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Abstract 

Attention-Deficit/Hyperactivity Disorder (ADHD) is a highly heritable childhood behavioral 

disorder affecting 5% of school-age children and 2.5% of adults. Common genetic variants 

contribute substantially to ADHD susceptibility, but no individual variants have been robustly 

associated with ADHD. We report a genome-wide association meta-analysis of 20,183 ADHD 

cases and 35,191 controls ascertained from clinical interviews and/or medical records that 

identifies variants surpassing genome-wide significance in 12 independent loci, revealing new 

and important information on the underlying biology of ADHD. Associations are enriched in 

evolutionarily constrained genomic regions and loss-of-function intolerant genes, as well as 

around brain-expressed regulatory marks. Additional analyses of three replication cohorts; a 

cohort of diagnosed ADHD, a self-reported ADHD sample and a study of quantitative measures 

of ADHD symptoms in the population, broadly support these findings while highlighting 

potential study-specific effects on genetic overlap with educational attainment. The strong 

concordance with GWAS of quantitative population measures og ADHD symptoms supports the 

hypothesis that clinical diagnosis of ADHD is an extreme expression of one or more continuous 

heritable traits. 

 

Background 

Attention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental psychiatric disorder, 

that affects around 5% of children and adolescents and 2.5% of adults worldwide1. ADHD is 

often persistent and markedly impairing with increased risk of harmful outcomes such as 

injuries2, traffic accidents3, increased health care utilization4,5, substance abuse6, criminality7, 

unemployment8, divorce4, suicide9, AIDS risk behaviors8, and premature mortality10. 
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Epidemiologic and clinical studies implicate genetic and environmental risk factors that affect 

the structure and functional capacity of brain networks involved in behavior and cognition1, in 

the etiology of ADHD. 

 

Consensus estimates from over 30 twin studies indicate that the heritability of ADHD is 70-80% 

throughout the lifespan11,12 and that environmental risks are those not shared by siblings13.  Twin 

studies also suggest that diagnosed ADHD represents the extreme tail of one or more heritable 

quantitative traits14. Additionally, family and twin studies report genetic overlap between ADHD 

and other conditions including antisocial personality disorder/behaviours15, 

cognitive impairment16, autism spectrum disorder17,18, schizophrenia19, bipolar disorder20, and 

major depressive disorder21.  

 

Thus far genome-wide association studies (GWASs) to identify common DNA variants that 

increase the risk of ADHD have not been successful22. Nevertheless, genome-wide SNP 

heritability estimates range from 0.10 – 0.2823,24 supporting the notion that common variants 

comprise a significant fraction of the risk underlying ADHD25 and that with increasing sample 

size, and thus increasing statistical power, genome-wide significant loci will emerge.  

 

Previous studies have demonstrated that the common variant risk, also referred to as the single 

nucleotide polymorphism (SNP) heritability, of ADHD is also associated with depression25, 

conduct problems26, schizophrenia27, continuous measures of ADHD symptoms28,29 and other 

neurodevelopmental traits29 in the population. Genetic studies of quantitative ADHD symptom 
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scores in children further support the hypothesis that ADHD is the extreme of a quantitative 

trait30. 

 

Here we present a genome-wide meta-analysis identifying the first genome-wide significant loci 

for ADHD using a combined sample of 55,374 individuals from an international collaboration. 

We also strengthen the case that the clinical diagnosis of ADHD is the extreme expression of one 

or more heritable quantitative traits, at least as it pertains to common variant genetic risk, by 

integrating our results with previous GWAS of ADHD-related behavior in the general 

population. 

 

Genome-wide significantly associated ADHD risk loci 

Genotype array data for 20,183 ADHD cases and 35,191 controls were collected from 12 cohorts 

(Supplementary Table 1). These samples included a population-based cohort of 14,584 cases and 

22,492 controls from Denmark collected by the Lundbeck Foundation Initiative for Integrative 

Psychiatric Research (iPSYCH), and 11 European, North American and Chinese cohorts 

aggregated by the Psychiatric Genomics Consortium (PGC). ADHD cases in iPSYCH were 

identified from the national Psychiatric Central Research Register psychiatric and diagnosed by 

psychiatrists at a psychiatric hospital according to ICD10 (F90.0), and genotyped using Illumina 

PsychChip. Designs for the PGC cohorts has been described previously24,25,31,32,22 (see 

Supplementary Information for detailed cohort descriptions).  

 

Prior to analysis, stringent quality control procedures were performed on the genotyped markers 

and individuals in each cohort using a standardized pipeline33 (Online Methods). Related 
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individuals were removed, and genetic outliers within each cohort were excluded based on 

principal component analysis. Non-genotyped markers were imputed using the 1000 Genomes 

Project Phase 3 reference panel34 (Online Methods).  

 

GWAS was conducted in each cohort using logistic regression with the imputed additive 

genotype dosages. Principal components were included as covariates to correct for population 

stratification35 (Supplementary Information), and variants with imputation INFO score < 0.8 or 

minor allele frequency (MAF) < 0.01 were excluded. The GWAS were then meta-analyzed using 

an inverse-variance weighted fixed effects model36. The single Chinese cohort had insufficient 

sample size for well-powered trans-ethnic modelling. (Supplementary Figure 7.B). Association 

results were considered only for variants with an effective sample size greater than 70% of the 

full meta-analysis, leaving 8,047,421 variants in the final meta-analysis. A meta-analysis 

restricted to European-ancestry individuals (19,099 cases, 34,194 controls) was also performed 

to facilitate secondary analyses.  

 

In total, 304 genetic variants in 12 loci surpassed the threshold for genome-wide significance 

(P<510-8; Figure 1, Table 1, Supplementary Figure 3.A2 – 3.N2). Results for the European 

ancestry meta-analysis were substantively similar (Supplementary Figure 2). No marker 

demonstrated significant heterogeneity between studies (Supplementary Figures 6 and 7.A) and 

no heterogeneity was observed between the Chinese and European ancestry cohorts 

(Supplementary Figure 7.B). Conditional analysis within each locus did not identify any 

independent secondary signals meeting genome-wide significance (Online Methods, 

Supplementary Table 2).   
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Homogeneity of effects between cohorts 

No genome-wide significant heterogeneity was observed in the ADHD GWAS meta-analysis 

(Supplementary Information). Genetic correlation analysis (Online Methods) provided further 

evidence that effects were consistent across cohort study designs. The estimated genetic 

correlation between the European ancestry PGC samples and the iPSYCH sample from LD score 

regression37 was not significantly less than one (rg = 1.17, SE = 0.20). The correlation between 

European ancestry PGC case/control and trio cohorts estimated with bivariate GREML was 

similarly close to one (rg = 1.02, SE = 0.32).  

 

Polygenic risk scores (PRS)38 were also consistent across target samples. PRS computed in each 

PGC study using iPSYCH as the training sample were consistently higher in ADHD cases as 

compared to controls or pseudo-controls (Supplementary Figure 11). Increasing deciles of PRS 

in the PGC were associated with higher odds ratio (OR) for ADHD (Figure 2). A similar pattern 

was seen in five-fold cross validation in the iPSYCH cohort, with PRS for each subset computed 

from the other four iPSYCH subsets and the PGC samples used as training samples (Online 

Methods; Figure 2). Across iPSYCH subsets, the mean of the maximum variance explained by 

the estimated PRS (Nagelkerke’s R2) was 5.5% (SE = 0.0012). The difference in standardized 

PRS between cases and controls was stable across iPSYCH subsets (OR = 1.56, 95% confidence 

interval [CI]: 1.53 – 1.60; Supplementary Figure 9). These results further support the highly 

polygenic architecture of ADHD and demonstrate that ADHD risk is significantly associated 

with PRS in a dose-dependent manner.  
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Polygenic Architecture of ADHD  

To assess the proportion of phenotypic variance explained by common variants we applied LD 

score regression37 and results from the European ancestry meta-analysis (Online Methods). 

Assuming a population prevalence of 5% for ADHD39, we estimate that the liability-scale SNP 

heritability h2
snp = 0.216 (SE = 0.014, P = 8.1810-54). These estimated polygenic effects account 

for 88% (SE = 0.0335) of observed genome-wide inflation of the test statistics in the meta-

analysis (𝜆 = 1.200); the remaining inflation, which may reflect confounding factors such as 

cryptic relatedness and population stratification, is significant but modest (intercept=1.0362, SE 

= 0.0099, P=2.27  10-4).   

 

To further characterize the patterns of heritability from the genome-wide association data, we 

partitioned SNP heritability by functional annotations as described in Finucane et al.40 using 

partitioned LD Score regression (Online Methods). The analysis revealed significant enrichment 

in the heritability from SNPs located in conserved regions (P = 8.49  10-10; Supplementary 

Figure 12), supporting their biological importance. Enrichment of the SNP heritabilty in cell-

type-specific regulatory elements was evaluated using the cell-type-specific group annotations 

described in Finucane et al40. We observed a significant enrichment of the average per SNP 

heritability for variants located in central nervous system specific regulatory elements 

(enrichment = 2.44, SE = 0.35, P = 5.81  10-5; Supplementary Figures 13 and 14).  

 

Genetic correlation with other traits 

Pairwise genetic correlation with ADHD was estimated for 219 phenotypes using LD score 

regression41,42 (Online Methods, Supplementary eTable 5). Fourty-three phenotypes 
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demonstrated significant genetic overlap with ADHD (P < 2.28  10-4), including major 

depressive disorder43, anorexia nervosa44, educational outcomes45-49, obesity-related 

phenotypes50-55, smoking56-58, reproductive success59, insomnia60, and mortality61 (Figure 3; 

Supplementary Table 11). In most domains the genetic correlation is supported by GWAS of 

multiple related phenotypes. For the positive genetic correlation with major depressive disorder 

(rg = 0.42, P = 7.38  10-38), we also observe a positive correlation with depressive symptoms (rg 

= 0.45, P = 7.00  10-19), neuroticism (rg = 0.26, P= 1.02  10-8) and a negative correlation with 

subjective well-being (rg = -0.28, P = 3.73  10-9). The positive genetic correlations with ever 

smoked (rg = 0.48, P= 4.33  10-16) and with number of cigarettes smoked (rg = 0.45, P = 1.07  

10-5) are reinforced by significant positive correlation with lung cancer (rg = 0.39, P= 6.35  10-

10). Similarly, genetic correlations related to obesity include significant relationships with body 

mass index (BMI; rg = 0.26, P = 1.68  10-15), waist-to-hip ratio (rg = 0.30, P= 1.16  10-17), 

childhood obesity (rg = 0.22, P = 3.29  10-6), HDL cholesterol (rg = -0.22, P = 2.44  10-7), and 

Type 2 Diabetes (rg = 0.18, P = 7.80  10-5). Additionally the negative correlation with years of 

schooling (rg = -0.53, P = 6.02  10-80) is supported by a negative genetic correlation with human 

intelligence (rg = -0.41, P = 7.03  10-26). Finally the genetic correlation with reproduction 

include a negative correlation with age of first birth (rg = -0.612, P = 3.70  10-61) and a positive 

correlation with number of children ever born (rg = 0.42, P = 8.51  10-17). 

 

Biological annotation of significant loci 

For the 12 genome-wide significant loci, Bayesian credible sets were defined to identify the set 

of variants at each locus most likely to include a variant with causal effect (Online Methods, 

Supplementary eTable 1). Biological annotations of the variants in the credible set were then 
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considered to identify functional or regulatory variants, common chromatin marks, and variants 

associated with gene expression (eQTLs) or in regions with gene interactions observed in Hi-C 

data (Online Methods, Supplementary eTable 2). Broadly, the significant loci do not coincide 

with candidate genes proposed to play a role in ADHD62. 

 

Here we highlight genes that are identified in the regions of association (see also Supplementary 

Table 4). The loci on chromosomes 2, 7, and 10 each have credible sets localized to a single gene 

with limited additional annotations. In the chromosome 7 locus, FOXP2 encodes a 

forkhead/winged-helix transcription factor and is known to play an important role in synapse 

formation and neural mechanisms mediating the development of speech and learning63-65. 

Comorbidity of ADHD with specific developmental disorders of language and learning is 

common (7 – 11%)66,67, and poor language skills have been associated with higher 

inattention/hyperactivity symptoms in primary school68. On chromosome 10, the ADHD 

association is located intronic in SORCS3, which encodes a brain-expressed transmembrane 

receptor that is important for neuronal development and plasticity69 and has previously been 

associated with depression43,70 and schizophrenia. 

 

Genome-wide significant loci on chromosomes 12 and 15 have more biological annotations 

supporting the co-localized genes. The credible set on chromosome 12 spans DUSP6, and 

includes an annotated missense variant in the first exon and an insertion near the transcription 

start site, though neither is the lead variant in the locus (Supplementary eTable 3).  DUSP6 

encodes a dual specificity phosphatase71, and may play a role in regulating neurotransmitter 

homeostasis by affecting dopamine levels in the synapses72,73. Regulation of dopamine levels is 
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likely to be relevant to ADHD since widely used ADHD medications have dopaminergic 

targets74,75 that increase the availability of synaptic dopamine. The chromosome 15 locus is 

located in SEMA6D, and the majority of variants in the credible set are strongly associated with 

expression of SEMA6D in fibroblasts76. SEMA6D is active in the brain during embryonic 

development, and may play a role in neuronal wiring77. Furthermore, variants in SEMA6D have 

previously been associated with eduational attainment78.  

 

Credible set annotations at the remaining loci are more diverse (Supplementary eTable 2). The 

most strongly associated locus on chromosome 1 (index variant rs112984125) covers a gene-rich 

250kb region of strong LD.  The index variant is intronic to ST3GAL3, and most SNPs in the 

credible set are strongly associated with expression of ST3GAL3 in whole blood79 

(Supplementary eTable 2). Missense mutations in ST3GAL3 have been shown to cause 

autosomal recessive intellectual disability80. Hi-C and eQTL annotations suggest multiple 

alternative genes however, including PTPRF (Supplementary eTable 3). The locus also includes 

an intergenic variant, rs11210892, that has previously been associated with schizophrenia33.  

 

On chromosome 5, the credible set includes links to LINC00461 and TMEM161B 

(Supplementary eTable 2). The function of LINC00461 is unclear, but the RNA has highly 

localized expression in the brain81 and the genome-wide significant locus overlaps with variants 

in LINC00461 associated with educational attainment78.  Alternatively, a genome-wide 

significant SNP in this locus (rs304132) is located in MEF2C-AS1, of strong interest given 

previous associations between MEF2C and severe intellectual disability,82-84 cerebral 

malformation83, depression70, schizophrenia33 and Alzheimer’s disease85, but the corresponding 



 13 

variant is not supported by the credible set analysis. Credible set annotations for other significant 

loci are similarly cryptic.  

 

Analysis of gene sets  

Competitive gene based tests were performed for FOXP2 target genes, highly constrained genes, 

and for all Gene Ontology terms86 from  MsigDB 6.087 using MAGMA88 (Online Methods). 

Association results for individual genes are consistent with the genome-wide significant loci for 

the GWAS (Supplementary Table 5). Three independent sets of FOXP2 downstream target 

genes89,90 were tested (Online Methods), none of which demonstrated significant association to 

ADHD (Supplementary Table 7). The lack of association may be caused by unknown functions 

of FOXP2 driving ADHD risk, insufficient power to detect relevant downstream genes, or 

because only a small subset of biological functions regulated by FOXP2 are relevant to ADHD 

pathogenesis. 

 

Consistent with the partitioning of heritability, a set of 2,932 genes that are highly constrained 

and show high intolerance to loss of function91 showed significant association with ADHD (𝛽 = 

0.062, P = 2.6  10-4).  We also find little evidence for effects in previously proposed candidate 

genes for ADHD62; of the nine proposed genes only SLC9A9 showed weak association with 

ADHD (P = 3.4  10-4; Supplementary Table 6). None of the Gene Ontology gene sets were 

significant after correcting for multiple testing, although the most associated included interesting 

nominally significant pathways such as “dopamine receptor binding” (P = 0.0010) and 

“Excitatory Synapse” (P = 0.0088; Supplementary eTable 4). 
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Replication of GWAS loci 

 

For replication we evaluated the comparison of the GWAS meta-analysis of ADHD with three 

other independent ADHD-related GWASs: replication of top loci in an Icelandic cohort with 

ADHD status derived from medical records of ICD codes and medication history by deCODE 

(5,085 cases, 131,122 controls), a GWAS of self-reported ADHD status among 23andMe 

research participants (5,857 cases, 70,393 controls) and a meta-analysis of GWAS of childhood 

rating scales of ADHD symptoms performed by the EAGLE consortium (17,666 children < 13 

years of age)30 and QIMR92 (2,798 adolescents). Although the phenotyping and cohort 

ascertainment of the 23andMe and EAGLE/QIMR studies differ from the PGC and iPSYCH 

ADHD meta-analysis (Supplemenatry Information), they have clear relevance to understanding 

how the ADHD GWAS results generalize to closely related phenotypes. 

 

Top loci from the ADHD GWAS showed moderate concordance across the three replication 

studies. Sign concordance between each of the three replication cohorts and the ADHD GWAS 

was significantly greater than would be expected by chance (range 72–82% concordant; P < 

0.0167 = 0.05/3 replication cohorts; Supplementary Table 12) for nominally associated loci from 

the ADHD GWAS (P < 1  10-6), with the highest concordance observed in EAGLE/QIMR. The 

deCODE and 23andMe results also permit direct comparisons of the magnitude of effect sizes 

for the top loci in the ADHD loci (Supplementary Table 13). Regressing effect size estimates 

from each replication cohort on estimates from the ADHD GWAS adjusted for winner’s curse 

yields significantly positive slopes (deCODE slope = 0.664, P = 1.2  10-4; 23andMe slope = 

0.417, P = 1.11  10-3), although these slopes are less than one, suggesting imperfect replication. 

Among the genome-wide significant loci, rs9677504 (SPAG16 locus) in deCODE and 
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rs112984125 (ST3GAL3/PTPRF locus) and rs212178 (LINC01572 locus) in 23andMe are 

noteable outlers with weak replication results (Online Methods, Supplementary Figures 15-16).  

 

The genome-wide data available from 23andMe and EAGLE/QIMR showed similar trends for 

replication. The genetic correlation between EAGLE/QIMR and the ADHD GWAS was 

extremely strong (rg = 0.970, SE = 0.207, P = 2.66  10-6) and not significantly different from 

one (one-sided P = 0.442). Genetic correlation with 23andMe was weaker but still strongly 

positive (rg = 0.653, SE = 0.114, P = 1.11  10-8), although also significantly less than 1 (one-

sided P= 1.17  10-3). To explore this lower correlation we evaluated the genetic correlation 

between 23andMe and traits from LD Hub (http://ldsc.broadinstitute.org/ldhub/)42 to potentially 

identify differences in the profile of genetic correlation compared to the ADHD GWAS (Online 

Methods). This comparison identified striking differences (Supplementary Table 14), most 

notably from the 23andMe GWAS showing little to no genetic correlation with college 

completion (rg = 0.056, compared to rg = -0.54 for the primary ADHD GWAS; approximate P = 

1.1  10-9 for difference) and other education-related phenotypes. Genetic correlations with 

obesity-related phenotypes were similarly smaller for the 23andMe cohort. The one domain 

where 23andMe exhibited a trend toward stronger genetic correlations was schizophrenia (rg = 

0.27, vs. rg = 0.12 in ADHD, P = 0.053) and bipolar disorder (rg = 0.0 29, vs. rg = 0.095 in 

ADHD, P = 0.09), though these trends are not significant with the approximated test of the 

difference in genetic correlation. 

 

Finally, we meta-analyzed the ADHD GWAS with each replication cohort. For EAGLE/QIMR, 

we developed a novel model to meta-analyze the GWAS of the continuous measure of ADHD 

http://ldsc.broadinstitute.org/ldhub/


 16 

with the clinical diagnosis in the ADHD GWAS. In brief, we perform a Z-score based meta-

analysis using a weighting scheme derived from the SNP heritability and effective sample size 

for each phenotype that fully accounts for the differences in measurement scale (detailed 

description in Supplementary Information). This calibration based on the genome-wide estimate 

of heritability prevents joint meta-analysis of all replication cohorts since genome-wide data is 

not available for the deCODE study. 

 

Meta-analyses of the ADHD GWAS with each replication identified 10 genome-wide significant 

loci (P < 5  10-8, without multiple testing correction) in meta-analysis with deCODE, 10 

significant loci with 23andMe, and 15 significant loci with EAGLE/QIMR (Supplementary 

eTable 6, Supplementary Figures 17 and 20). Of the 12 significant loci from the primary ADHD 

GWAS, 4 were significant in all three of these replication meta-analyses: index variants 

rs11420276 (ST3GAL3/PTPRF), rs5886709 (FOXP2), rs11591402 (SORCS3), and rs1427829 

(intergenic). The remaining loci were all significant in at least one of the replication meta-

analyses. In addition, ten novel loci reach genome-wide significance in the replication meta-

analyses, of which three loci are significant in two of these analyses (Supplementary eTable 6): 

index variants rs1592757 / rs30266 (Refseq LOC105379109), rs28452470 / rs1443749 

(CADPS2), and rs2243638 / rs9574218 (RNF219-AS1). The CADPS2 locus has recently been 

identified in autism spectrum disorder as a novel locus shared with educational attainment93. 

 

Meta-analysis with the 23andMe cohort also found genome-wide significant heterogeneity at the 

lead chromosome one locus from the ADHD GWAS meta-analysis (rs12410155: I2 = 97.2, P = 

2.29  10-9; Supplementary Figures 18-19). This heterogeneity is consistent with the moderate 
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sign concordance, effect size replication, and genetic correlation of the 23andMe cohort with the 

ADHD GWAS. Notably, the lead chromosome 1 locus in the ADHD GWAS overlaps a reported 

association with educational attainment78, suggesting this heterogeneity is consistent with the 

much weaker genetic correlation between the 23andMe results and published GWAS of 

education-related outcomes. No genome-wide significant heterogeneity was observed in the 

replication meta-analyses with deCODE or EAGLE/QIMR (Supplementary Figures 21-22, 

Supplementary eTable 6).  

 

Discussion 

GWAS meta-analysis of ADHD revealed the first genome-wide significant risk loci, and 

indicates an important role for common variants in the polygenic architecture of ADHD. Several 

of the loci are located in or near genes that implicate neurodevelopmental processes that are 

likely to be relevant to ADHD, including FOXP2, SORCS3, and DUSP6. Future work may focus 

on refining the source of the strong association in each locus, especially the lead locus on 

chromosome 1 which is complicated by broad LD and substantial heterogeneity between ADHD 

meta-analysis and analysis of self-reported ADHD status in 23andMe. 

 

The 12 significant loci are compelling, but only capture a tiny fraction of common variant risk 

for ADHD. The odds ratios for the risk increasing allele at the index SNPs in the 12 significant 

loci are modest, ranging from 1.077 to 1.198 (Table 1).  This is within the range of effect sizes 

for common genetic variants that has been observed for other highly polygenic psychiatric 

disorders e.g. schizophrenia33. A considerably larger proportion of the heritability of ADHD can 

be explained by all common variants (h2
snp

 = 0.22, SE = 0.01).  This is consistent with previous 
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estimates of h2
snp for ADHD in smaller studies (h2

snp: 0.1 - 0.28)23,24, and also comparable to SNP 

heritability estimates for schizophrenia (h2
snp 0.23 - 0.26)23,24. As would be hypothesized for a 

psychiatric disorder, these effects are enriched in conserved regions and regions containing 

enhancers and promoters of expression in the central nervous system tissues, consistent with 

previous observations in schizophrenia and bipolar disorder40. On the other hand, we do not 

observe substantial effects in most previously reported candidate genes for ADHD62. 

 

Along with polygenicity, selection and evolutionary pressures may be an important feature of the 

architecture of ADHD genetics. We observe that ADHD risk variants are strongly enriched in 

genomic regions conserved in mammals94, and constrained genes likely to be intolerant of loss-

of-function mutations91 are associated with ADHD. We also find that common variant risk for 

ADHD is genetically correlated with having children younger and having more children, in line 

with epidemiological findings of increased risky sexual behaviour95-97 and increased risk of 

ADHD for children born to young parents98-100. Given the phenotypic101,102 and genetic103 

correlation of ADHD with reduced educational attainment, positive selective pressure on the 

genetics of ADHD would be consistent with recent work suggesting that variants associated with 

educational attainment are under negative selection in Iceland104. Future studies of fecundity and 

the role of rare and de novo variants in ADHD may provide more insight on selective pressures 

in ADHD-associated loci.  

 

The observed genetic correlations with educational outcomes and other phenotypes suggest a 

strong genetic component to the epidemiological correlates of ADHD. The significant positive 

genetic correlation of ADHD with major depressive disorder and depressive symptoms supports 
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previous findings suggesting a positive genetic overlap between those phenotypes24,42, as well as 

the broader genetic overlap of psychiatric disorders23,24. Positive genetic correlations between 

ADHD and health risk behaviors such as smoking and obesity are consistent with the observed 

increase in those behaviors among individuals with ADHD105-108 and are indicative of a shared 

genetic basis for these traits. We also observe a positive genetic correlation of ADHD with 

insomnia, consistent with reports of sleep disturbances in ADHD109, but this relationship does 

not appear to generalize to other sleep-related phenotypes.  

 

These genetic correlations may not generalize to all settings. We observe much weaker genetic 

correlation of the 23andMe ADHD results with educational attainment, with only partial genetic 

correlation between 23andMe and the current ADHD GWAS, including significant heterogeneity 

in the lead chromosome 1 locus. The pattern of replication for the top loci in the deCODE study 

is stronger but still mixed. These differences may reflect differenes in phenotyping (e.g. self-

report vs. medical records), exclusion of individuals with comorbid psychiatric disorders 

(deCODE), study population (e.g. higher average education and socio-economic status among 

23andMe research participants possibly under-representing the proportion of individuals with 

ADHD with poor educational outcomes in the general population), or other study factors that 

should be a focus of future work. 

 

On the other hand, the replication results from the EAGLE30/QIMR92 are much stronger and 

support the hypothesis that ADHD is the extreme expression of one or more heritable 

quantitative traits110. We observe strong concordance between the GWAS of ADHD and the 

previous GWASs of ADHD-related traits in the population, both in terms of genome-wide 
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genetic correlation and concordance at individual loci. Polygenic risk for ADHD has previously 

been associated with inattentive and hyperactive/impulsive trait variation below clinical 

thresholds in the population29. Shared genetic risk with health risk behaviors may similarly be 

hypothesized to reflect an impaired ability to self-regulate and inhibit impulsive behavior111,112. 

The observed negative correlation between ADHD and anorexia nervosa may also be related to 

these behavioral factors.  

 

In summary, we report 12 independent genome-wide significant loci associated with ADHD in 

GWAS meta-analysis of 55,374 individuals from 12 study cohorts. The GWAS meta-analysis 

implicates FOXP2 and other biologically informative genes as well as constrained regions of the 

genome as important contributors to the etiology of ADHD. The results also highlight strong 

overlap with the genetics of ADHD-related traits and health risk behaviors in the population, 

encouraging a dimensional view of ADHD as the extreme end of a continuum of symptoms. 

 

Online Methods 

 

GWAS meta-analysis 

Quality control, imputation and primary association analyses were done using the bioinformatics 

pipeline Ricopili (available at https://github.com/Nealelab/ricopili), developed by the Psychiatric 

Genomics Consortium (PGC)33. In order to avoid potential study effects the 11 PGC samples and 

the 23 genotyping batches within iPSYCH were each processed separately unless otherwise 

stated (Supplementary Information). 

https://github.com/Nealelab/ricopili


 21 

Stringent quality control was applied to each cohort following standard procedures for GWAS, 

including filters for call rate, Hardy-Weinberg equilibrium, and heterozygosity rates 

(Supplementary Information). Each cohort was then phased and imputed using the 1000 

Genomes Project phase 3 (1KGP3)34,113 imputation reference panel using SHAPEIT114 and 

IMPUTE2115, respectively. For trio cohorts, pseudocontrols were defined from phased 

haplotypes prior to imputation. 

Cryptic relatedness and population structure were evaluated using a set of high quality markers 

pruned for linkage disequilibrium (LD). Genetic relatedness was estimated using PLINK 

v1.9116,117 to identify first and second-degree relatives (𝜋̂ > 0.2) and one individual was excluded 

from each related pair. Genetic outliers were identified for exclusion based on principal 

component analyses using EIGENSOFT35,118. This was done separately for each of the PGC 

cohorts and on a merged set of genotypes for the iPSYCH cohort (Supplementary Information). 

Across studies, a total of 20,183 cases and 35,191 controls remained for analysis after QC. 

Genome-wide association analyses for the 11 PGC samples and the 23 waves in iPSYCH were 

performed using logistic regression model with the imputed marker dosages in PLINK 

v1.9116,117. Principal components were included as covariates to control for population 

stratification35,118, along with relevant study-specific covariates where applicable (Supplementary 

Information, Supplementary Table 1). Subsequently the results were meta-analysed using an 

inverse-variance weighted fixed effects model, implemented in METAL (version 2011-03-25)36. 

Variants were filtered and included if imputation quality (INFO score) was > 0.8 and MAF > 

0.01. Only markers supported by an effective sample size Neff = 4/(1/Ncases + 1/Ncontrols)
119 greater 

than 70% were included. After filtering, the meta-analysis included results for 8,047,421 

markers.   
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Conditional analysis 

Twelve independent genome-wide significant loci were identified by LD clumping and merging 

loci within 400 kb (Supplementary Information). In two of these loci a second index variant 

persisted after LD clumping. The two putative secondary signals were evaluated by considering 

analysis conditional on the lead index variant in each locus. In each cohort, logistic regression 

was performed with the imputed genotype dosage for the lead index variant included as a 

covariate. All covariates from the primary GWAS (e.g. principal components) were also 

included. The conditional association results were then combined in an inverse-variance 

weighted meta-analysis. 

 

Genetic correlations between ADHD samples 

Genetic correlation between the European-ancestry PGC and iPSYCH GWAS results was 

calculated using LD Score regression37. The regression was performed using pre-computed LD 

scores for HapMap3 SNPs calculated based on 378 European-ancestry individuals from the 1000 

Genomes Project (available on https://github.com/bulik/ldsc). Only results for markers with an 

imputation INFO score > 0.90 were included in the analysis. In addition, a bivariate GREML 

analysis was conducted using GCTA120 in order to estimate the genetic correlation between PGC 

case/control and trio study designs. 

 

Polygenic Risk Scores for ADHD 

The iPSYCH sample were split into five groups, and subsequently five leave-one-out association 

analyses were conducted, using four out of five groups and the PGC samples as training 

https://github.com/bulik/ldsc
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datasets38. PRS were estimated for each target sample using variants passing a range of 

association P-value thresholds in the training samples. PRS were calculated by multiplying the 

natural log of the odds ratio of each variant by the allele-dosage (imputation probability) and 

whole-genome polygenic risk scores were obtained by summing values over variants for each 

individual.  

For each of the five groups of target samples, PRS were normalized and the significance of the 

case-control score difference was tested by standard logistic regression including principal 

components. For each target group and for each P-value threshold the proportion of variance 

explained (i.e. Nagelkerke’s R2) was estimated by comparing the regression with PRS to a 

reduced model with covariates only. The OR for ADHD within each PRS decile group was 

estimated based on the normalized score across groups (using the P-value threshold with the 

highest Nagelkerke’s R2 within each target group) (Figure 3). OR was also estimated using 

logistic regression on the continuous scores for each target group separately and an OR based on 

all samples using the normalized PRS score across all groups (Supplementary Figure 9). 

Additionally PRS were evaluated in the PGC samples using the iPSYCH sample as training 

sample, following the approach described above (Supplementary Information). 

 

SNP heritability and intercept evaluation 

LD score regression37 was used to evaluated the relative contribution of polygenic effects and 

confounding factors, such as cryptic relatedness and population stratification, to deviation from 

the null in the genome-wide distribution of GWAS 𝜒2 statistics. Analysis was performed using 

pre-computed LD scores from European-ancestry samples in the 1000 Genomes Project 

(available on https://github.com/bulik/ldsc) and summary statistics for the European-ancestry 

https://github.com/bulik/ldsc
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ADHD GWAS to ensure matching of population LD structure. The influence of confounding 

factors was tested by comparing the estimated intercept of the LD score regression to one, it’s 

expected value under the null hypothesis of no confounding from e.g. population stratification. 

The ratio between this deviation and the deviation of the mean 𝜒2 from one (i.e. it’s expected 

value under the null hypothesis of no association) was used to estimate the proportion of 

inflation in 𝜒2 attributable to confounding as opposed to true polygenic effects (ratio = 

(intercept-1)/(mean 𝜒2-1)).  SNP heritability was estimated based on the slope of the LD score 

regression, with heritability on the liability scale calculated assuming a 5% population 

prevalence of ADHD39.  

 

Partitioning of the heritability 

SNP heritability was partitioned by functional category and tissue association using LD score 

regression40. Partitioning was performed for 53 overlapping functional categories, as well as 220 

cell-type-specific annotations grouped into 10 cell-type groups, as described in Finucane et al. 40. 

For both sets of annotations we used previously computed LD scores and allele frequencies from 

European ancestry samples in the 1000 Genomes Project (available on 

https://data.broadinstitute.org/alkesgroup/LDSCORE/).  

Additionally we expanded the cell-type specific heritability analysis by including an annotation 

based on information about H3K4Me1 imputed gapped peaks excluding the broad MHC-region 

(chr6:25-35MB), generated by the Roadmap Epigenomics Mapping Consortium121,122 

(Supplementary Information). The analyses were restricted to the European GWAS meta-

analysis results to ensure matching of population LD structure. Results for each functional 

category were evaluated based on marginal enrichment, defined as the proportion of SNP 

https://data.broadinstitute.org/alkesgroup/LDSCORE/
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heritability explained by SNPs in the annotation divided by the proportion of genome-wide SNPs 

in the annotation40. For each cell-type group and each H3K4Me1 cell-type annotations, the 

contribution to SNP heritability was tested conditional on the baseline model containing the 53 

functional categories.   

 

Genetic correlations of ADHD with other traits 

The genetic correlations of ADHD with other phenotypes were evaluated using LD Score 

regression42. For a given pair of traits, LD score regession estimates the expected population 

correlation between the best possible linear SNP-based predictor for each trait, restricting to 

common SNPs. Such correlation of genetic risk may reflect a combination of colocalization, 

pleiotropy, shared biological mechanisms, and causal relationships between traits.   Correlations 

were tested for 211 phenotypes with publically available GWAS summary statistics using LD 

Hub41 (Supplementary Information). Additonally, we analysed on our local computer cluster, the 

genetic correlation of ADHD with eight phenotypes: human intelligence103, four phenotypes 

related to education and cognition analyzed in samples from the UK_Biobank49 

(college/university degree, verbal–numerical reasoning, memory and reaction time), insomnia60, 

anorexia nervosa44, and major depressive disorder43. The genetic correlation with major 

depressive disorder was tested using GWAS results from an updated analysis of 130,664 cases 

with major depressive disorder and 330,470 controls from the Psychiatric Genomics Consortium. 

As in the previous LD score regression analyses, this estimation was based on summary statistics 

from the European GWAS meta-analysis, and significant correlations reported are for traits 

analysed using individuals with European ancestry.  
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Credible set analysis 

We defined a credible set of variants in each locus using the method described by Maller et al.123 

(Supplementary Information), implemented by a freely available R script 

(https://github.com/hailianghuang/FM-summary). Under the assumption that (a) there is one 

causal variant in each locus, and (b) the causal variant is observed in the genotype data, the 

credible set can be considered to have a 99% probability of containing the causal variant. For 

each the 12 genome-wide significant loci, variants within 1MB and in LD with correlation  r2 > 

0.4  to the index variant were considered for inclusion in the credible set analysis. The credible 

set analysis was done using the European GWAS meta-analysis to ensure consistent LD structure 

in the analyzed cohorts.  

 

Biological annotation of variants in credible set 

The variants in the credible set for each locus, were annotated based on external reference data in 

order to evaluate potential functional consequences. In particular, we identify: (a) Gene and 

regulatory consequences annotated by Variant Effect Predictor (VEP) using Ensembl with 

genome build GRCh37124. We exclude upstream and downstream consequences, and 

consequences for transcripts that lack a HGNC gene symbol (e.g. vega genes). (b) Variants 

within 2kb upstream of the transcription start site (TSS) of at least one gene isoform based on 

Gencode v19125. (c) Variants annotated as interacting with a given gene in Hi-C data from 

samples of developing human cerebral cortex during neurogenesis and migration126. Annotations 

are considered for both the germinal zone (GZ), primarily consisting of actively dividing neural 

progenitors, and the cortical and subcortical plate (CP), primarily consisting of post-mitotic 

neurons. (d) Variants identified as eQTLs based on gene expression in GTEx127 or BIOS79. 

https://github.com/hailianghuang/FM-summary
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Expression quantitative trait loci were annotated using FUMA (http://fuma.ctglab.nl/). We 

restricted to eQTL associations with false discovery fate (FDR) < 1e-3 within each dataset. (e) 

Chromatin states of each variant based on the 15-state chromHMM analysis of epigenomics data 

from Roadmap128. The 15 states summarize to annotations of active chromatin marks (i.e. Active 

TSS, Flanking Active TSS, Flanking Transcription, Strong Transcription, Weak Transcription, 

Genic Enhancer, Enhancer, or Zinc Finger [ZNF] gene), repressed chromatin marks 

(Heterochromatin, Bivalent TSS, Flanking Bivalent TSS, Bivalent Enhancer, Repressed 

Polycomb, or Weak Repressed Polycomb), or quiescent. The most common chromatin state 

across 127 tissue/cell types was annotated using FUMA (http://fuma.ctglab.nl/). We also 

evalauted the annotated chromatin state from fetal brain.   

 

Gene-set analyses 

Gene-based association with ADHD was estimated with MAGMA 1.0588 using the summary 

statistics from the European GWAS meta-analysis (Ncases = 19,099, Ncontrols = 34,194; 

Supplementary Information, Supplementary Information Table 1).  Association was tested using 

the SNP-wise mean model, in which the sum of -log(SNP P-value) for SNPs located within the 

transcribed region (defined using NCBI 37.3 gene definitions) was used as the test statistic. 

MAGMA accounts for gene-size, number of SNPs in a gene and LD between markers when 

estimating gene-based P-values. LD correction was based on estimates from the 1000 genome 

phase 3 European ancestry samples34.  

The generated gene-based P-values were used to analyze sets of genes in order to test for 

enrichment of association signals in genes belonging to specific biological pathways or 

processes. In the analysis only genes on autosomes, and genes located outside the broad MHC 
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region (hg19:chr6:25-35M) were included. We used the gene names and locations and the 

European genotype reference panel provided with MAGMA. For gene sets we used sets with 10-

1000 genes from the Gene Ontology sets86 currated from  MsigDB 6.087.  

Targeted FOXP2 downstream target gene sets were analysed for association with ADHD. Three 

sets were examined: 1) Putative target genes of Foxp2 that were enriched in wild type compared 

to control Foxp2 knockout mouse brains in ChIP-chip experiments (219 genes), 2) Genes 

showing differential expression in wild type compared to Foxp2 knockout mouse brains (243 

genes), and 3) FOXP2 target genes that were enriched in either or both basal ganglia (BG) and 

inferior frontal cortex (IFC) from human fetal brain samples in ChIP-chip experiments (258 

genes). Curated short lists of high-confidence genes were obtained from Vernes et al.89 and 

Spiteri et al90. 

A set of evolutionarily highly constrained genes were also analysed. The set of highly 

constrained genes was defined using a posterior probability of being loss-of-function intolerant 

(pLI) based on the observed and expected counts of protein-truncating variants (PTV) within 

each gene in a large study of over 60,000 exomes from the Exome Aggregation Consortium 

(ExAC)91. Genes with pLI ≥0.9 were selected as the set of highly constrained genes (2932 

genes).  

 

Replication of GWAS loci 

To replicate the results of the ADHD GWAS meta-analysis we compared the results to analyses 

from deCODE, 23andMe, and EAGLE/QIMR. We evaluated evidence for replication based on: 

(a) sign tests of concordance between the ADHD GWAS meta-analysis and each replication 

cohort; (b) comparison of bias-corrected effect sizes between the ADHD GWAS and the 
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deCODE and 23andMe replication cohorts; (c) genetic correlation between the ADHD GWAS 

and the 23andMe and EAGLE/QIMR replication cohorts; (d) meta-analysis of the ADHD 

GWAS meta-analysis results with the results from each replication cohort; and (e) tests of 

heterogeneity between the ADHD GWAS and each replication cohorts. 

For the sign test, we first identified the overlapping SNPs present in the ADHD GWAS and each 

of the three replication analyses (i.e. deCODE, 23andMe, and EAGLE/QIMR). For each 

replication cohort intersecting SNPs were then clumped for LD (r2 > 0.05 within 1 Mb) for all 

variants with P < 1  10-4 in the ADHD GWAS (or P < 1  10-5 for the deCODE replication) 

using 1000 Genomes Phase 3 data on European ancestry populations. After clumping, sign tests 

were performed to test the proportion of loci with a concordant direction of effect in the 

replication cohort () using a one sample test of the proportion with Yates’ continuity 

correction129 against a null hypothesis of  = 0.50 (i.e. the signs are concordant between the two 

analyses by chance) in R130. This test was evaluated separately for concordance in deCODE, 

23andMe, and EAGLE/QIMR for loci passing P-value thresholds of P < 5  10-8 (i.e. genome-

wide significant loci), P < 1  10-7, P < 1  10-6, P < 1  10-5, and P < 1  10-4 in the ADHD 

GWAS meta-analysis (Supplementary Information).  

In addition to testing concordance for the direction of effect, we also evaluate replication for the 

magnitude of the effect sizes. Specifically, for each of deCODE and 23andMe we regressed the 

effect size in the replication cohort (i.e. the log odds ratio) on the estimated effect size from the 

ADHD GWAS after adjustment for winner’s curse for loci with P < 1e-6. Winner’s curse 

correction is perfomed by computing posterior mean estimates of marginal SNP effects 𝛽𝑗 after 

fitting a spike-and-alab distribution  

𝛽𝑗~ {
0

𝑁(0, 𝜏2)
with probability 𝜋

otherwise
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by maximum likelihood as described by Okbay et al.78 (Supplementary Information). For the 

regression of effect sizes we oriented all variants in the direction of the risk increasing allele 

estimated from the ADHD GWAS, constrained the intercept to zero, and weighted the variants 

proportional to the inverse of their squared standard error from the ADHD GWAS. A regression 

slope of one indicates “ideal” replication of all loci in the regression, whereas a slope of zero 

indicates no replication. 

Genetic correlation of the ADHD GWAS with the 23andMe and EAGLE/QIMR results was 

computed using LD score regression37 with pre-computed European ancestry LD scores 

following the same procedure as described above for other genetic correlation analyses. Genetic 

correlation could not be computed for deCODE since results were only available for top loci 

from the ADHD GWAS. To further explore the moderate genetic correlation between the 

23andMe results and the ADHD GWAS we also evaluated the genetic correlation between 

23andMe and traits from LD Hub (http://ldsc.broadinstitute.org/ldhub/)42. To evaluate the 

magnitude of the observed differences in rg we consider both the absolute difference (i.e. 

|𝑟𝑔,𝐴𝐷𝐻𝐷 − 𝑟𝑔,23𝑎𝑛𝑑𝑀𝑒|) and the test of an approximate Z score for this difference (Supplementary 

Information): 

𝑍 =
𝑟𝑔,𝐴𝐷𝐻𝐷 − 𝑟𝑔,23𝑎𝑛𝑑𝑀𝑒

√𝑆𝐸𝐴𝐷𝐻𝐷
2 + 𝑆𝐸23𝑎𝑛𝑑𝑀𝑒

2
 

We do not expect this to be an ideal formal test for the difference between two genetic 

correlations, and therefore emphasize caution in interpreting the precise results. Nevertheless, it 

does offer a useful benchmark for evaluating the magnitude of the difference between the rg 

estimates in the context of the uncertainty in those values. 

Finally, we meta-analyzed the ADHD GWAS with the results from each replication cohort. For 

deCODE and 23andMe inverse variance-weighted meta-analyses were performed. For meta-

http://ldsc.broadinstitute.org/ldhub/
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analysis with the EAGLE/QIMR GWAS of ADHD-related behaviors in childhood population 

samples we used a modified sample size-based weighting method. Modified sample size-based 

weights were derived to accounts for the respective heritabilities, genetic correlation, and 

measurement scale of the GWASs (Supplementary Information). To summarize, given z-scores 

Z1j and Z2j resulting from GWAS of SNP j in a dichotomous phenotype (e.g. ADHD) with 

sample size NI and a continuous phenotype (e.g. ADHD-related traits) with sample size N2, 

respectively, we calculate 

𝑍𝑗,𝑚𝑒𝑡𝑎 =
√𝑁̃1𝑗𝑍1𝑗 + √𝑁̃2𝑗𝑍̃2𝑗

√𝑁̃1𝑗 + 𝑁̃2𝑗

 

where 

𝑍̃2𝑗 = 𝑠𝑖𝑔𝑛(𝑟𝑔)  
𝑍2𝑗

√1 + (1 − 𝑟𝑔
2)𝑁2𝑗ℎ2

2 𝑙𝑗 𝑀⁄

 

𝑁̃1𝑗 = 𝑁1𝑗

𝑃(1 − 𝑃) 𝜙(𝛷−1[𝐾])2

[𝐾(1 − 𝐾)]2
 

𝑁̃2𝑗 = 𝑁2𝑗

𝑟𝑔
2ℎ2

2 ℎ1
2⁄

1 + (1 − 𝑟𝑔
2) 𝑁2𝑗ℎ2

2𝑙𝑗 𝑀⁄
 

 

The adjusted sample sizes 𝑁1̃ and 𝑁2̃ reflect differences in power between the studies due to 

measurement scale and relative heritability that is not captured by sample size. The calculation of 

𝑍2̃ reduces the contribution of the continuous phenotype’s GWAS to the meta-analysis based on 

imperfect genetic correlation with the dichotomous phenotype of interest (i.e. ADHD). The 

adjustments are computed based on the sample prevalence (P) and population prevalence (K) of 

the dichotomous phenotype, the estimated liability scale SNP heritability of the two phenotypes 
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(ℎ1
2 and ℎ2

2), and the genetic correlation (rg) between the two phenotypes, as well as the average 

SNP LD score (lj) and the number of SNPs (M). Heritability and genetic correlation values to 

compute these weights are computed using LD score regression. This meta-analysis weighting 

scheme is consistent with weights alternatively derived based on modelling the joint distribution 

of marginal GWAS beta across traits131. 

To test heterogeneity with each replication cohort, we considered Cochran’s Q test of 

heterogeneity in the meta-analyses. Specifically, we evaluated the one degree of freedom test for 

heterogeneity between the ADHD GWAS meta-analysis and the replication cohort.  

 

Availability of results 

The PGC’s policy is to make genome-wide summary results public. Summary statistics with the 

results from the ADHD GWAs meta-analysis of iPSYCH and the PGC samples are available on 

the PGC website (https://www.med.unc.edu/pgc/results-and-downloads). GWA summary 

statistics with results from the GWAS of ADHD symptom scores analyzed in the EAGLE 

sample can be accessed at the PGC website (see link above). Summary statistics for the 23andMe 

dataset can be obtained by qualified researchers under an agreement with 23andMe that protects 

the privacy of the 23andMe participants.  

  

Availability of genotype data  

For access to genotypes from the PGC cohorts and the iPSYCH sample interested researchers 

should contact the lead PIs (iPSYCH: lead PI Anders D. Børglum; PGC: Benjamin Neale and 

Stephen Faraone). 

https://www.med.unc.edu/pgc/results-and-downloads
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URLs 

LD-Hub, http://ldsc.broadinstitute.org  

LD score regression, https://github.com/bulik/ldsc 

Pre-computed European LD scores, https://data.broadinstitute.org/alkesgroup/LDSCORE/ 

PGC Ricopili GWA pipeline, https://github.com/Nealelab/ricopili  

Credible set analysis, https://github.com/hailianghuang/FM-summary 

FUMA, http://fuma.ctglab.nl  

http://ldsc.broadinstitute.org/
https://github.com/bulik/ldsc
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://github.com/Nealelab/ricopili
https://github.com/hailianghuang/FM-summary
http://fuma.ctglab.nl/
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Figure legends 

 

Figure 1. Manhattan plot of the results from the GWAS meta-analysis of ADHD. The index 

variants in the 12 genome-wide significant loci are highlighted as a green diamond. Index 

variants located with a distance less than 400kb are considered as one locus. 

 

Figure 2. Odds Ratio (OR) by PRS within each decile estimated for individuals in the PGC 

samples (red dots) and in the iPSYCH sample (blue dots). Error bars indicate 95% confidence 

limits. 

 

Figure 3. Significant genetic correlations between ADHD and other traits reveal overlap of 

genetic risk factors for ADHD across several groups of traits (grouping indicated by a horizontal 

line): educational, psychiatric/personality, weight (and possible weight related traits), smoking 

behaviour/smoking-related cancer, reproductive traits and parental longevity. In total 220 traits 

were tested. Two significant educational phenotypes are omitted due to substantial overlap with 

years of schooling. Error bars indicate 95% confidence limits. 
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Figure 2. 
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Table 1. Results for the genome-wide significant index variants in the 12 loci associated with ADHD identified in the GWAS meta-

analysis. Index variants are LD independent (r2 < 0.1), and are merged into one locus when located with a distance less than 400kb. The 

location (chromosome [Chr] and base position [BP]), alleles (A1 and A2), allele frequency (A1 Freq), odds ratio (OR) of the effect with 

respect to A1, and association P-value of the index variant are given, along with genes within 50kb of the credible set for the locus. 

 

 
 

  
 

 
 

  
  

Locus Chr BP Index Variant Genes A1 A2 A1 Freq OR P-value  

1 1 44184192 rs11420276   ST3GAL3, KDM4A, 

KDM4A-AS1, PTPRF, 

SLC6A9, ARTN, DPH2, 

ATP6V0B, B4GALT2, 

CCDC24, IPO13 

G GT 0.696 1.113 2.14 x 10-13  

2 1 96602440 rs1222063  Intergenic A G 0.328 1.101 3.07 x 10-8  

3 2 215181889 rs9677504  SPAG16 A G 0.109 1.124 1.39 x 10-8 

4 3 20669071 rs4858241  Intergenic T G 0.622 1.082 1.74 x 10-8 

5 4 31151456 rs28411770  PCDH7, LINC02497 T C 0.651 1.09 1.15 x 10-8  

6 5 87854395 rs4916723  LINC00461, MIR9-2, 

LINC02060, 

TMEM161B-AS1 

A C 0.573 0.926 1.58 x 10-8 

7 7 114086133 rs5886709  FOXP2, MIR3666 G GTC 0.463 1.079 1.66 x 10-8  

8 8 34352610 rs74760947  LINC01288 A G 0.957 0.835 1.35 x 10-8 

9 10 106747354 rs11591402  SORCS3 A T 0.224 0.911 1.34 x 10-8 

10 12 89760744 rs1427829  DUSP6, POC1B A G 0.434 1.083 1.82 x 10-9 

11 15 47754018 rs281324  SEMA6D T C 0.531 0.928 2.68 x 10-8 

12 16 72578131 rs212178  LINC01572 A G 0.883 0.891 7.68 x 10-9 
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Extended Data 

 

eTable 1. Bayesian credible sets of variants for each of the 12 genome-wide significant loci 

 

eTable 2. Summary of the observed annotations for the credible set at each genome-wide significant 

locus 

 

eTable 3. Variant-level annotations for the credible set at each genome-wide significant locus 

 

eTable 4. Results of gene set analyses using sets from Gene Ontology 

 

eTable 5. Extended results from genetic correlation analyses of ADHD and 219 phenotypes 

 

eTable 6. Genome-wide significant index variants in meta-analyses of iPSYCH, PGC, deCODE, 

23andMe and EAGLE 
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Supplementary Methods and Results 

Detailed description of individual samples 

iPSYCH, Denmark 

A brief overview of the included samples can be found in Supplementary Table 1. 

Since 1981 dried blood spot samples (Guthrie cards) from all newborn babies in Denmark have been 

stored in the Danish Newborn Screening Biobank (DNSB) at Statens Serum Institute (SSI). Samples 

from this nationwide biobank can be linked with the comprehensive Danish register system through 

the unique personal identification number (CPR-number), which is assigned to all live-born babies in 

Denmark. The CPR-number is stored in the Danish Civil Registration System (DCRS)1 and is used 

in all contacts with the public sector, including all hospital contacts. 

The iPSYCH-ADHD sample is a nationwide population based case-cohort sample selected from a 

baseline birth cohort comprising all singletons born in Denmark between May 1, 1981, and December 

31, 2005, who were residents in Denmark on their first birthday and who have a known mother (N = 

1,472,762). Cases were diagnosed by psychiatrists at in- or out-patient clinics, predominantly the 

latter according to ICD10 (F90.0 diagnosis code), identified using the Danish Psychiatric Central 

Research Register2 (DPCRR). The DPCRR includes data on all people admitted to a psychiatric 

hospital for assessment, treatment, or both in Denmark since 1969 as well as people who attended 

psychiatric outpatient services since 1995. Diagnoses were given in 2013 or earlier for individuals at 

least 1 year old. Individuals with a diagnosis of moderate to severe mental retardation (ICD10 code 

F71-F79) were excluded. Controls were randomly selected from the same nationwide birth cohort 

and not diagnosed with ADHD (F90.0) or moderate-severe mental retardation (F71-F79). For both 

cases and controls all other comorbid diagnoses, except moderate-severe mental retardation, were 

allowed. 
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DNA was extracted from dried blood spot samples and whole genome amplified in triplicates as 

described previously3,4. Genotyping was performed at the Broad Institute of Harvard and MIT 

(Cambridge, MA, USA) using Illumina’s Beadarrays (PsychChip; Illumina, CA, San Diego, USA) 

according to the manufacturer’s protocols. Genotypes were a result of merging callsets from three 

different calling algorithms (GenCall, Birdseed and Zcall). GenCall5 and Birdseed6 was used to call 

genotypes with minor allele frequency (MAF) > 0.01 and zCall7 was used to call genotypes with 

MAF < 0.01. The merging was done after pre-QC on individual call sets. 

Processing of DNA, genotyping and genotype calling as well as imputing of genotypes of the 

iPSYCH-ADHD sample were carried out as a part of the genotyping of the full iPSYCH sample, 

which in total consists of around 79,492 individuals, including around 54,249 cases diagnosed with 

at least one of six mental disorders (schizophrenia, bipolar disorder, depression, ADHD, anorexia or 

autism spectrum disorder) and 26,248 randomly selected population controls (25,243 did not have 

any of the six psychiatric disorders investigated in iPSYCH). For the study of ADHD individuals 

with an ADHD diagnosis were exclude among the controls (N = 413). The data processing was done 

in 23 waves of approximately 3,500 individuals each. In order to control for potential batch effects, 

we included “wave” as a covariate in the regression models of all downstream analyses when relevant. 

Following genotyping all data processing, quality control, and downstream analyses were performed 

at secured servers in Denmark at the GenomeDK high performance-computing cluster 

(http://genome.au.dk). Overview of number samples in the iPSYCH study in the various steps, from 

identification in the registers to high quality genotypes included in the meta-analysis, can be found in 

Supplementary Figure 1. 

The study was approved by the Danish Data Protection Agency and the Scientific Ethics Committee 

in Denmark. 

 

http://genome.au.dk/
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Samples from the Psychiatric Genomics Consortium (PGC) 

Parent-offspring trio samples 

CHOP, USA 

The CHOP (Children’s Hospital of Philadelphia) ADHD trio sample (2,064 trios) were recruited from 

pediatric and behavioural health clinics in the Philadelphia area8 and included children aged 6–18 

years from families of European with an ADHD diagnosis following the K-SADS (Schedule for 

Affective Disorders and Schizophrenia for School-Age Children; Epidemiologic Version) interview. 

Exclusion criteria were prematurity (<36 weeks), intellectual disability, major medical and 

neurological disorders, pervasive developmental disorder, psychoses and major mood disorders. 

Participants were assayed on the Illumina Infinium II HumanHap550 BeadChip (Illumina, San Diego, 

CA, USA) as previously described. The study was approved by The Children's Hospital of 

Philadelphia Institutional Review Board. 

IMAGE-I, Europe 

The IMAGE-I (International Multisite ADHD Genetics Project) trio samples9,10 were collected using 

a common protocol with centralized training and reliability testing of raters and centralized data 

management. Family members were Caucasians of European origin from countries in and around 

Europe including Belgium, Germany, Ireland, the Netherlands, Spain, Switzerland, and the United 

Kingdom, and Israel. At the IMAGE sites, parents of children were interviewed with the Parental 

Account of Childhood Symptom (PACS), a semi-structured, standardized, investigator-based 

interview developed as an instrument to provide an objective measure of child behaviour. Both 

parents and teachers completed the respective versions of the Conners ADHD rating scales and the 

Strengths and Difficulties Questionnaire (SDQ). Exclusion criteria were autism, epilepsy, IQ<70, 

brain disorders and any genetic or medical disorder associated with externalizing behaviours that 
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might mimic ADHD. Genotyping was conducted at Perlegen Sciences using their 600K genotyping 

platform, comprising approximately 600,000 tagging SNPs designed to be in high linkage 

disequilibrium with untyped SNPs for the three HapMap populations. The study was approved by the 

Institutional Review Board (IRB) or Ethical Committee at each site. 

PUWMa, USA 

The PUWMa (Pfizer-funded study from the University of California, Los Angeles (UCLA), 

Washington University, and Massachusetts General Hospital (MGH)) trio samples11 were collected 

independently at those three sites using similar but slightly different methods.  

309 families were recruited from clinics at MGH with children aged 6-17 years. Psychiatric 

assessments were made with the K-SADS-E. Exclusion criteria were major sensorimotor handicaps 

(deafness, blindness), psychosis/schizophrenia, autism, inadequate command of the English 

language, or a Full Scale IQ<80.  

At Washington University, 272 families were selected from a population-representative sample 

identified through birth records of the state of Missouri, for a genetic epidemiologic study of the 

prevalence and heritability of ADHD. The original sample included 812 complete male and female 

twin pairs and six individual twins aged 7 to 19 years at the time of interview, identified from the 

Missouri Family Registry from 1996 to 2002. Families were invited into the study if at least one child 

exhibited three or more inattentive symptoms on a brief screening interview. Parents reported on their 

children and themselves, and the youths on themselves, using the Missouri Assessment of Genetics 

Interview for Children (MAGIC), a semi-structured psychiatric interview. DSM-IV diagnoses of 

ADHD were based upon parental reports (most of the time, maternal). Exclusion criteria were 

parent/guardian reported intellectual disability or if the parent/guardian and twins could not speak 

English.  
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At UCLA, 156 subjects were drawn from 540 children and adolescents aged 5 to 18 years and 519 of 

their parents ascertained from 370 families with ADHD-affected sibling pairs. Children and 

adolescents were assessed using the K-SADS-PL (Present and Lifetime version). Adult parents were 

assessed using the SADS-LA-IV (Lifetime version), supplemented with the K-SADS Behavioral 

Disorders module for diagnosis of ADHD and disruptive behavioural disorders. Direct interviews 

were supplemented with parent and teacher versions of the Swanson, Nolan, and Pelham, version IV 

(SNAP-IV) rating scale, as well as a parent-completed Childhood Behavior Checklist (CBCL) and 

Teacher Report Form (TRF). Exclusion criteria were neurological disorder, head injury resulting in 

concussion, lifetime diagnoses of schizophrenia or autism, or estimated Full Scale IQ<70.  For all 

sites DNA was extracted from blood at each participating institution and Genizon BioSciences Inc. 

conducted genotyping with funding from Pfizer Inc. Genomic DNA samples from MGH and WASH-

U were genotyped using the Illumina Human1M BeadChip (N = 1,057,265 SNPs), whereas the 

UCLA samples were genotyped using the Illumina Human 1M-Duo array (N = 1,151,846 SNPs). The 

study was approved by the subcommittee for human subjects of each site.  

Toronto, Canada 

The Canadian ADHD trio sample12 was drawn from an outpatient clinic in an urban pediatric hospital 

and included children aged 6-16 years who were referred for attention, learning and/or behavioural 

problems. ADHD diagnostic data was obtained from parents and teachers in semi-structured clinical 

interviews including the Parent Interview for Child Symptoms (PICS) and the Teacher Telephone 

Interview (TTI). Exclusion criteria were an IQ<80 on both the verbal and the performance subscales 

of the Wechsler Intelligence Scale for Children (WISC).  Samples were genotyped on the Affymetrix 

Genome-Wide Human SNP Array 6.0 with standard protocols as provided by the manufacturer. The 

study was approved by the Research Ethics Board of the Hospital for Sick Children, Toronto. 
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Case-control samples 

Barcelona, Spain 

The Barcelona sample13 comprised 607 ADHD cases. All patients were adults of Caucasian origin, 

recruited and evaluated at the Hospital Universitari Vall d’Hebron located in Barcelona (Spain). 

ADHD diagnostic criteria was assessed using the Structured Clinical Interview for DSM-IV and the 

Conner’s Adult ADHD Diagnostic Interview for DSM-IV (CAADID). Impairment was measured 

with the Clinical Global Impression (CGI), included in the CAADID Part II, and the Sheehan 

Disability Inventory (SDI). Exclusion criteria were IQ<70, schizophrenia or other psychotic 

disorders, ADHD symptoms due to mood, anxiety, dissociative or personality disorders, adoption, 

sexual or physical abuse, birth weight <1.5 kg, and other neurological or systemic disorders that might 

explain ADHD symptoms. The control sample consisted of 584 unrelated blood donors frequency-

matched for gender with the ADHD cases and screened to exclude those with lifetime ADHD 

symptoms or diagnosis.  

Both cases and controls were genotyped on the Illumina HumanOmni1-Quad BeadChip platform. 

The study was approved by the relevant ethics committee. 

Beijing, China 

The Beijing, China sample14 comprised 1,040 ADHD cases aged between 6-16 years of Han Chinese 

decent. Cases were recruited from the Child and Adolescent Psychiatric Outpatient Department of 

the Sixth Hospital, Peking University. Clinical diagnoses from a senior child and adolescent 

psychiatrist were confirmed using the Chinese version of the Clinical Diagnostic Interview Scale. 

Exclusion criteria were those with major neurological disorders (e.g. epilepsy), schizophrenia, 

pervasive development disorder, and IQ<70. The 963 control individuals were students from local 

elementary schools, healthy blood donors from the Blood Center of the First Hospital, Peking 

University, and healthy volunteers from the institute of Han Chinese decent, screened using the 
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ADHD Rating Scale-IV (ADHD RS-IV) to exclude ADHD. Additional exclusion criteria were major 

psychiatric disorders, family history of psychosis, severe physical diseases, and substance abuse.  

Both cases and controls were genotyped using the Affymetrix6.0 array at CapitalBio Ltd., Beijing, 

using the standard Affymetrix protocol.  

The study was approved by the Institutional Review Board of the Peking University Health Science 

Center.  

Bergen, Norway 

The Bergen, Norway sample15 consisted of 300 adults with ADHD. Patients recruited through a 

Norwegian national medical registry, as well as by psychologists and psychiatrists working at out-

patient clinics. Information regarding ADHD was obtained following systematic assessment of 

ADHD diagnostic criteria, developmental history, physical examination, evaluation of comorbidity, 

and, where possible, information from collateral informants. All gathered information was then sent 

to one of the expert committees for a definitive diagnostic assessment. There were no formal 

exclusion criteria. The 205 controls were recruited through the Medical Birth Registry of Norway 

above the age of 18 years with no known intellectual disability. Cases and controls were genotyped 

using the Human OmniExpress-12v1-1_B (Illumina, San Diego, CA, USA) platform. Genotyping 

was performed according to the standard Illumina protocol at Decode facility (Reykjavik, Iceland). 

The study was approved by the Norwegian Regional Medical Research Ethics Committee West (IRB 

#3 FWA00009490, IRB00001872). 

Cardiff, UK 

The Cardiff sample16 consisted of 727 Caucasian children aged 5-18 years old from Cardiff, Wales 

(N=510); St. Andrews, Scotland (N=35); and Dublin, Ireland (N=182). All children were recruited 

from community clinics and were assessed for ADHD using the Child and Adolescent Psychiatric 

Assessment (CAPA) Parent Version, a semi-structured research diagnostic interview, to assess 
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psychiatric diagnoses. Pervasiveness of ADHD symptoms (in school) was assessed using the Child 

ADHD Teacher Telephone Interview or the Conners Teacher Questionnaire. Exclusion criteria were 

intellectual disability (IQ <70), a major medical or neurological condition (e.g. epilepsy), autistic 

spectrum disorder, Tourette’s syndrome, bipolar disorder, or known chromosomal abnormality. 

Control participants were obtained from the Wellcome Trust Case Control Consortium–Phase 2. They 

comprised 3,000 individuals born in the United Kingdom during 1 week in 1958 (the 1958 British 

Birth Cohort) and 3,000 individuals from the U.K. Blood Services collection (N=5,081 passed QC). 

The comparison subjects were not screened for psychiatric disorders. ADHD case subjects were 

genotyped on the Illumina (San Diego) Human660W-Quad BeadChip according to the 

manufacturer's instructions. Comparison subjects were genotyped by Wellcome Trust Case Control 

Consortium–Phase2 using the Illumina Human 1.2M BeadChip.  The study was approved by the local 

research ethics committees at each site.  

Germany 

The German sample17 comprised 495 patients with ADHD (aged 6–18 years) recruited and 

phenotypically characterized in six psychiatric outpatient units for children and adolescents (Aachen, 

Cologne, Essen, Marburg, Regensburg, and Wurzburg). ADHD was assessed using the K-SADS-PL 

and a German teacher rating scale for ADHD (FBB-HKS). Exclusion criteria were IQ 75, potentially 

confounding psychiatric diagnoses such as schizophrenia, any pervasive developmental disorder, 

Tourette's disorder, and primary mood or anxiety disorder, neurological disorders such as epilepsy, a 

history of any acquired brain damage or evidence of the fetal alcohol syndrome, very preterm birth 

and/or (f) maternal reports of severe prenatal, perinatal or postnatal complications. The 1,300 adult 

controls were drawn from three population based epidemiological studies: (a) the Heinz Nixdorf 

Recall (Risk Factors, Evaluation of Coronary Calcification, and Lifestyle) study 3, (b) PopGen, (c) 

KORA (Cooperative Health Research in the Region of Augsburg. Ethnicity was assigned to patients 
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and controls according to self-reported ancestry (all German). The genome-wide genotyping was 

performed on HumanHap550v3 (Illumina; controls) and Human660W-Quadv1 BeadArrays 

(Illumina; cases). The study was approved by the ethics committees of all participating hospitals. 

IMAGE-II, Europe & USA 

The IMAGE-II ADHD case samples18 included some samples from the original IMAGE project (see 

IMAGE-I details above) along with samples provided by colleagues at other sites (Cardiff; St. 

Andrews, Dublin; MGH; Germany; and the Netherlands), using similar but not identical methods. 

Samples from Dublin and MGH followed the procedures described above for Cardiff and PUWMa, 

respectively. Case collection for the German and Dutch sites are described below. 

In Germany, 351 participants were recruited in order of clinical referral in the outpatient clinics in 

Wurzburg, Hamburg and Trier. Families were of German, Caucasian ancestry. All children were 

assessed by full semi-structured interview (Kiddie-Sads-PL-German Version or Kinder-DIPS) and 

parent and teacher ADHD DSM-IV based rating scales to ensure pervasiveness of symptoms. 

Exclusion criteria were IQ<80, comorbid autistic disorders or somatic disorders (hyperthyroidism, 

epilepsy, neurological diseases, severe head trauma etc.), primary affective disorders, Tourette’s 

syndrome, psychotic disorders or other severe primary psychiatric disorders, and birth weight <2000 

grams.  

At the Dutch site, assessment data are available for 112 subjects aged 3-18 years with DSM-IV 

ADHD. Most of the sample was collected as part of a sib pair genome-wide linkage study in ADHD19. 

Subjects were assessed using the DSM-IV version of the Diagnostic Interview Schedule for Children 

(DISC-P) with both parents, supplemented by Conners Questionnaires (old versions), the CBCL and 

TRF. Exclusion criteria were autism, epilepsy, IQ <70, brain disorder, and any genetic or medical 

disorder associated with externalizing behaviours that might mimic ADHD. 
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Control samples (1,755 population controls of European ancestry) were assembled from an IRB 

approved genome-wide association study (GWAS) of myocardial infarction20. Controls were 

collected from multiple sites in the US and Europe, including Seattle, Washington; Boston, 

Massachusetts; Gerona, Spain; Malmo, Sweden; and the United Kingdom. Sampling procedures for 

each cohort have been described previously20. Control participants from the Wellcome Trust Case 

Control Consortium overlapping with the Cardiff, UK sample (described above) were removed. 

Cases were genotyped using the Affymetrix 5.0 array at the State University of New York Upstate 

Medical University, Syracuse using the standard protocol issued by Affymetrix. Controls were 

genotyped using the Affymetrix 6.0 array. The study was approved by the Institutional Review Board 

(IRB) or Ethical Committee at each site. 

Yale-Penn, USA 

The Yale-Penn sample consists of small nuclear families and unrelated individuals (2,020 individuals 

in 850 families and 6,951 unrelated individuals), collected to study the genetics of substance 

dependence21-23. The case-control subjects were recruited from 2000 to 2013 from substance abuse 

treatment centers and through advertisements at the University of Connecticut Health Center, Yale 

University School of Medicine, the Medical University of South Carolina, the University of 

Pennsylvania, and McLean Hospital. The participants were identified through a family-based and a 

case-control protocol. Families were ascertained from treatment centers and advertisements that 

recruited affected sibling pairs (ASPs) meeting Diagnostic and Statistical Manual of Mental 

Disorders, 4th Edition (DSM-IV) criteria for cocaine or opioid dependence. Other family members 

of the ASPs were recruited when available, regardless of affection status and unaffected family 

members were included within the control subjects. 

For this study, 182 individuals with ADHD and 1,315 unrelated controls of European ancestry were 

included. Unrelated individuals with ADHD and controls were selected from the family-based 
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protocol, with a focus on maximizing the number of ADHD cases retained for the analysis. DSM-IV 

diagnoses of ADHD case status, as well as other major psychiatric traits, were derived from the Semi-

Structured Assessment for Drug Dependence and Alcoholism for all participants. Exclusion criteria 

were a clinical diagnosis of a major psychotic illness (for example, schizophrenia or schizoaffective 

disorder). 

The sample was genotyped using one of two genotyping arrays: (1) the Illumina HumanOmni1-Quad 

v1.0 microarray containing 988,306 autosomal SNPs (Yale- Penn.1: performed at the Center for 

Inherited Disease Research (CIDR) and the Yale Center for Genome Analysis), (2) the Illumina 

Infinium Human Core Exome microarray (Yale-Penn.2 and Yale-Penn.3: performed at the Yale 

Center for Genome Analysis). The study was approved by the relevant institutional review boards. 

 

Replication samples 

DeCODE, ADHD diagnoses from medical records 

The Icelandic ADHD cohort (N = 5,085) consists of individuals who either have a clinical ADHD 

diagnosis (mostly ICD10-F90) or who have been prescribed medication specific for ADHD 

symptoms (ATC-NA06BA, mostly methylphenidate). The Icelandic control individuals (N = 

131,122) does not contain individuals with a diagnosis of schizophrenia, bipolar disorder, autism 

spectrum disorder or self-reported ADHD symptoms or diagnosis. All individuals used in the analysis 

have been chip genotyped, long range phased and genotypes imputed based on the Icelandic dataset 

as described previously24.  

GWAS in the Icelandic sample was performed for top loci with P < 1x10-5 (clumped variants with r2 

< 0.25) in the primary ADHD GWAS. Results from the Icelandic cohort were matched to the PGC 

and iPSYCH results based on rs-id and alleles. After filtering, results were available for 123 variants 

in the Icelandic sample from deCODE Genetics. 
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23andMe, self-reported ADHD diagnoses 

The 23andMe sample consists of individuals who sent saliva samples (using the Oragene kit) to the 

genetic testing company 23andMe, Inc. and agreed to take part in research and answered questions 

about their ADHD history as part of a longer survey. All participants provided informed consent and 

answered surveys online according to 23andMe’s human subjects protocol, which was reviewed and 

approved by Ethical & Independent Review Services, an AAHRPP-accredited institutional review 

board. As part of the “Your Medical History” survey, they were asked: "Have you ever been 

diagnosed by a doctor with any of the following psychiatric conditions: Attention deficit disorder 

(ADD) or Attention deficit hyperactivity disorder (ADHD)?”. The response options were: “Yes”, 

“No”, “I don't know”. A second question asked independently as a “Research Snippet” was: "Have 

you ever been diagnosed with attention deficit disorder (ADD) or attention deficit hyperactive 

disorder (ADHD)?" with the response options: “Yes”, “No”, “I'm not sure”. Individuals who gave a 

positive response to these questions were classed as ADHD cases and controls were those who gave 

a negative response to these questions. Individuals with discordant responses were excluded.  

Research participants were genotyped either on the Illumina HumanHap550k (13,030 controls, 840 

cases) or HumanOmniExpress (57,363 controls, 5,017 cases) genotyping platforms by 23andMe. 

GWAS and imputation were performed separately for data generated by the two platforms. Within 

each platform, batches of 8,000-9,000 participants were imputed. Results were filtered for average 

and minimum imputation r2 to exclude SNPs that showed batch effects. Covariates included in the 

GWAS by 23andMe were age, sex and the first four principal components to account for population 

stratification.  

For the current study, the GWAS summary statistics were then aligned to the genotyped samples. The 

23andMe summary statistics were verified to be consistent with genome build hg19. They were then 
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matched to the genotype data based on rsid, chromosome and base pair position. For SNPs, reported 

alleles were required to match the genotype data without a strand flip. For indels and multiallelic 

variants, alleles reported by 23andMe were evaluated heuristically for consistency with the genotype 

data and the alleles were matched accordingly (e.g. “I” or “D” alleles reported by 23andMe for indels 

were matched to the corresponding sequence of alleles for the insertion or deletion included in the 

genotype data). After alignment, the 23andMe GWAS results for the two platforms were combined 

in an inverse standard error-weighted meta-analysis to create a single 23andMe results set for use in 

the replication analyses. In total, 11,198,253 variants were matched from the 23andMe meta-analysis 

for inclusion in replication analyses. 

 

EAGLE, ADHD symptom scores 

The EArly Genetics and Lifecourse Epidemiology (EAGLE) consortium includes population-based 

birth cohorts from Europe, Australia, and the United States 

(http://www.wikigenes.org/e/art/e/348.html). The consortium focuses on a wide range of phenotypes 

in childhood including traits related to cognition and behaviour e.g. aggression25, asthma allergy and 

atopy26 and postnatal growth27. In the study of ADHD symptoms, nine EAGLE cohorts where 

included with available ADHD symptom scores in childhood (age at measurement <13 years). An 

overview of the nine cohorts included in the EAGLE meta-analysis is provided in Middeldorp et al.28.  

In order to assess ADHD symptoms different instruments were used across cohorts, including the 

Attention Problems scale of the Child Behavior Checklist (CBCL) and the Teacher Report Form 

(TRF), the Hyperactivity scale of the Strengths and Difficulties Questionnaire (SDQ), and the DSM-

IV ADHD items as, for example, included in the Conners Rating Scale. For the meta-analysis, one 

phenotype was selected from each cohort. Based on the phenotype that was most available, school-

age ratings were chosen over preschool-age ratings, parent ratings over teacher ratings, and the 
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measurement instrument with the largest information density was preferred over the other 

instruments28.  

Each of the included cohorts went through their own optimal pre-imputation QC and imputation was 

done using the March 2012 release of the Genomes Project (phase 1)29. Detailed description of QC, 

imputation and the analysis procedures for the different cohorts can be found in Middeldorp et al.28.  

Association analyses were done using linear regression and relevant principal components and 

subsequently meta-analysed using METAL30. Summary statistics from the meta-analysis of 

N=17,666 individuals were provided for inclusion in the current study. These results were meta-

analysed with results from QIMR as described below for inclusion in the replication analysis. 

 

QIMR, ADHD rating scale 

The QIMR (Queensland Institute of Medical Research) sample is drawn from the Brisbane 

Longitudinal Adolescent Twin Study which between 1992 and 2013 continuously recruited 12-year-

old twins and their non-twin siblings from the greater Brisbane region31. Participants were recruited 

by contacting the principals of primary and secondary schools in the greater Brisbane area, media 

appeals and by word of mouth. It is estimated that approximately 50% of the eligible birth cohort 

were recruited into the study. The study used a longitudinal design in which participants were 

followed up at 14 and 16 years of age. In 2009 and 2015 additional cross-sectional follow-ups were 

conducted with participants over the ages of 19 and 25 respectively.  

The phenotypic data used in the current analyses are maternal reports of ADHD symptoms for 2,798 

individuals collected using the SWAN questionnaire32 which was introduced to the study protocol in 

2010 and was completed during the first clinic visit after this date. The parents of participants who 

were over 14 years of age when the scale was added to the study were asked to complete the SWAN 

scale by online questionnaire in 2010.  



 18 

Participants were genotyped using the Illumina Human610Quad BeadChip (Illumina, San Diego, CA, 

USA) as previously described. Genotypes were imputed to the 1000 genome references (Phase 3 

Release 5) using the University of Michigan Imputation Server33. Genome-wide association analysis 

was conducted in RAREMETALWORKER 

(http://genome.sph.umich.edu/wiki/RAREMETALWORKER) to correct for relatedness and 

included age, sex and ancestry PCs as covariates. The results of this GWAS have been previous 

described by Ebejer et al.34. Ethical approval for the study was obtained from the QIMR Human 

Research Ethics Committee. 

For the current study, summary statistics from the EAGLE and QIMR meta-analyses were aligned to 

the genotyped ADHD samples based on rsid and chromosome and base pair location. SNP alleles 

were required to be concordant without a strand flip. Indels and multiallelic variants with inconclusive 

matching to the ADHD GWAS were also excluded. After alignment and filtering for allele frequency 

and imputation quality, the EAGLE and QIMR results for 6,312,392 variants were meta-analysed to 

get a single genome-wide meta-analysis of ADHD-related behavioural traits. We denote this meta-

analysis as EAGLE/QIMR, and focus on it for replication analyses.   

 

Bioinformatics pipeline for quality control and association analyses 

Quality control, imputation and primary association analyses were done using the bioinformatics 

pipeline “Ricopili”, which has been developed by the Psychiatric Genomics Consortium (PGC) 

Statistical Analysis Group35. The pipeline generates high quality imputed data and performs GWAS 

and meta-analysis of large genetic data sets. In order to avoid potential study and “wave” effects the 

eleven PGC samples were processed separately and the iPSYCH sample was processed in 23 separate 

batches referred to as waves (see sample description above) unless otherwise is stated. 

 

http://genome.sph.umich.edu/wiki/RAREMETALWORKER
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Pre-imputation quality control 

Subjects and SNPs were included in the analyses based on the following quality control parameters: 

SNP call rate > 0.95 (before sample removal), subject call rate > 0.98 (> 0.95 for the iPSYCH 

samples), autosomal heterozygosity deviation (| Fhet | < 0.2), SNP call rate > 0.98 (after sample 

removal), difference in SNP missingness between cases and controls < 0.02, and SNP Hardy-

Weinberg equilibrium (HWE) (P > 10−6 in controls or P > 10−10 in cases).  

 

Genotype imputation 

In order to obtain information about non-genotyped markers, we used the pre-phasing software 

SHAPEIT36 to estimate haplotypes and subsequently IMPUTE237 for imputing genotypes. Imputing 

was done in chunks of 3 Mb using default parameters. The imputation reference data consisted of 

2,504 phased haplotypes from the 1000 Genomes Project, phase 3 (1KGP3)38,39 data (October 2014, 

81,706,022 variants, release 20130502). Trio imputation was done with a case-pseudocontrol setup, 

where a pseudocontrol was defined to each affected offspring using the non-transmitted alleles from 

the two parents (estimated based on the haplotypes of the parents).  

 

Relatedness and population stratification 

Relatedness and population stratification were evaluated using a set of high quality markers 

(genotyped autosomal markers with minor allele frequency (MAF) > 0.05, HWE p > 1x 10-4 and SNP 

call rate > 0.98), which were pruned for linkage disequilibrium (LD) resulting in a set of ~30,000 

pruned markers (markers located in long range LD regions defined by Price et al.40 were excluded). 

This was done separately for each of the PGC samples and on a merged set of genotypes from the 23 

iPSYCH waves. In order to identify related individuals an identity by state analysis were performed 
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using PLINK v1.941,42, and one individual was excluded in pairs of subjects with 𝜋̂ > 0.2 (cases 

preferred kept over controls). 

In order to identify genetic outliers, a principal component analysis (PCA) was performed using 

smartPCA incorporated in the software Eigensoft43, and the same set of pruned autosomal markers 

as described above.  For the iPSYCH sample a genetic homogenous sample was defined based on a 

subsample of individuals being Danes for three generations. This subsample was defined using 

register information about birth country of the individuals, their parents and grandparents, which was 

required to be Denmark in order to be included in the subsample. The subsample of Danes was used 

in order to define the center of an ellipsoid based on the mean values of principal component (PC) 1 

and PC2. Subsequently PC1 and PC2 for all individuals in the iPSYCH sample were used to define 

a genetic homogenous population by excluding individuals with PC values greater than six standard 

deviations from the mean. For the PGC samples genetic outliers were removed based on visual 

inspection of the first six PCs. PCA including samples from the 1000 Genomes Project was also 

performed to confirm that the selected individuals matched the ancestry of European reference 

populations. 

PCA was redone after exclusion of genetic outliers. The first 20 principal components were tested for 

association with the phenotype using logistic regression and their impact on the genome-wide test 

statistics were evaluated using λ. In the iPSYCH GWAS PC1-4 and significant PCs were included as 

covariates. For PGC samples, the number of PCs was adjusted based on the cohort’s sample size in 

order to avoid overfitting and to reflect the differential power to capture true population structure by 

PCA. Specifically, the first five principal components were included as covariates for samples with 

fewer than 1000 individuals, and the first ten PCs were included for larger samples. Trio samples did 

not include PCs in the analysis unless strong population structure was evident (i.e. PUWMa). Where 
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necessary, study specific design covariates were also included (e.g. indicators variables for IMAGE-

I sampling centres, alcohol dependence diagnosis for ascertainment in Yale-Penn). 

 

GWAS and meta-analysis 

Association analyses using the imputed marker dosages were performed separately for the 11 PGC 

samples and the 23 waves in iPSYCH by an additive logistic regression model using PLINK v1.941,42, 

with the derived principal components and necessary design factors included as covariates as 

described above (Supplementary Table 1). Adding sex as a covariate to the PGC and iPSYCH 

samples does not meaningfully alter the meta-analysis results (data not shown). 

The meta-analysis included summary statistics from GWASs of the 23 waves in iPSYCH and 11 

PGC samples, in total containing 20,183 cases and 35,191 controls. Only SNPs with imputation 

quality (INFO score) > 0.8 and MAF > 0.01 were included in the meta-analysis. Meta-analysis was 

performed using an inverse-weighted fixed effects model implemented in the software METAL 

(http://csg.sph.umich.edu//abecasis/Metal/)30.  Finally we filtered the GWAS meta-analysis, so only 

markers which were supported by an effective sample size (Neff = 4/(1/Ncases + 1/Ncontrols))
44 greater 

than 70% were included (8,047,421 markers).  

In some of the secondary analyses (e.g. when using LD score regression45 and MAGMA46 (see 

below)), information about LD structure in a reference genome reflecting the ancestry of the analysed 

population is used. Such analyses therefore require results from a GWAS meta-analysis based on a 

genetic homogenous group reflecting the same ancestry. We therefore performed a GWAS of the 

iPSYCH samples and the PGC samples with European ancestry (subsequently referred to as European 

GWAS meta-analysis). In this GWAS meta-analysis the Chinese PGC sample was excluded and the 

PUWMa sample was replaced with the PUWMa (strict) sample, in which individuals with non-

http://csg.sph.umich.edu/abecasis/Metal/
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European genetic ancestry were excluded, resulting in 19,099 cases and 34,194 controls with 

European ancestry.  

The GWAS meta-analysis identified 12 independent genome-wide significant (gws) loci (see 

Manhattan plot [Figure 1], forest plots [Supplementary Figure 3.A1 – 3.M1] and regional association 

plots [Supplementary Figure 3.A2 – 3.M2]). Independent loci were defined as described below. A 

more detailed description of potential risk genes located in the identified gws loci can be found in 

Supplementary Table 4. 

In the European GWAS meta-analysis the number of independent gws loci decreased to 11. The gws 

locus on chromosome 2 (located in SPAG16) in the GWAS meta-analysis did not pass the 

significance threshold when only including individuals with European ancestry (see Manhattan plot, 

Supplementary Figure 2). 

In addition, heterogeneity across studies/waves were tested with the Cochran’s Q test and quantified 

with the I2 heterogeneity index. No markers demonstrated significant heterogeneity between all 

cohorts (Supplementary Figures 6 and 7A) or between the Chinese and European ancestry cohorts 

(Supplementary Figure 7.B). 

 

Defining independent genome-wide significant loci 

303 variants reached genome-wide significance (P < 5x10-8) in the meta-analysis. We then identified 

independent loci from these markers based on LD clumping (--clump in PLINK 1.941,42). Beginning 

with the most significantly associated variant as the first index variant, we labelled variants as being 

part of the same locus if they were within 500 kb and correlated with an index variant (r2 > 0.2). 

Variants not within 500 kb and not correlated with an existing index variant were labelled as a new 

index variant. Correlations were estimated from European-ancestry populations in the 1000 Genomes 
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Phase 3 reference panel39. Clumping continued until all variants with P < 5 x 10-8 were either labelled 

as an index variant or assigned to a locus.  

A gws locus was then defined as the physical region containing the identified LD independent index 

variants and their correlated variants (r2 > 0.6) with P < 0.001. Associated loci located less than 400 kb 

apart were merged. The same process was applied to define independent genome-wide significant 

loci in subsequent meta-analyses. 

 

Evaluating putative secondary signals 

Correlation of secondary signals with their respective lead index variants 

Two of the genome-wide significant loci defined by this process in the ADHD meta-analysis include 

more than one index variant (Supplementary Table 2). In other words, they contain two genome-wide 

significant variants that are within 500 kb but are not correlated (r2 < 0.1). In this case, we label the 

less significantly associated index variant as a putative secondary signal and perform additional 

analyses to evaluate whether the second index variant can be confirmed as independent.  

First, we confirmed that the putative secondary signals are not strongly correlated with their 

respective lead index variants in the current genotype data. The correlation with the index variant was 

evaluated in (1) imputed best-guess genotype data (hard-called genotypes derived from imputed 

genotype probabilities, for all variants with an imputation info score > 0.8) from the 11 PGC cohorts, 

and (2) imputed best-guess genotype data from iPSYCH. For both putative secondary effects, the 

correlation between the index variant and secondary effect is (r2 < 0.1) in both the PGC and iPSYCH 

imputed genotype data (Supplementary Table 2). This confirms that the putative secondary signal 

does not reflect LD structure in the ADHD cohorts that is not well captured by the 1000 Genomes 

Phase 3 European reference panel39.  
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Conditional association analysis 

The two putative secondary signals were then evaluated by considering analysis conditional on the 

lead index variant in each locus. In each cohort, logistic regression was performed with the imputed 

genotype dosage for the lead index variant included as a covariate. All covariates from the primary 

GWAS (e.g. principal components, site indicators) were also included. The conditional association 

results were then combined in an inverse-variance weighted meta-analysis. 

Neither of the putative secondary signals achieve genome-wide significance in the conditional 

association analysis (Supplementary Table 2). The decreased significance observed in the conditional 

analysis reflects modestly attenuated estimates of the odds ratio and increased standard errors 

compared to the marginal association analysis in the primary GWAS. 

Based on the non-significant results for the putative secondary variants in the conditional analyses, 

we conclude that there is not yet sufficient evidence to confidently label these as independent effects 

in their respective loci.  

 

Bayesian credible set analysis 

In order to refine the genome-wide significant loci, we defined a credible set of variants in each locus 

using the method described by Maller et al.47. Under the assumption that (a) there is one causal variant 

in each locus, and (b) the causal variant is observed in the genotype data, the credible set can be 

considered to have a 99% probability of containing the causal variant.  

 

Credible set estimation method 

We summarize the method here following the description of Gormley et al.48. Briefly, let D be the 

data including the genotype matrix X with P variants and the vector Y of phenotypes, and let 𝛽 be 

the regression model parameters. Define P models 𝐴𝑗 where variant j is causal and the remaining 
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variants are not causal, and define the null model 𝐴0 where no variants are causal. Then by Bayes’ 

rule the probability of model 𝐴𝑗 is: 

Pr(𝐴𝑗|𝐷) = ∫Pr⁡(𝐷, 𝛽|𝐴𝑗) ⋅
Pr(𝐴𝑗)

Pr(𝐷)
⋅ 𝑑𝛽 

Assuming a flat prior for the model parameters 𝛽, the integral can be approximated using the 

maximum likelihood estimates 𝛽𝑗̂, such that 

Pr(𝐴𝑗|𝐷) ≈ Pr(𝐷|𝐴𝑗 , 𝛽𝑗̂) ⋅ 𝑁−
|𝛽𝑗|
2 ⋅

Pr(𝐴𝑗)

Pr(𝐷)
 

where 𝑁 is the sample size and |𝛽𝑗| denotes the number of fitted parameters for model 𝐴𝑗. Given the 

assumption of one causal variant per locus, |𝛽𝑗|  is a constant for all 𝐴𝑗 . Next, note that the 

conventional likelihood ratio test of model 𝐴𝑗compared to the null model 𝐴0 is defined as 

𝜒𝑗
2 ≡ −2 log

Pr⁡(𝐷|𝐴0,𝛽0̂)

Pr⁡(𝐷|𝐴𝑗,𝛽𝑗̂)
. 

Thus by substitution,  

Pr(𝐴𝑗|𝐷) ≈ exp(
𝜒𝑗

2

2
) ⋅ 𝑙0 ⋅ 𝑁−

|𝛽𝑗|
2 ⋅

Pr(𝐴𝑗)

Pr(𝐷)
 

with 𝑙0 = Pr(𝐷|𝐴0, 𝛽0̂). Given a flat prior for models 𝐴𝑗 the latter terms are constant, leaving 

Pr(𝐴𝑗|𝐷) ⁡∝ ⁡ exp (
𝜒𝑗

2

2
). 

Normalizing across all possible models 𝐴𝑗 thus yields 

Pr⁡(𝐴𝑗) ≡ Pr(𝐴𝑗|𝐷) /∑ Pr(𝐴𝑘|𝐷)𝑘 . 

Finally, the 99% credible set of variants is defined as the smallest set 𝑆 of models such that 

∑ Pr⁡(𝐴𝑗)𝐴𝑗∈𝑆
≥ .99. 

If the model assumptions are correctly specified, then this credible set 𝑆 has a 99% probability of 

containing the true causal variant. 
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We implemented this approach using the published R script freely available online 

(https://github.com/hailianghuang/FM-summary). 

 

Variants considered for credible set analysis 

We applied the Bayesian credible set analysis to each of the 12 genome-wide significant loci 

identified in the primary meta-analysis of ADHD as described above. For each locus, variants within 

1MB and in linkage disequilibrium (LD) with correlation r2 > 0.4 to the index variant were considered 

for inclusion in the credible set. 

Because the credible set estimation is conditioned on LD structure, we performed the credible set 

analysis using the European GWAS meta-analysis to ensure consistent LD structure in the analysed 

cohorts. Credible sets were also estimated based on both (a) the observed LD in European ancestry 

PGC datasets, and (b) the observed LD in the iPSYCH dataset.   

Observed LD with the index variant in each locus was computed using imputed best-guess genotype 

data (generated as described previously) with PLINK 1.9 (https://www.cog-genomics.org/plink2)42. 

For the European ancestry PGC datasets, imputed genotype data was merged across cohorts prior to 

computed LD.  For the iPSYCH dataset, imputed genotyped data for the 23 genotyping waves were 

similarly merged before computing LD. 

 

Credible set results in PGC and iPSYCH data 

Bayesian credible sets for each of the 12 genome-wide significant loci are reported in Supplementary 

eTable 1 (A-L). For the majority of the loci (7 of 12), there is no difference between the credible set 

results based on LD structure in the PGC datasets versus LD from the iPSYCH dataset 

(Supplementary Table 3). Differences between the credible sets for the remaining loci are modest, 

https://github.com/hailianghuang/FM-summary
https://www.cog-genomics.org/plink2
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with no more than six non-overlapping variants between the two sets for each locus. The non-

overlapping variants also tend to have weak evidence for inclusion in the 99% credible set; of the 19 

non-overlapping variants, only six would be included in an 90% credible set (i.e. the smallest set of 

variants with an 90% probability of containing the true causal variant under the Bayesian model), and 

only one would be included in an 80% credible set. To be conservative, we define the final credible 

set as the union of the credible sets estimated from the PGC and iPSYCH LD structure. 

 

Functional annotation of variants in credible set 

To evaluate the potential impact of the variants in the credible set for each locus, we consider 

annotations of predicted functional consequences for those variants based on external reference data. 

In particular we evaluate: 

• Functional consequences: Coding and regulatory consequences of each variant were 

annotated using the Ensembl Variant Effect Predictor (VEP49) for genome build GRch37 

(hg19). Annotated consequences for transcripts without a HGNC gene symbol (e.g. clone-

based vega genes) were excluded. Gene names were updated to the current HGNC gene 

symbol where applicable. For each variant, we summarize (a) annotated genes, excluding 

“upstream” and “downstream” annotations; (b) genes with an annotated consequence (i.e. 

excluding intronic annotations); and (c) annotated regulatory regions. 

• Transcription start site (TSS): We annotate variants within 2kb upstream of the TSS of at least 

one gene isoform based on Gencode v1950. 

• Hi-C interactions: Variants annotated as physically interacting with a given gene were 

identified based on Hi-C data from samples of developing human cerebral cortex during 

neurogenesis and migration51. Annotations are considered for both the germinal zone (GZ), 



 28 

primarily consisting of actively dividing neural progenitors, and the cortical and subcortical 

plate (CP), primarily consisting of post-mitotic neurons. 

• Expression quantitative trait loci (eQTLs): SNPs associated with gene expression were 

annotated using FUMA (http://fuma.ctglab.nl/). Annotated eQTLs were identified from GTEx 

v652 and BIOS53, and filtered for false discovery fate (FDR) < 1x 10-3 within each dataset. 

Annotations were updated to current HGNC gene symbols where applicable. For variants with 

multiple eQTL associations, we summarize the strongest eQTL association (i.e. the 

association with the lowest P-value) from each dataset. 

• Chromatin state: Chromatin states for each variant were annotated based on the 15-state 

chromHMM analysis of epigenomics data from Roadmap54. For each SNP, the most common 

chromatin state across 127 cell types was annotated using FUMA (http://fuma.ctglab.nl/). For 

all variants, we also annotate the predicted chromatin state in fetal brain. The 15 states are 

summarized to annotations of active chromatin marks (i.e. Active TSS, Flanking Active TSS, 

Flanking Transcription, Strong Transcription, Weak Transcription, Genic Enhancer, 

Enhancer, or Zinc Finger [ZNF] gene), repressive chromatin marks (Heterochromatin, 

Bivalent TSS, Flanking Bivalent TSS, Bivalent Enhancer, Repressed Polycomb, or Weak 

Repressed Polycomb), or quiescent.  

• CADD: Combined Annotation Dependent Depletion (CADD v1.355) scores were annotated 

for each SNP using FUMA (http://fuma.ctglab.nl/). 

Supplementary eTable 2 summarizes the observed annotations for the credible set at each locus (see 

also Supplementary eTable 3 for variant-level annotations).  

 

Gene-based association analysis  

http://fuma.ctglab.nl/)
http://fuma.ctglab.nl/)
http://fuma.ctglab.nl/)
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Exome-wide association of single genes with ADHD 

Gene-based association with ADHD was estimated by MAGMA 1.0546 using the summary statistics 

from the European GWAS meta-analysis (Ncases = 19,099; Ncontrols = 34,194; Supplementary Table 1) 

and summary statistics from the GWAS meta-analysis including the EAGLE sample (Ntotal = 70,959).  

We annotated SNPs to genes within their transcribed regions using the NCBI 37.3 gene definitions 

provided with MAGMA. We then calculated gene P-values using the SNP-wise mean model in which 

the sum of –log(SNP P-value) is used as a test statistic. The gene P-value was calculated using a 

known approximation of the sampling distribution56. MAGMA accounts for gene-size, number of 

SNPs in a gene and LD between markers. When using summary statistics in estimating gene-based 

P-values, MAGMA corrects for LD based on estimates from reference data with similar ancestry; for 

this we used the 1KGP3, European ancestry samples, as the reference39. 

In total 20 genes demonstrated significant gene-wise association with ADHD after Bonferroni 

correction (correction for 17,877 genes; Supplementary Table 5). 11 genes were located in the 

complex region on chromosome 1 demonstrating strong gws association with ADHD in the single 

marker GWAS meta-analysis (see regional association plot for this region, Supplementary Figure 

3.A2). Additional five genes overlapped with loci with gws single markers (MEF2C, FOXP2, 

SORCS3, DUSP6 and SEMA6D). Four genes (MANBA, CUBN, PIDD1, CDH8) not located in single 

marker gws loci showed significant association (Supplementary Table 5). The LD region around three 

of the genes (MANBA, CUBN, CDH8) contains only the respective genes, indicating that the gene-

based association signals were driven by markers in the genes and were unlikely to be caused by 

extended LD with markers in neighbouring gene loci (see regional association plots for the four new 

genes; Supplementary Figure 4.A. – 4.D.). 
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Gene-wise association of candidate genes for ADHD 

Prior to the availability of large-scale whole-genome methods and technologies, many candidate 

genes have been examined in relation to ADHD. Such candidate gene studies frequently fail to 

replicate57 and are likely to have been affected by publication bias, so it is unclear how many of the 

reported candidate genes are actually robustly associated with ADHD. As such, we set out to examine 

what the evidence for association is for the most highly studied candidate genes for ADHD, obtained 

from a recent review58, in the current GWAS dataset. Annotated ADHD SNP results were tested for 

enrichment in each of these candidate genes using MAGMA to obtain overall gene P-values. The 

results do not show any support for the majority of the candidate genes that have been historically 

studied in relation to ADHD (Supplementary Table 6). The only exception is SLC9A9 which shows 

nominal enrichment.  

 

Gene-set analyses 

Hypothesis free gene set analyses 

For gene set analyses, we applied MAGMA46. The analyses were based on the gene-based P-values 

generated as described above under “Gene-based association analysis”, based on summary statistics 

from the European GWAS meta-analysis. Those P-values were used to analyse sets of genes in order 

to test for enrichment in association signals in genes belong to specific to biological pathways or 

processes. MAGMA applies a competitive test to analyse if the genes of a gene set are more strongly 

associated with the trait than other genes, while correcting for a series of confounding effects such as 

gene length and size of the gene-set. In the analysis only genes on autosomes, and genes located 

outside the broad MHC region (hg19:chr6:25-35M) were included in the analysis. We applied no 

padding around genes. We used the gene names/locations and the European genotype reference panel 
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provided with the program. For gene sets we used the Gene Ontology59 sets curated in MsigDB 6.060 

keeping only gene sets with 10-1000 genes. No gene-sets remained significant after correction for 

multiple testing (Supplementary eTable 4).  

 

FOXP2 downstream target gene set analysis 

Targeted gene set analyses were run in MAGMA to determine whether FOXP2 downstream target 

gene sets are enriched in ADHD. Three sets of genes were examined: 1) Putative target genes of 

FOXP2 that were enriched in wild type compared to control FOXP2 knockout mouse brains in ChIP-

chip experiments, 2) Genes showing differential expression in wild type compared to FOXP2 

knockout mouse brains, and 3) FOXP2 target genes that were enriched in either or both basal ganglia 

(BG) and inferior frontal cortex (IFC) from human fetal brain samples in ChIP-chip experiments. 

Curated lists of high-confidence genes were obtained from Vernes et al.61 and Spiteri et al62. Mouse 

genes were mapped to human orthologues using MGI and NCBI. FOXP2 was excluded, only 8 genes 

were present on more than one list and only one gene was present on all three lists (NRN1). ADHD 

SNP results were annotated using MAGMA and used for gene set analyses. Competitive P-values, 

using a conditional model to correct for confounding due to gene size and gene density were obtained 

for each gene set. The results showed no evidence of enrichment for any of these gene sets 

(Supplementary Table 7). 

 

Highly constrained gene set analysis 

We assessed whether genes that are intolerant to loss of function and thereby highly evolutionarily 

constrained are enriched in ADHD. The set of highly constrained genes was defined using a metric 

for probability of being loss-of-function (LoF) intolerant (pLI) based on the observed and expected 

protein-truncating variant (PTV) counts within each gene in a very large study of exome data (the 
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Exome Aggregation Consortium; ExAC)63. Genes with observed <10% of expected PTVs were 

deemed haploinsufficient or highly constrained. Publically available results based on the full ExAC 

dataset were downloaded from: 

ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/functional_gene_constraint 

Genes with pLI ≥0.9 were selected as the set of highly constrained genes. Annotated ADHD SNP 

results were tested for enrichment in this gene set in MAGMA using a competitive gene set analysis. 

Results showed a significant enrichment of this set of genes (see Supplementary Table 8).  

 

LD Score intercept evaluation 

A strong deviation from null was observed in the distribution of the test statistics in the quantile-

quantile plot (Q-Q plot) of the results from the GWAS meta-analyses (Supplementary Figure 5.A - 

5.B.). When using LD score regression it is possible to distinguish the contribution of polygenicity 

from other confounding factors such as cryptic relatedness and population stratification to the 

deviation in the distribution of the test statistics45. Under this model when regressing the chi-square 

statistics from GWAS against LD scores (pre-computed LD-scores downloaded from 

https://github.com/bulik/ldsc) for each SNP, the intercept minus one is an estimator for the mean 

contribution of confounding bias to the inflation in the test statistics.  LD score regression analysis of 

the European GWAS meta-analysis estimated that the intercept was close to one (intercept = 1.04 

(SE = 0.01)). Additionally, the ratio (ratio = (intercept-1)/(mean(chi^2)-1)), which estimate of the 

proportion of the inflation in the mean chi-square that the LD Score regression intercept ascribes to 

causes other than polygenic heritability was estimated to ratio = 0.12 (SE = 0.03), indicating that the 

strong inflation in the distribution of the test statistics is caused primarily by polygenicity rather than 

confounding.  

 

https://github.com/bulik/ldsc)
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Genetic correlations between PGC and iPSYCH ADHD samples 

In order to estimate the overlap in shared genetic risk factors between samples, genetic correlations 

rg were calculated using LD Score regression45. Pre-computed LD scores for HapMap3 SNPs 

calculated based on 378 phased European-ancestry individuals from the 1000 Genomes Project were 

used in the analysis (LD scores available on https://github.com/bulik/ldsc) and the summary statistics 

from European GWAS meta-analysis (iPSYCH + PGC European samples) and the PGC European 

samples28. The rg estimate was left unbounded in order to obtain unbiased estimates of SE. Only 

results for markers with an imputation INFO score > 0.90 were included in the analysis. The estimated 

genetic correlation between iPSYCH and PGC European GWAS was highly significant (rg = 1.17; 

SE = 0.2; P = 7.98 x10-9) and did not suggest imperfect correlation (i.e. rg < 1) of common genetic 

risk factors between the studies.  

 

Genetic correlation between PGC case-control and trio samples 

The PGC European ancestry dataset consisted of two kinds of association study designs: case-control 

(Bergen, Cardiff, Germany, IMAGE-II, Spain, Yale-Penn) and trios (CHOP, Canada, IMAGE-I, 

PUWMa). A previous analysis of the PGC samples showed a genetic correlation of 0.71 (SE=0.17) 

across case-control and trio studies64. We repeated this analysis within this newer set of PGC ADHD 

data.  

For each of the PGC studies, best guess genotype data were generated using Ricopili and strictly 

filtered (MAF>0.05, in addition to previous frequency, imputation quality and other filters). 

Genotypes were merged together across studies using PLINK. Asymmetric/ambiguous (AT, TA, CG, 

GC) and duplicate position SNPs were excluded. GCTA65 was used to calculate a genomic 

relationship matrix for all individuals in this merged PGC sample for HapMap-3 SNPs. Analyses 

were based on 191,466 SNPs. One of each pair of individuals related at the level of 2nd cousins (pi-

https://github.com/bulik/ldsc
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hat>0.05) was excluded, preferentially keeping cases; this excluded: N=16 cases and N=91 controls. 

PCA was performed on the merged, unrelated samples using PLINK. The first 10 principal 

components as well as binary study/wave indicators were used as covariates for subsequent analyses.  

Univariate GREML analyses in GCTA were used to estimate SNP-h2 on the liability scale (assuming 

a population prevalence of 5%) in the case-control samples and the trio samples separately. The 

GREML method was used for consistency with the previously published comparison of trio and case-

control ADHD cohorts, and to accommodate the smaller sample sizes of the PGC subsets. As in the 

primary GWAS, trio studies were analysed using a case/pseudo-control design, where the pseudo-

control is composed of the un-transmitted chromosomes from the parents of the proband. Bivariate 

GREML was then used to estimate the genetic correlation across these sub-cohorts.  

The genetic correlation between the trio and case-control cohorts was strong and indistinguishable 

from 1 (rg=1.02, SE=0.32), though the standard error remains quite large (Supplementary Table 10). 

The observed SNP-h2 estimates were somewhat lower than the overall SNP-h2 estimated in the 

primary analyses for the full meta-analysed results, consistent with the somewhat lower SNP-h2 

estimated from the PGC samples compared to iPSYCH (see SNP heritability analysis below). 

 

Polygenic risk scores for ADHD 

In addition to the genetic correlation analyses, we performed analyses of polygenic risk scores (PRS) 

to evaluate the consistency of common genetic effects and their predictive power across cohorts. We 

specifically considered PRS prediction within the iPSYCH samples, within the PGC cohorts, and in 

leave-one-out analysis across all cohorts.  

Polygenic risk score prediction in iPSYCH samples 

For analysis with the iPSYCH sample as the target cohort, the 23 genotyping-waves within the 

iPSYCH sample were split into five groups, aiming for approximately equal numbers of ADHD cases 
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within each group. We then conducted two sets of five leave-one-out analyses, with each leave-one-

out analysis using four out of five iPSYCH groups as training datasets for estimation of SNP weights 

and then applying those weights to estimate PRS for the remaining target group66. One set of leave-

one-out analyses was performed with PGC European samples among the training datasets, while the 

other was without (only iPSYCH). The meta-analysis of the training samples was conducted using a 

SNP list filtered for minor allele frequency > 0.01 and an imputation threshold score above 0.8 

intersecting across waves. Indels and variants in the extended MHC region (chromosome 6: 25-34 

Mb) were also removed. Meta-analysis and  “clumping” of significant SNPs was conducted using the 

Ricopili pipeline35. PRS were then estimated for each target sample using a range of meta-analysis 

P-value thresholds (5x10-8, 1x10-6, 1x10-4, 1x10-3, 0.01, 0.05, 0.1, 0.2, 0.5, 1.0), multiplying the 

natural log of the odds ratio of each variant by the allele-dosage (imputation probability) of each 

variant.  Whole genome PRS were obtained by summing values over variants for each individual.  

For each of the five groups of target samples PRS were normalized (subtracting the mean and dividing 

by the standard deviation), and the significance of the case-control score difference was tested by 

standard logistic regression including the first six principal components and a dummy variable 

indicating genotyping wave as covariates (using the glm() function of R 3.2.2). For each target group 

and for each P-value threshold the proportion of variance explained (i.e. Nagelkerke’s R2) was 

estimated, comparing the full model to a reduced model without PRS and covariates only. The mean 

of the maximum Nagelkerke’s R2 across P-value thresholds for each group was R2 = 0.055 (SE = 

0.055, range 0.047 – 0.06). For the P-value threshold with the highest Nagelkerke’s R2, odds ratios 

for PRS decile groups compared to the lowest decile were estimated for each target group 

(Supplementary Figure 8) and for the normalized score pooled across groups (Figure 2). Odds ratios 

were also estimated using logistic regression on the continuous scores for each target group separately 
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and finally an OR based on all samples was estimated by using the normalized PRS across all groups 

(Supplementary Figure 9). 

 

Polygenic risk score prediction in PGC samples 

Next the predictive utility of PRS was evaluated in the PGC samples. All European ancestry PGC 

best guess genotype data were merged together and iPSYCH-only summary statistics were used to 

calculate PRS in the PGC samples, using the approach described above. PRS in the PGC dataset were 

based on 9,323 clumped SNPs with P < 0.1 in the iPSYCH sample. The association between ADHD 

PRS and case status was significant in the merged PGC sample (OR=1.26 (1.22-1.31), variance 

explained on the liability scale (R2) = 0.0103, P = 2.4E-35). Figure 2 displays odds ratios for ADHD 

case status by ADHD PRS decile for the PGC datasets. In the merged dataset, PRS were converted 

to deciles (where 1 was the lowest decile and 10 was the highest). Deciles 2-10 were then compared 

to the lowest decile using logistic regression including PCs as covariates. There is a clear pattern of 

increasing ORs with increasing decile. 

To examine variation that could be related to differences in ascertainment of cases and controls within 

the PGC sample, mean PRS (residualised for PC covariates) were plotted stratified by case status and 

study (see Supplementary Figure 11). PGC cases had consistently higher PRS than PGC controls in 

the same study. There is some variation in PRS z-score across cases in different studies, for example 

with ADHD cases from the Cardiff (UK) sample having particularly high scores. Within controls, 

individuals within the Yale-Penn study have particularly high PRS; this may be due to this sample’s 

ascertainment for the primary phenotype of substance abuse, with high levels of these problems in 

both the cases and controls21-23,67 . Variation in PRS in controls from different studies may be due to 

differences in ascertainment (e.g. pseudo-controls, screened or unscreened controls). 
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Leave-one-out analysis across cohorts 

The odds ratio based on PRS over all PGC and iPSYCH waves/studies was also evaluated using a 

leave-one-study/wave-out approach. First, GWAS analyses of imputed dosage data were run for all 

samples in each PGC study and iPSYCH wave separately, as described previously, co-varying for 

relevant PCs. Meta-analyses using METAL30 (with the STDERR scheme) were run excluding one 

set of summary results at a time, for each combination of studies. For each set of discovery results, 

LD-clumping was run to obtain a relatively independent set of SNPs, while retaining the most 

significant SNP in each LD block. The following parameters were applied in PLINK: --clump-kb 500 

--clump-r2 0.3 --clump-p1 0.5 --clump-p2 0.5. Asymmetric/ambiguous (AT, TA, CG, GC) SNPs, 

indels and duplicate position SNPs were excluded. The SNP selection P-value threshold used was P 

< 0.1. The number of clumped SNPs for each study/wave varied from 20596-43427. Polygenic risk 

scores were calculated for each individual as described above. Scores were derived in best guess 

genotype data after filtering out SNPs with MAF < 0.05 and INFO < 0.8. The polygenic risk scores 

were standardized using z-score transformations. Logistic regression analyses including PCs tested 

for association of polygenic risk scores with case status. Finally, overall meta-analyses of the leave-

one-out analyses were performed (Supplementary Figure 10). 

 

SNP heritability 

SNP heritability was estimated using LD score regression45 in order to evaluate how much of the 

variation in the phenotypic trait could be ascribed to common additive genetic variation. Summary 

statistics from GWAS meta-analyses and pre-computed LD scores (available from 

https://github.com/bulik/ldsc) were used in the analyses. The SNP heritability for ADHD was 

calculated on the liability scale when using summary statistics from analyses of diagnosed ADHD 

and assuming a 5% prevalence of ADHD in the population68. The SNP heritability (h2
SNP) was 

https://github.com/bulik/ldsc
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estimated to be 0.216 (SE = 0.014) based on the summary statistics from the European GWAS meta-

analysis. LD score regression SNP heritability estimates for the iPSYCH and PGC samples 

respectively can be found Supplementary Table 9.  

In order to evaluate the stability of our heritability estimates we also performed univariate GREML 

analyses in GCTA. However due to strict restrictions on access to individual genotypes, GREML 

analyses could only be performed separately in the PGC and iPSYCH cohorts. For each of these 

datasets, best guess genotype data were generated (hard called genotypes with imputation INFO-

score > 0.8) and filtered to include genotypes with MAF>0.05. Asymmetric/ambiguous (AT, TA, 

CG, GC), multi-allelic and duplicate position SNPs were excluded. For each dataset, a genomic-

relationship matrix was calculated, restricted to HapMap-3 SNPs. Analyses were based on the 

following numbers of SNPs: PGC-only: 191,466 SNPs; iPSYCH-only: 435,086 SNPs. One of each 

pair of individuals related (pi-hat>0.05) was excluded, preferentially keeping cases. In the PGC 

dataset N=16 cases and N=91 controls were excluded and N=1,439 cases and N=3,170 controls in 

the iPSYCH dataset. PCA (after LD-pruning and removing SNPs located in long-range LD regions) 

was performed on the merged, unrelated samples using PLINK, to derive population covariates. The 

first 10 PCs as well as study/wave indicators were used as covariates in the univariate GREML 

analyses in GCTA. 

 

Partitioning heritability by functional annotation and cell type 

Partitioning of the heritability by functional categories was done using LD score regression and 53 

functional overlapping annotations described in Finucane et al.69 and the baseline model LD scores, 

regression weights and allele frequencies based on the 1KGP3 European ancestry samples were 

downloaded from https://data.broadinstitute.org/alkesgroup/LDSCORE/. The summary statistics 

from the European GWAS meta-analysis were used in the analysis. Enrichment in the heritability of 

https://data.broadinstitute.org/alkesgroup/LDSCORE/
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a functional category was defined as the proportion of SNP heritability explained divided by the 

proportion of SNPs69. Results from analysis of the 24 main annotations (no window around the 

functional categories) are displayed in Supplementary Figure 12. The analysis revealed significant 

enrichment in the heritability by SNPs located in conserved regions (P = 8.49 x 10-10; Supplementary 

Figure 12). 

Test for enrichment in the heritability of SNPs located in cell-type-specific regulatory elements was 

evaluated in two ways. One by using the 220 cell-type-specific annotations that have been grouped 

into 10 cell-type groups as described in Finucane et al.70. These annotations are based on cell-specific 

histone markers, related to H3K4me171, H3K4me371, H3K9ac71 and H3K27ac72.  The test was done 

using the summary statistics from the European GWAS meta-analysis and cell-type specific LD 

scores, baseline model LD scores, regression weights and allele frequencies based on 1KGP3 

European ancestry samples available for download   at: 

https://data.broadinstitute.org/alkesgroup/LDSCORE/. In the analyses, it was tested if the cell-group 

specific annotations contributed significantly to the SNP heritability when controlling for the 

annotations in the full baseline model (the coefficient P-value). The analysis revealed a significant 

enrichment in the heritability by SNPs located in central nervous system specific enhancers and 

promoters (enrichment = 2.44, SE=0.35, P = 5.81 x 10-5; Supplementary Figure 13). 

Additionally we expanded the cell-type specific heritability analysis by including an annotation based 

on information about H3K4Me1 imputed gapped peaks excluding the broad MHC-region (chr6:25-

35MB), generated by the Roadmap Epigenomics Mapping Consortium72,73.  This mark has previously 

been used with success in identifying significant enrichments in tissues/cells and often in a 

biologically plausible manner71,72. This analysis identified enrichment in the heritability of SNPs 

located in specific regulatory elements of nine brain tissues as well as three stem-cell lines 

(Supplementary Figure 14).  

https://data.broadinstitute.org/alkesgroup/LDSCORE/
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Genetic correlations of ADHD with other traits 

The genetic correlation of ADHD with other traits were evaluated using LD Score regression45. 

Correlations with 211 phenotypes were tested using LD Hub (http://ldsc.broadinstitute.org/ldhub/)74. 

This estimation was based on summary statistics from the European GWAS meta-analysis and 

summary statistics from published GWASs. In addition, we tested for genetic correlation with eight 

phenotypes on our local server: human intelligence75, four phenotypes related to education and 

cognition analysed in samples from the UK-Biobank (college/university degree, verbal–numerical 

reasoning, memory and reaction time)76, insomnia77, anorexia nervosa78, and correlation with Major 

Depressive Disorder was tested using GWAS results from an updated analysis of 130,664 cases and 

330,470 controls from the Psychiatric Genomics Consortium79. In total 219 phenotypes were tested 

for genetic overlap with ADHD and 43 demonstrated significant correlation after Bonferroni 

correction (P < 2.28 x 10-4). Detailed information about significant genetic correlations can be found 

in Supplementary Table 11 and extended results for all phenotypes tested can be found in 

Supplementary eTable 5.  

 

Replication analysis in external cohorts 

To replicate the results of the ADHD GWAS meta-analysis we compared the results to analyses of 

the deCODE, 23andMe, and EAGLE/QIMR cohorts. The sample design of these cohorts and the 

process for matching their GWAS results to the ADHD GWAS are described under the sample 

description section. Briefly, the deCODE analysis is based on ICD-10 diagnoses and prescription data 

from medical records, the 23andMe analysis is based on self-reported history of ADHD diagnosis, 

and EAGLE/QIMR involve analyses of continuous measures of ADHD-related behavioural traits in 

the general population. Given the phenotypic differences between these cohorts we evaluated 

http://ldsc.broadinstitute.org/ldhub/
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replication separately for each of these cohorts. The included replication analyses also depended on 

whether data is available for genome-wide variants (23andMe and EAGLE/QIMR) or only top hits 

(deCODE) and whether effect sizes are directly comparable to the ADHD GWAS (23andMe and 

deCODE only). 

Taken together, we evaluated replication based on: (a) sign tests of concordance between the ADHD 

GWAS meta-analysis and each replication cohort; (b) comparison of bias-corrected effect sizes 

between the ADHD GWAS and the deCODE and 23andMe replication cohorts; (c) genetic 

correlation between the ADHD GWAS and the 23andMe and EAGLE/QIMR replication cohorts; (d) 

meta-analysis of the ADHD GWAS meta-analysis results with the results from each replication 

cohort; and (e) tests of heterogeneity between the ADHD GWAS and each replication cohorts. 

 

Sign test 

To evaluate concordance of the direction of effect between the ADHD GWAS and the replication 

cohorts, we first identified the overlapping SNPs present in the ADHD GWAS and analysis of each 

of the three replication cohorts (i.e. deCODE, 23andMe, and EAGLE/QIMR). For each replication 

cohort, the ADHD GWAS results for the intersecting SNPs were then clumped to define independent 

loci using PLINK 1.942. Given that the previous conditional analysis was unable to conclusively 

confirm putative independent signals in the loci defined with LD r2 > 0.1 within 500 kb of the index 

variant, we apply more conservative clumping parameters to ensure independence for the sign test (r2 

> 0.05 within 1 Mb) and merge index variants within 1 Mb. This clumping was performed for all 

variants with P < 1 x 10-4 in the ADHD GWAS (or P < 1 x 10-5 for the deCODE replication) using 

1000 Genomes Phase 3 data on European ancestry populations as reference. 

After clumping, sign tests were performed to compare the loci from the ADHD GWAS meta-analysis 

to each replication cohort. Specifically, for loci passing a given P-value threshold in the ADHD 
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GWAS meta-analysis, we tested the proportion with a concordant direction of effect in the replication 

cohort () using a one sample test of the proportion with Yates’ continuity correction80 against a null 

hypothesis of  = 0.50 (i.e. the signs are concordant between the two analyses by chance) in R81. This 

test was evaluated separately for concordance in deCODE, 23andMe, and EAGLE/QIMR for loci 

passing P-value thresholds of P < 5 x 10-8 (i.e. genome-wide significant loci), P < 1 x 10-7, P < 1x 10-

6, P < 1 x 10-5, and P < 1 x 10-4 in the ADHD GWAS meta-analysis. We note that the number of 

clumped loci at each P-value threshold varies depending on the availability of results for variants in 

each replication cohort. For example, the genome-wide significant variants (P < 5 x 10-8) from the 

chromosome 4 locus in the ADHD GWAS (index variant: rs28411770) are all absent in the 23andMe 

results, thus the sign test is limited to the other 11 loci.  

Sign test results for each replication cohort are reported in Supplementary Table 12. Sign concordance 

between each of the three replication cohorts and the ADHD GWAS was significantly greater than 

would be expected by chance (P < 0.0167 = 0.05/3 replication cohorts) for nominally associated loci 

from the ADHD GWAS (P < 1x 10-6). Power of the sign test at stricter P-value thresholds is limited 

by the number of loci at that level in the ADHD GWAS, but the sign test remained significant for 

EAGLE/QIMR which was sign concordant for all loci with P < 1 x 10-7 in the ADHD GWAS. Sign 

concordance was generally strongest in EAGLE/QIMR, followed by deCODE and 23andMe, though 

23andMe showed stronger sign concordance for loci with P < 1 x 10-5 in the ADHD GWAS.  

Focusing on the genome-wide significant loci (P < 5 x 10-8) for the ADHD GWAS, 11 of the 12 loci 

show sign concordance in at least 2 of the 3 replication cohorts (Supplementary Table 13). Eight of 

the 12 loci were sign concordant in all available replication results for either the index variant or a 

proxy variant in the locus. The weakest sign concordance was observed for the chromosome 16 locus 

(rs212178, LINC01572), which was only sign concordant in EAGLE/QIMR with discordant 

estimates observed from deCODE and 23andMe. Sign discordant estimates were also observed for 
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the chromosome 1 (index variant rs11420276, PTPRF/ST3GAL3) and chromosome 15 (rs281324, 

SEMA6D) loci in 23andMe, and for the chromosome 2 locus (rs9677504, SPAG16) in deCODE.  

 

Replication of effect sizes for top loci 

Although the sign test provides a useful check of concordance for direction of effect in the replication 

samples, it does not consider replication of the magnitude of the effect. For the deCODE and 

23andMe replication cohorts that included GWAS of ADHD status from various sources, we 

anticipate that the true effect sizes should be similar to, though not necessarily identical to, the effect 

size for ADHD as defined in the current meta-analysis. Therefore, we looked at the replication of the 

effect sizes of the top loci in the ADHD GWAS in the replication cohorts. 

Specifically, for each of deCODE and 23andMe we identified clumped loci that are nominally 

associated (P < 1x10-6) with ADHD in the primary ADHD GWAS. We then regressed the effect size 

in the replication cohort (i.e. the log odds ratio) on the estimated effect size from the ADHD GWAS 

after adjustment for winner’s curse (described below). For this regression, we oriented all variants in 

the direction of the risk increasing allele estimated from the ADHD GWAS, constrained the intercept 

term to zero, and weighed the variants proportional to the inverse of their squared standard error from 

the ADHD GWAS. If the included variants are all truly associated with ADHD with the same true 

population effect size in the ADHD GWAS and replication cohorts (i.e. regardless of the phenotyping 

measure for ADHD status) then the expected slope of this regression is one. On the other hand, if all 

SNPs are truly null in the ADHD GWAS and the replication cohorts then the expected slope of this 

regression is zero.    

Comparison of effects sizes from the ADHD GWAS to the deCODE cohort suggests good but 

imperfect replication of top loci (Supplementary Figure 15). The deCODE effect size estimates are 

significantly correlated with the adjusted ADHD GWAS betas (slope = 0.664, SE=.154, P=1.2x10-4) 
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but this slope is also significantly less than 1 (P=0.0178). The estimated effect of rs9677504 (SPAG16 

locus) is a visible outlier in this comparison, following the discordant direction of association as noted 

in the sign test results. Omitting this effect size the regression increases the slope but is not sufficient 

to eliminate the significant difference from one (slope = 0.710, SE=0.149, P = 0.030 for comparison 

to slope=1).  

Comparison of effect sizes with 23andMe follows a similar trend, but with somewhat weaker overall 

strength of replication (Supplementary Figure 16). Regressing 23andMe estimates of effect size on 

the adjusted ADHD GWAS effect sizes yields a slope of 0.417 (SE=0.117), which is significantly 

greater than zero (P=1.11x10-3) and significantly less than one (P=9.52x10-6). This lower slope 

compared to the deCODE replication is consistent with the weaker sign test results. The comparison 

of effect sizes also emphasizes the strong discordance at rs112984125 (ST3GAL3/PTPRF) and 

rs212178 (LINC01572). Removing those two loci from the regression increases the slope to 0.538 

(SE=0.102, P=3.86x10-5 for slope less than 1). 

 

Genetic correlation analysis of replication cohorts 

Genetic correlation of the ADHD GWAS with the 23andMe and EAGLE/QIMR results was 

computed using LD score regression45 with pre-computed European ancestry LD scores following 

the same procedure as described above for other genetic correlation analyses. Genetic correlation 

could not be computed for deCODE since results were only available for top loci from the ADHD 

GWAS. 

The estimated genetic correlation between the 23andMe and the ADHD GWAS was large and 

significant (rg = 0.653, SE = 0.114, P = 1.11 x 10-8), but also significantly less than 1 (one-sided P= 

1.17 x 10-3).  Genetic correlation analysis with EAGLE/QIMR suggest a stronger overlap (rg = 0.970, 

SE = 0.207, P = 2.66 x 10-6) with a genetic correlation not significantly different from one (one-sided 
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P = 0.442). These results are both consistent with sign test results, where both 23andMe and 

EAGLE/QIMR show significant concordance with the ADHD GWAS, with EAGLE/QIMR showing 

the most consistent results. The moderate but highly significant genetic correlation observed with 

23andMe is also consistent with the moderate slope in the replication of effect sizes for top loci from 

the ADHD GWAS. 

To further explore the moderate genetic correlation between the 23andMe results and the ADHD 

GWAS we evaluated the genetic correlation between 23andMe and traits from LD Hub 

(http://ldsc.broadinstitute.org/ldhub/)74. The goal of this analysis is to potentially identify differences 

in the profile of genetic correlation of these studies to other traits, with the expectation that such 

differences may highlight domains where the 23andMe and ADHD GWAS results are particularly 

different. We focus this comparison on a curated set of 28 phenotypes with at least nominal (P <0.01) 

evidence of genetic correlation with either the ADHD GWAS or 23andMe, with the set of phenotypes 

selected to emphasize domains of interest for ADHD while reducing the number of closely related 

traits.  

Genetic correlation results for the 23andMe and ADHD GWAS with the 28 selected phenotypes are 

reported in Supplementary Table 14. To evaluate the magnitude of the observed differences in rg we 

consider both the absolute difference (i.e. |𝑟𝑔,𝐴𝐷𝐻𝐷 − 𝑟𝑔,23𝑎𝑛𝑑𝑀𝑒|) and the test of an approximate Z 

score for this difference: 

𝑍 =
𝑟𝑔,𝐴𝐷𝐻𝐷 − 𝑟𝑔,23𝑎𝑛𝑑𝑀𝑒

√𝑆𝐸𝐴𝐷𝐻𝐷
2 + 𝑆𝐸23𝑎𝑛𝑑𝑀𝑒

2
 

The denominator is motivated by the expected standard error of the difference between the two means 

under the assumption that the samples are not correlated. In the context of mean differences this 

approximation may be expected to be conservative when the rg estimates are positively correlated. 

We do not expect this to be an ideal formal test for the difference between two genetic correlations 

as estimated by LD score regression, and therefore emphasize the importance of caution in 

http://ldsc.broadinstitute.org/ldhub/
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interpreting the precise results. Nevertheless, it does offer a useful benchmark for evaluating the 

magnitude of the difference between the rg estimates in the context of the uncertainty in those values. 

Comparison of the rg results for the ADHD GWAS and 23andMe identifies some striking differences. 

Most notably, the 23andMe GWAS shows little to no genetic correlation with college completion 

(rg=0.056, compared to rg=-0.54 for the primary ADHD GWAS; P=1.1x10-9 for difference) and only 

limited correlation to childhood IQ (rg=-0.22 vs. rg=-0.41 in ADHD, P=2.46x 10-1) and educational 

attainment (rg=-0.20 vs. rg=-0.53 in ADHD, P=1.8x10-7). The genetic correlation with age of first 

birth is also strongly attenuated in 23andMe (rg=-0.33 vs. rg =-0.61 in ADHD, P=6.3x10-4), while 

results for the other reproductive phenotypes are more similar. The 23andMe GWAS also shows 

evidence of weaker genetic correlations with the weight-related phenotypes, most notably class 1 

obesity (rg=0.11, vs. rg=0.29 in ADHD, P=0.024) and childhood obesity (rg=-0.025, vs rg=0.22 in 

ADHD, P=0.036). The one domain where 23andMe exhibits a trend toward stronger genetic 

correlations is schizophrenia (rg=0.27, vs. rg=0.12 in ADHD, P=0.053) and bipolar disorder (rg=0.29, 

vs. rg=0.095 in ADHD, P=0.09), these differences are not significant with the approximated Z score. 

There is a corresponding trend towards weaker genetic correlation with depressive symptoms 

compared to the ADHD GWAS, but it is also not significant with the current test (rg=0.30, vs. rg=0.45 

in ADHD, P=0.24).  

  

Meta-analysis and heterogeneity test with each replication cohort 

For the replication analysis, we considered meta-analyses of the ADHD GWAS results with each of 

the three replication cohorts. The 23andMe and deCODE cohorts were each meta-analysed with the 

ADHD GWAS using conventional inverse variance-weighted meta-analyses. For EAGLE/QIMR, 

meta-analysis was performed using a modified sample size-based weighting method (see detailed 

description of methods below). For each of these three meta-analyses, we evaluated results for the 
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genome-wide significant loci from the ADHD GWAS and identified new loci reaching nominal 

genome-wide significance (P < 5 x 10-8, unadjusted for number of replication cohorts). In addition, 

we considered Cochran’s Q test of heterogeneity, computing the 1 degree of freedom test for 

heterogeneity between the ADHD GWAS and each replication cohort.  

Meta-analysis of the discovery ADHD GWAS with deCODE (hereafter ADHD+deCODE) yields 

10 genome-wide significant loci (Supplementary eTable 6). Of these loci 5 were significant in the 

ADHD GWAS, leaving 7 loci that were significant in the ADHD GWAS but are not significant 

after meta-analysis with the deCODE replication cohort: rs1222063 (chr. 1, intergenic), rs9677504 

(chr. 2, SPAG16), rs4858241 (chr. 3, SGO1-AS1), rs4916723 (chr. 5, LINC00461), rs74760947 

(chr. 8, LINC01288), rs281324 (chr. 15, SEMA6D), and rs212178 (chr. 16, LINC10572). None of 

these loci show genome-wide significant heterogeneity between the ADHD GWAS and deCODE, 

though in many cases there is nominal evidence (P < .05) of heterogeneity. The remaining 5 loci 

significant in the ADHD+deCODE replication meta-analysis are novel: rs1592757 (chr. 5, Refseq 

gene LOC105379109), rs28452470 (chr. 7, CADPS2), rs10956838 (chr. 8, intergenic), rs4275621 

(chr. 11, intergenic), and rs1848160 (chr. 11, intergenic). 

The replication meta-analysis with 23andMe (hereafter ADHD+23andMe) identified 10 genome-

wide significant loci (Supplementary eTable 6, Supplementary Figure 17). Three of these loci were 

novel: rs30266 (chr. 5, Refseq gene LOC105379109), rs62250537 (chr. 3, CADM2), and rs2243638 

(chr. 13, RNF219-AS1). The chromosome 5 locus is the same region identified by the 

ADHD+deCODE meta-analysis. The other 7 genome-wide significant loci in ADHD+23andMe 

match loci from the discovery GWAS. The remaining 4 of the 12 genome-wide significant loci from 

the ADHD GWAS meta-analysis were no longer significant after meta-analysing with 23andMe: 

rs281324 (chr15, SEMA6D), rs212178 (chr16, LINC01572), rs4916723 (chr5, LINC00461), 

rs74760947 (chr8, LINC01288). The final significant locus from the ADHD GWAS, rs28411770 
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(chr4, PCDH7), is not present in the 23andMe results. Cochran’s Q test of heterogeneity identified 

genome-wide significant heterogeneity between the ADHD GWAS and the 23andMe GWAS in the 

top locus on chromosome 1 from the ADHD GWAS (Supplementary Figure 18-19). The strongest 

evidence for discordance was at rs12410155 (ST3GAL3), with an estimated odds ratio of 1.111 (P = 

3.63 x 10-13) in the ADHD GWAS, compared to an odds ratio of 0.954 (P = 0.0244) in the 23andMe 

analysis (heterogeneity P = 2.28 x 10-9, I2 = 97.2). 

Lastly, meta-analysis of the ADHD GWAS with EAGLE/QIMR (ADHD+EAGLE/QIMR) produced 

15 genome-wide significant loci (Supplementary eTable 6, Supplementary Figure 20). All 12 of the 

genome-wide significant loci from the ADHD GWAS remain significant in the 

ADHD+EAGLE/QIMR meta-analysis, consistent with the sign concordance at all 12 loci. The three 

additional significant loci are located on chromosome 7 (rs1443749, CADPS2), chromosome 10 

(rs9665567, intergenic) and chromosome 13 (rs7997529, RNF219-AS1). The chromosome 7 locus is 

concordant with the locus reaching genome-wide significance in ADHD+deCODE, and the 

chromosome 13 locus similarly matches the significant locus from ADHD+23andMe. No significant 

heterogeneity was observed between the EAGLE/QIMR and ADHD GWAS meta-analyses 

(Supplementary Figure 21-22), consistent with the strong genetic correlation between the two studies. 

Overall, 4 of the 12 significant loci from the ADHD GWAS are significant in all three of these 

replication meta-analyses: index variants rs11420276 (chr. 1, ST3GAL3/PTPRF), rs5886709 (chr. 7, 

FOXP2), rs11591402 (chr. 10, SORCS3), and rs1427829 (chr. 12, intergenic). The remaining loci are 

all significant in at least one of the replication meta-analyses. In addition, 3 novel loci reach genome-

wide significance in two of these replication meta-analyses: index variants rs1592757/rs30266 (chr. 

5, Refseq LOC105379109), rs28452470/rs1443749 (chr. 7, CADPS2), and rs2243638/rs9574218 

(chr. 13, RNF219-AS1).  
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Meta-analysis across replication cohorts 

We finally consider meta-analysis with all available data. Because replication results from deCODE 

are only available for top loci from the primary ADHD GWAS we are unable to estimate heritability 

and genetic correlation with EAGLE/QIMR to calibrate the meta-analysis weights as used for the 

other EAGLE/QIMR analyses (described below). Since we consequently cannot perform a meta-

analysis simultaneously including both deCODE and EAGLE/QIMR, we instead separately evaluate 

the replication meta-analysis of all case/control cohorts (i.e. ADHD+deCODE+23andMe, omitting 

EAGLE/QIMR) and the replication meta-analysis of all genome-wide studies (i.e. 

ADHD+23andMe+EAGLE/QIMR, omitting deCODE).  

Results for the ADHD+deCODE+23andMe and ADHD+23andMe+EAGLE/QIMR replication meta-

analyses are generally consistent with the meta-analyses for each replication cohort (Supplementary 

eTable 6). Two new loci – located near MAD1L1 (chr. 7) and TM6SF2 (chr. 19) – nominally reach 

genome-wide significance in ADHD+23andMe+EAGLE/QIMR before consideration of multiple 

testing for the replication meta-analyses. No additional loci are nominated by the 

ADHD+deCODE+23andMe meta-analysis. Of the 12 significant loci in the ADHD GWAS, three are 

not significant in either of these pooled replication meta-analyses, primarily due to poor support for 

the locus in 23andMe: rs281324 (chr15, SEMA6D), rs212178 (chr16, LINC01572), and rs74760947 

(chr8, LINC01288). 

 

Winner’s curse correction for effect sizes 

To evaluate replication of the ADHD GWAS effect sizes it is necessary to account for the bias from 

the “winner’s curse” in looking at only top loci nominally associated with ADHD. To correct for this 

bias, we compute posterior estimates for the expected value of 𝛽𝑗 for each SNP given the observed 
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GWAS estimate and a spike-and-slab prior as described by Okbay et al.82  Briefly, we assume that 

marginal SNP effects follow the spike-and-slab distribution 

𝛽𝑗~ {
0

𝑁(0, 𝜏2)
with⁡probability⁡𝜋

otherwise
 

where 𝛽𝑗 is standardized for MAF such that 𝜏2 corresponds to average variance explained per SNP. 

Following this model, we estimate 𝜋̂ and 𝜏̂2 via maximum likelihood with the observed 𝛽𝑗̂ from the 

ADHD GWAS. We then compute the posterior probability that each SNP is null 𝜋̂𝑗. The posterior 

estimate of 𝛽𝑗 corrected for winner’s curse is then given by 

𝛽̂𝑎𝑑𝑗,𝑗 = (1 − 𝜋̂𝑗)
𝜏̂2

𝜏̂2 + 𝑠̂𝑗
2 𝛽𝑗̂  

where 𝑠̂𝑗
2
 is the squared standard error of 𝛽𝑗̂ from the ADHD GWAS. As implied by this formula, 

the resulting 𝛽̂𝑎𝑑𝑗,𝑗⁡corrected for winner’s curse will be shrunken towards zero proportional to the 

probability that SNP j is null and the degree of uncertainty in its effect size as indicated by the standard 

error.  

 

Method for meta-analysis of continuous and dichotomous ADHD measures 

In order to integrate the EAGLE/QIMR data with the current analysis, we need to define a framework 

for comparing the GWAS of (continuous) measures of ADHD-related behaviour to the ADHD 

GWAS meta-analysis of (dichotomous) clinical diagnosis of ADHD.  

As a starting point, motivated by the strong genetic correlation between the EAGLE/QIMR results 

and the ADHD GWAS meta-analysis, we could consider a conventional sample size-weighted meta-

analysis of Z scores. Such an analysis however would not account for: (a) differences in power for 

continuous vs. dichotomous phenotypes, (b) differences in power from ascertainment on the 

dichotomous phenotype, (c) differences in the relative strength of overall genetic association (e.g. 
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SNP heritability) for the phenotype measures, or (d) imperfect correlation between the continuous 

ADHD-related behaviours measured in EAGLE/QIMR and clinical diagnosis of ADHD, with the 

matter being the phenotype of interest for the current study. 

Therefore, we instead define a basic model for the genetic relationship between clinical diagnosis of 

ADHD and continuous ADHD-related behaviours that allows us to derive modified sample size-

based weights that account for these factors. These weights should be better calibrated to provide a 

statistically efficient meta-analysis of the EAGLE/QIMR results with the ADHD GWAS. 

 

Basic genetic model for latent-scale phenotypes 

We begin by defining a joint model for the genetics of the two phenotypes. Let 𝑌1 be the observed 

dichotomous phenotype and 𝑌2 be the observed continuous phenotype. For dichotomous phenotype 

𝑌1, we assume there exists some latent continuous liability 𝜃1 such that 

𝑌1 = {
0, 𝜃1 < 𝜏1

1, 𝜃1 ≥ 𝜏1
 

where 𝜏1  is a threshold corresponding to the population prevalence 𝐾  of 𝑌1  consistent with the 

standard liability threshold model83. For convenience, assume that 𝜃1is standardized with mean zero 

and unit variance. Similarly, let 𝜃2 denote the continuous phenotype 𝑌2 normalized to have mean 0 

and unit variance in the population. 

We describe a model for the genetics of the latent continuous phenotypes 𝜃1 and 𝜃2 before returning 

to the impact of the observed scale for each phenotype. Let 𝑔1 and 𝑒1 be genetic and environment 

components of 𝜃1, respectively, and let 𝑔2 and 𝑒2 be corresponding components of 𝜃2 such that 

[
𝜃1⁡
𝜃2

] = ⁡ [
𝑔1

𝑔2
] + [

𝑒1

𝑒2
] 

𝐸 ([
θ1⁡
𝜃2

]) = E ([
g1

g2
]) = E ([

e1

e2
]) = [

0
0
] 
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𝐶𝑜𝑣 ([

𝑔1

𝑔2

𝑒1

𝑒2

]) =

[
 
 
 
 
ℎ1

2 𝜌𝑔 0 0

𝜌𝑔 ℎ2
2 0 0

0 0 𝜖1
2 𝜌𝑒

0 0 𝜌𝑒 𝜖2
2
]
 
 
 
 

 

Note that we assume that not only are genetics and environment uncorrelated within phenotype (i.e. 

𝐶𝑜𝑣(𝑔1, 𝑒1) = 𝐶𝑜𝑣(𝑔2, 𝑒2) = 0), but also between phenotypes (𝐶𝑜𝑣(𝑔1, 𝑒2) = 𝐶𝑜𝑣(𝑔2, 𝑒1) = 0). 

Since 𝜃1and 𝑌2
∗ are each defined to have unit variance, it follows that 𝜖1

2 = 1 − ℎ1
2, 𝜖2

2 = 1 − ℎ2
2, and 

𝜌𝑔  and 𝜌𝑒  are the genetic and environmental covariances, respectively. The genetic correlation 

between the latent phenotypes 𝜃1and 𝜃2 can then be defined as 𝑟𝑔 ≡ 𝑐𝑜𝑟(𝑔1, 𝑔2) = 𝜌𝑔/√ℎ1
2ℎ2

2. 

Defining independent genetic factors 

We next seek to specify the covariance of 𝑔1 and 𝑔2 in terms of two independent factors 𝑓1 and 𝑓2. 

This transformation serves two purposes. First, for modeling the effects of individual SNPs it will 

allow us to define independent effects on 𝑓1 and 𝑓2. Second, if we specify that 𝑔1 depends only on 𝑓1 

while 𝑔2  may depend on both 𝑓1  and 𝑓2 , then it will be possible to focus on the factor 𝑓1  that 

determines the genetic component 𝑔1 for 𝑌1 separate from any independent factors 𝑓2 that contribute 

to 𝑌2 only. Separating these factors therefore allows us to move towards the goal of defining a scheme 

for meta-analysis that focuses only on genetic effects for the dichotomous phenotype (i.e. clinical 

ADHD diagnosis) while discounting any independent genetic effects that are only relevant to the 

continuous phenotype (i.e. ADHD-related behaviours). 

The desired transformation is given by the inverse of the Cholesky decomposition of the covariance 

matrix for 𝑔1 and 𝑔2, which yields 

[
𝑓1
𝑓2

] ≡

[
 
 
 
 

1

√ℎ1
2

0

−𝑟𝑔

√1 − 𝑟𝑔2√ℎ1
2

1

√1 − 𝑟𝑔2√ℎ2
2
]
 
 
 
 

[
𝑔1

𝑔2
]. 

It can then be shown that 
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𝐶𝑜𝑣 ([
𝑓1
𝑓2

]) = [
1 0
0 1

], 

and 𝐸(𝑓1) = 𝐸(𝑓2) = 0. By substitution for 𝑔1 and 𝑔2, the latent phenotypes are related to these 

factors by 

𝜃1 = (√ℎ1
2)𝑓1 + 𝑒1 

𝜃2 = (𝑟𝑔√ℎ2
2)𝑓1 + (√1 − 𝑟𝑔2√ℎ2

2)𝑓2 + 𝑒2⁡. 

 

Effects of individual variants 

The above model fully specifies the overall genetic components of the two phenotypes, but does not 

model the contribution of any specific variant. We now define the effects of individual variants so 

that we can work towards describing the GWAS results for each phenotype and the desired meta-

analysis in terms of parameters for a given variant. 

To consider effects for a given variant, let 𝛾1𝑗
∗  be the causal effect of variant 𝑗 on 𝑓1, and let 𝛾2𝑗

∗  be 

the corresponding effect on 𝑓2. Then 

𝑓1 = ∑𝛾1𝑗
∗ 𝑥𝑗

𝑗

 

𝑓2 =⁡∑𝛾2𝑗
∗ 𝑥𝑗

𝑗

, 

where 𝑥𝑗 is the standardized genotype of variant 𝑗. We denote these causal effects as 𝛾 to distinguish 

them from marginal effects 𝛽, and use the * superscript here to indicate that these as effect sizes on 

the latent genetic components 𝑓1  and 𝑓2  as opposed to the standardized phenotypes. The 

corresponding causal effects on 𝜃1 and 𝜃2 are 

𝛾1𝑗 =⁡√ℎ1
2𝛾1𝑗

∗  



 54 

𝛾2𝑗 = (𝑟𝑔√ℎ2
2) 𝛾1𝑗

∗ + (√1 − 𝑟𝑔2√ℎ2
2) 𝛾2𝑗

∗  

respectively.  

 

The marginal effect on 𝑓1 and 𝑓2 will depend not only on the variant’s causal effect, but on the causal 

effect of other variants in LD with 𝑥𝑗. We define the corresponding marginal effects 𝛽𝑗
∗ as 

𝛽1𝑗
∗ = (𝑋𝑗

′𝑋𝑗)
−1

𝑋𝑗
′𝑿𝜸𝟏

∗ =⁡∑𝛾1𝑘
∗ 𝑟𝑗𝑘

𝑘

 

𝛽2𝑗
∗ = (𝑋𝑗

′𝑋𝑗)
−1

𝑋𝑗
′𝑿𝜸𝟐

∗ =⁡∑𝛾2𝑘
∗ 𝑟𝑗𝑘

𝑘

 

where 𝑟𝑗𝑘 = 𝑐𝑜𝑣(𝑥𝑗 , 𝑥𝑘) and 𝜸𝟏
∗  and 𝜸𝟐

∗  are column vectors with elements 𝛾𝑘
∗ for all 𝑘. As with 𝛾∗, 

the superscript denotes these 𝛽𝑗
∗⁡as effect sizes on the latent genetic components 𝑓1 and 𝑓2. 

 

To get marginal effect sizes on the phenotypes, we can denote  

𝑓1,−𝑗 = 𝑓1 −⁡𝛽1𝑗
∗ 𝑥𝑗  

𝑓2,−𝑗 = 𝑓2 −⁡𝛽2𝑗
∗ 𝑥𝑗 

to indicate 𝑓1 and 𝑓2 with the full marginal effect of 𝑥𝑗 removed, so that we can then express the 

phenotypes in terms of the marginal effect of variant 𝑗 as 

𝜃1 = (𝑓1,−𝑗 + 𝛽1𝑗
∗ 𝑥𝑗)√ℎ1

2 + 𝑒1 

                   = (𝛽1𝑗
∗
√ℎ1

2) 𝑥𝑗 + (√ℎ1
2) 𝑓1,−𝑗 + 𝑒1 

𝜃2 = (𝑟𝑔√ℎ2
2) (𝑓1,−𝑗 + 𝛽1𝑗

∗ 𝑥𝑗) + (√ℎ2
2(1 − 𝑟𝑔2)) (𝑓2,−𝑗 + 𝛽2𝑗

∗ 𝑥𝑗) + 𝑒2⁡                                     

     = [𝛽1𝑗
∗ (𝑟𝑔√ℎ2

2) + 𝛽2𝑗
∗ (√ℎ2

2(1 − 𝑟𝑔2))] 𝑥𝑗 + (𝑟𝑔√ℎ2
2) 𝑓1,−𝑗 + (√ℎ2

2(1 − 𝑟𝑔2))𝑓2,−𝑗 + 𝑒2 
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Therefore, given 𝜃1, 𝜃2 and 𝑥𝑗 are all standardized and 𝑥𝑗, 𝑓1,−𝑗, 𝑓2,−𝑗, 𝑒1, and 𝑒2 are all independent 

except for 𝑐𝑜𝑣(𝑒1, 𝑒2) = 𝜌𝑒 , 

𝛽1𝑗 = 𝑐𝑜𝑟(𝑥𝑗 , 𝜃1) = 𝛽1𝑗
∗
√ℎ1

2                                              

𝛽2𝑗 = 𝑐𝑜𝑟(𝑥𝑗 , 𝜃2) = 𝛽1𝑗
∗ (𝑟𝑔√ℎ2

2) + 𝛽2𝑗
∗ (√ℎ2

2(1 − 𝑟𝑔2)) 

These are the standardized marginal effect of variant 𝑗 on each phenotype (defined on the latent 

liability scale in the case of the dichotomous phenotype 𝑌1). We denote them as 𝛽𝑗 because they are 

the effects of interest for the GWASs of 𝜃1 and 𝜃2. 

GWAS test statistics for ßj 

Given the above parameterization, we can now focus on the behaviour of the test statistics from the 

GWAS of each phenotype. These test statistics are of primary interest since they are the intended 

input for the desired meta-analysis across the two phenotypes. In particular, we are focused on 

defining the relationship between these test statistics and 𝛽1𝑗 , the effect of variant 𝑗  on the 

dichotomous phenotype, so that we can calibrate meta-analysis of the observed 𝑍 scores to test the 

null hypothesis 𝛽1𝑗 = 0. 

Before discussing the test statistics for the observed phenotypes however, it is instructive to describe 

test statistics for a hypothetical GWAS of the latent phenotypes (𝜃1  and 𝜃2 ), as a foundation 

evaluating the impact of e.g. dichotomizing 𝜃1 to a case/control phenotype. If both 𝜃1 and 𝜃2 were 

observed, we could define 𝑍 scores for the standardized effects 𝛽𝑗 as 

𝑍𝜃,1𝑗 = √𝑁1𝛽̂1𝑗 

                              = √𝑁1𝑗𝛽1𝑗 +⁡√𝑁1𝑗𝛿1𝑗 

𝑍𝜃,2𝑗 = √𝑁2𝛽̂2𝑗 

                              = √𝑁2𝑗𝛽2𝑗 +⁡√𝑁2𝑗𝛿2𝑗 
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where 𝛽̂𝑗 ⁡is the observed GWAS estimate of 𝛽𝑗, 𝑁𝑗 ⁡is the sample size of the data used to estimate 𝛽̂𝑗, 

and 𝛿𝑗 is the corresponding sampling error of the estimate.  

𝛿1𝑗 ⁡~⁡𝑁 (0,
1

𝑁1𝑗
𝑣𝑎𝑟 [(√ℎ1

2)𝑓1,−𝑗 + 𝑒1]) 

𝛿2𝑗 ⁡~⁡𝑁 (0,
1

𝑁2𝑗
𝑣𝑎𝑟 [(𝑟𝑔√ℎ2

2)𝑓1,−𝑗 + (√ℎ2
2(1 − 𝑟𝑔2))𝑓2,−𝑗 + 𝑒2]) 

Assuming the marginal effect of any given variant is small, we can approximate 𝑓1,−𝑗 ≈ 𝑓1 and 

𝑓2,−𝑗 ≈ 𝑓2, giving 

𝛿1𝑗⁡~⁡𝑁 (0,
1

𝑁1𝑗
[ℎ1

2 + 𝜖1
2]) 

⁡⁡⁡⁡⁡⁡⁡~⁡𝑁 (0,
1

𝑁1𝑗
)                  

𝛿2𝑗 ⁡~⁡𝑁 (0,
1

𝑁2𝑗
[𝑟𝑔

2ℎ2
2 + (1 − 𝑟𝑔

2)ℎ2
2 + 𝜖2

2]) 

⁡⁡⁡⁡⁡⁡⁡~⁡𝑁 (0,
1

𝑁2𝑗
[ℎ2

2 + 𝜖2
2])                            

⁡⁡⁡⁡⁡⁡⁡~⁡𝑁 (0,
1

𝑁2𝑗
)                                             

based on 𝑓 and 𝑒 being independent, 𝑣𝑎𝑟(𝑓) = 1, 𝑣𝑎𝑟(𝑒) = 𝜖2, and ℎ2 + 𝜖2 = 1. To the extent 

that 𝑓 ≠ 𝑓−𝑗, then this is an overestimate of the variance of 𝛿𝑗 since 𝑣𝑎𝑟(𝑓−𝑗) ≤ 1. Returning to the 

Z scores defined previously, this gives 

𝑍𝜃,1𝑗~⁡𝑁(√𝑁1𝑗𝛽1𝑗, 1) 

𝑍𝜃,2𝑗~⁡𝑁(√𝑁2𝑗𝛽2𝑗, 1) 

which have the desired standard normal distribution when 𝛽𝑗 = 0. We can also express these in 

terms of the latent effects 𝛽𝑗
∗ 

𝑍𝜃,1𝑗⁡~⁡𝑁(√𝑁1𝑗ℎ1
2𝛽1𝑗

∗ , 1) 
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𝑍𝜃,2𝑗⁡~⁡𝑁 (𝑟𝑔√𝑁2𝑗ℎ2
2𝛽1𝑗

∗ + √𝑁2𝑗ℎ2
2(1 − 𝑟𝑔2)𝛽2𝑗

∗ , 1) 

⁡⁡⁡⁡⁡⁡⁡~⁡𝑁 (√𝑁2𝑗ℎ2
2[𝑟𝑔𝛽1𝑗

∗ + √1 − 𝑟𝑔2𝛽2𝑗
∗ ], 1)        

We now consider how the actual observed Z statistics for each phenotype will differ from these 

idealized tests of association with the latent phenotypes. 

Test of ßij in GWAS of dichotomous Y1 

For the dichotomous phenotype (i.e. ADHD diagnosis) we do not observe the latent liability 𝜃1, and 

thus we cannot compute 𝑍𝜃,1𝑗 . Instead the GWAS results come from logistic regression of the 

observed phenotype 𝑌1 . The statistical properties of 𝑍2𝑗  will be affected by two key features of 

GWAS with case/control phenotypes: dichotomization and ascertainment. For dichotomization, 

recall that  

𝛽1𝑗 = 𝑐𝑜𝑟(𝑥𝑗 , 𝜃1) 

It has been shown that dichotomizing one variable attenuates the correlation such that if 𝑥 and 𝑌 are 

approximated as bivariate normal 

𝑐𝑜𝑟(𝑥𝑗 , 𝑌1) ≈
𝜙(𝛷−1[𝐾])

√𝐾(1 − 𝐾)
𝑐𝑜𝑟(𝑥𝑗 , 𝜃1) 

where 𝐾  is the prevalence of 𝑌1 = 1  after dichotomization, and 𝜙(⋅)  and 𝛷−1(⋅) are the density 

function and inverse of the cumulative density function of the standard normal distribution, 

respectively84,85.  

 

With respect to case/control ascertainment, we note that the power of logistic regression is 

approximately proportional to √𝑃∗(1 − 𝑃∗), where 𝑃∗ is the probability 𝑌 = 1 at the mean liability 

in the sample86. Given a symmetric distribution of liability, 𝑃∗ ≈ 𝑃 where 𝑃 is the sample proportion 
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of cases. Therefore, power for the analysis in an ascertained sample differs from power in a population 

sample with the sample size by a factor of √𝑃(1 − 𝑃) √𝐾(1 − 𝐾)⁄ . 

 

Putting together these adjustments for dichotomization and ascertainment, we adopt the 

approximation 

𝑍1𝑗 ⁡~⁡𝑁 (
𝜙(𝛷−1[𝐾])

√𝐾(1 − 𝐾)

√𝑃(1 − 𝑃)

√𝐾(1 − 𝐾)
√𝑁1𝑗𝛽1𝑗, 1) 

Importantly, we note that this adjustment mirrors the conversion between observed scale heritability 

and liability scale heritability derived by Lee at al87. 

ℎ𝑜𝑏𝑠
2 = ℎ𝑙𝑖𝑎𝑏

2 (𝛷−1[𝐾])2

𝐾(1 − 𝐾)

𝑃(1 − 𝑃)

𝐾(1 − 𝐾)
 

Indeed, noting that  

𝛽1𝑗 = 𝛽1𝑗
∗ √ℎ1

2 

we can equate 

𝐸(𝑍1𝑗) =
𝜙(𝛷−1[𝐾])

√𝐾(1 − 𝐾)

√𝑃(1 − 𝑃)

√𝐾(1 − 𝐾)
√𝑁1𝑗𝛽1𝑗 

                   =
𝜙(𝛷−1[𝐾])

√𝐾(1−𝐾)

√𝑃(1−𝑃)

√𝐾(1−𝐾) √
𝑁1𝑗𝛽1𝑗

∗
√ℎ1

2 

              = √𝑁1𝑗√ℎ1
2 (𝛷−1[𝐾])2

𝐾(1−𝐾)

𝑃(1−𝑃)

𝐾(1−𝐾)
𝛽1𝑗

∗  

= √𝑁1𝑗√ℎ1,𝑜𝑏𝑠
2 𝛽1𝑗

∗                  

which highlights the parallel between the observed 𝑍1𝑗, the test the effect of variant 𝑗 on the 

observed scale, and the corresponding 𝑍𝜃,1𝑗 testing on the latent scale. 

 

Finally, we can define an effective sample size adjustment for 𝑁1 
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𝑁̃1𝑗 ≡ 𝑁1𝑗

𝑃(1 − 𝑃)⁡𝜙(𝛷−1[𝐾])2

[𝐾(1 − 𝐾)]2
 

so that the approximate distribution of 𝑍1𝑗 from logistic regression of the dichotomous phenotype 

can be expressed as 

𝑍1𝑗 ⁡~⁡𝑁 (√𝑁̃1𝑗𝛽1𝑗, 1) 

This formulation, with 𝑍1𝑗 following a standard normal distribution conditional on (adjusted) sample 

size and the effect of interest (𝛽1𝑗), is central to allowing the desired meta-analysis. 

Test of ß1j in GWAS of continuous Y2 

For the continuous phenotype 𝑌2 , the observed 𝑍  scores are computed from conventional linear 

regression of the observed phenotype. The observed phenotype only differs from the latent 𝜃2 by a 

linear transformation to center and scale to unit variance. Thus, since 𝑍 scores are invariant linear 

transformations of the phenotype, 

𝑍2𝑗 = 𝑍𝜃,2𝑗 

But unlike the dichotomous phenotype analysis, the GWAS of 𝑌2 is a test of 𝛽2𝑗 = 0 rather than 

𝛽1𝑗 = 0. For the current analysis, our primary interest is in the latter test to identify effects 𝛽1𝑗 of 

each variant on the dichotomous phenotype of ADHD diagnosis. The residual effects from 𝑓2 in 𝛽2𝑗
∗  

that are unique to the continuous trait (population measures of ADHD-related behavior) are of less 

relevance, and given a high 𝑟𝑔 are anticipated to have a limited contribution even to the continuous 

measure (proportional to √1 − 𝑟𝑔2).  

 

For that reason, we adopt a random effects framework for 𝛽2𝑗
∗ , and treat them as nuisance 

parameters. Specifically, we assume that the causal effect sizes 
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𝛾2𝑗
∗ ~𝑁 (0,

1

𝑀
) 

where M is the total number of variants 𝑗. This is equivalent to the standard infinitesimal random 

effects model used by45,88, but specified here in terms of 𝛾2𝑗
∗  on the latent scale of 𝑓2 prior to scaling 

by ℎ2
2 for the phenotype. For the marginal effects 

𝛽2𝑗
∗ =⁡∑𝛾2𝑘

∗ 𝑟𝑗𝑘
𝑘

 

 we additionally assume that 𝛾2𝑘
∗  and 𝑟𝑗𝑘 are independent, meaning that the causal effect size of 

variant 𝑘 is independent of its LD with other variants. This leads to 

𝛽2𝑗
∗ ~𝑁 (0,∑

1

𝑀
𝑘

𝑟𝑗𝑘
2 ) 

𝛽2𝑗
∗ ~𝑁 (0,

1

𝑀
𝑙𝑗) 

where we note that  

𝑙𝑗 = ∑𝑟𝑗𝑘
2

𝑘

 

is the LD score of variant 𝑗 as defined by Bulik-Sullivan et al45. 

 

Returning to the 𝑍 score, we note that the previous expression for 𝑍2𝑗
∗  is now a conditional 

distribution given a particular value of 𝛽2𝑗
∗ . 

𝑍2𝑗|𝛽2𝑗
∗ ⁡~⁡⁡𝑁 (√𝑁2𝑗ℎ2

2 [𝑟𝑔𝛽1𝑗
∗ + √1 − 𝑟𝑔

2𝛽2𝑗
∗ ] , 1) 

Substituting 𝛽1𝑗 = 𝛽1𝑗
∗
√ℎ1

2 as the actual parameter of interest and marginalizing over 𝛽2𝑗
∗  as a 

random effect yields 

𝑍2𝑗 ⁡~⁡𝑁 (𝑟𝑔√𝑁2𝑗ℎ1
2ℎ2

2𝛽1𝑗, 1 + (1 − 𝑟𝑔
2)

𝑁2𝑗ℎ2
2

𝑀
𝑙𝑗) 
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To construct the intended meta-analysis for genetics effects on the diagnosis of ADHD, we want to 

have a test statistic that has a standard normal distribution under the null hypothesis 𝛽1𝑗 = 0 . 

Although 𝑍2𝑗  is normally distributed with mean zero under that null hypothesis, it’s variance is 

inflated if 𝑌2 is heritable (i.e. ℎ2
2 > 0) and is not completely genetically correlated with 𝑌1 (i.e. 𝑟𝑔 <

1). We note that inflation proportional to 𝑁2𝑗ℎ2
2𝑙𝑗 𝑀⁄  is consistent the expected values derived by 

Bulik-Sullivan et al.45 To obtain a statistic with the desired distribution, we define a new modified 𝑍 

score 

𝑍̃2𝑗 = 𝑠𝑖𝑔𝑛(𝑟𝑔) ⋅
𝑍2𝑗

√1 + (1 − 𝑟𝑔2)
𝑁2𝑗ℎ2

2

𝑀 𝑙𝑗

 

which is distributed as 

𝑍̃2𝑗~⁡𝑁

(

 

|𝑟𝑔|√𝑁2𝑗ℎ2
2 ℎ1

2⁄

√1 + (1 − 𝑟𝑔2)
𝑁2𝑗ℎ2

2

𝑀 𝑙𝑗

𝛽1𝑗, 1

)

  

Including⁡𝑠𝑖𝑔𝑛(𝑟𝑔) in this definition of 𝑍̃2𝑗 ensures that its expected value has the same sign as 𝛽1𝑗. 

We note that |𝑍̃2𝑗| ≤ |𝑍2𝑗|  since [1 + (1 − 𝑟𝑔
2)𝑁2𝑗ℎ2

2𝑙𝑗 𝑀⁄ ] ≥ 1⁡ by definition for the involved 

quantities. Therefore 𝑍̃2𝑗 can be interpreted as a more conservative estimate for inference about 𝛽1𝑗 

that has been attenuated from the raw observation proportional to the potential for genetic effects on 

the continuous phenotype to be unique to that phenotype rather than shared with the dichotomous 

outcome (i.e. [1 − 𝑟𝑔
2]ℎ2

2). 

 

Lastly, if we define adjusted 𝑁2 as 

𝑁̃2𝑗 ≡ 𝑁2𝑗

𝑟𝑔
2ℎ2

2 ℎ1
2⁄

1 + (1 − 𝑟𝑔2)𝑁2𝑗ℎ2
2𝑙𝑗 𝑀⁄

 

then the distribution of the modified test statistic can be expressed as 
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𝑍̃2𝑗~𝑁 (√𝑁̃2𝑗𝛽1𝑗, 1) 

We note that the multiplication by 𝑠𝑖𝑔𝑛(𝑟𝑔) in defining 𝑍̃2𝑗 ensures that it’s distribution involves 

the positive root of 𝑁̃2𝑗 and matches the sign of 𝛽1𝑗 in expectation. The resulting statistic provides a 

clear parallel to 𝑍1𝑗 for the dichotomous phenotype, and sets up the meta-analysis of the two 𝑍 

scores.  

Meta-analysis for ß1j from GWAS of dichotomous Y1 and continuous Y2 

Summarizing the above derivations, we have now established a framework for the GWAS results of 

dichotomous phenotype 𝑌1 and continuous phenotype 𝑌2, respectively, where we can approximate 

𝑍1𝑗 ⁡~⁡𝑁 (√𝑁̃1𝑗𝛽1𝑗, 1) 

𝑍̃2𝑗⁡~⁡𝑁 (√𝑁̃2𝑗𝛽1𝑗, 1) 

where 

𝑍̃2𝑗 = 𝑠𝑖𝑔𝑛(𝑟𝑔) ⋅
𝑍2𝑗

√1 + (1 − 𝑟𝑔2)𝑁2𝑗ℎ2
2 𝑙𝑗 𝑀⁄

 

𝑁̃1𝑗 = 𝑁1𝑗

𝑃(1 − 𝑃)⁡𝜙(𝛷−1[𝐾])2

[𝐾(1 − 𝐾)]2
 

𝑁̃2𝑗 = 𝑁2𝑗

𝑟𝑔
2ℎ2

2 ℎ1
2⁄

1 + (1 − 𝑟𝑔2)𝑁2𝑗ℎ2
2𝑙𝑗 𝑀⁄

 

 

From this form, we have a pair of 𝑍 statistics for 𝛽1𝑗 with corresponding (adjusted) sample sizes. 

This is sufficient to then proceed with a conventional sample size-weighted meta-analysis89.  
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𝑍𝑗,𝑚𝑒𝑡𝑎 =
√𝑁̃1𝑗𝑍1𝑗 + √𝑁̃2𝑗𝑍̃2𝑗

√𝑁̃1𝑗 + 𝑁̃2𝑗

 

Expanding the numerator makes it clear that the adjusted sample size weights corresponds to 

weighting each 𝑍 proportional to the observed heritability and then balancing by genetic correlation. 

𝑍𝑗,𝑚𝑒𝑡𝑎 =

√𝑁1𝑗
𝑃(1 − 𝑃)⁡𝜙(𝛷−1[𝐾])2

[𝐾(1 − 𝐾)]2
𝑍1𝑗 + √𝑁2𝑗

𝑟𝑔2ℎ2
2 ℎ1

2⁄

1 + (1 − 𝑟𝑔
2)𝑁2𝑗ℎ2

2𝑙𝑗 𝑀⁄
𝑍̃2𝑗

√𝑁̃1𝑗 + 𝑁̃2𝑗

 

𝑍𝑗,𝑚𝑒𝑡𝑎 ∝ √ℎ1,𝑜𝑏𝑠
2

√𝑁1𝑗𝑍1𝑗 + |𝑟𝑔|√ℎ2
2
√𝑁2𝑗

𝑍̃2𝑗

√1 + (1 − 𝑟𝑔2)𝑁2𝑗ℎ2
2𝑙𝑗 𝑀⁄

 

We use these weights to implement the meta-analysis of the GWAS of ADHD-related behaviour 

from EAGLE/QIMR with GWAS of ADHD diagnoses. 

 

Notes on Implementation 

It may be noted that 𝑍̃2𝑗, 𝑁̃1𝑗, and 𝑁̃2𝑗 are computed from both observed values (𝑍1𝑗, 𝑍2𝑗, 𝑁1𝑗, 𝑁2𝑗, 

and 𝑃) and unknown population parameters (𝐾, 𝑟𝑔
2, ℎ1

2, ℎ2
2, 𝑙𝑗, and 𝑀). Sensible estimates for each of 

these population parameters can be obtained as described below and plugged into the expression for 

the weights. Importantly, estimation error in 𝐾, 𝑟𝑔
2, ℎ1

2, ℎ2
2, 𝑙𝑗, and 𝑀 is only expected to affect the 

efficiency (i.e. power) of the meta-analysis. For a fully null variant (i.e. 𝛽1𝑗
∗ = 𝛽2𝑗

∗ = 0), 𝑍1𝑗 and 𝑍2𝑗 

both have standard normal distributions, and since they are independent any weighted combination 

of these Z scores will also follow the null distribution. Suboptimal weights will only affect the power 

of the meta-analysis when the null hypothesis does not hold. In addition, since we use 𝑍2𝑗 in place of 
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𝑍̃2𝑗 and |𝑍̃2𝑗| ≤ |𝑍2𝑗|, the test of 𝑍𝑗,𝑚𝑒𝑡𝑎 will be conservative when there is no genetic effect specific 

to the continuous phenotype (i.e. 𝛽2𝑗
∗ = 0).  

 

With this reassurance, we obtain estimates of 𝐾, 𝑟𝑔
2, ℎ1

2, ℎ2
2, 𝑙𝑗, and 𝑀 as follows: 

• Estimates of 𝐾  can be derived from the literature. We use 𝐾 = .05 for the prevelance of 

ADHD here and throughout this paper90. 

• Estimates of 𝑟𝑔
2, ℎ1

2 and ℎ2
2 are computed from the GWAS results using LD score regression45. 

For meta-analysis with the ADHD GWAS, we use the European ADHD GWAS to estimate 

these parameters in order to ensure that the population ancestry is matched between the input 

GWAS for ADHD, EAGLE/QIMR, and the European reference panel used for computing LD 

scores. 

• For 𝑀, we utilize the value 𝑀 = 5,961,159 corresponding to LD scores computed from 1000 

Genomes Project Phase 3 data on individuals of European ancestry39. These LD scores have 

been described previously69 and are publically available for download at: 

http://data.broadinstitute.org/alkesgroup/LDSCORE/  

• We estimate 𝑙𝑗 = 124.718, the mean LD score of common HapMap3 SNPs as computed from 

1000 Genomes Project Phase 3 data on individuals of European ancestry (as above). We use 

this value for two reasons: (a) using a single value is convenient and allows meta-analysis for 

all variants in the GWAS, including variants that may not be present in the precomputed LD 

scores from the 1000 Genomes Project reference data; and (b) we can demonstrate that the 

value of 𝑙𝑗 has a trivial impact on the derived meta-analysis weights when the sample sizes, 

heritabilities, and genetic correlation are at the levels observed in the current study. 

 

http://data.broadinstitute.org/alkesgroup/LDSCORE/
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To demonstrate this final point, we consider the relative difference in 𝑍̃2𝑗 and 𝑁̃2𝑗 conditional on a 

range of possible values of 𝑙𝑗 with fixed values of  𝑁1𝑗, 𝑁2𝑗, and 𝑃 and fixed estimates of 𝐾, 𝑟𝑔
2, ℎ1

2, 

ℎ2
2, and 𝑀. First, we observe that the >99.5% of 1000 Genomes LD scores have values between 0 and 

1000 (Supplementary Figure 23); variants with higher LD scores are predominantly from known 

regions of long-range LD (e.g. the MHC region40). Then we show that for LD scores in this range the 

value of √1 + (1 − 𝑟𝑔2)𝑁2𝑗ℎ2
2 𝑙𝑗 𝑀⁄ , the term used to adjust the magnitude of 𝑍2𝑗 ⁡to account for 

polygenic effects specific to the second phenotype, is minimally affected by the value of 𝑙𝑗 

conditional on the estimates of 𝑟𝑔
2, 𝑁2𝑗, and ℎ2

2, observed in the current study (Supplementary Figure 

24). The impact of 𝑙𝑗  on the relative effective sample size 𝑁̃2𝑗  is also limited, with the weight 

effectively unchanged for values of 𝑙𝑗 between 0 and 1000 (Supplementary Figure 25). 

We note however that the limited effect of 𝑙𝑗 on the shrinkage parameter and the relative effective 

sample size is conditional on the estimated values for the other parameters in the current study. 

Specifically, 𝑙𝑗 contributes to the meta-analysis weights through the term √1 + (1 − 𝑟𝑔2)𝑁2𝑗ℎ2
2 𝑙𝑗 𝑀⁄ . 

When 𝑟𝑔  is large (e.g. 𝑟𝑔 = .97  for the ADHD GWAS and EAGLE/QIMR) and 𝑁2𝑗  and ℎ2
2  are 

modest (e.g. 𝑁2𝑗 = 20,464 and ℎ2
2 = .064 for EAGLE/QIMR) the potential contribution of 𝑙𝑗 to the 

value of this term is limited. On the other hand, if the genetic correlation is further from 1 (e.g. 𝑟𝑔 =.7) 

or the GWAS of the continuous phenotype is better powered (e.g. 𝑁2𝑗 = 40,000 and ℎ2
2 = .16) then 

the influence of 𝑙𝑗 on the meta-analysis weights becomes non-negligible (Supplementary Figures 24-

25). Thus, although the parameters for the current study enable the convenient use of mean 𝑙𝑗 for all 

variants, this simplification cannot be expected to hold for all studies. 
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Supplementary Tables 

Supplementary Table 1. Samples included in the GWAS meta-analyses of diagnosed ADHD 

Samples marked in bold are included in the GWAS meta-analysis. The European GWAS meta-analysis excludes samples marked with “*” and 

PUWMa (strict) is used in place of PUWMa. For each cohort, the number of cases and controls and the percentage of females (“% F”) among 

each group is reported. The age group of ADHD cases (children or adults) is given. Principal components (“PCs”) and other covariates used in 

each GWAS are indicated. “Literature” lists previously published studies including the ADHD cohort. 

 Sample Cases % F cases Controls % F controls Age Group Sample design Ancestry Covariates Genotyping chip Literature  

Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) 

 iPSYCH-ADHD, 

Denmark 
 14584 26.6%  22492   49.2% 

Children & 

adults 
Case-control European PCs PsychChip New 

Psychiatric Genomics Consortium (PGC) 

Barcelona, Spain 572 30.20% 425 23.50% Adults Case-control European PCs Illumina Omni1-Quad  
Ribases et al.91,  

Sanchez-Mora et al.13 

Beijing, China* 1012 15.70% 925 37.80% Children Case-control Han Chinese PCs Affymetrix 6.0 Yang et al.14 

Bergen, Norway 295 53.60% 202 60.90% Adults Case-control European PCs 
Illumina OmniExpress-

12v1 
Zayats et al.15  

Cardiff, UK 721 12.90% 5081 49.40% Children Case-control European PCs 
Illumina 660K (cases) & 

Illumina 1.2M (controls) 
Stergiakouli et al.16 

CHOP, USA 262 24.40% 262 24.40% Children Trios European None Illumina 550K 
Elia et al.8,  

Neale et al.10 

Germany 487 19.30% 1290 49.10% Children Case-control European PCs 
Illumina 660K (cases) & 

Illumina 550v3 (controls) 
Hinney et al.17 

IMAGE-I 700 12.10% 700 12.10% Children Trios European Site Perlegen 600K Neale et al.9,10 
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IMAGE-II 624 18.60% 1755 50.00% Children Case-control European PCs 
Affymetrix 5.0 &  

Affymetrix 6.0 
Neale et al.10 

PUWMa* 635 35.70% 635 35.70% Children Trios 
Diverse 

(USA) 
PCs Illumina 1M-Duo 

Mick et al.11,  

Neale et al.10 

PUWMa (strict) 563 35.90% 563 35.90% Children Trios European PCs Illumina 1M-Duo  

Toronto, Canada 109 24.80% 109 24.80% Children Trios European None Affymetrix 6.0 Lionel et al.12 

Yale-Penn 182 30.20% 1315 42.20% Adults Case-control European 

PCs, alcohol 

dependence 

diagnosis 

Illumina HumanOmni1-

Quad & Illumina Infinium 

Human Core Exome 

Gelernter et al.21-23 

(studies of substance 

use disorders) 
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Supplementary Table 2. Conditional Analysis of Secondary GWAS Signals 

Linkage disequilibrium (r2) computed between the putative secondary effect variant and the index variant in individuals of European ancestry 

from the 1000 Genomes Project (1KG), and imputed genotypes in the merged PGC and iPSYCH cohorts. Odds ratio (OR) and standard error 

(SE) of the secondary variant reported for the primary GWAS and conditional on the corresponding index variant. 

 

 

 

 

 

 

    r2 with Index Variant Marginal Association Conditional Association 

Variant CHR BP Index Var. 1KG PGC iPSYCH OR SE P OR SE P 

rs3952787 1 44323244 rs11420276 0.054 0.046 0.064 1.085 0.015 3.49 x10-8 1.063 0.015 6.02 x10-5 

rs304132 5 88215594 rs4916723 0.051 0.059 0.091 0.925 0.014 4.23 x10-8 0.939 0.015 2.03 x10-5 
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Supplementary Table 3. Summary of Bayesian Credible Set Results 

For each genome-wide significant locus (denoted with the chromosome [CHR] and base pair [BP] position of the index variant), the number of 

variants that are the in the 99% credible set computed based on linkage disequilibrium (LD) in the PGC cohorts, the 99% credible set computed 

based on LD in the iPSYCH data, and their overlap.  

 

   Number of Variants in Credible Set 

CHR Index Variant BP PGC only iPSYCH only Both sets 

1 rs11420276 44184192 0 0 96 

12 rs1427829 89760744 0 0 13 

16 rs212178 72578131 0 3 21 

4 rs28411770 31151456 0 0 53 

10 rs11591402 106747354 0 0 87 

8 rs74760947 34352610 0 1 13 

2 rs9677504 215181889 0 0 23 

5 rs4916723 87854395 0 0 67 

7 rs5886709 114086133 5 0 63 

3 rs4858241 20669071 1 5 44 

15 rs281324 47754018 0 0 43 

1 rs1222063 96602440 0 4 4 
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Supplementary Table 4. Biological function of potential ADHD risk genes located in genome-wide significantly associated loci 

Literature review of biological function, mutational constraint, tissue-specific expression, and relevant phenotypic associations for genes 

affiliated with the 12 loci significantly associated with ADHD. Mutational constraint is indexed by the estimated probability of loss-of-function 

intolerance (pLI) reported by the Exome Aggregation Consortium (ExAC; release 0.3.1)63.  

 

Chr Gene Index SNP P-value Function of encoded product pLI Tissue specificity ADHD-related phenotype 

associations 

1 ST3GAL3 rs11420276 2.14 x 10-13 ST3 Beta-Galactoside Alpha-2,3-

Sialyltransferase 3 (ST3GAL3), encodes 

a membrane protein (ST3Gal III) that 

adds sialic acid to the terminal site of 

glycolipids or glycoproteins. ST3Gal III 

may play an important role in brain 

development as the human brain is 

especially enriched in sialic acid-

containing glycolipids (termed 

gangliosides)92-94 and in mice St3gal2 

and St3gal3 were found to be 

responsible for nearly all the terminal 

sialylation of brain gangliosides95 as 

well as playing an important role for 

normal cognition93. Gangliosides are 

known to modulate Ca(2+) homeostasis 

and signal transduction in neurons96,97. 

0.57 This gene is expressed in 

several tissues including 

neurons93. 

Mutations in this gene have been 

associated with autosomal recessive 

mental retardation94 and early infantile 

epileptic encephalopathy98. DNA 

methylation at sites annotated to 

ST3GAL3 were reported capable to 

differentiate individuals with high and 

low ADHD symptomatology ratings99. 

Variants in ST3GAL3 have also been 

associated with educational 

attainment82. 

1 PTPRF rs3001723  3.62 x 10−10 Homo sapiens protein tyrosine 

phosphatase, receptor type, F (PTPRF). 

PTPRF encodes the leukocyte common 

antigen-related (LAR) receptor PTP 

which is present in neurons expressing 

TrkB, and LAR is associated with 

caveolae and regulates survival and 

1.00 This gene is expressed in 

several tissues including 

neurons101. 

Gws association of genetic markers in 

PTPRF with schizophrenia has been 

found35. Gws association of genetic 

markers in PTPRF with educational 

attainment has been found in a study of 

individuals from the UK Biobank 

(N=112,151)76. Overexpression of the 
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neurite outgrowth 100. The LAR 

receptor is present in neurons 

expressing TrkB, which is receptor for 

the brain-derived neurotrophic factor 

(BDNF), and it has been demonstrated 

that LAR, through its interaction with 

TrkB can affect the neurotrophic 

activity of BDNF101. 

LAR receptor encoded by PTPRF may 

contribute to insulin resistance102.  

1 Intergenic rs1222063  3.07 x 10-8 Not applicable. n/a Not applicable. Not applicable. 

2 SPAG16 rs9677504  1.39 x 10-8 Homo sapiens sperm associated antigen 

16 (SPAG16). SPAG16 encodes two 

major proteins that associate with the 

microtubular backbone of sperm tails 

and the nucleus of postmeiotic germ 

cells 103,104. 

0.00 Highly expressed in testis, 

but also detected 

throughout many tissues 

including brain, spinal cord, 

pituitary ovary, esophagus, 

thyroid, vagina, tibial 

nerve, bladder 

(http://www.gtexportal.org/

home/gene/ENSG00000144

451.14) 

Studies have suggested that SPAG16 

may play a role in multiple 

sclerosis105,106. 

3 Intergenic rs4858241 1.74 x 10-8 Not applicable. n/a Not applicable. Not applicable. 

4 PCDH7 rs28411770 1.15 x 10-8 Homo sapiens protocadherin 7 

(PCDH7). This gene belongs to the 

protocadherin gene family, a subfamily 

of the cadherin superfamily. It encodes 

an integral membrane protein that is 

thought to function in cell-cell 

recognition and calcium-dependent 

adhesion107,108 and plays an important 

role in neuron development109. 

n/a The gene is expressed in 

several brain regions 

especially the thalamus, 

cerebral cortex and 

brainstem circuits110. 

Variants in PCDH7 have been 

significantly associated with 

generalised epilepsy in GWAS111. 

PCDH7 is a target gene for MECP2112 

and MECP2 mutations causes Rett 

syndrome, which is a is a 

neurodevelopmental disorder 

characterized by loss of speech, 

microcephaly, seizures, and mental 

retardation 

(http://omim.org/entry/312750). 

5 LINC00461 rs4916723 1.58 x 10-8 Homo sapiens long intergenic 

noncoding RNA 461 (LINC00461), also 

known as visual cortex-expressed gene 

n/a Primarily expressed in the 

brain52 

(https://www.gtexportal.org

Variants in LINC00461 have been 

associated with educational 

attainment82. 

http://www.gtexportal.org/home/gene/ENSG00000144451.14
http://www.gtexportal.org/home/gene/ENSG00000144451.14
http://www.gtexportal.org/home/gene/ENSG00000144451.14
http://omim.org/entry/312750)
https://www.gtexportal.org/home/gene/LINC00461
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(Visc). The locus is conserved across 

diverse mammals, but mouse knockouts 

of the Visc-2 transcript do no exhibit 

any clear anatomical phenotype113.  

/home/gene/LINC00461). 

In mice, it’s strongly 

localized in the cortex and 

sites of neurogenesis during 

neurodevelopment and 

continuing into 

adulthood113. 

5 MEF2C / 

MEF2C−AS1 

rs304132  4.22 x 10-8 Homo sapiens myocyte enhancer factor 

2C (MEF2C). MEF2C encodes a 

member of the MADS box transcription 

factors, which binds to the conserved 

MADS box sequence motif114. MEF2C 

is important for normal neuronal 

function by regulating neuronal 

proliferation, differentiation, survival 

and synapse development115-117. Plays a 

role in hippocampal-dependent learning 

and memory, possibly by controlling 

the number of excitatory synapses116,118.  

0.00 MEF2C is expressed in 

brain especially the frontal 

cortex, cortex and skeletal 

muscle 

(http://www.gtexportal.org/

home/gene/MEF2) 

Mutations and deletions in MEF2C 

have been associated with severe 

mental retardation, stereotypic 

movements, epilepsy, lack of speech 

and cerebral malformation 

(http://omim.org/entry/613443).  

GWAS studies have identified genome-

wide significant association of variants 

in loci implicating MEF2C with 

Alzheimer´s disease119, depression120 

and schizophrenia35. Mef2c knockout 

mice have demonstrated autism like 

behaviours115,117, and individuals with 

MEF2C deletions have been found to 

display autism like traits 121,122.  

7 FOXP2 rs5886709  1.66 x 10-8 Homo sapiens forkhead box P2 

(FOXP2). This gene encodes a member 

of the forkhead/winged-helix (FOX) 

family of transcription factors. FOXP2 

is involved in e.g. synapse formation 

and neural mechanisms mediating the 

development of speech and language 

and learning related to linguistic issues 
123-125. It influences a large number of 

downstream gene targets62,123,126 with 

potential regional or tissue-specific 

differences in activity
62

.  

1.00 FOXP2 is expressed in both 

fetal and adult human 

brain127,128.  

Deletions in FOXP2 may cause speech-

language disorder 1 (SPCH1) inherited 

in an autosomal dominant manner. The 

disorder is characterized by abnormal 

development of several brain areas 

critical for both orofacial movements 

and sequential articulation126,129  

(http://omim.org/entry/602081). 

Candidate gene analysis previously 

suggested tentative evidence for 

association between FOXP2 and 

ADHD130. Variants in FOXP2 have also 

been associated with educational 

attainment82, and age of having a 

child131. 

https://www.gtexportal.org/home/gene/LINC00461
http://www.gtexportal.org/home/gene/MEF2
http://www.gtexportal.org/home/gene/MEF2
http://omim.org/entry/613443
http://omim.org/entry/602081
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8 LINC01288 rs74760947 1.35 x 10-8 Homo sapiens long intergenic non-

protein coding RNA 1288 

(LINC01288). No additional 

information available. 

n/a No information available. No information available. 

10 SORCS3 rs11591402 1.34 x 10-8 Homo sapiens sortilin-related VPS10 

domain containing receptor 3 

(SORCS3). This gene encodes a 

transmembrane receptor that is a 

member of the vacuolar protein sorting 

10 receptor family132. SORCS3 is 

involved in signalling and intracellular 

sorting133 important for neuronal 

development and synaptic 

plasticity134,135. 

0.33 Expressed in both the 

prenatal and adult brain 

regions 135 

(http://www.gtexportal.org/

home/gene/SORCS3) 

Rare CNVs overlapping SORCS3 have 

been suggested to be involved in 

ADHD12. Decreased expression of 

SORCS3 in brains from patients with 

Alzheimer´s disease compared to 

controls has been found136. GWAS 

studies have demonstrated strong 

association of variants in SORCS3 with 

schizophrenia (however not gws)35 and 

gws association with depression120. 

12 DUSP6 rs1427829 1.82 x 10-9 Homo sapiens dual specificity 

phosphatase 6 (DUSP6). The protein 

encoded by DUSP6 is a member of the 

dual specificity protein phosphatase 

subfamily137. DUSP6 (also referred to 

as mitogen kinase phosphatase 3 (MKP-

3)) is involved in negative regulation 

of mitogen-activated protein kinases 

(MAPKs) by acting as a dual 

phosphatase that dephosphorylate 

MAPKs at both threonine and tyrosine 

residues and thereby inactivate them138. 

DUSP6 is a cytoplasmic enzyme which 

has preference for extracellular signal-

regulated MAPKs138-140. MAPKs are 

components of highly conserved signal 

transduction pathways, responding to a 

wide variety of extracellular and 

intracellular stimuli, and they are 

involved in e.g. embryogenesis, cellular 

proliferation and differentiation141-143. 

Additionally MKP-3 has been suggested 

to play a role in regulating 

0.91 Generally expressed at low 

levels in the brain 

(http://gtexportal.org/home/

gene/DUSP6) and is 

strongly regulated during 

development143. 

Rare mutations in DUSP6 may lead to 

congenital hypogonadotropic 

hypogonadism147 

(http://omim.org/entry/602748). DUSP6 

may play a role in Hirschsprung´s 

disease, due to decreased expression 148. 

DUSP6 have been found in reduced 

levels in Alzheimer brains149. 

Additionally, MKP-3 may play a 

critical role in cancer 

development150,151. 

 

http://www.gtexportal.org/home/gene/SORCS3
http://www.gtexportal.org/home/gene/SORCS3
http://gtexportal.org/home/gene/DUSP6
http://gtexportal.org/home/gene/DUSP6
http://omim.org/entry/602748
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neurotransmitter homeostasis, as 

increased MKP-3  was found to reduce 

depolarization-dependent release of 

dopamine in rat PC12 cells, possibly 

through a down regulation of 

Cacna1c144. It has been suggested that 

MKP-3 stabilizes the dopamine 

transporter in the presynaptic 

dopaminergic neuron145. MKP-3 is 

upregulated by methamphetamine146. 

15 SEMA6D rs281324  2.68 x 10-8 Homo sapiens sema domain, 

transmembrane domain (TM), and 

cytoplasmic domain, (semaphorin) 6D 

(SEMA6D). The product encoded by 

this gene is a transmembrane 

semaphoring which play role in 

maintenance and remodelling of 

neuronal connections152. 

Sema6D acts as ligand for PlexinA1 

which is involved in critical steps of 

neuronal development in the spinal 

cord153 as well as cardiac 

development154,155. 

1.00 Expressed in adult brain, 

spinal cord, and fetal 

brains152. 

Variants in SEMA6D have been 

associated with educational 

attainment82. 

16 LINC01572 rs212178  7.68 x 10-9 Homo sapiens long intergenic non-

protein coding RNA 1572 

(LINC01572). No additional 

information available. 

n/a No information available. No information available. 
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Supplementary Table 5. Results from MAGMA gene-based association with ADHD 

Genes demonstrating significant gene-wise association with ADHD after Bonferroni correction in the 

MAGMA46 analysis. Chromosome (CHR), number of SNPs in the genes (N SNPS) and number of 

relevant parameters used in the model (N PARAM) are shown. Chromosome band location of the 

associated gene and the chromosome band location of the nearest gws single marker are shown. Genes 

marked in bold are not overlapping with loci with gws single markers.  

Gene CHR N SNPS N PARAM P Location of Gene Location of nearest gws marker 

ST3GAL3 1 483 57 7.38 x 10-12 1p34.1 1p34.1 

KDM4A 1 71 28 2.15 x 10-11 1p34.1 1p34.1 

PTPRF 1 226 60 5.68 x 10-10 1p34.2 1p34.2 

SZT2 1 87 25 8.47 x 10-9 1p34.2 1p34.2 

TIE1 1 30 15 2.01 x 10-8 1p34.2 1p34.2 

MPL 1 13 6 3.33 x 10-8 1p34.2 1p34.2 

CDC20 1 5 5 6.34 x 10-8 1p34.2 1p34.2 

HYI 1 5 4 3.28 x 10-7 1p34.2 1p34.2 

SLC6A9 1 60 31 7.58 x 10-7 1p34.1 1p34.1 

ELOVL1 1 3 3 1.26 x 10-6 1p34.2 1p34.2 

CCDC24 1 6 5 2.12 x 10-6 1p34.1 1p34.1 

MANBA 4 203 55 6.00 x 10-8 4q24 4p15.1(PCDH7) 

MEF2C 5 320 54 3.19 x 10-8 5q14.3 5q14.3 

FOXP2 7 812 110 5.50 x 10-7 7q31.1 7q31.1 

SORCS3 10 1823 106 2.18 x 10-9 10q25.1 10q25.1 

CUBN 10 1172 167 1.59 x 10-7 10p13 10q25.1 (SORCS3) 

PIDD1 11 27 12 5.30 x 10-7 11p15.5 NA 

DUSP6 12 20 8 2.24 x 10-9 12q21.33 12q21.33 

SEMA6D 15 1458 138 2.63 x 10-10 15q21.1 15q21.1 

CDH8 16 764 79 4.67 x 10-8 16q21 16q22.2 (LINC01572) 
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Supplementary Table 6. Results from MAGMA gene-based association of ADHD candidate 

genes 

MAGMA46 analysis of previously reported candidate genes for ADHD from a recent review58. 

Number of SNPs in the genes (N SNPS), number of relevant parameters used in the model (N 

PARAM) are shown. 

 

Gene symbol Entrez ID N SNPS N PARAM Z P 

SLC9A9 285195 1609 129 3.395 3.40 x10-4 

DRD5 1816 4 2 -1.374 0.92 

SLC6A3 6531 101 12 -0.975 0.84 

HTR1B 3351 3 1 2.246 0.012 

DRD4 1815 5 2 -0.192 0.58 

NOS1 4842 410 30 1.088 0.14 

GIT1 28964 21 5 0.77 0.22 

SLC6A4 6532 67 12 -0.021 0.51 

SNAP25 6616 180 25 -0.512 0.7 
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Supplementary Table 7. Enrichment analysis of gene sets related to FOXP2 downstream target 

genes 

Competitive gene set analysis of each set of FOXP2 target genes performed using MAGMA46. For 

each gene set, the number of genes (N Genes), raw and semi-standardized (Std.) regression 

coefficients, and corresponding standard error (SE) are reported. 

 

Gene Set N Genes Beta Beta (Std.) SE P 

Mouse brain (ChIP-chip) 219 0.016 0.002 0.06 0.39 

Mouse brain (knockout) 243 0.034 0.004 0.055 0.27 

Human brain (ChIP-chip) 258 -0.094 -0.011 0.053 0.96 
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Supplementary Table 8. Enrichment analysis for a set of highly constrained genes 

Competitive gene set analysis of highly constrained genes (pLI > 0.9) performed using MAGMA46. 

The number of genes (N Genes), raw and semi-standardized (Std.) regression coefficients, and 

corresponding standard error (SE) are reported. 

 

Gene Set N Genes Beta Beta (Std.) SE P 

Highly constrained genes 2932 0.062 0.023 0.018 2.60 x10-4 
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Supplementary Table 9.  SNP heritability of ADHD 

Estimated SNP heritability (h2) and standard error (SE) using LD score regression (ldsc) and 

univariate GREML analysis in GCTA. Estimates are reported on the liability scale assuming a 5% 

population prevalence of ADHD. Only PGC European samples (Eur samples) were included. NA = 

not available. 

 Sample h2 (ldsc) SE (ldsc) h2 (GCTA) SE (GCTA) 

iPSYCH 0.26 0.02 0.187 0.008 

PGC (Eur samples) 0.12 0.03 0.104 0.013 

iPSYCH+PGC (Eur samples) 0.22 0.01 NA NA 
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Supplementary Table 10. Heritability and genetic correlations for PGC ADHD samples 

Univariate and bivariate heritability estimates for PGC ADHD samples stratified by study design type 

(case-control vs. parent-offspring trios). The estimated SNP heritability (SNP-h2) of each subset and 

the genetic correlation (rg) between the two sets are reported with their respective standard errors 

(SE). Heritability estimates are reported on the liability scale assuming a 5% population prevalence 

of ADHD. 

Cohort N cases N controls SNP-h2 (SE) rg (SE) 

PGC case-control 2871 9983 0.138 (0.019) 1.02 (0.32) 

PGC trios 1628 1629 0.081 (0.045)  
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Supplementary Table 11. Genetic correlations of ADHD with other selected traits 

Genetic correlation (rg) and its standard error (SE) is estimated using LD score regression and 

summary statistics from the European GWAS meta-analysis (iPSYCH + PGC European samples (Eur 

samples)) and summary statistics from published GWASs of other selected traits. Genetic correlations 

(based on analyses of European populations) significant after Bonferroni correction are presented in 

the table (correction for 219 tests). Extended table with results for all 219 phenotypes can be found 

in Supplementary eTable 5). Four significant results are omitted in this table as they were based on 

analyses of populations with mixed ancestry (Body fat and Coronary artery disease) and large overlap 

in samples already represented in other analyses (Years of schooling 2013 and 2014), results for 

correlation with these traits can be found in supplementary eTable 5. 

Trait Trait type N rg SE P-value 

Childhood IQ156 Cognition/education 17,989 -0.411 0.082 5.09 x 10-7 

Years of schooling82 Cognition/education 328,917 -0.535 0.028 1.44 x 10-80 

College completion157 Cognition/education 126,559 -0.538 0.046 3.30 x 10-31 

Human intelligence75 Cognition/education 78,308 -0.407 0.039 7.03 x 10-26 

UKB college/university degree76 Cognition/education 111,114 -0.520 0.038 5.60 x 10-42 

UKB verbal–numerical reasoning76 Cognition/education 36,035 -0.360 0.050 5.58 x 10-13 

Neuroticism158 Personality 170,911 0.264 0.046 1.02 x 10-8 

Depressive symptoms158 Psychiatric 161,460 0.446 0.050 7.00 x 10-19 

Subjective well being158 Psychiatric 298,420 -0.283 0.048 3.73 x 10-9 

Major depressive disorder79  Psychiatric 461,134 0.424 0.033 7.38 x 10-38 

PGC cross-disorder analysis159 Psychiatric 61,220 0.266 0.046 5.58 x 10-9 

Anorexia nervosa78 Psychiatric 14,477 -0.244 0.065 1.62 x 10-4 

Body mass index160 Weight related 123,865 0.258 0.032 1.68 x 10-15 

Waist circumference161 Weight related 224,459 0.269 0.034 2.20 x 10-15 

Hip circumference161 Weight related 254,459 0.160 0.034 2.13 x 10-6 

Waist-to-hip ratio162 Weight related 254,459 0.304 0.036 1.16 x 10-17 

Overweight161 Weight related 158,855 0.275 0.036 1.73 x 10-14 

Obesity class 1161 Weight related 98,697 0.285 0.036 1.81 x 10-15 

Obesity class 2161 Weight related 75,729 0.320 0.046 5.10 x 10-12 

Obesity class 3161 Weight related 50,364 0.338 0.067 4.05 x 10-7 

Extreme BMI161 Weight related 16,068 0.254 0.052 9.31 x 10-7 

Childhood obesity163 Weight related 13,848 0.216 0.046 3.29 x 10-6 

Type 2 Diabetes164 Glycemic 149,821 0.185 0.047 7.80 x 10-5 

HDL cholesterol165 Lipids 99,900 -0.217 0.042 2.44 x 10-7 
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Triglycerides165 Lipids 96,598 0.159 0.040 6.49 x 10-5 

Ever vs never smoked166 Smoking behaviour 74,035 0.478 0.059 4.33 x 10-16 

Cigarettes smoked per day166 Smoking behaviour 68,028 0.451 0.103 1.07 x 10-5 

Former vs Current smoker166 Smoking behaviour 41,969 -0.344 0.086 6.74 x 10-5 

Lung cancer167 Cancer 56,697 0.390 0.063 6.35 x 10-10 

Lung cancer (all)168 Cancer 27,209 0.368 0.071 2.53 x 10-7 

Squamous cell lung cancer167 Cancer 56,697 0.549 0.135 4.57 x 10-5 

Age of first birth131 Reproductive 251,151 -0.612 0.037 3.70 x 10-61 

Number of children ever born131 Reproductive  343,072 0.421 0.051 8.51 x 10-17 

Age at Menopause59 Reproductive 69,360 -0.161 0.042 1.50 x 10-4 

Mothers age at death169 Aging 52,776 -0.432 0.087 6.48 x 10-7 

Fathers age at death169 Aging 63,775 -0.298 0.066 7.19 x 10-6 

Parents age at death169 Aging 45,627 -0.376 0.091 3.51 x 10-5 

Insomnia77 Sleep 113,006 0.421 0.064 3.85 x 10-11 

Rheumatoid Arthritis170 Autoimmune 103,638 0.162 0.042 1.32 x 10-4 
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Supplementary Table 12.  Sign test results for each replication cohort 

Test of whether the proportion of loci with estimated effects in the same direction as the ADHD 

GWAS () is greater than expected by chance. Values in bold are nominally significant after 

Bonferroni correction for testing in 3 replication cohorts at a given P-value threshold (P < 0.0167). 

  deCODE Concordance   23andMe Concordance   EAGLE/QIMR Concordance 

P Threshold # Loci  P   # Loci  P   # Loci  P 

5.00E-08 12 0.833 0.0193  11 0.727 0.1133  12 1.000 2.44E-04 

1.00E-07 14 0.786 0.0287  13 0.615 0.2905  14 1.000 6.10E-05 

1.00E-06 37 0.73 0.00382  36 0.722 0.00567  34 0.824 9.76E-05 

1.00E-05 99 0.636 0.00432  99 0.747 4.25E-07  98 0.694 7.81E-05 

1.00E-04 -- -- --   326 0.607 6.28E-05   301 0.641 5.51E-07 
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Supplementary Table 13. Results for significant ADHD loci in each replication cohort  

GWAS results from deCODE, 23andMe, and EAGLE/QIMR for the genome-wide significant loci identified in the ADHD GWAS. Replication 

is tested for the index variant from the ADHD GWAS, or for a proxy variant when the index variant is not present in the replication cohort. 

Proxy variants are identified by linkage disequilibrium (LD) clumping of the ADHD GWAS results using European ancestry samples from the 

1000 Genomes Project after restricting to variants present in the replication cohort. No proxy variant is available for rs28411770. Effects (Z or 

odds ratio [OR]) that are sign concordant with the ADHD GWAS are indicated in bold.  

Variant        iPSYCH/PGC   DeCODE   23andMe   EAGLE/QIMR 

Index Proxy 

 

chr 
Effect LD to  

OR P 

 

OR P 

 

OR P 

 

Z P 
 Allele Index         

rs11420276 -- 1 G --  1.113 2.14E-13  1.006 8.23E-01  -- --  -- -- 

rs11420276 rs112984125  A 0.98  0.899 3.58E-13  -- --  1.044 4.01E-02  
-1.540 1.24E-01 

rs1222063 -- 1 A --   1.101 3.07E-08   1.006 7.97E-01   -- --   0.522 6.02E-01 

rs1222063 rs2391769  A 0.093   0.927 3.96E-08   1.013 6.01E-01   0.957 3.20E-02   -0.501 6.16E-01 

rs9677504 -- 2 A --  1.124 1.39E-08  0.938 1.33E-01  1.068 3.52E-02  0.160 8.73E-01 

rs4858241 -- 3 T --   1.082 1.74E-08   1.017 4.75E-01   1.016 4.44E-01   1.259 2.08E-01 

rs28411770 -- 4 T --  1.090 1.15E-08  1.017 7.05E-01  -- --  
0.398 6.91E-01 

rs4916723 -- 5 A --   0.926 1.58E-08   0.976 2.92E-01   0.989 5.88E-01   -2.752 5.93E-03 

rs5886709 -- 7 G --  1.079 1.66E-08  1.049 4.06E-02  1.045 2.62E-02  -- -- 

rs5886709 rs10262192  A 0.955  1.076 2.89E-08  -- --  1.045 2.57E-02  1.639 1.01E-01 

rs74760947 -- 8 A --   0.835 1.35E-08   0.996 9.28E-01   0.955 3.90E-01   -0.870 3.84E-01 

rs11591402 -- 10 A --  0.911 1.34E-08  0.955 9.40E-02  0.957 6.27E-02  -1.175 2.40E-01 

rs1427829 -- 12 A --   1.083 1.82E-09   1.021 3.63E-01   1.036 6.97E-02   0.418 6.76E-01 

rs281324 -- 15 T --  0.928 2.68E-08  0.988 6.06E-01  1.007 7.05E-01  -1.659 9.72E-02 

rs212178 -- 16 A --   0.891 7.68E-09   1.012 7.32E-01   1.030 3.80E-01   -1.044 2.96E-01 

Comentado [DD1]: I have added a column with 
chromosome info to this table  
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Supplementary Table 14. Comparison of profile of genetic correlations for the ADHD GWAS and 23andMe 

Comparison of genetic correlation (rg) results, including block jack-knife standard errors (SE), of each GWAS with 28 selected traits from LD 

Hub (http://ldsc.broadinstitute.org/ldhub/). For each trait, the absolute difference between the 23andMe and ADHD GWAS rg estimates is 

reported, along with the approximate pooled standard error and corresponding approximate P value. P values for the difference reaching nominal 

significance (P < .05) are indicated in italics, and Bonferroni-corrected significant P values (P < 0.05/28 = 1.8x10-3) are indicated in bold. 

References for each trait are the same as Supplementary Table 11. 

 

    ADHD GWAS   23andMe   Difference 

Trait Category rg SE P   rg SE P   |r1-r2| SE P 

College completion Cognition/education -0.538 0.046 3.30E-31  0.056 0.086 5.13E-01  0.594 0.097 1.07E-09 

Years of schooling 2016 Cognition/education -0.535 0.028 1.44E-80  -0.199 0.058 6.00E-04  0.336 0.064 1.84E-07 

Childhood IQ Cognition/education -0.411 0.082 5.09E-07   -0.219 0.144 1.27E-01   0.192 0.165 2.46E-01 

Neuroticism Personality 0.264 0.046 1.02E-08  0.145 0.090 1.08E-01  0.120 0.101 2.38E-01 

Schizophrenia Psychiatric 0.122 0.036 7.00E-04  0.275 0.070 8.95E-05  0.153 0.079 5.30E-02 

Bipolar disorder Psychiatric 0.095 0.055 8.05E-02  0.293 0.103 4.60E-03  0.198 0.117 9.10E-02 

Subjective well being Psychiatric -0.283 0.048 3.73E-09  -0.146 0.102 1.53E-01  0.137 0.113 2.26E-01 

Depressive symptoms Psychiatric 0.446 0.050 7.00E-19  0.300 0.114 8.80E-03  0.146 0.125 2.44E-01 

PGC cross-disorder analysis Psychiatric 0.266 0.046 5.58E-09   0.286 0.104 6.00E-03   0.020 0.113 8.61E-01 

Obesity class 1 Weight related 0.285 0.036 1.81E-15  0.108 0.070 1.26E-01  0.178 0.079 2.43E-02 

Childhood obesity Weight related 0.216 0.046 3.29E-06  -0.025 0.105 8.10E-01  0.241 0.115 3.61E-02 

Waist-to-hip ratio Weight related 0.304 0.036 1.16E-17  0.154 0.073 3.38E-02  0.150 0.081 6.30E-02 

Birth weight Weight related -0.132 0.039 8.00E-04  0.012 0.079 8.79E-01  0.144 0.088 1.03E-01 

http://ldsc.broadinstitute.org/ldhub/)
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Body mass index Weight related 0.258 0.032 1.68E-15  0.132 0.075 8.06E-02  0.126 0.082 1.25E-01 

Overweight Weight related 0.275 0.036 1.73E-14  0.183 0.077 1.72E-02  0.092 0.085 2.81E-01 

Type 2 Diabetes Glycemic 0.185 0.047 7.80E-05  0.058 0.100 5.64E-01  0.127 0.110 2.51E-01 

Triglycerides Lipids 0.159 0.040 6.49E-05  0.048 0.065 4.58E-01  0.111 0.076 1.47E-01 

HDL cholesterol Lipids -0.217 0.042 2.44E-07   -0.131 0.082 1.11E-01   0.086 0.092 3.54E-01 

Former vs Current smoker Smoking behaviour -0.344 0.086 6.74E-05  -0.132 0.157 4.00E-01  0.212 0.179 2.37E-01 

Ever vs never smoked Smoking behaviour 0.478 0.059 4.33E-16  0.340 0.108 1.60E-03  0.139 0.123 2.58E-01 

Cigarettes smoked per day Smoking behaviour 0.451 0.103 1.07E-05  0.343 0.149 2.08E-02  0.108 0.181 5.50E-01 

Lung cancer Cancer 0.390 0.063 6.35E-10  0.139 0.113 2.18E-01  0.251 0.129 5.15E-02 

Squamous cell lung cancer Cancer 0.549 0.135 4.57E-05   0.393 0.180 2.86E-02   0.156 0.224 4.88E-01 

Age of first birth Reproductive -0.612 0.037 3.70E-61  -0.331 0.074 6.66E-06  0.281 0.082 6.34E-04 

Number of children ever born Reproductive 0.421 0.051 8.51E-17  0.310 0.094 1.00E-03  0.112 0.106 2.94E-01 

Age at Menopause Reproductive -0.161 0.042 1.00E-04  -0.129 0.087 1.40E-01  0.032 0.097 7.39E-01 

Parents age at death Aging -0.376 0.091 3.51E-05   -0.339 0.177 5.59E-02   0.038 0.199 8.50E-01 

Rheumatoid Arthritis Autoimmune 0.162 0.042 1.00E-04   -0.040 0.093 6.67E-01   0.202 0.102 4.88E-02 
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Supplementary Figures 

 

Supplementary Figure 1. Genotyping iPSYCH-ADHD sample, main steps and sample loss 

Flowchart demonstrating the main steps and sample loss during the process of obtaining high quality genotypes for the iPSYCH sample. 

Detailed description of the Danish registers, DNA generation, genotyping and QC is described under the detailed description of the iPSYCH 

sample.  

Step 1

Identification of 
samples in Danish 
registers 

Samples after step 1:

18,726 cases

30,000 controls (28,768    
do not have a psychiatric 
disorder investigated in 
iPSYCH)

Total cohort size of 
1,472,762 individuals

Step 2

Identification of 
samples in DNSB, DNA 
extraction and WGA

Samples after step 2:

17,099 cases

27,788 controls

3,839 excluded due to no 
Guthrie card in DNSB or 
failed pre-genotyping QC

Step 3

Genotyping of samples 
(Illumina PsychChip) 
and initial sample QC

Samples after step 3:

16,649 cases 

25,835 controls

2,403 samples excluded 
due to gender 
inconsistencies and low 
genotyping call rate < 
0.95

Step 4

Test for relatedness 
and removal of genetic 
outliers

Samples after step 4:

14,584 cases 

22,492 controls

5,408 samples excluded 
due to, relatedness or 
being genetic outliers
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Supplementary Figure 2. Manhattan plot from ADHD European GWAS meta-analysis 

Results from GWAS meta-analysis of iPSYCH and PGC European samples.
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Supplementary Figure 3.A1 - M1. Forest plots for index SNPs in gws loci 

Forest plots for the index SNP in each of the gws associated regions in the GWAS meta-analysis. 

Each plot provides a visualization of the effect size estimates for each wave in the iPSYCH sample 

and each PGC sample and for the summary meta-analysis in addition the 95% confidence intervals 

are included for the estimates.  

 

Supplementary Figure 3.A2 - M2. Regional association plots for index SNPs in gws loci 

Regional association plots of the local association results. Each plot includes information about the 

gws locus, the location and orientation of the genes in the region, LD estimates of surrounding SNPs 

with the index SNP (r2 values estimated based on 1KGP3) is indicated by colour (colour bar in upper 

left corner indicates r2 values), if multiple index SNPs then different colour scheme for each index 

SNP. Additionally, the local estimates of recombination rate are indicated in light blue (legend on 

vertical axis at right). Detailed SNP info in upper right corner (blue letters): SNP name (rsid), P-value 

(p), odds ratio (or), minor allele frequency (maf), imputation INFO score (info), directions in the 

analysed samples/waves (risk increasing - decreasing - missing). Gene lists were downloaded from 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/refGene.txt.gz. Previously reported gws 

regions were downloaded from the NHGRI GWAS catalogue available from 

http://www.ebi.ac.uk/gwas. 

 

 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/refGene.txt.gz
http://www.ebi.ac.uk/gwas
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Figure 3.A1. Forest plot for rs11420276 

 

Figure 3.A2. Regional association plot for rs11420076 
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Figure 3.B1. Forest plot for rs1222063 

 

 

Figure 3.B2. Regional association plot for rs1222063 
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Figure 3.C1. Forest plot for rs2391769 

 

 

Figure 3.C2. Regional association plot for rs2391769 
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Figure 3.D1. Forest plot for rs9677504 

 

 

 

Figure 3.D2. Regional association plot for rs9677504 
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Figure 3.E1. Forest plot for rs4858241 

 

 

 

Figure 3.E2. Regional association plot for rs4858241 



 95 

 

Figure 3.F1. Forest plot for rs28411770 

 

Figure 3.F2. Regional association plot for rs2811770 
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Figure 3.G1. Forest plot for rs4916723 

 

 

Figure 3.G2. Regional association plot for rs4916723 
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Figure 3.H1. Forest plot for rs304132 

 

 

Figure 3.H2. Regional association plot for rs304132 
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Figure 3.I1. Forest plot for rs5886709 

 

Figure 3.I2. Regional association plot for rs5886709 
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Figure 3.J1. Forest plot for rs74760947 

 

 

 

Figure 3.J2. Regional association plot for rs74760947 



 100 

 

 

Figure 3.K1. Forest plot for rs11591402 

 

 

Figure 3.K2. Regional association plot for rs11591402 
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Figure 3.L1. Forest plot for rs1427829 

 

 
Figure 3.L2. Regional association plot for rs1427829 
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Figure 3.M1. Forest plot for rs281324 

 

Figure 3.M2. Regional association plot for rs281324 
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Figure 3.N1. Forest plot for rs212178 

 

Figure 3.N2. Regional association plot for rs212178 
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Supplementary Figure 4.A – 4.D. Gene-based association, regional association plots 

LD structure in the region around the four new genes (genes not overlapping with loci being gws in 

the single marker GWAS meta-analysis) significantly association with ADHD in the MAGMA 

gene-based association analysis.  

 

Supplementary Figure 4.A. Regional association plot for MANBA (+/- 100,000 bp up- and down-

stream of the gene). 

 

  

Supplementary Figure 4.B. Regional association plot for CUBN (+/- 100,000 bp up- and down-

stream of the gene). 
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Supplementary Figure 4.C. Regional association plot for PIDD1 (+/- 100,000 bp up- and down-

stream of the gene). 

 

Supplementary Figure 4.D. Regional association plot for CDH8 (+/- 100,000 bp up- and down-

stream of the gene). 
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Supplementary Figure 5.A. – 5.B. Q-Q plot from GWAS meta-analyses  

Quantile-quantile plot of the -log10 P-values from GWAS meta-analyses.  

 

 

Supplementary Figure 5.A. Q-Q plot from GWAS meta-analysis 

 

 

Supplementary Figure 5.B. Q-Q plot from European GWAS meta-analysis 
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Supplementary Figure 6. Manhattan plot from test for heterogeneity between studies/waves in 

the ADHD GWAS meta-analysis 

Omnibus test of heterogeneity across cohorts. Red reference line indicates genome-wide 

significance threshold (5 x 10-8). 
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Supplementary Figure 7.A. Q-Q plot from test for heterogeneity between all samples/waves in 

the ADHD GWAS meta-analysis 

Quantile-quantile plot of P-values from the omnibus test of heterogeneity.  
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Supplementary Figure 7.B. Q-Q plot from test for heterogeneity between Chinese and 

European ancestry cohorts in the ADHD GWAS meta-analysis 

Quantile-quantile plot of P-values from the 1 degree of freedom test of heterogeneity between the 

Beijing, China cohort and all European ancestry cohorts.  
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Supplementary Figure 8. Odds ratios by PRS within deciles in target groups 

Odds ratio by PRS within each decile for each of the five target groups (G1-G5) and for the pooled 

(G0) analysis with (upper panels) and without (lower panels) PGC European samples included among 

the training data sets. Plots are shown for the P-value threshold with the highest Nagelkerke’s R2 

(Smax). Error bars indicate 95% confidence limits. 
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Supplementary Figure 9. Odds ratios within target groups in iPSYCH 

PRS-based odds ratio and 95% confidence limits from logistic regression of continuous PRS 

(normalized by target group) for each target group considered separately (G1-G5) and pooled (G0). 

PRS estimated using iPSYCH waves alone as training sample (wopgc) or iPSYCH waves together 

with PGC European samples (wpgc). 
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Supplementary Figure 10. PRS-based odds ratios within each study/wave 

PRS-based odds ratio and 95% confidence limits from logistic regression of standardised PRS for 

each target study/wave. 
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Supplementary Figure 11. ADHD PRS stratified by case-control status and PGC study 

Mean PRS z-score (+/- standard error) plotted stratified by case status and PGC study. 
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Supplementary Figure 12. Partitioning of h2 by functional annotations 

Enrichment of heritability per SNP in 24 functional annotations defined by Finucane et al.69 Error 

bars represent 95% confidence intervals. P-values for annotation categories with nominal significant 

enrichment are shown and values on bold indicate significance after Bonferroni correction.  
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Supplementary Figure 13. Partitioning of h2 by tissue-group annotations 

Results from partitioning heritability by SNPs located in cell-group specific regulatory elements. The 

line indicate significance after Bonferroni correction (P = 0.005). 
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Supplementary Figure 14. Partitioning of h2 by tissue-specific H3K4Me1 annotations 

P-values for enrichment in the SNP heritability of ADHD by variants located within regulatory 

regions (H3K4Me1 peaks) of various cells and tissues (annotations from the Roadmap Epigenomics 

Mapping Consortium72). Dashed line: threshold for nominal significance. Full line: threshold for 

significance after Bonferroni correction. 
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Supplementary Figure 15. Comparison of estimated effect sizes from deCODE  

Regression of deCODE effect size estimates on winner’s curse-adjusted effect size estimates for top 

loci (P < 1x10-6) in the ADHD GWAS. All variants oriented to the allele estimated to increase risk in 

the ADHD GWAS. Dotted red reference line indicates a slope of 1, the target result for an “ideal” 

replication. Dashed purple line indicates observed slope of linear regression of log odds ratio (OR) 

weighted by inverse standard error.  
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Supplementary Figure 16. Comparison of estimated effect sizes from 23andMe  

Regression of 23andMe effect size estimates on winner’s curse-adjusted effect size estimates for top 

loci (p < 1e-6) in the ADHD GWAS. All variants oriented to the allele estimated to increase risk in 

the ADHD GWAS. Dotted red reference line indicates a slope of 1, the target result for an “ideal” 

replication. Dashed purple line indicates observed slope of linear regression of log odds ratio (OR) 

weighted by inverse standard error.  
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Supplementary Figure 17. Manhattan plot of results from meta-analysis of ADHD+23andMe 

Genome-wide results from the replication meta-analysis, performed using the inverse-variance 

weighted fixed effects model. The genome-wide significant locus on chromosome four is only 

driven by iPSYCH/PGC since there is no information about this locus in 23andMe. 
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Supplementary Figure 18. Q-Q plot from test for heterogeneity between ADHD GWAS meta-

analysis and 23andMe 

Quantile-quantile plot of P-values for the 1 degree of freedom test of heterogeneity between 

23andMe and the ADHD GWAS for genome-wide markers. 
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Supplementary Figure 19. Manhattan plot from test for heterogeneity between ADHD GWAS 

meta-analysis and 23andMe 

Genome-wide results for the 1 degree of freedom test of heterogeneity between 23andMe and the 

ADHD GWAS. Red reference line indicates genome-wide significance (5 x 10-8). 

  

daner_adhd_23m_global_jan2017.het.gz.p3_GWA 

−
lo

g
1

0
 (

p
)

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●

●●
●

●
●●●●
●●

●

●
●

●

●

●●
●●

●

●

●

●

●●

●●

●

●●

●
●●
●●

●

●

●
●

●

●
●

●
●

●

●

●●●

●

●●
●

●●

●

●

●
●

●

●●

●●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●
●

●

●
●●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●●

●

●

●●

●
●●●●
●●●●
●

●

●

●
●●

●
●

●

●

●

●●

●

●

●●●

●
●●●●●●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●●
●
●

●

●
●

●
●●
●
●
●

●

●

●

●
●

●●●

●●●

●
●
●

●

●

●
●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●
●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●●
●●
●●●

●

●
●

●●

●

●

●

●
●●

●●●●●●●

●
●●●
●●

●

●

●

●

●

● ●●●

●

●
●●
●●●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●●

●
●
●●●

●
●

●
●

●

●
●●
●
●●●●●●
●

●●●●
●

●●
●
●●●●

●

●●●

●

●

●

●●

●
●

●
●

●●

●

●
●●
●
●
●

●
●●●

●

●

●

●

●●●●●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●

●

●●●

●
●●●
●●●
●●●

●

●

●

●
●

●●

●

●●

●●●

●

●●

●

●

●

●●●

●
●

●

●

●

●

●

●●
●
●●●●●●●●●●●●

●●
●
●
●
●●●
●●

●

●●

●
●
●●●
●

●
●●●
●
●

●
●

●●●●●
●

●
●
●

●●●
●

●

●
●

●
●
●
●

●

●

●

●●

●
●
●
●
●●
●●

●

●

●

●
●●●

●
●
●

●

●

●

●

●

●●●●
●
●
●
●

●

●
●●●●
●●

●

●●●●
●

●

●
●
●

●

●
●
●
●●●

●

●
●

●

●

●●

●
●●●
●

●

●●
●
●

●
●●●

●

●●●

●

●●●●

●●●●

●
●
●

●
●●●●●

●●
●●●

●

●

●●
●
●
●

●

●

●

●
●
●

●

●

●●

●●

●
●

●

●
●
●

●
●

●
●●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●
●
●●●●●●

●
●●
●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●●

●●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●
●
●

●

●

●

●●

●

●●●
●●●

●●●●

●
●
●
●●●
●●●

●

●

●

●

●

●

●

●
●●
●●
●●
●●
●
●
●●●

●
●

●

●●
●
●●●

●●●●

●●

●●

●
●

●
●

●●●
●
●●
●●
●
●
●
●●
●
●●
●●●●●●●●
●●
●●●●
●
●●

●
●●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●●●●●●●

●●
●

●

●
●●
●

●

●●

●●

●●
●

●

●

●●

●
●

●

●●

●

●
●
●

●

●●

●
●●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●●●

●
●●●
●
●

●

●

●

●
●
●●

●

●

●

●
●
●
●●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●
●

●

●
●
●
●
●

●●

●●

●
●

●●
●

●

●
●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●●●●●●
●
●
●

●
●

●●
●
●

●

●●●

●
●

●

●

●

●●
●

●
●●
●●

●

●

●

●

●

●
●
●

●

●●

●
●
●

●

●

●

●

●
●

●

●●

●

●●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●●

●

●●

●

●
●

●

●

●●●●
●

●●
●

●

●

●●●●

●

●●

●

●

●●
●●
●
●●●

●

●
●●●

●

●

●
●
●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●●●
●●●●
●
●

●
●●
●●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●
●●●●
●●●
●
●●
●

●

●●●●

●

●
●
●
●

●
●●●
●●●●

●
●●

●

●

●

●
●

●●

●

●
●
●●
●
●

●

●

●●

●
●●
●
●
●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●●

●

●

●●

●●●●
●
●●●●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●
●

●
●
●●

●
●
●

●

●

●

●

●

●

●

●
●●
●
●
●●
●
●●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●●
●●●

●

●
●●●

●

●
●

●●

●

●

●

●

●

●

●
●●●
●
●

●
●●●
●
●●●

●
●
●●●●

●

●

●

●

●
●

●●●●●

●●
●●●●●
●
●●
●
●
●●●

●
●

●

●

●

●●

●

●

●●

●
●

●
●

●
●●

●

●

●●

●

●

●●

●

●●

●

●

●

●●
●●

●●●

●●

●
●
●

●
●

●

●
●●

●

●

●

●
●

●

●

●
●
●

●
●
●

●
●

●

●

●
●

●
●
●

●●

●
●
●

●

●

●
●

●

●

●

●

●

●
●●
●●●

●

●●
●
●●
●●
●

●

●

●

●

●

●●

●●

●
●
●

●●

●
●

●●

●

●

●

●●

●●

●
●
●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●

●●

●●

●

●

●
●
●●●●●
●

●

●●●

●

●●
●

●

●

●
●

●

●●●

●

●

●

●

●
●

●

●●●
●
●●
●●
●●●

●

●
●

●
●●

●
●
●

●

●

●

●●

●●●

●●

●
●●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●
●
●
●●●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●●●

●

●●

●

●

●

●

●

●●

●●

●●●●●●●
●
●

●

●●●

●

●

●

●

●
●
●
●
●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●
●
●●

●●

●●●

●

●●●●●●●●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●●
●●●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●●
●●
●●

●●●

●●

●●

●

●

●

●
●●●●
●●

●

●
●
●●●●
●

●
●
●
●

●
●

●
●

●

●
●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●●●●
●●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●

●●●
●

●

●

●

●
●

●
●

●

●

●

●●●

●
●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●
●

●

●●

●

●

●

●
●
●
●
●●●
●
●

●

●●●
●

●

●

●

●●

●

●●

●

●

●

●

●

●
●●●
●

●●
●

●
●
●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●●●
●
●
●
●●●
●
●

●●●●●●
●●●
●

●●●

●

●
●

●
●

●
●
●
●

●

●●
●●
●

●

●
●
●●
●●
●

●

●●

●

●●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●
●
●●

●

●●
●
●
●

●●●

●●●●●●
●
●
●●●●
●
●

●

●●
●
●●●

●

●

●

●

●

●

●

●●●
●●
●
●●●●
●
●●

●

●

●
●●

●

●

●
●

●

●

●

●●
●
●

●
●
●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●●

●

●●●

●

●●
●

●●●
●●●●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
●
●●●

●

●

●
●

●●

●

●

●

●●
●
●●

●

●●
●

●

●

●●

●

●

●●●

●

●●●

●

●●

●

●

●●

●
●

●●
●

●

●●●

●

●

●

●
●●

●

●

●

●●●

●●
●

●
●●

●

●

●
●
●

●●
●●
●
●●

●

●●
●

●

●
●

●●●●

●

●

●

●

●

●●●

●●
●●●●

●

●
●

●
●●

●

●●
●●●●●
●●
●●●
●
●

●

●
●●●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●●●

●●●

●●●

●

●

●

●●

●
●

●

●

●

●

●●

●

●
●

●
●
●●●

●●●●●●●

●●
●

●

●

●

●●●

●

●

●

●

●
●
●
●
●

●●

●●
●●●
●●
●
●
●●●●●

●●

●

●

●

●●
●●●●●●●●●●

●

●

●

●
●●

●

●●●●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●●

●

●
●●●

●

●

●

●
●

●

●

●

●

●
●
●

●●●

●●

●

●

●
●●

●

●
●●

●

●●●

●

●

●

●

●●

●●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●●●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●●●

●

●●●
●●
●

●

●

●

●●

●●
●
●

●

●●
●

●

●
●

●
●●●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●●

●
●

●

●

●●●●

●●●●

●

●●
●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●●●●●●

●

●●

●

●●
●

●
●●
●

●

●
●

●
●●

●
●●

●

●

●

●

●●●
●
●
●

●

●
●

●

●

●

●●●

●

●●●●●●

●

●

●●●●●

●

●●
●

●

●

●

●●
●

●

●

●

●●
●●
●
●

●

●
●●●●●
●●
●
●●●
●
●
●●
●

●
●
●

●

●●●

●
●●
●
●
●●●●

●●
●
●

●

●
●●●●

●

●●●

●

●●●
●●

●

●

●●
●

●
●
●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●●

●●
●
●
●●
●●●●

●

●

●

●●●
●
●

●●

●
●●

●

●
●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●●
●●

●●
●

●

●

●

●●●●
●●●

●

●

●

●

●

●
●●

●●●●
●
●
●
●

●●
●●
●

●●

●

●
●●

●
●●
●●

●
●
●
●●●
●●

●

●
●

●
●

●●

●

●

●

●

●
●
●

●●●●●
●

●

●●
●

●

●

●
●●●●
●
●
●

●

●

●

●●

●

●

●●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●●●●
●
●
●●
●●●
●●●●

●

●
●

●●
●
●

●

●
●
●

●
●●

●

●●●
●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●●●

●●

●●
●●●●●

●

●

●

●

●

●
●●

●

●

●

●●
●

●
●

●●●
●
●●

●●

●●●
●●●●●
●●
●
●
●
●
●●●

●

●●

●

●●
●●

●

●●●●●●●
●●
●
●●●
●
●●●●●
●
●●●●●
●
●●
●
●●●
●●●●

●

●
●

●
●●

●

●●

●
●●●

●●

●●

●

●
●

●

●●●●

●

●●

●

●
●

●

●●
●
●
●●

●

●
●

●●

●●
●●
●●●●
●
●

●

●

●

●

●
●●●

●

●●●

●

●

●
●

●

●
●

●●

●

●
●●●●●
●

●

●●

●●
●

●●

●

●●●●
● ●

●●
●●●

●

●
●
●

●

●
●

●●
●
●

●

●

●
●
●●●
●

●●
●●●

●

●●●

●
●
●●
●

●●
●

●
●●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●
●●

●

●

●
●
●
●
●
●
●

●

●

●●●

●

●
●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●
●●

●●
●●

●

●●●●
●
●

●●●

●

●●

●

●

●
●

●●
●
●

●

●
●●●●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●
●●
●
●●

●

●

●

●
●

●
●

●
●●
●

●

●

●●

●
●●

●

●

●
●●

●●

●●
●

●

●●●●

●

●

●

●●

●

●

●
●
●
●

●

●

●

●
●
●
●●●●●●
●
●●

●

●

●
●●

●

●●

●●●
●

●

●

●●

●

●

●

●●●

●
●

●

●

●●
●●●●

●

●

●●
●●
●●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●●●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●
●

●
●

●●●
●

●

●

●

●
●

●
●●
●
●

●

●

●

●

●
●
●
●
●

●

●
●

●●

●

●

●

●
●

●

●

●
●
●

●

●
●

●

●
●●
●
●

●

●

●

●

●●

●

●●●

●

●

●●●●●●●
●●●●●
●●●
●●●●●
●

●●●

●●

●
●
●●●
●

●
●●

●●●

●

●●●
●

●

●
●●●●●
●
●●●●●●●●●●●●●

●
●
●

●
●

●
●
●
●
●
●●●●●●●

●

●●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●
●●●●
●

●
●●
●

●●

●

●●
●
●
●

●
●●
●●

●

●

●
●●

●

●●

●●
●
●●●
●●●

●●●●●●

●

●

●

●●●

●

●●

●
●●●

●

●

●

●

●●●
●●

●

●

●

●

●

●●

●●●
●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●
●●●
●
●
●

●

●

●
●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●●
●●

●

●

●

●

●●●

●

●●●

●●
●●
●
●

●

●

●

●

●●

●

●

●●
●

●

●●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●
●
●

●●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●●
●

●

●

●
●●●

●
●

●

●
●
●●

●

●

●●

●

●●●

●

●
●●

●

●

●

●●
●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●

●
●●●

●●
●●●
●●
●●●
●

●●●
●

●●

●

●●

●●●●●●●●
●

●●
●●●●
●●
●●●●●●●
●●●●●●●●●●
●●

●●

●
●

●

●

●

●●●

●
●●

●

●

●●●
●

●

●●

●

●

●
●

●●
●

●

●

●●●●
●
●

●

●
●

●●
●

●
●
●
●
●
●

●●

●

●

●

●●●
●●

●
●●
●

●

●

●

●●

●
●

●

●

●

●●●●

●

●

●●●
●

●
●

●

●

●●

●

●●
●●
●●

●

●●
●

●

●

●●
●

●

●
●
●

●

●

●●
●
●
●●

●

●
●

●
●●

●

●●

●

●

●
●
●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●●

●

●

●

●

●●●
●

●
●●●

●●

●●●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●

●
●
●●●●

●

●

●

●
●●●
●
●●
●

●

●

●●
●●

●

●

●●

●●

●
●

●

●

●●●
●●●

●

●

●

●

●

●
●
●●●●●●
●●●●●●●

●●●●●●

●

●

●

●

●

●●●

●

●

●●

●

●●

●●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●
●
●●●●●●●●●

●

●●

●

●

●

●●

●

●

●

●

●
●
●
●

●●

●

●

●●●●●
●●

●

●

●●●
●●

●

●

●●●

●
●

●

●

●

●
●

●●●●●

●

●

●

●●●

●
●

●
●●●●●●●●●

●

●

●●●
●

●
●

●

●●

●

●

●

●●

●

●●
●

●

●
●
●
●
●●●

●●

●

●

●●●

●

●●

●

●

●●
●

●●●

●

●

●

●

●●●

●
●●
●●●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●
●
●●●

●●●

●

●●
●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●

●

●●

●

●●

●
●●

●●

●

●●

●
●
●
●●

●

●●●●●●●●●●●
●
●●●●●

●

●
●●
●

●

●●

●

●

●
●

●
●●●

●

●

●

●
●●

●●

●

●
●●

●
●

●

●
●

●●

●●●
●

●

●

●
●

●
●●
●
●

●

●

●

●

●●
●

●
●

●●●

●

●
●
●●

●●●●●●●●●

●●

●
●
●●
●

●
●
●

●

●

●

●

●●

●

●
●

●●

●

●
●●

●

●

●

●

●●●●

●

●

●
●●●

●

●

●

●

●●●●●
●
●
●
●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●
●

●

●●●
●●●
●

●

●
●
●

●

●

●●●●●
●
●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●
●
●
●●●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●
●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●●●
●
●

●

●

●

●●

●

●●●

●

●
●

●
●

●●●●
●●●●●●●

●

●

●

●
●●

●

●●●
●
●
●

●

●●

●●●●
●●●●●
●
●

●

●●

●

●

●
●

●

●
●●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●●●●
●●
●
●
●

●

●

●
●

●

●

●●

●

●●

●

●
●●

●●
●
●
●

●

●
●
●
●
●
●●●
●●
●
●●

●
●
●
●●
●

●
●

●

●●●
●

●

●

●

●

●●●●

●●

●●●

●●
●
●
●

●
●

●●●●●●
●
●
●●

●●
●●
●

●●
●
●●
●
●

●

●

●
●
●●

●
●
●●●
●●●●
●

●

●
●

●●●●●
●
●

●●
●●●

●●

●

●

●
●

●

●●
●
●●●●

●

●●
●●
●
●

●

●

●

●
●

●

●

●

●●

●
●

●●
●

●
●●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●●

●

●●●●

●

●

●

●

●

●●●●

●
●

●

●
●

●

●●●

●●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●
●
●●

●

●
●
●
●

●

●

●●●●●●
●●●●●

●

●●●●
●●●

●

●

●

●●●●

●

●●

●
●●●●
●●

●
●●●●●
●●●
●●●●

●●●

●

●●
●
●●●
●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●
●

●

●●

●

●

●

●

●

●
●●●

●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●●
●

●●
●
●

●●

●●●

●

●

●

●

●●

●
●

●

●●●

●

●●

●

●
●●●

●

●

●

●
●●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●
●

●

●
●●

●

●
●

●

●

●

●●●
●
●
●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●
●
●

●●

●

●

●

●

●

●

●●●

●●

●

●●
●

●

●

●

●
●●
●●

●
●

●●●

●
●

●

●●●●●
●●

●
●●●●●
●

●●
●

●●●

●
●
●

●
●
●
●●●●

●●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●●
●

●

●

●

●●
●
●●

●

●

●

●●

●

●●

●●

●

●
●●●
●
●●●

●

●

●

●

●

●

●

●

●●●
●

●
●
●
●

●●

●

●
●
●

●●●
●

●●

●

●

●

●

●●

●

●

●
●

●●
●

●

●●●●
●
●●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●
●●

●

●
●

●●

●

●
●

●

●●

●●

●
●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●●

●

●●

●

●●

●

●
●●●●●
●●

●

●

●●

●

●●

●

●
●
●
●●
●

●●

●●

●

●

●
●
●
●
●●
●

●

●

●●●●

●
●
●

●●

●

●
●

●

●
●

●

●

●●
●
●
●●●

●●

●

●●

●●
●
●●●

●●

●●●●
●●

●

●

●
●
●

●
●●
●

●

●

●

●

●

●

●

●●
●

●
●
●

●●
●

●
●
●
●

●
●
●●
●
●
●●●●●●●
●
●
●
●●●
●●●●●

●

●

●

●

●
●●●●
●

●

●

●
●
●

●

●●●
●
●●●●●

●

●

●
●●●
●

●

●
●
●

●●
●
●

●

●
●●●
●

●

●
●
●
●
●
●

●●
●●
●●
●●
●●●

●

●

●
●●●
●

●
●●
●●●

●

●

●

●

●●
●

●

●

●

●

●
●

●●●

●
●

●

●

●

●

●●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●
●●
●

●
●
●●●●

●

●

●
●
●●

●

●

●●●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●●
●
●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●
●●●●●●●●●
●
●
●●●
●●
●

●●●
●
●
●

●

●

●

●●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●
●●●●
●

●

●●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●
●
●●
●●
●
●

●

●

●●
●

●
●

●

●●
●

●

●

●

●

●●

●

●

●●

●

●●

●

●
●

●●●●●●

●

●

●●

●

●
●

●
●●
●

●

●

●

●

●

●

●

●●●●●●●

●●

●

●●

●
●

●●●

●

●●●●

●

●

●

●
●
●
●●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●●●
●
●

●

●●

●

●
●

●

●

●

●●●
●
●
●●●●
●●●
●●●
●
●●
●

●●
●
●

●
●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●●
●
●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●●

●●●
●
●●●
●●
●●

●

●

●

●●

●

●

●

●
●●
●●

●

●
●

●

●
●
●

●●

●

●

●

●

●
●

●●
●

●

●
●●●●

●

●●
●
●●●
●
●●

●
●
●●
●

●

●

●

●●

●
●
●
●●●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●
●

●
●

●

●

●●
●

●●

●

●

●

●
●

●
●
●
●
●

●●●

●
●

●

●

●●
●

●

●

●

●
●

●●

●●
●●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●●●●●

●●

●

●

●
●●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●
●●
●●

●

●

●

●●
●

●

●
●●●
●
●

●
●●●●
●
●●●●●
●
●●●●●●●

●
●●●●●
●●

●
●●

●

●
●
●
●

●

●

●
●
●

●●●
●●
●
●
●

●

●
●●

●

●

●

●
●
●

●●
●
●

●●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●
●
●
●●
●

●

●●

●●

●

●●●
●●

●●
●
●
●●●●
●●
●●●●●●●●●

●
●

●●

●

●

●

●

●
●

●
●

●

●●●●
●

●

●●
●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●●

●
●●
●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●●
●●

●●●
●

●

●●●●●
●
●●

●

●
●●●●●●

●

●●●●●●
●
●●●●

●●●

●●
●●●

●

●

●

●●●

●

●●
●●●

●
●●●
●
●
●●

●
●

●

●

●

●

●●

●

●

●●
●
●

●●●
●

●
●

●●●●
●
●

●
●
●
●●
●●●

●●●●

●

●
●

●●

●

●

●
●●●

●

●
●
●

●

●

●●

●●

●●

●

●●●●
●

●

●

●
●

●
●

●

●●
●
●
●

●

●

●

●

●●●●●

●

●●●
●
●

●
●
●●

●

●

●

●

●●

●

●●

●
●●

●

●

●

●●●●●

●

●
●●

●

●●●●●

●

●●

●●●

●

●

●●●●

●

●

●
●●

●●●

●●

●

●

●
●
●

●

●

●
●●

●

●
●
●

●
●
●●●●●●●
●●●
●●

●
●●●●●
●●●●
●
●●

●

●

●

●●

●

●

●

●
●

●●●

●

●

●●

●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●●●
●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●
●

●●●
●
●

●
●●

●

●

●
●
●

●

●
●
●
●
●●
●

●

●

●
●

●

●

●●
●

●

●●●●●●●

●

●

●

●●
●

●●

●

●
●●●
●●
●●●●●●●●●●●●

●
●
●●●
●

●

●

●

●

●
●
●
●●

●

●

●

●
●●●

●

●●

●

●●

●
●
●
●●●●

●

●
●

●

●

●●
●

●

●

●

●

●●●●●●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●●●

●

●

●

●
●
●●
●●

●

●
●●

●
●●

●

●
●

●

●

●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●●

●●

●●●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●●

●●

●

●

●

●●
●

●

●

●●●

●

●

●●

●

●

●

●
●●

●

●

●●
●
●

●
●

●
●

●

●

●
●
●

●

●
●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●
●●

●
●
●

●
●

●●

●

●
●
●

●
●

●

●

●
●

●
●
●

●●●
●
●
●

●●

●●●●

●
●●

●

●
●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●
●
●●
●

●●
●
●
●
●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●●●●●

●

●●●●●

●
●●●
●●
●
●●

●
●

●

●●●●●●●●●●

●

●●
●●●●
●●●●

●

●

●●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●
●

●

●

●

●

●

●

●
●
●
●
●●●●●●●●●●●●

●

●
●●
●
●●
●●●●●●●
●
●
●●●●●●●●●●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●●●●●

●

●●●
●●
●

●●

●

●

●

●
●●
●
●

●
●
●
●

●

●

●●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●●
●●●●
●
●
●
●

●

●

●
●

●

●●

●

●
●
●●

●

●
●●
●
●

●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●
●
●

●●

●

●

●●●●●

●

●

●

●

●

●●●●
●
●
●●

●

●

●
●●
●●●
●

●●

●●

●

●

●●
●

●

●
●
●

●

●

●

●

●●●

●

●●

●

●●
●
●

●

●●
●

●

●
●●●
●●●●

●●

●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●●

●●●●

●

●●●

●

●

●●

●

●●
●●
●

●

●
●●●

●

●

●●

●
●

●
●●
●
●
●●
●
●

●

●

●●

●
●●

●

●

●
●

●●●
●●●
●
●

●

●●●●
●●●

●

●
●●●●
●

●

●

●
●

●●
●

●●

●
●●●

●●

●●

●

●

●
●

●

●
●

●
●
●

●●●

●

●

● ●●

●●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●●

●
●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●●
●●

●

●

●●●●
●

●

●

●●

●●
●
●

●●

●

●
●

●
●

●

●

●●

●

●
●

●●
●
●

●

●●
●
●
●●
●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●●

●
●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●●●
●

●●

●

●
●●●

●

●

●●●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●
●●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●●
●
●●
●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●
●

●

●●

●●

●●●●

●

●
●
●
●
●
●●●●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●●
●●
●

●
●

●
●

●●●

●●

●

●

●●

●●●●●

●

●●

●

●

●●●

●●●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●●●

●

●●
●

●

●

●

●
●

●

●●

●

●

●●●
●
●

●
●
●

●

●●

●

●●
●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●●
●
●
●

●●
●

●
●
●
●
●●
●

●

●●

●

●
●●
●●
●

●

●
●●
●

●●

●

●●
●

●●●●

●●

●●●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●
●●
●●
●●●●

●

●●

●

●
●

●

●
●●

●

●

●

●●●●●

●●

●
●

●
●
●
●
●
●

●

●

●●

●

●
●

●
●

●

●●

●

●
●
●●
●
●●●●●
●
●●
●●
●
●
●●

●

●

●

●

●

●●

●

●

●
●
●●●

●

●

●

●●●

●●●

●

●
●●●●●●●

●

●

●

●

●●

●
●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●●

●
●●

●●
●

●

●

●●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●
●●

●

●●
●
●

●

●●●●●●●
●●●●●

●

●

●●

●

●●
●

●

●

●●●●

●●●●

●

●●●
●

●

●

●
●●
●

●

●

●
●●

●

●

●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●
●●

●
●

●
●

●

●

●

●
●●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●

●
●

●

●
●
●●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●●

●

●●●●

●

●
●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●●
●

●

●●●●●
●●●●

●

●

●●
●●
●

●
●
●

●
●●●

●

●
●●●●

●
●
●
●
●
●●●

Chromosome

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

PTPRF(−49.1) (+5) SEMA6D(0.0)



 123 

 

 

Supplementary Figure 20. Manhattan plot of results from meta-analysis of 

ADHD+EAGLE/QIMR 

Genome-wide results for meta-analysis of the ADHD GWAS and EAGLE/QIMR using the 

modified sample size-based weights calibrated by estimates of heritability and genetic correlation.  
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Supplementary Figure 21. Q-Q plot from test for heterogeneity between ADHD GWAS meta-

analysis and EAGLE/QIMR 

Quantile-quantile plot of P-values for the 1 degree of freedom test of heterogeneity between 

EAGLE/QIMR and the ADHD GWAS for genome-wide markers. 
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Supplementary Figure 22. Manhattan plot from test for heterogeneity between ADHD GWAS 

meta-analysis and EAGLE/QIMR 

Genome-wide results for the 1 degree of freedom test of heterogeneity between 23andMe and the 

ADHD GWAS for genome-wide markers. The dashed red reference line indicates genome-wide 

significance (5 x 10-8). 
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Supplementary Figure 23. Distribution of 1000 Genomes Phase 3 European LD Scores 

Distribution of LD scores 𝑙𝑗 for common HapMap3 SNPs estimated in 1000 Genomes Phase 3 data 

using individuals of European ancestry. LD scores downloaded from 

http://data.broadinstitute.org/alkesgroup/LDSCORE/. Red reference line indicates mean LD score. 

Blue reference lines indicate 0.5% and 99.5% quantiles of the distribution. 

 

http://data.broadinstitute.org/alkesgroup/LDSCORE/
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Supplementary Figure 24. Shrinkage factor for Z ̃2j with varying lj 

Value of 1 √1 + (1 − 𝑟𝑔2)𝑁2𝑗ℎ2
2 𝑙𝑗 𝑀⁄⁄ , the reduction in 𝑍2𝑗 to account for polygenic effects specific 

to the second phenotype, across the range of observed values for 𝑙𝑗. We compare the value of this 

term at the estimates of  𝑟𝑔
2, 𝑁2, ℎ2

2, and 𝑀 observed in the current study, as well as with example 

values for scenarios with lower 𝑟𝑔
2 or a more highly powered GWAS of the second phenotype (i.e. 
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increased 𝑁2 and ℎ2
2). The red reference line indicates the fixed value of 𝑙𝑗 = 124.718 used for the 

current study. 
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Supplementary Figure 25. Relative effective sample size Ñ2j  with varying lj 

Value of 𝑁̃2𝑗/(𝑁̃1𝑗 + 𝑁̃2𝑗), the relative effective sample size for the second phenotype, across the 

range of observed values for 𝑙𝑗. We compare the value of this term at the estimates of  

𝑁1, 𝑁2, 𝑟𝑔
2, ℎ1

2, ℎ2
2, 𝐾, 𝑃, and 𝑀 observed in the current study, as well as with example values for 

scenarios with lower 𝑟𝑔
2 or a more highly powered GWAS of the second phenotype (i.e. increased 
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𝑁2 and ℎ2
2). The red reference line indicates the fixed value of 𝑙𝑗 = 124.718 used for the current 

study. 

 

 



 131 

References 

 

1 Pedersen, C. B., Gotzsche, H., Moller, J. O. & Mortensen, P. B. The Danish Civil 
Registration System. A cohort of eight million persons. Danish Medical Bulletin 53, 441-
449 (2006). 

2 Mors, O., Perto, G. P. & Mortensen, P. B. The Danish Psychiatric Central Research 
Register. Scand J Public Health 39, 54-57, doi:10.1177/1403494810395825 (2011). 

3 Borglum, A. D. et al. Genome-wide study of association and interaction with maternal 
cytomegalovirus infection suggests new schizophrenia loci. Molecular psychiatry 19, 
325-333, doi:10.1038/mp.2013.2 (2014). 

4 Hollegaard, M. V. et al. Robustness of genome-wide scanning using archived dried 
blood spot samples as a DNA source. BMC Genet 12, 58, doi:10.1186/1471-2156-12-58 
(2011). 

5 Illumina. illumina GenCall Data Analysis Software. Illumina Tech Note (2005). 
6 Korn, J. M. et al. Integrated genotype calling and association analysis of SNPs, common 

copy number polymorphisms and rare CNVs. Nature genetics 40, 1253-1260, 
doi:10.1038/ng.237 (2008). 

7 Goldstein, J. I. et al. zCall: a rare variant caller for array-based genotyping: genetics and 
population analysis. Bioinformatics 28, 2543-2545, 
doi:10.1093/bioinformatics/bts479 (2012). 

8 Elia, J. et al. Rare structural variants found in attention-deficit hyperactivity disorder 
are preferentially associated with neurodevelopmental genes. Molecular psychiatry 15, 
637-646, doi:10.1038/mp.2009.57 (2010). 

9 Neale, B. M. et al. Genome-wide association scan of attention deficit hyperactivity 
disorder. American journal of medical genetics. Part B, Neuropsychiatric genetics : the 
official publication of the International Society of Psychiatric Genetics 147B, 1337-1344, 
doi:10.1002/ajmg.b.30866 (2008). 

10 Neale, B. M. et al. Meta-analysis of genome-wide association studies of attention-
deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent 
Psychiatry 49, 884-897, doi:10.1016/j.jaac.2010.06.008 (2010). 

11 Mick, E. et al. Family-based genome-wide association scan of attention-
deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent 
Psychiatry 49, 898-905 e893, doi:10.1016/j.jaac.2010.02.014 (2010). 

12 Lionel, A. C. et al. Rare copy number variation discovery and cross-disorder 
comparisons identify risk genes for ADHD. Science translational medicine 3, 95ra75, 
doi:10.1126/scitranslmed.3002464 (2011). 

13 Sanchez-Mora, C. et al. Case-control genome-wide association study of persistent 
attention-deficit hyperactivity disorder identifies FBXO33 as a novel susceptibility 
gene for the disorder. Neuropsychopharmacology 40, 915-926, 
doi:10.1038/npp.2014.267 (2015). 

14 Yang, L. et al. Polygenic transmission and complex neuro developmental network for 
attention deficit hyperactivity disorder: genome-wide association study of both 
common and rare variants. American journal of medical genetics. Part B, 
Neuropsychiatric genetics : the official publication of the International Society of 
Psychiatric Genetics 162B, 419-430, doi:10.1002/ajmg.b.32169 (2013). 



 132 

15 Zayats, T. et al. Genome-wide analysis of attention deficit hyperactivity disorder in 
Norway. PloS one 10, e0122501, doi:10.1371/journal.pone.0122501 (2015). 

16 Stergiakouli, E. et al. Investigating the contribution of common genetic variants to the 
risk and pathogenesis of ADHD. The American journal of psychiatry 169, 186-194, 
doi:10.1176/appi.ajp.2011.11040551 (2012). 

17 Hinney, A. et al. Genome-wide association study in German patients with attention 
deficit/hyperactivity disorder. American journal of medical genetics. Part B, 
Neuropsychiatric genetics : the official publication of the International Society of 
Psychiatric Genetics 156B, 888-897, doi:10.1002/ajmg.b.31246 (2011). 

18 Neale, B. M. et al. Case-control genome-wide association study of attention-
deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent 
Psychiatry 49, 906-920, doi:10.1016/j.jaac.2010.06.007 (2010). 

19 Bakker, S. C. et al. A whole-genome scan in 164 Dutch sib pairs with attention-
deficit/hyperactivity disorder: suggestive evidence for linkage on chromosomes 7p 
and 15q. American journal of human genetics 72, 1251-1260 (2003). 

20 Myocardial Infarction Genetics, C. et al. Genome-wide association of early-onset 
myocardial infarction with single nucleotide polymorphisms and copy number 
variants. Nature genetics 41, 334-341, doi:10.1038/ng.327 (2009). 

21 Gelernter, J. et al. Genome-wide association study of alcohol dependence:significant 
findings in African- and European-Americans including novel risk loci. Molecular 
psychiatry 19, 41-49, doi:10.1038/mp.2013.145 (2014). 

22 Gelernter, J. et al. Genome-wide association study of opioid dependence: multiple 
associations mapped to calcium and potassium pathways. Biological psychiatry 76, 66-
74, doi:10.1016/j.biopsych.2013.08.034 (2014). 

23 Gelernter, J. et al. Genome-wide association study of cocaine dependence and related 
traits: FAM53B identified as a risk gene. Molecular psychiatry 19, 717-723, 
doi:10.1038/mp.2013.99 (2014). 

24 Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic 
population. Nature genetics 47, 435-444, doi:10.1038/ng.3247 (2015). 

25 Pappa, I. et al. A genome-wide approach to children's aggressive behavior: The EAGLE 
consortium. American journal of medical genetics. Part B, Neuropsychiatric genetics : the 
official publication of the International Society of Psychiatric Genetics, 
doi:10.1002/ajmg.b.32333 (2015). 

26 Paternoster, L. et al. Meta-analysis of genome-wide association studies identifies three 
new risk loci for atopic dermatitis. Nature genetics 44, 187-192, doi:10.1038/ng.1017 
(2011). 

27 van der Valk, R. J. et al. A novel common variant in DCST2 is associated with length in 
early life and height in adulthood. Hum Mol Genet 24, 1155-1168, 
doi:10.1093/hmg/ddu510 (2015). 

28 Middeldorp, C. M. et al. A Genome-Wide Association Meta-Analysis of Attention-
Deficit/Hyperactivity Disorder Symptoms in Population-Based Pediatric Cohorts. 
Journal of the American Academy of Child and Adolescent Psychiatry 55, 896-905 e896, 
doi:10.1016/j.jaac.2016.05.025 (2016). 

29 Genomes Project, C. et al. An integrated map of genetic variation from 1,092 human 
genomes. Nature 491, 56-65, doi:10.1038/nature11632 (2012). 



 133 

30 Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of 
genomewide association scans. Bioinformatics 26, 2190-2191, 
doi:10.1093/bioinformatics/btq340 (2010). 

31 Wright, M. J. & Martin, N. G. Brisbane Adolescent Twin Study: Outline of study methods 
and research projects. Australian Journal of Psychology 56, 65-78, 
doi:10.1080/00049530410001734865 (2004). 

32 Swanson, J. M. et al. Categorical and Dimensional Definitions and Evaluations of 
Symptoms of ADHD: History of the SNAP and the SWAN Rating Scales. Int J Educ 
Psychol Assess 10, 51-70 (2012). 

33 Das, S. et al. Next-generation genotype imputation service and methods. Nature 
genetics 48, 1284-1287, doi:10.1038/ng.3656 (2016). 

34 Ebejer, J. L. et al. Genome-wide association study of inattention and hyperactivity-
impulsivity measured as quantitative traits. Twin Res Hum Genet 16, 560-574, 
doi:10.1017/thg.2013.12 (2013). 

35 Schizophrenia Working Group of the Psychiatric Genomics, C. Biological insights from 
108 schizophrenia-associated genetic loci. Nature 511, 421-427, 
doi:10.1038/nature13595 (2014). 

36 Delaneau, O., Marchini, J. & Zagury, J. F. A linear complexity phasing method for 
thousands of genomes. Nature methods 9, 179-181, doi:10.1038/nmeth.1785 (2011). 

37 Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. 
G3 1, 457-470, doi:10.1534/g3.111.001198 (2011). 

38 Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human 
genomes. Nature 526, 75-81, doi:10.1038/nature15394 (2015). 

39 Genomes Project, C. et al. A global reference for human genetic variation. Nature 526, 
68-74, doi:10.1038/nature15393 (2015). 

40 Price, A. L. et al. Long-range LD can confound genome scans in admixed populations. 
American journal of human genetics 83, 132-135; author reply 135-139, 
doi:10.1016/j.ajhg.2008.06.005 (2008). 

41 Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based 
linkage analyses. American journal of human genetics 81, 559-575, 
doi:10.1086/519795 (2007). 

42 Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer 
datasets. Gigascience 4, 7, doi:10.1186/s13742-015-0047-8 (2015). 

43 Price, A. L. et al. Principal components analysis corrects for stratification in genome-
wide association studies. Nature genetics 38, 904-909, doi:10.1038/ng1847 (2006). 

44 Winkler, T. W. et al. Quality control and conduct of genome-wide association meta-
analyses. Nat. Protocols 9, 1192-1212, doi:10.1038/nprot.2014.071 (2014). 

45 Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from 
polygenicity in genome-wide association studies. Nature genetics 47, 291-295, 
doi:10.1038/ng.3211 (2015). 

46 de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set 
analysis of GWAS data. PLoS Comput Biol 11, e1004219, 
doi:10.1371/journal.pcbi.1004219 (2015). 

47 Wellcome Trust Case Control, C. et al. Bayesian refinement of association signals for 14 
loci in 3 common diseases. Nature genetics 44, 1294-1301, doi:10.1038/ng.2435 
(2012). 



 134 

48 Gormley, P. et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci 
for migraine. Nature genetics 48, 856-866, doi:10.1038/ng.3598 (2016). 

49 McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol 17, 122, 
doi:10.1186/s13059-016-0974-4 (2016). 

50 Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE 
Project. Genome Res 22, 1760-1774, doi:10.1101/gr.135350.111 (2012). 

51 Won, H. et al. Chromosome conformation elucidates regulatory relationships in 
developing human brain. Nature 538, 523-527, doi:10.1038/nature19847 (2016). 

52 Consortium, G. T. Human genomics. The Genotype-Tissue Expression (GTEx) pilot 
analysis: multitissue gene regulation in humans. Science 348, 648-660, 
doi:10.1126/science.1262110 (2015). 

53 Zhernakova, D. V. et al. Identification of context-dependent expression quantitative 
trait loci in whole blood. Nature genetics 49, 139-145, doi:10.1038/ng.3737 (2017). 

54 Roadmap Epigenomics, C. et al. Integrative analysis of 111 reference human 
epigenomes. Nature 518, 317-330, doi:10.1038/nature14248 (2015). 

55 Kircher, M. et al. A general framework for estimating the relative pathogenicity of 
human genetic variants. Nature genetics 46, 310-315, doi:10.1038/ng.2892 (2014). 

56 Hou, C. A simple approximation for the distribution of the weighted combination of 
non-independent or independent probabilities. Statistics and Probabbility Letters 73, 
179-187 (2005). 

57 Farrell, M. S. et al. Evaluating historical candidate genes for schizophrenia. Molecular 
psychiatry 20, 555-562, doi:10.1038/mp.2015.16 (2015). 

58 Hawi, Z. et al. The molecular genetic architecture of attention deficit hyperactivity 
disorder. Molecular psychiatry 20, 289-297, doi:10.1038/mp.2014.183 (2015). 

59 Day, F. R. et al. Large-scale genomic analyses link reproductive aging to hypothalamic 
signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nature 
genetics 47, 1294-1303, doi:10.1038/ng.3412 (2015). 

60 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for 
interpreting genome-wide expression profiles. Proceedings of the National Academy of 
Sciences of the United States of America 102, 15545-15550, 
doi:10.1073/pnas.0506580102 (2005). 

61 Vernes, S. C. et al. Foxp2 regulates gene networks implicated in neurite outgrowth in 
the developing brain. PLoS genetics 7, e1002145, doi:10.1371/journal.pgen.1002145 
(2011). 

62 Spiteri, E. et al. Identification of the transcriptional targets of FOXP2, a gene linked to 
speech and language, in developing human brain. American journal of human genetics 
81, 1144-1157, doi:10.1086/522237 (2007). 

63 Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 
536, 285-291, doi:10.1038/nature19057 (2016). 

64 Cross-Disorder Group of the Psychiatric Genomics, C. et al. Genetic relationship 
between five psychiatric disorders estimated from genome-wide SNPs. Nature genetics 
45, 984-994, doi:10.1038/ng.2711 (2013). 

65 Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide 
complex trait analysis. American journal of human genetics 88, 76-82, 
doi:10.1016/j.ajhg.2010.11.011 (2011). 

66 Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia 
and bipolar disorder. Nature 460, 748-752, doi:0.1038/nature08185 (2009). 



 135 

67 Sherva, R. et al. Genome-wide Association Study of Cannabis Dependence Severity, 
Novel Risk Variants, and Shared Genetic Risks. JAMA Psychiatry 73, 472-480, 
doi:10.1001/jamapsychiatry.2016.0036 (2016). 

68 Polanczyk, G., de Lima, M. S., Horta, B. L., Biederman, J. & Rohde, L. A. The worldwide 
prevalence of ADHD: a systematic review and metaregression analysis. The American 
journal of psychiatry 164, 942-948, doi:10.1176/ajp.2007.164.6.942 (2007). 

69 Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-
wide association summary statistics. Nature genetics 47, 1228-1235, 
doi:10.1038/ng.3404 (2015). 

70 Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-
wide association summary statistics. Nature genetics 47, 1228-1235 (2015). 

71 Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex 
trait variants. Nature genetics 45, 124-130, doi:10.1038/ng.2504 (2013). 

72 Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 
317-330 (2015). 

73 Ernst, J. & Kellis, M. Large-scale imputation of epigenomic datasets for systematic 
annotation of diverse human tissues. Nature biotechnology 33, 364-376 (2015). 

74 Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and 
traits. Nature genetics 47, 1236-1241, doi:10.1038/ng.3406 (2015). 

75 Sniekers, S. et al. Genome-wide association meta-analysis of 78,308 individuals 
identifies new loci and genes influencing human intelligence. Nature genetics 49, 1107-
1112, doi:10.1038/ng.3869 (2017). 

76 Davies, G. et al. Genome-wide association study of cognitive functions and educational 
attainment in UK Biobank (N=112 151). Molecular psychiatry 21, 758-767, 
doi:10.1038/mp.2016.45 (2016). 

77 Hammerschlag, A. R. et al. Genome-wide association analysis of insomnia complaints 
identifies risk genes and genetic overlap with psychiatric and metabolic traits. Nature 
genetics 49, 1584-1592, doi:10.1038/ng.3888 (2017). 

78 Duncan, L. et al. Significant Locus and Metabolic Genetic Correlations Revealed in 
Genome-Wide Association Study of Anorexia Nervosa. The American journal of 
psychiatry 174, 850-858, doi:10.1176/appi.ajp.2017.16121402 (2017). 

79 Wray, N. R. & Sullivan, P. F. Genome-wide association analyses identify 44 risk variants 
and refine the genetic architecture of major depression. bioRxiv, doi:10.1101/167577 
(2017). 

80 Yates, F. Contingency Tables Involving Small Numbers and the χ2 Test. Supplement to 
the Journal of the Royal Statistical Society 1, 217-235, doi:10.2307/2983604 (1934). 

81 R Core Team. R: A language and environment for statistical computing. , <http://www.r-

project.org/> (2014). 
82 Okbay, A. et al. Genome-wide association study identifies 74 loci associated with 

educational attainment. Nature 533, 539-542, doi:10.1038/nature17671 (2016). 
83 Pearson K., L. A. On the inheritance of characters not capable of exact quantitative 

measurement. Philosophical Transactions of the Royal Society of London Series A, 79-
150 (1901). 

84 Cohen, J. The cost of dichotomization. Applied Psychological Measurement 7, 249-253, 
doi:10.1177/014662168300700301 (1983). 

http://www.r-project.org/
http://www.r-project.org/


 136 

85 Hunter, J. & Schmidt, F. Dichotomization of continuous variables: The implications for 
meta-analysis. Journal of Applied Psychology 75, 334-349, 
doi:http://dx.doi.org/10.1037/0021-9010.75.3.334 (1990). 

86 Hsieh, F. Y., Bloch, D. A. & Larsen, M. D. A simple method of sample size calculation for 
linear and logistic regression. Stat Med 17, 1623-1634 (1998). 

87 Lee, S. H., Wray, N. R., Goddard, M. E. & Visscher, P. M. Estimating missing heritability 
for disease from genome-wide association studies. American journal of human genetics 
88, 294-305, doi:10.1016/j.ajhg.2011.02.002 (2011). 

88 Yang, J. et al. Common SNPs explain a large proportion of the heritability for human 
height. Nature genetics 42, 565-569, doi:10.1038/ng.608 (2010). 

89 Stouffer, S., DeVinney, L. & Suchmen, E. The American soldier: Adjustment during army 
life., Vol. 1 (Princeton University Press, 1949). 

90 Faraone, S. V. et al. Attention-deficit/hyperactivity disorder. Nature Reviews Disease 
Primers, 15020, doi:10.1038/nrdp.2015.20 (2015). 

91 Ribases, M. et al. Exploration of 19 serotoninergic candidate genes in adults and 
children with attention-deficit/hyperactivity disorder identifies association for 5HT2A, 
DDC and MAOB. Molecular psychiatry 14, 71-85, doi:10.1038/sj.mp.4002100 (2009). 

92 Wang, B. Molecular mechanism underlying sialic acid as an essential nutrient for brain 
development and cognition. Adv Nutr 3, 465S-472S, doi:10.3945/an.112.001875 
(2012). 

93 Yoo, S. W. et al. Sialylation regulates brain structure and function. FASEB J 29, 3040-
3053, doi:10.1096/fj.15-270983 (2015). 

94 Hu, H. et al. ST3GAL3 mutations impair the development of higher cognitive functions. 
American journal of human genetics 89, 407-414, doi:10.1016/j.ajhg.2011.08.008 
(2011). 

95 Sturgill, E. R. et al. Biosynthesis of the major brain gangliosides GD1a and GT1b. 
Glycobiology 22, 1289-1301, doi:10.1093/glycob/cws103 (2012). 

96 Ledeen, R. W. & Wu, G. Ganglioside function in calcium homeostasis and signaling. 
Neurochemical research 27, 637-647 (2002). 

97 Wu, G., Xie, X., Lu, Z. H. & Ledeen, R. W. Cerebellar neurons lacking complex 
gangliosides degenerate in the presence of depolarizing levels of potassium. 
Proceedings of the National Academy of Sciences of the United States of America 98, 307-
312, doi:10.1073/pnas.011523698 (2001). 

98 Edvardson, S. et al. West syndrome caused by ST3Gal-III deficiency. Epilepsia 54, e24-
27, doi:10.1111/epi.12050 (2013). 

99 Walton, E. et al. Epigenetic profiling of ADHD symptoms trajectories: a prospective, 
methylome-wide study. Molecular psychiatry, doi:10.1038/mp.2016.85 (2016). 

100 Woo, J. et al. Trans-synaptic adhesion between NGL-3 and LAR regulates the formation 
of excitatory synapses. Nature neuroscience 12, 428-437, doi:10.1038/nn.2279 (2009). 

101 Yang, T., Massa, S. M. & Longo, F. M. LAR protein tyrosine phosphatase receptor 
associates with TrkB and modulates neurotrophic signaling pathways. J Neurobiol 66, 
1420-1436, doi:10.1002/neu.20291 (2006). 

102 Zabolotny, J. M. et al. Overexpression of the LAR (leukocyte antigen-related) protein-
tyrosine phosphatase in muscle causes insulin resistance. Proceedings of the National 
Academy of Sciences of the United States of America 98, 5187-5192, 
doi:10.1073/pnas.071050398 (2001). 

http://dx.doi.org/10.1037/0021-9010.75.3.334


 137 

103 Zhang, Z. et al. A heterozygous mutation disrupting the SPAG16 gene results in 
biochemical instability of central apparatus components of the human sperm axoneme. 
Biol Reprod 77, 864-871, doi:10.1095/biolreprod.107.063206 (2007). 

104 Zhang, Z. et al. A sperm-associated WD repeat protein orthologous to Chlamydomonas 
PF20 associates with Spag6, the mammalian orthologue of Chlamydomonas PF16. Mol 
Cell Biol 22, 7993-8004 (2002). 

105 Somers, V. et al. Autoantibody profiling in multiple sclerosis reveals novel antigenic 
candidates. J Immunol 180, 3957-3963 (2008). 

106 de Bock, L. et al. Anti-SPAG16 antibodies in primary progressive multiple sclerosis are 
associated with an elevated progression index. Eur J Neurol 23, 722-728, 
doi:10.1111/ene.12925 (2016). 

107 Leung, L. C. et al. Coupling of NF-protocadherin signaling to axon guidance by cue-
induced translation. Nature neuroscience 16, 166-173, doi:10.1038/nn.3290 (2013). 

108 Blevins, C. J., Emond, M. R., Biswas, S. & Jontes, J. D. Differential expression, alternative 
splicing, and adhesive properties of the zebrafish delta1-protocadherins. Neuroscience 
199, 523-534, doi:10.1016/j.neuroscience.2011.09.061 (2011). 

109 Krishna, K. K., Hertel, N. & Redies, C. Cadherin expression in the somatosensory cortex: 
evidence for a combinatorial molecular code at the single-cell level. Neuroscience 175, 
37-48, doi:10.1016/j.neuroscience.2010.11.056 (2011). 

110 Kim, S. Y., Chung, H. S., Sun, W. & Kim, H. Spatiotemporal expression pattern of non-
clustered protocadherin family members in the developing rat brain. Neuroscience 
147, 996-1021, doi:10.1016/j.neuroscience.2007.03.052 (2007). 

111 International League Against Epilepsy Consortium on Complex Epilepsies. Electronic 
address, e.-a. u. e. a. Genetic determinants of common epilepsies: a meta-analysis of 
genome-wide association studies. Lancet Neurol 13, 893-903, doi:10.1016/S1474-
4422(14)70171-1 (2014). 

112 Miyake, K. et al. The protocadherins, PCDHB1 and PCDH7, are regulated by MeCP2 in 
neuronal cells and brain tissues: implication for pathogenesis of Rett syndrome. BMC 
Neurosci 12, 81, doi:10.1186/1471-2202-12-81 (2011). 

113 Oliver, P. L. et al. Disruption of Visc-2, a Brain-Expressed Conserved Long Noncoding 
RNA, Does Not Elicit an Overt Anatomical or Behavioral Phenotype. Cereb Cortex 25, 
3572-3585, doi:10.1093/cercor/bhu196 (2015). 

114 Janson, C. G., Chen, Y., Li, Y. & Leifer, D. Functional regulatory regions of human 
transcription factor MEF2C. Brain Res Mol Brain Res 97, 70-82 (2001). 

115 Harrington, A. J. et al. MEF2C regulates cortical inhibitory and excitatory synapses and 
behaviors relevant to neurodevelopmental disorders. Elife 5, doi:10.7554/eLife.20059 
(2016). 

116 Adachi, M., Lin, P. Y., Pranav, H. & Monteggia, L. M. Postnatal Loss of Mef2c Results in 
Dissociation of Effects on Synapse Number and Learning and Memory. Biological 
psychiatry 80, 140-148, doi:10.1016/j.biopsych.2015.09.018 (2016). 

117 Li, H. et al. Transcription factor MEF2C influences neural stem/progenitor cell 
differentiation and maturation in vivo. Proceedings of the National Academy of Sciences 
of the United States of America 105, 9397-9402, doi:10.1073/pnas.0802876105 
(2008). 

118 Barbosa, A. C. et al. MEF2C, a transcription factor that facilitates learning and memory 
by negative regulation of synapse numbers and function. Proceedings of the National 



 138 

Academy of Sciences of the United States of America 105, 9391-9396, 
doi:10.1073/pnas.0802679105 (2008). 

119 Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility 
loci for Alzheimer's disease. Nature genetics 45, 1452-1458, doi:10.1038/ng.2802 
(2013). 

120 Hyde, C. L. et al. Identification of 15 genetic loci associated with risk of major 
depression in individuals of European descent. Nature genetics 48, 1031-1036, 
doi:10.1038/ng.3623 (2016). 

121 Novara, F. et al. Refining the phenotype associated with MEF2C haploinsufficiency. Clin 
Genet 78, 471-477, doi:10.1111/j.1399-0004.2010.01413.x (2010). 

122 Mikhail, F. M. et al. Clinically relevant single gene or intragenic deletions encompassing 
critical neurodevelopmental genes in patients with developmental delay, mental 
retardation, and/or autism spectrum disorders. Am J Med Genet A 155A, 2386-2396, 
doi:10.1002/ajmg.a.34177 (2011). 

123 Sia, G. M., Clem, R. L. & Huganir, R. L. The human language-associated gene SRPX2 
regulates synapse formation and vocalization in mice. Science 342, 987-991, 
doi:10.1126/science.1245079 (2013). 

124 Tsui, D., Vessey, J. P., Tomita, H., Kaplan, D. R. & Miller, F. D. FoxP2 regulates 
neurogenesis during embryonic cortical development. The Journal of neuroscience : the 
official journal of the Society for Neuroscience 33, 244-258, 
doi:10.1523/JNEUROSCI.1665-12.2013 (2013). 

125 Schreiweis, C. et al. Humanized Foxp2 accelerates learning by enhancing transitions 
from declarative to procedural performance. Proceedings of the National Academy of 
Sciences of the United States of America 111, 14253-14258, 
doi:10.1073/pnas.1414542111 (2014). 

126 Vernes, S. C. et al. A functional genetic link between distinct developmental language 
disorders. N Engl J Med 359, 2337-2345, doi:10.1056/NEJMoa0802828 (2008). 

127 Lai, C. S., Gerrelli, D., Monaco, A. P., Fisher, S. E. & Copp, A. J. FOXP2 expression during 
brain development coincides with adult sites of pathology in a severe speech and 
language disorder. Brain 126, 2455-2462, doi:10.1093/brain/awg247 (2003). 

128 Wilcke, A. et al. Imaging genetics of FOXP2 in dyslexia. Eur J Hum Genet 20, 224-229, 
doi:10.1038/ejhg.2011.160 (2012). 

129 Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F. & Monaco, A. P. A forkhead-
domain gene is mutated in a severe speech and language disorder. Nature 413, 519-
523, doi:10.1038/35097076 (2001). 

130 Ribases, M. et al. An association study of sequence variants in the forkhead box P2 
(FOXP2) gene and adulthood attention-deficit/hyperactivity disorder in two European 
samples. Psychiatric genetics 22, 155-160, doi:10.1097/YPG.0b013e328353957e 
(2012). 

131 Barban, N. et al. Genome-wide analysis identifies 12 loci influencing human 
reproductive behavior. Nature genetics 48, 1462-1472, doi:10.1038/ng.3698 (2016). 

132 Willnow, T. E., Petersen, C. M. & Nykjaer, A. VPS10P-domain receptors - regulators of 
neuronal viability and function. Nature reviews. Neuroscience 9, 899-909, 
doi:10.1038/nrn2516 (2008). 

133 Hermey, G. et al. The three sorCS genes are differentially expressed and regulated by 
synaptic activity. J Neurochem 88, 1470-1476 (2004). 



 139 

134 Breiderhoff, T. et al. Sortilin-related receptor SORCS3 is a postsynaptic modulator of 
synaptic depression and fear extinction. PloS one 8, e75006, 
doi:10.1371/journal.pone.0075006 (2013). 

135 Oetjen, S., Mahlke, C., Hermans-Borgmeyer, I. & Hermey, G. Spatiotemporal expression 
analysis of the growth factor receptor SorCS3. J Comp Neurol 522, 3386-3402, 
doi:10.1002/cne.23606 (2014). 

136 Reitz, C. et al. Independent and epistatic effects of variants in VPS10-d receptors on 
Alzheimer disease risk and processing of the amyloid precursor protein (APP). Transl 
Psychiatry 3, e256, doi:10.1038/tp.2013.13 (2013). 

137 Muda, M. et al. MKP-3, a novel cytosolic protein-tyrosine phosphatase that exemplifies 
a new class of mitogen-activated protein kinase phosphatase. The Journal of biological 
chemistry 271, 4319-4326 (1996). 

138 Caunt, C. J. & Keyse, S. M. Dual-specificity MAP kinase phosphatases (MKPs): shaping 
the outcome of MAP kinase signalling. FEBS J 280, 489-504, doi:10.1111/j.1742-
4658.2012.08716.x (2013). 

139 Owens, D. M. & Keyse, S. M. Differential regulation of MAP kinase signalling by dual-
specificity protein phosphatases. Oncogene 26, 3203-3213, 
doi:10.1038/sj.onc.1210412 (2007). 

140 Stewart, A. E., Dowd, S., Keyse, S. M. & McDonald, N. Q. Crystal structure of the MAPK 
phosphatase Pyst1 catalytic domain and implications for regulated activation. Nat 
Struct Biol 6, 174-181, doi:10.1038/5861 (1999). 

141 Bermudez, O., Pages, G. & Gimond, C. The dual-specificity MAP kinase phosphatases: 
critical roles in development and cancer. Am J Physiol Cell Physiol 299, C189-202, 
doi:10.1152/ajpcell.00347.2009 (2010). 

142 Dickinson, R. J., Eblaghie, M. C., Keyse, S. M. & Morriss-Kay, G. M. Expression of the ERK-
specific MAP kinase phosphatase PYST1/MKP3 in mouse embryos during 
morphogenesis and early organogenesis. Mech Dev 113, 193-196 (2002). 

143 Li, C., Scott, D. A., Hatch, E., Tian, X. & Mansour, S. L. Dusp6 (Mkp3) is a negative 
feedback regulator of FGF-stimulated ERK signaling during mouse development. 
Development 134, 167-176, doi:10.1242/dev.02701 (2007). 

144 Mortensen, O. V. MKP3 eliminates depolarization-dependent neurotransmitter release 
through downregulation of L-type calcium channel Cav1.2 expression. Cell Calcium 53, 
224-230, doi:10.1016/j.ceca.2012.12.004 (2013). 

145 Mortensen, O. V., Larsen, M. B., Prasad, B. M. & Amara, S. G. Genetic complementation 
screen identifies a mitogen-activated protein kinase phosphatase, MKP3, as a regulator 
of dopamine transporter trafficking. Mol Biol Cell 19, 2818-2829, 
doi:10.1091/mbc.E07-09-0980 (2008). 

146 Takaki, M. et al. Two kinds of mitogen-activated protein kinase phosphatases, MKP-1 
and MKP-3, are differentially activated by acute and chronic methamphetamine 
treatment in the rat brain. J Neurochem 79, 679-688 (2001). 

147 Miraoui, H. et al. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified 
in individuals with congenital hypogonadotropic hypogonadism. American journal of 
human genetics 92, 725-743, doi:10.1016/j.ajhg.2013.04.008 (2013). 

148 Luo, Y. et al. Differential expression of FOXA1, DUSP6, and HA117 in colon segments of 
Hirschsprung's disease. Int J Clin Exp Pathol 8, 3979-3986 (2015). 



 140 

149 Banzhaf-Strathmann, J. et al. MicroRNA-125b induces tau hyperphosphorylation and 
cognitive deficits in Alzheimer's disease. EMBO J 33, 1667-1680, 
doi:10.15252/embj.201387576 (2014). 

150 Keyse, S. M. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer 
Metastasis Rev 27, 253-261, doi:10.1007/s10555-008-9123-1 (2008). 

151 Kidger, A. M. & Keyse, S. M. The regulation of oncogenic Ras/ERK signalling by dual-
specificity mitogen activated protein kinase phosphatases (MKPs). Semin Cell Dev Biol 
50, 125-132, doi:10.1016/j.semcdb.2016.01.009 (2016). 

152 Qu, X. et al. Identification, characterization, and functional study of the two novel 
human members of the semaphorin gene family. The Journal of biological chemistry 
277, 35574-35585, doi:10.1074/jbc.M206451200 (2002). 

153 Yoshida, Y., Han, B., Mendelsohn, M. & Jessell, T. M. PlexinA1 signaling directs the 
segregation of proprioceptive sensory axons in the developing spinal cord. Neuron 52, 
775-788, doi:10.1016/j.neuron.2006.10.032 (2006). 

154 Toyofuku, T. et al. Dual roles of Sema6D in cardiac morphogenesis through region-
specific association of its receptor, Plexin-A1, with off-track and vascular endothelial 
growth factor receptor type 2. Genes Dev 18, 435-447, doi:10.1101/gad.1167304 
(2004). 

155 Toyofuku, T. et al. Guidance of myocardial patterning in cardiac development by 
Sema6D reverse signalling. Nat Cell Biol 6, 1204-1211, doi:10.1038/ncb1193 (2004). 

156 Benyamin, B. et al. Childhood intelligence is heritable, highly polygenic and associated 
with FNBP1L. Molecular psychiatry 19, 253-258, doi:10.1038/mp.2012.184 (2014). 

157 Rietveld, C. A. et al. GWAS of 126,559 individuals identifies genetic variants associated 
with educational attainment. Science 340, 1467-1471, doi:10.1126/science.1235488 
(2013). 

158 Okbay, A. et al. Genetic variants associated with subjective well-being, depressive 
symptoms, and neuroticism identified through genome-wide analyses. Nature genetics 
48, 624-633, doi:10.1038/ng.3552 (2016). 

159 Cross-Disorder Group of the Psychiatric Genomics, C. Identification of risk loci with 
shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 
381, 1371-1379, doi:10.1016/S0140-6736(12)62129-1 (2013). 

160 Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new loci 
associated with body mass index. Nature genetics 42, 937-948, doi:10.1038/ng.686 
(2010). 

161 Berndt, S. I. et al. Genome-wide meta-analysis identifies 11 new loci for 
anthropometric traits and provides insights into genetic architecture. Nature genetics 
45, 501-512, doi:10.1038/ng.2606 (2013). 

162 Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat 
distribution. Nature 518, 187-196, doi:10.1038/nature14132 (2015). 

163 Bradfield, J. P. et al. A genome-wide association meta-analysis identifies new childhood 
obesity loci. Nature genetics 44, 526-531, doi:10.1038/ng.2247 (2012). 

164 Morris, A. P. et al. Large-scale association analysis provides insights into the genetic 
architecture and pathophysiology of type 2 diabetes. Nature genetics 44, 981-990, 
doi:10.1038/ng.2383 (2012). 

165 Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood 
lipids. Nature 466, 707-713, doi:10.1038/nature09270 (2010). 



 141 

166 Tobacco & Genetics, C. Genome-wide meta-analyses identify multiple loci associated 
with smoking behavior. Nature genetics 42, 441-447, doi:10.1038/ng.571 (2010). 

167 Patel, Y. M. et al. Novel Association of Genetic Markers Affecting CYP2A6 Activity and 
Lung Cancer Risk. Cancer Res 76, 5768-5776, doi:10.1158/0008-5472.CAN-16-0446 
(2016). 

168 Wang, Y. et al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung 
cancer. Nature genetics 46, 736-741, doi:10.1038/ng.3002 (2014). 

169 Pilling, L. C. et al. Human longevity is influenced by many genetic variants: evidence 
from 75,000 UK Biobank participants. Aging (Albany NY) 8, 547-560, 
doi:10.18632/aging.100930 (2016). 

170 Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug 
discovery. Nature 506, 376-381, doi:10.1038/nature12873 (2014). 

 

  



 142 

Supplementary Notes 

Consortium Members 
 

Consortium authors are listed alphabetically by surname for each contributing group. 

 

ADHD Working Group of the Psychiatric Genomics Consortium (PGC) 

Özgür Albayrak,1,2 Richard J.L. Anney,3 Alejandro Arias Vasquez,4 Maria Jesús Arranz,5 Philip 

Asherson,6 Tobias J. Banaschewski,7 Claiton Bau,8,9 Joseph Biederman,10,11 Preben Bo 

Mortensen,12 Anders Børglum,12 Jan K. Buitelaar,13 Miguel Casas,13,14,15 Alice Charach,16 Bru 

Cormand,17,18,19,20 Jennifer Crosbie,16 Soeren Dalsgaard,12 Mark J. Daly,21 Ditte Demontis,12 Astrid 

Dempfle,22 Alysa E. Doyle,23 Richard P. Ebstein,24 Josephine Elia,25 Stephen V. Faraone,26,27 

Manuel Föcker,1 Barbara Franke,28 Christine Freitag,29 Joel Gelernter,30,31 Michael Gill,32 Eugenio 

Grevet,8,33 Jan Haavik,34 Hakon Hakonarson,35,36 Ziarih Hawi,37 Johannes Hebebrand,1 Beate 

Herpertz-Dahlmann,38 Amaia Hervas,5 Anke Hinney,1 Sarah Hohmann,7 Peter Holmans,3 Mara 

Hutz,9 Abel Ickowitz,16 Stefan Johansson,39 Lindsey Kent,40 Sarah Kittel-Schneider,41 Henry 

Kranzler,42,43 Jonna Kuntsi,6 Nanda Lambregts-Rommelse,44 Kate Langley,3 Gerd Lehmkuhl,45 

Klaus-Peter Lesch,46,47 Sandra K. Loo,48 Joanna Martin,3,49,50 James J. McGough,48 Sarah E. 

Medland,51 Jobst Meyer,52 Eric Mick,53 Frank Middletion,27 Ana Miranda,54 Fernando Mulas,55 

Aisling Mulligan,56 Benjamin M. Neale,21 Stan F. Nelson,48 T Trang Nguyen,57 Michael C. 

O’Donovan,3 Robert D. Oades,58 Michael J. Owen,3 Haukur Palmason,52 Josep Antoni Ramos-

Quiroga,13,14,15 Andreas Reif,41 Tobias J. Renner,46,59 Luis Rhode,8,33 Marta Ribasés,13,14,60 Marcella 

Rietschel,61 Stephan Ripke,21 Olga Rivero,46,47 Herbert Roeyers,62 Marcel Romanos,63 Jasmin 

Romanos,63 Nina Roth Mota,8,64 Aribert Rothenberger,65 Cristina Sánchez-Mora,13,14,60 Russell 

Schachar,16 Helmut Schäfer,57 André Scherag,66,67 Benno G. Schimmelmann,68 Joseph Sergeant,69 

Judith Sinzig,45,70 Susan L. Smalley,48 Edmund J.S. Sonuga-Barke,62,71 Hans-Christoph 

Steinhausen,72,73,74 Patrick F. Sullivan,50,75 Anita Thapar,3,76 Margaret Thompson,71 Alexandre 

Todorov,77 Irwin Waldman,78 Susanne Walitza,63,79 Raymond K. Walters,21,49 Yufeng Wang,80 

Andreas Warnke,63 Nigel Williams,3 Stephanie H. Witt,61 Li Yang,80 Tetyana Zayats,34 & Yanli 

Zhang-James26 

 

Affiliations 

1. Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University 

Hospital Essen, University of Duisburg-Essen, Essen, Germany 

2. Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School (MHH), 

Hannover, Germany 

3. MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological 

Medicine and Neurology, School of Medicine, Cardiff University, Cardiff, Wales, UK 

4. Departments of Human Genetics, Psychiatry, and Cognitive Neuroscience, Donders Institute for 

Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The 

Netherlands 

5. University Hospital Mutua Terrassa, Barcelona, Spain 



 143 

6. MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology 

and Neuroscience, King's College London, London, UK 

7. Department of Child and Adolescent Psychiatry, Central Institute of Mental Health and 

Mannheim Medical Faculty, University of Heidelberg, Heidelberg, Germany 

8. ADHD Outpatient Clinic, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil 

9. Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do 

Sul, Porto Alegre, Brazil 

10. Pediatric Psychopharmacology Unit, Massachusetts General Hospital, Boston, MA, USA 

11. Department of Psychiatry, Harvard Medical School, Boston, MA, USA 

12. National Centre for Register-based Research, Aarhus University, Aarhus, Denmark 

13. Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain 

14. Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands 

15. Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain 

16. Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Catalonia, 

Spain 

17. The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada 

18. Department de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de 

Barcelona, Barcelona, Spain 

19. Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Spain 

20. Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain 

21. Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Catalonia, Spain 

22. Analytical and Translational Genetics Unit (ATGU), Massachusetts General Hospital, Boston, 

MA 

23. Institute for Medical Informatics and Statistics, University Medical Center Schleswig-Holstein, 

Campus Kiel, Kiel, Germany 

24. Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA 

25. National University of Singapore, Singapore 

26. duPont Children's Hospital, Wilmington, DE, USA 

27. Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA 

28. Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, 

NY, USA 

29. Departments of Human Genetics (855) and Psychiatry, Donders Institute for Brain, Cognition 

and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands 

30. Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JW 

Goethe University, Frankfurt, Germany 

31. Department of Psychiatry, Genetics, and Neuroscience, Yale University School of Medicine, 

New Haven, Connecticut, USA 

32. Veterans Affairs Connecticut Healthcare Center, West Haven, Connecticut, USA 

33. Department of Psychiatry, Trinity College Dublin, Trinity Centre for Health Sciences, St. 

James’s Hospital, Dublin, Ireland 

34. Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, 

Porto Alegre, Brazil 

35. K.G.Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of 

Bergen, Bergen, Norway 

36. The Center for Applied Genomics, The Children´s Hospital of Philadelphia,  Philadelphia, PA, 

USA 

37. Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, 

Philadelphia, PA, USA 



 144 

38. School of Psychological Sciences and Monash Institute for Cognitive and Clinical 

Neurosciences, Monash University, Clayton, Australia 

39. Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH 

Aachen, University Clinics, Aachen, Germany 

40. K.G.Jebsen Centre for Neuropsychiatric Disorders, Department of Clinical Science, University 

of Bergen, Bergen, Norway 

41. University of St Andrews, St Andrews, UK 

42. Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, 

Frankfurt, Germany 

43. Department of Psychiatry, The Perelman School of Medicine, University of Pennsylvania, 

Philadelphia, PA, USA 

44. Veterans Integrated Service Network (VISN4) Mental Illness Research, Education, and Clinical 

Center (MIRECC), Crescenz VA Medical Center, Philadephia, PA, USA 

45. Karakter Child and Adolescent Psychiatry University Center and Department of Psychiatry, 

Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical 

Centre, Nijmegen, The Netherlands 

46. Department of Child and Adolescent Psychiatry, University of Cologne, Cologne, Germany 

47. Division of Molecular Psychiatry, ADHD Clinical Research Unit, Department of Psychiatry, 

Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany 

48. Department of Neuroscience, School for Mental Health and Neuroscience (MHENS), 

Maastricht University, Maastricht, The Netherlands 

49. University of California Los Angeles, Los Angeles, CA 

50. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, USA 

51. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 

Sweden 

52. Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 

Australia 

53. Institute of Psychobiology, Department of Neurobehavioral Genetics, University of Trier, Trier, 

Germany 

54. Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, 

USA 

55. Department of Developmental and Educational Psychology, University of Valencia, Spain 

56. Instituto Valenciano de Neurologia Pediatrica (INVANEP), Valencia, Spain 

57. Child and Adolescent Psychiatry, University College Dublin, Dublin, Ireland 

58. University of Marburg, Marburg, Germany 

59. University of Duisburg-Essen, Duisburg, Germany 

60. Department of Child and Adolescent Psychiatry, Universitätsklinikum Tübingen, Tübingen, 

Germany 

61. Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de 

Barcelona, Barcelona, Catalonia, Spain 

62. Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, 

University of Heidelberg, Mannheim, Germany 

63. Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, 

Belgium 

64. Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University 

of Wuerzburg, Wuerzburg, Germany 

65. Department of Human Genetics, Radboud University Medical Center, Nijmegen, the 

Netherlands 



 145 

66. Department of Child and Adolescent Psychiatry, University Medicine Goettingen, Goettingen, 

Germany 

67. Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of 

Duisburg-Essen, Essen, Germany 

68. Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control 

and Care (CSCC), Jena University Hospital, Jena, Germany 

69. University Hospital of Child- and Adolescent Psychiatry, University of Bern, Bern, Switzerland 

70. Department of Clinical Neuropsychology, Vrije Universiteit, Amsterdam, The Netherlands 

71. Department of Child and Adolescent Psychiatry and Psychotherapy, LVR – Clinic Bonn, Bonn, 

Germany 

72. School of Psychology, University of Southampton, Southampton, UK 

73. University of Zurich, Zurich, Switzerland 

74. University of Basel, Basel, Switzerland 

75. Child and Adolescent Mental Health Centre, Capital Region Psychiatry, Copenhagen, Denmark 

76. Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, NC, USA 

77. School of Psychology, Cardiff University, Cardiff, UK 

78. Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, 

USA 

79. Department of Psychology, Emory University, Atlanta, Georgia, USA 

80. Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland 

81. Institute of Mental Health, Peking University Sixth Hospital, Beijing, China 

 

 

Early Lifecourse & Genetic Epidemiology (EAGLE) Consortium 

Dorret I. Boomsma,1,2 George Davey Smith,3 Gareth E. Davies,1,4 Erik A. Ehli,4 David M. Evans,3,5 

Iryna O. Fedko,1 Corina U. Greven,6,7,8 Maria M. Groen-Blokhuis,9 Monica Guxens,10,11,12,13 Anke 

R. Hammerschlag,14 Catharina A. Hartman,15 Joachim Heinrich,16,17 Jouke- Jan Hottenga,18 James 

Hudziak,19,20,21,22 Astanand Jugessur,23,24 John P. Kemp,3,5 Eva Krapohl,8 Nicholas G. Martin,25 

Sarah E. Medland,26 Christel M. Middeldorp,1,27,28 Mario Murcia,12,29 Ronny Myhre,30 Ilja M. 

Nolte,31 Dale R. Nyholt,32 Johan Ormel,15 Klaasjan G. Ouwens,1 Irene Pappa,13,33 Craig E. 

Pennell,34 Robert Plomin,8 Susan Ring,3,35 Marie Standl,16 Evie Stergiakouli,3,5 Beate St 

Pourcain,3,36 Camilla Stoltenberg,37 Jordi Sunyer,11,38,39 Elisabeth Thiering,16,40 Henning Tiemeier,21 

Carla M.T. Tiesler,16,40 Nicholas J. Timpson,3 Maciej Trzaskowski,41 Peter Johannes van der 

Most,31 Natalia Vilor-Tejedor,10,11,38 Carol A. Wang,34 Andrew J.O. Whitehouse,42 & Huiying 

Zhao32 

 

Affiliations 

1. Department of Biological Psychology, Neuroscience Campus Amsterdam, VU University, 

Amsterdam, The Netherlands 

2. EMGO Institute for Health and Care Research, Amsterdam, The Netherlands 

3. Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK. 

4. Avera Institute for Human Genetics, Sioux Falls, SD, USA 

5. University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, 

Queensland, Australia 



 146 

6. Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, 

Department of Cognitive Neuroscience, Nijmegen, The Netherlands 

7. Karakter Child and Adolescent Psychiatry University Center, Nijmegen, The Netherlands 

8. Medical Research Council Social, Genetic & Developmental Psychiatry Centre, Institute of 

Psychiatry, Psychology & Neuroscience, King's College London, London, UK 

9. GGZ inGeest, Amsterdam, the Netherlands 

10. ISGlobal - Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain  

11. Universitat Pompeu Fabra (UPF), Barcelona, Spain 

12. Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto 

de Salud Carlos III, Madrid, Spain 

13. Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical 

Centre–Sophia Children’s Hospital, Rotterdam, The Netherlands 

14. Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, 

Amsterdam Neuroscience, VU University Amsterdam, The Netherlands 

15. Department of Psychiatry, University of Groningen, University Medical Center Groningen, 

Groningen, The Netherlands 

16. Institute of Epidemiology I, Helmholtz Zentrum München – German Research Centre for 

Environmental Health, Neuherberg, Germany 

17. Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Inner City 

Clinic, University Hospital of Munich (LMU), Munich, Germany 

18. Biological Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit 

Amsterdam, Amsterdam, The Netherlands 

19. Vermont Center for Children Youth and Families and University of Vermont Medical Center, 

University of Vermont, Burlington, VT, USA 

20. Child Psychiatry, School of Medicine, Washington University, St. Louis, MO, USA 

21. Erasmus University Medical Centre–Sophia Children’s Hospital, Rotterdam, The Netherlands 

22. Geisel School of Medicine, Dartmouth, Hanover, NH, USA 

23. Department of Genetic Research and Bioinformatics, Norwegian Institute of Public Health, 

Oslo, Norway 

24. Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway 

25. Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 

Australia 

26. Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 

Australia 

27. Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia 

28. Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health 

Service, Queensland, Australia 

29. Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-

Universitat de València, Valencia, Spain. 

30. Department of Genes and Environment, Norwegian Institute of Public Health, Oslo, Norway 

31. Department of Epidemiology, University of Groningen, University Medical Center Groningen, 

Groningen, The Netherlands 

32. Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 

Queensland, Australia 

33. Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands 

34. School of Women's and Infants' Health, The University of Western Australia, Crawley, Western 

Australia, Australia 

35. School of Social and Community Medicine, University of Bristol, Bristol, UK 



 147 

36. Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands 

37. Norwegian Institute of Public Health, Oslo, Norway 

38. CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain 

39. ISGlobal Barcelona Institute for Global Health, Barcelona, Spain 

40. Division of Metabolic Diseases and Nutritional Medicine, Dr. von Hauner Children's Hospital, 

Ludwig-Maximilians-University of Munich, Munich, Germany 

41. Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia 

42. Telethon Kids Institute, University of Western Australia, West Perth, Western Australia, 

Australia 

 

 

23andMe Research Team 

Michelle Agee, Babak Alipanahi, Adam Auton, Robert K. Bell, Katarzyna Bryc, Sarah L. Elson, 

Pierre Fontanillas, Nicholas A. Furlotte, David A. Hinds, Bethann S. Hromatka, Karen E. Huber, 

Aaron Kleinman, Nadia K. Litterman, Matthew H. McIntyre, Joanna L. Mountain, Carrie A.M. 

Northover, Steven J. Pitts, J. Fah Sathirapongsasuti, Olga V. Sazonova, Janie F. Shelton, Suyash 

Shringarpure, Chao Tian, Joyce Y. Tung, Vladimir Vacic, & Catherine H. Wilson 

 


