bayesian hierarchical 
framework. For instance, dispersal may be modelled using a longitude and a latitude  component26 or considering 
individual heterogeneity in dispersal  behaviour43.

The flexibility of Bayesian models is further illustrated by the possibility of mapping emigration probabili-
ties in our study area (Fig. 4). The notable differences found among sexes and across space can provide a deep 
understanding of population and metapopulation dynamics to (1) illustrate the magnitude of the border effect 
and how it can differentially affect different fractions of a population; (2) reveal the heterogeneous contribution 
of territories to local population processes; and (3) understand whether unobserved individuals might be more 
likely attributable to either emigration or mortality. Such knowledge can be important to managers as often criti-
cal conservation decisions have to be made within short periods of time and with few up-to-date  information44.

Despite the generality and flexibility of our modelling approach, there may be situations where the joint 
estimation is not adequate. The present framework has been designed to model natal dispersal and subsequent 
permanent emigration, since in most animal species natal dispersal accounts for most-to-all long-distance dis-
persal movements in a population, and is by far the most important determinant of permanent emigration. 
This view is often considered the paradigm in animal  populations2,45. However, the method does not account 
for breeding dispersal. This type of dispersal is commonly composed of short movements that mostly generate 
cases of not permanent but temporary emigration, which may mainly bias recapture probabilities and often has 
a more limited effect on other demographic  parameters17. Nevertheless, there may be some species or popula-
tions in which breeding dispersal is similar or larger than natal dispersal. In such cases, breeding dispersal may 
(1) become a significant contributor to permanent emigration, and (2) frequently cause individuals that have 
moved outside the study area due to natal dispersal to come back to it. Both phenomena, if frequent, may have 
the capacity to bias the estimates provided by the joint estimation method, as there are sources of permanent 
emigration that are not accounted for, or on the contrary, permanent emigration may be confused with tempo-
rary emigration. Large breeding dispersal patterns appear to be related to specific ecological conditions rather 
than evolutionary or phylogenetic  reasons2. In birds, this may be the case for populations with highly patchy 
distributions and very specific ecological requirements, like wetlands that may be poorly  connected46. Thus, 
the present method should be used with caution when considerable permanent emigration caused by breeding 
dispersal is suspected, and other approaches may be more suitable (e.g.,6,26,43). One further limitation of the joint 
estimation approach may emerge in cases of study areas very restricted in size combined with populations with 
large natal dispersal capacities. In such cases, very few dispersal events may be detected, which may hamper the 
ability of joint estimation methods to provide consistent corrections in demographic  parameters26. To address 
this issue, Bayesian models might provide a solution in the form of priors if direct or indirect information about 
dispersal  exists47. In these situations, telemetry data could be a very useful source of dispersal information, if 
available. Other potential limitations of the joint estimation approach may arise from the fact that the method 
requires modelling territories or the distribution of the species inside, and especially outside the study area. In 
some species, the information about the distribution or number of territories can be poor. In these cases, model-
ling wrong territory distributions or numbers along space could push the estimates of dispersal and permanent 
emigration probabilities to be either underestimated or overestimated. These biases could propagate and lead to 
unrealistic estimations of true survival and other demographic parameters. Hence, a realistic modelling of the 
range, number, and/or distribution of territories appears important for an optimal performance of the method.

Overall, the joint estimation method presented here provides a promising framework to reduce biases in 
dispersal and survival estimates in mark-recapture analyses. In addition, this may be a useful formulation for 
future studies to assess additional sources of individual or population heterogeneity in dispersal and permanent 
emigration as well as their impacts in survival and other demographic parameters. Here, we show how the perma-
nent emigration bias has different effects in the estimates of males and females. However, age, morphologic, and 
genetic traits may also affect individual permanent emigration  probabilities2,6,48,49. Breeding density, nest occupa-
tion, and intraspecific competition in source and destination areas may also contribute to shaping natal dispersal, 
with higher densities or interactions often associated with larger dispersal  patterns15. Including information on 
such processes (e.g., as covariates) in future joint-estimation-based studies may help disentangling the complex-
ity of dispersal processes and their multiple population and evolutionary drivers using mark-recapture data.

Methods
General modelling approach. The joint estimation approach described here consists of a Bayesian hierar-
chical model structured in a multistate CMR submodel and a spatial submodel (Fig. 6). Both components must 
be linked by a parameter that informs the model about permanent emigration probabilities by means of estimat-
ing an individual’s probability to permanently leave the study area conditional on its natal dispersal distance, 
in addition to mortality considerations. We use the spatial/dispersal information provided by this parameter to 
guide a state transition in the multistate CMR submodel, in which an individual may move from a live state at t 
to an absorbing state (a permanently unobservable state) at t + 1 in case it leaves the study area. This transition is 
the key point of the joint estimation approach, as it allows the model to infer the true dispersal kernel and sub-
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sequently address the biases in demographic parameters. We provide a detailed description of the mathematical, 
statistical, and modelling features of the joint estimation approach in the Methods section Joint Estimation of 
natal dispersal kernel and detection probabilities. This is a flexible formulation that can be applied to a wide range 
of species and ecological contexts. Overall, it is applicable to species in which natal dispersal is the main driver of 
permanent emigration and shows markedly larger distances than breeding dispersal, as is common in most wild 
 populations2. In addition, study areas should not be very restricted in size, to the extent that breeding dispersal 
does not easily exceed its limits and thus contribute to permanent emigration along with natal dispersal.

As estimating natal dispersal is a central point of the method, it is essential that monitoring schemes focus on 
tagging individuals at birth sites and reencountering them as breeders. Since natal dispersal is intrinsically related 
to sexual maturity, the transition matrices of multistate CMR models should be adjusted to reflect the breeding 
biology of the study species (i.e., modelling maturity, or the age of first breeding as a fixed or varying age;50). Here, 
we adapted this formulation to the Bonelli’s eagle study system, in which the study area was structured into ter-
ritories. We modelled recruitment to a breeding territory as an equivalent to sexual maturation since individuals 
start showing territorial behaviour right after maturation. In addition, in our example, whenever an individual 
recruits to a non-monitored territory (i.e., outside the study area), it is counted as a permanent emigration case. 
We included dead recoveries to increase the precision of our estimates, but these are not necessary to implement 
this design (Appendix S3). Further insights on the applicability and potential shortcomings of this approach are 
developed in the Discussion section.

Study population and life cycle. The Bonelli’s eagle is a territorial long-lived raptor with delayed matu-
rity and low breeding rates whose range extends from south-east Asia to the western Mediterranean. Our focal 
population is located in Catalonia (NE Spain) and holds ca. 82 breeding  pairs51. As in many other territorial rap-
tors, the population is structured into the non-territorial (i.e., non-breeding) and territorial (i.e., breeding) frac-
tions. After the post-fledging dependence period, individuals are non-territorial and show a transient nomadic 
behaviour with frequent visits to areas away from breeding  territories33. Birds become territorial (i.e., breeders) 
after sexual maturity and recruitment to the breeding population, which mostly occur between three and four 
years of  age34. As they establish in territories, birds start displaying territorial and pair-binding behaviour, with 
strong fidelity to their first breeding areas and very infrequent breeding  dispersal52. Between breeding seasons, 
individuals either do not leave their territories or stay in their  surroundings33. Given the strong link between 
sexual maturity, territoriality, and breeding in this species, we refer to (non)-territorial and (non)-breeding indi-
viduals as equivalent terms.

We used data from an intensive tagging and monitoring programme (2008–2020), where 461 chicks born 
in 51 different territories were ringed in their nests with metal and alphanumeric colour rings. All rings were 
riveted to avoid tag loss. To recontact tagged non-breeders, we monitored the two main dispersal areas away 
from breeding territories in Catalonia, which are located in Tarragona and the Lleida Plains. Dispersal areas 
are sites with large prey availabilities, which attract large amounts of non-breeders33. In addition, we monitored 
76 different territories in our focal study area to detect breeding birds. For territory monitoring, we used both 
telescope observation routines and camera-trapping monitoring from January to May (breeding season). 178 
marked individuals were recontacted alive, 83 of which were territorials (60 inside the study area, 23 outside). 
In addition, we recovered 75 dead marked individuals (62 non-breeders, 13 breeders) from the surveillance of 
territories, dispersal  areas33, and zones of high mortality risk (i.e., power infrastructures, ponds) by monitoring 
and ranger teams. Sexing was done by DNA analyses,  biometry53 and breeding behaviour assessments. Given 

Figure 6.  Diagram of the Joint Estimation framework. Data types are inside solid squares (study area size is 
inside a dashed square as study area information is implicitly provided by detectability data). Parameters are 
shown inside circles. Parameters  DKo and  DKT stand for the observed and the true dispersal kernel respectively. 
Parameters φ, γ, and p from the CMR submodel account for apparent survival, apparent recruitment, and 
recapture estimates. Parameter  Pd provides information on detectability at different dispersal distances for every 
individual and links the spatial and the CMR submodels. Note that the absence of parameter  Pd would lead to a 
separate (i.e., unlinked) estimation of survival and dispersal.
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the strong breeding site fidelity of territorial raptors, monitoring schemes usually prioritize breeding territories 
that were known to be occupied in previous years, while recruitments in unoccupied territories might become 
unnoticed. In addition, whenever a ringed individual is detected in a territory for the first time, monitoring 
teams usually put additional efforts in reading the rings from year to year. While this is a common monitoring 
strategy, it may generate heterogeneity between the first-time and subsequent detection probabilities of breed-
ers. Hence, this source of breeder detection heterogeneity needs to be modelled accordingly to obtain unbiased 
demographic  estimates50.

The multistate CMR submodel. Multistate modelling. We modelled three different scenarios (SEP-
CAT, JOINT-CAT and JOINT-ALL) under gamma and lognormal dispersal distributions. We used Bayesian 
multistate CMR designs to model survival, dispersal, and territory recruitment, along with recapture and re-
covery probabilities. Models were built and run in the BUGS language using the R package  NIMBLE54. For 
the modelling of multistate transitions, we used the same state-transition matrices and age structures across 
models following the extensive knowledge about the demography of the  species55 to facilitate result comparisons 
among models. We chose vague priors for all but dispersal variables (i.e., Uniform (0,1) and Beta (1,1) for vari-
ables bounded between 0 and 1; Normal (0, sd = 1.5) for logit-transformed variables;50,56. See section The Spatial 
Submodel for information about dispersal priors. In addition, to avoid violation of the instantaneous sampling 
assumption, we pooled sampling occasions into 6-month periods: January to June, and July to  December10. As 
in most Bayesian CMR models, we used a hierarchical state-space design with two components: first, the state 
process described by the state transition matrix, which defines how individuals change their biological states 
between consecutive capture occasions; and second, the observation process described by the observation ma-
trix, which indicates how individual observations relate to the states of the individuals. Transitions among true 
states are represented by a matrix of latent states z, while information about observations is provided by the 
CMR matrix y. Transitions among states and associations between states and observations were modelled with 
a categorical distribution

where ps is the matrix of transitions among states (Appendix S1, Figure S1), and

where po is the event matrix (Figure S2).

The state and observation processes. We defined five different states common to all models (Figure S1): (1) Alive 
Non-Breeder (ANB), (2) Alive Breeder (AB), (3) Dead as Non-Breeder (DNB), (4) Dead as Breeder (DB), and 5) 
the Absorbing State (AS). Note that there is one unobservable state in this definition: the Absorbing State (AS). 
The AS lacks a biological meaning but is used in multistate modelling to group all those individuals that enter 
a state that cannot be observed anymore throughout the course of the study. Transitions in the state matrix and 
relationships in the observation matrix were defined using parameters with different structures to match the 
biological and demographic features of the species (Fig. 7), which are described hereunder.

Survival, recruitment, and recovery. We modelled survival (φ) as time-constant but varying by sex and breeding 
status. Survival of breeders (φB) was modelled as constant. For JOINT-ALL models, we modelled φB as varying 
between inside and outside the study area since we incorporated observations of breeders from the whole range 
of the species,. Survival of non-breeders (φNB) was structured by age classes to accommodate typical age-related 
variation in long-lived populations and to be able to assess which population fractions were most affected by 
permanent emigration. Specifically, non-breeder survival was estimated separately for juveniles (1yo), imma-
tures and subadults (2–3 yo) and adults (> = 4 yo), following Hernández-Matías et al.52. Sexual maturity was 
modelled as the probability of joining the breeding population, that is, occupying a breeding territory, so-called 
“recruitment” (γ). Recruitment was modelled as a sex and age-varying probability for juveniles (1yo), immatures 
(2yo), subadults (3yo) and adults (> = 4yo)  (see34). The recovery parameter (r) was defined as the probability of 
encountering a dead marked individual. We modelled it as time-constant, but different for breeders  (rB) and 
non-breeders  (rNB) to accommodate any variation that may arise from differences in mortality causes associated 
with differences in behaviour and risk exposure. While recovery has traditionally been modelled in the obser-
vation matrix, we modelled it in the state transition matrix to avoid reported convergence issues in Bayesian 
hierarchical  models50.

Recapture parameters. Recapture probabilities (i.e., probability of observing a live tagged individual) were 
modelled differently for non-breeders and breeders. Recapture of non-breeders  (PNB) was modelled as constant 
across sex, time, and age classes. In addition, to accommodate the effects of breeder detection heterogeneity, we 
divided recapture probabilities of breeders into two parameters: 1)  PB1: the probability of observing a ringed 
breeder for the first time, and 2)  PB: the probability of observing it in subsequent occasions once it was observed 
for the first  time50. Since breeders are only monitored during the breeding season, which occurs entirely during 
the first half of the year (i.e., January to June),  PB and  PB1 were set as 0 at the second halves of the years (i.e., July 
to December).  PB1 varied by territory of recruitment of each individual and time (see details about its estima-
tion below in this section), and  PB varied by year using random effects to accommodate variations in territory 
sampling effort. In JOINT-ALL models, since we incorporated observations of all the distribution range, we dif-
ferentiated  PB between Catalonia (yearly variation, random effects) and outside (constant probability).

zind,time ∼ Categorical(ps[zind,time−1])

yind,time ∼ Categorical(po[zind,time])
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The division of breeder recapture probabilities between  PB and  PB1 was made because, given the system of 
monitoring implemented in the study area, monitoring teams would put more efforts into recontacting tagged 
breeders that had been observed previously in a certain territory. This fact would generally make newly recruited 
tagged birds less likely to be observed for the first time. This detection heterogeneity was represented using a 
parameterisation into the observation matrix that incorporated an individual and time-varying binary covariate 
covpbi,t along with  PB and  PB1 to model the breeder observation process (Fig. 7; Figures S1, S2).

For every individual, covpbi,t would take value 0 before and at the occasion of first detection of a breeder, 
and 1 at subsequent occasions. Hence, when covpbi,t = 0, first-time breeder recapture probability  PB1 was used to 
model the observation process conditional on the individual having recruited as a breeder but not yet observed, 
or observed for the first time. Instead, when covpbi,t = 1 (i.e., all along after first breeder detection),  PB was applied. 
In cases where an individual was never observed as a live breeder, covpb consisted of a row of zeros.

P(Observed as AB|State AB)i,t =
(

PB1terri ,t ∗
(

1− covpbi,t
)

)

+ (PBt ∗ covpbi,t)

Figure 7.  Graphical representation of state transitions, observations, and parameters from occasion t to 
t + 1 for an individual ringed at birth. Solid lines indicate transitions in the state matrix and dashed lines 
indicate transitions in the observation matrix. State codes are ANB (Alive Non-Breeder), AB (Alive Breeder ), 
DNB (Dead Non-Breeder), DB (Dead Breeder) and AS (Absorbing State). Numbers in brackets ({}) indicate 
corresponding codes in the observation matrix columns and encounter histories. Parameter symbols stand for 
survival (ϕ), recruitment (γ), recapture (PB and  PNB), recovery (r) and the first-encounter breeder recapture 
parameter  (PB1). *In the lower diagram, transitions of breeding individuals from t + 1 to t + 2 are shown. Because 
of the implementation of breeder recapture heterogeneity, individuals that become breeders at t + 1 may or 
may not be observed for the first time depending on probability  PB1. Once individuals are first observed, the 
observation probability  PB is implemented at subsequent occasions.
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Importantly,  PB1 may be poorly estimable from CMR data alone, as it refers to a single observation phenom-
enon (i.e., the first observation of a recruit), and thus to estimate it we used additional data. In our study system, 
each territory was routinely monitored every breeding season using either (1) telescope watching routines, (2) 
camera-trapping, or (3) a combination of both methods. All three methods followed standardized protocols in 
terms of the number of monitoring days per territory and breeding season, so that the observation effort was 
similar across territories and breeding seasons for each method. The chances of detecting a ringed breeder for 
the first time basically depend on the effectiveness at detecting ringed birds of the specific monitoring routine 
used in a territory during the breeding season. During monitoring routines, birds are searched inside territories 
by either of the three methods to try to ascertain whether they wear alphanumeric rings. If they do, additional 
efforts are carried out to read the alphanumeric codes in order to individually identify every breeder. Hence, 
to estimate  PB1, we modelled information written down during the 2008–2020 monitoring surveys about the 
success/failure at distinguishing with certainty whether or not a breeding individual wore an alphanumeric ring 
in their tarsus when a territory surveillance season was performed with either telescopes, camera-traps, or both 
methods altogether. We assumed that the probability to first detect a ringed breeder was equal to the probability 
of distinguishing with certainty if it wore an alphanumeric ring, as in all cases rings were read after noticing 
that they were present in new breeders. We analysed these data with a logistic regression using ascertained ring 
presence/absence in an individual during a breeding season (plri) as a response variable indicating (0): ring pres-
ence/absence could not be ascertained, and (1): ring presence/absence was ascertained. We used the monitoring 
methods as explanatory variables (obs for territory monitored using telescope routines and camtrap for camera 
trapping monitoring routines) indicating (1): method used, and (0): method not used.

The resulting estimates of effectiveness of each method were assigned to each territory depending on the type 
of monitoring used at each. Hence,  PB1 would take a different value for each breeder depending on their territory 
of recruitment. In total, 55 (72%) territories were monitored with telescope routines only, 7 (9%) territories with 
camera trapping only, and 14 (19%) territories with both methods.

In SEP-CAT and JOINT-CAT models, the types of monitoring used in all territories were known with cer-
tainty. Since we aimed to reproduce a scenario without monitoring information outside our focal area, all ter-
ritories outside Catalonia were assigned as unmonitored. Instead, when fitting the JOINT-ALL models, we did 
not have complete information about which specific territories were unmonitored or monitored, or by which 
method, in order to implement  PB1. Therefore, we made reasonable modelling assumptions to reproduce the real 
conditions of monitoring. First, we assigned as monitored by any method or unmonitored those territories we 
had information about (n = 106, 30 of which outside the study area). In addition, we obtained information about 
the percentage of monitored territories and the frequency of usage of each method in each monitored popula-
tion in Western Europe from Hernández-Matías et al.3 and updated unpublished information. We dealt with 
this uncertainty by modelling the monitoring status of each territory by each method as a Bernoulli-distributed 
variable with a probability equal to the percentage of monitored territories per region:

where region stands for each of the different regions with Bonelli’s eagles present in western Europe and terr 
stands for each territory included in the models.

The spatial submodel. Territories and natal dispersal. The distribution of breeding territories in Western 
Europe was represented as a point process, where each point corresponds to the location of a Bonelli’s eagle nest 
occupied during this study. Note that due to the strong fidelity of the study species to territories and nesting sites, 
territory and even nest locations rarely vary from year to year, which allow the definition of a territory as a static 
 point52. Exact coordinates of breeding territories were available for all territories in the study population (i.e., 
Catalonia, n = 76) as well as for populations in Portugal (n = 93) and France (n = 44). For the rest of populations, 
all of them in Spain, territory locations were not known with certainty, and thus were simulated using updated 
data about the distribution and number of territories in different  regions51. First, we used 10 × 10 km presence/
absence grid data for the species in  Spain51 and smoothed the data into a distribution map assuming territories 
would be circular with a 7-km radius (value obtained from radiotracking data). Then, following Atlas data on 
the number of territories per Spanish province for the same  period51, we simulated territory locations inside the 
distribution areas of the species in every province, assuming a minimum distance between territories of 2 km. In 
total, 702 territory locations were simulated, which adds up to a total of 916 territories considered in this study 
(Figure S3).

Natal dispersal was measured as the geodesic distance between the territories of birth and recruitment. The 
territories of birth of all individuals were known with certainty as all birds were ringed as chicks. We modelled 
natal dispersal as different by sex, since raw data suggested that females tended to disperse further  away31,34. 
Dispersal was modelled under the assumption of isotropical conditions (i.e., dispersal direction was uniform 
along the distribution range of the species), and therefore dispersal distributions needed to be strictly positive. 
The isotropical modelling was chosen due to the large numbers of territories available along the distance in the 
western European range of the species and the observed large dispersal capacity of the species in relation to the 
distance between birth and potential recruitment territories (Figure S4), which may help avoiding inconsistencies 
when using this modelling approach. We chose both a gamma and a lognormal distribution as dispersal kernel 

logit
(

plri
)

= α + β1 ∗ obsterr i + β2 ∗ camtrapterr i

obsterr ∼ Bernoulli(%obs
[

regionterr
]

)

camtrapterr ∼ Bernoulli(%camtrap
[

regionterr
]

)
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candidate functions. The gamma distribution was chosen due to its flexibility in modelling from exponential 
dispersal patterns to right-skewed kernels showing relatively high dispersal probabilities at large distances. The 
lognormal distribution was selected to represent right-skewed, fat-tailed dispersal kernels with higher dispersal 
probabilities at large distances. Both distributions were truncated at 1200 km because (1) no birds have ever been 
observed beyond that distance from a birth site (own data), and (2) this goes slightly far beyond the maximum 
distance between birth territories in the study area and other territories in SW Europe (ca. 1180 km). As for dis-
persal priors, we chose weakly informative priors that provided practically identical prior distance expectations 
for both distributions. We based our prior choices on published literature on natal dispersal in this  species34. We 
performed prior predictive checks to ensure priors on distribution parameters were providing very similar and 
realistic prior dispersal  distances57,58. In addition, we compared our final prior choices to alternative prior sets, 
and we checked that the sensitivity of our models’ posterior inferences to different prior choices was  robust57,58. 
Our prior selection and analysis workflow for dispersal parameters is described in detail at Appendix S4 and 
Figures S12–S16 therein. To represent territorial recruitment, we provided DM: a 51 × 916 matrix with geodesic 
distances between all territories where chicks had ever been ringed during the study period (n = 51) and poten-
tial territories of recruitment (n = 916: 76 in Catalonia, 840 outside). We modelled natal dispersal distances for 
every individual as random draws from the sex-specific dispersal kernels. Next, we compared every individual’s 
drawn distance to the whole set of distances between the individual’s territory of birth and potential territories 
of recruitment provided in DM, and we assigned each recruit to the territory that showed the closest value to 
the drawn distance.

Joint estimation of natal dispersal kernel and detection probabilities. The complexity of the per-
manent emigration challenge stems from the interplay between detection and dispersal  probabilities23,25. Essen-
tially, the observed natal dispersal kernel from a marked population in a study area restricted in size (DKo) is the 
result of the interaction between the true natal dispersal kernel (DKT) and the probability that natal dispersal 
events end up inside the study area (W) conditional on the location of departure of every dispersal movement 
(territory of birth in this case) and dispersal distance: DKo = DKt ∗W . The smaller the study area is, the greater 
the probability that a dispersal event will end up outside the boundaries of a study area and thus be indetectable, 
which may increase the difference between DKo and DKt. Hence, the joint estimation formulation focuses on 
addressing this interplay. To do so, we first inform the model about which territories are inside or outside the 
study area. We do this with the binary vector rp, which indicates whether each of all 916 territories modelled 
in our study is (1) monitored (i.e., inside the study area), or (0) unmonitored (i.e., outside). We simulate natal 
dispersal distances for every individual as random draws from the kernel distribution and assign each breeder 
to a territory using the distance information provided by matrix DM. Next, we generate the binary vector  Pd, 
which using the information provided by rp, stores whether the territory of recruitment of each individual is (1) 
monitored/inside the study area, or (0) unmonitored/outside. Hence,  Pd contains the information about every 
individual’s likelihood to remain or leave the study area (W), which is the key to estimate the true dispersal 
kernel  DKT. Importantly, since  Pd is individual-specific, it accounts for the fact that individuals will be more 
or less likely to remain in the study area after natal dispersal depending on their area of birth (i.e., the border 
effect). To act as a link between the spatial and the CMR submodels,  Pd is incorporated into the state transition 
matrices in JOINT models (Figs. 6, S1). There,  Pd is included to the transition from t to t + 1 for each individual 
i from state Alive Non Breeder to either Alive Breeder (i.e., breeder and inside the study area, thus detectable) if 
 Pd = 1, or the Absorbing State (i.e., breeder and outside the study area, thus permanently undetectable) if  Pd = 0, 
conditional on survival and recruitment. The Absorbing State (AS) retains all those individuals that enter a 
permanently unobservable state (see in the state matrix, Appendix S1, that the probability of transitioning from 
AS at t to AS at t + 1 equals 1). Traditionally, the AS has been used to indicate that dead individuals will remain 
dead and unobservable forever. Modelling-wise, the permanent emigration process is equivalent to mortality, 
as individuals that have left the study area will remain unobservable  forever32. Hence, by modelling permanent 
emigration as a transition to the AS, whenever a non-breeder is not observed anymore throughout the course 
of the study, the model estimates the chances of it (1) being alive in the study area while remaining undetected, 
(2) having permanently emigrated from the study area, conditional to its natal dispersal distance, and (3) being 
dead and unrecovered. This approach allows the model to estimate the true dispersal kernel while dealing with 
the uncertainty present in the system (Fig. 6).

Mapping permanent emigration by sex, territory, and distribution area. Based on the dispersal 
kernels by sex provided by the models, we performed simulations to estimate and map the continuous prob-
ability of permanent emigration by territory and sex. Simulations allowed us to make both males and females 
be born homogeneously across all territories in the study area (n = 76). To model natal dispersal, we used the 
sex-specific lognormal dispersal kernel estimates and their associated uncertainties obtained at JOINT-ALL. We 
built a model simulating natal dispersal events from males and females from each territory following the same st 
ructure as in the rest of models: natal dispersal distances were simulated as random draws from kernel distribu-
tions, recruitment was simulated following the distance information from matrix DM, and we again made use of 
vector rp to indicate whether each territory of recruitment was either inside or outside the study area. Territory-
specific permanent emigration probabilities were calculated as the probabilities of recruiting outside the study 
area from each birth territory. Next, we mapped these space-discrete (i.e., territory-specific) probabilities and 
used a Gaussian process regression (spatial kriging) for  interpolation59 to represent permanent emigration as a 
continuous probability along the distribution area of the study population. Interpolation was performed with 
ArcGIS Pro 2.5.260.
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Model implementation. We checked for any deviations from the main assumptions of multistate models 
using Jolly-Movement (JMV) goodness-of-fit tests in software U-CARE 2.3.461. As for Bayesian models, Gamma 
models (i.e., SEP-CAT-Gamma, JOINT-CAT-Gamma and JOINT-ALL-Gamma) were run for 4 chains of 70,000 
iterations each, of which the first 50,000 were discarded. Lognormal models were run for 4 chains of 120,000 
iterations each, and we discarded the first 100,000. Simulations to map permanent emigration probabilities were 
run for 4 chains of 100,000 iterations, of which the first 80,000 were discarded. All models were run in NIM-
BLE 0.12.154 and R 4.1.2. Results are presented as medians followed by 89% Highest Posterior Density Intervals 
 (HPDI56) in brackets.

Data availability
The code used during the current study is available in the figshare repository, https:// figsh are. com/s/ ec4e6 06c21 
f774c 8cf43. The datasets analysed during the current study are available in the same figshare repository upon 
publication date.
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