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Abstract

This project aims to do an analytical study of the evolution of a population of
Alexandrium minutum and relate the microalgae growth with its environment. The
specific goal is to use simple population models to describe the lag and exponen-
tial growth phases of this microalgae and discuss how variations in the environment
conditions (mainly temperature, irradiance and salinity) affect the speed at which
the populations increases. We will add into our population model a dilution con-
stant to emulate the effects of dilution in the evolutionary process along time.

To perform simulations and systematically compare the results with the avail-
able data in the literature, we have used numerical integration methods for ordi-
nary differential equations combined with algorithms for fitting the parameters of
the models. The propagation of errors has been also considered. The results show
that considering the microalgae environment is important to accurately determine
the growth rate.

At the end of this project we have listed a few experiments proposals with the
aim to confirm our calculations and provide more insights on the understanding
of this microalgae.

92-10 Biology and other natural sciences



Chapter 1

Introduction

An ecosystem is defined as a biological relational class of interacting organ-
isms and their physical environment. This relations are divided into three types:
mutualistic, when both specie involved take profit of that relation; competition,
when both specie compete for the same resources; parasitic, when one organism,
the parasite, lives off of another organism, the host, harming it and possibly caus-
ing death.
It is clear that the climatic conditions of recent years are breaking the equilibrium
of the different ecosystems around the world with unpredictable consequences.
Understanding how this relations work and affect the evolution of each of the
specie is key to predict the chain effects of catastrophic events. An specie bloom
or the extinction of a specie are events that break the ecosystem’s equilibrium and
are an example of the root cause of such catastrophes.
Many studies have been made about mutualistic and competitive relations, yet
there is a lot to learn about the dynamic formed by a host and their parasite.
This project has been brought in collaboration with CSIC - Institute of Marine
Sciences and the group BIOCOMSC1-UPC, whom provided all the experimen-
tal data used in this project and the knowledge and expertise in microbiology,
through the fellowship JAEIntroICU-2021-ICM-03 and aims to characterize the
evolution of the specie of Dinoflagellate Alexandrium minutum and relate the popu-
lation growth with its environment. This one-celled organism is known to bloom
in various coasts around the world and segregates a toxin that can be deathly for
humans. Moreover, recent studies like [1] have reported evidences of parasitism
in Alexandrium minutum cells.
We have divided the manuscript into six chapters. In chapter 2 some preliminary
notions are given to explain the scientific interest of this project. In particular, we
introduce some mathematical models used in microbiology and some cultivation
techniques to carry out biological experiments in a laboratory.
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2 Introduction

In chapter 3, we describe the methodology to carry out our calculations and show
the experimental data that we use along the project to test our results. Before
moving on to the results and the conclusions, in chapter 4 we summarize about
the mathematical tools that are used along the project.
In the last section we propose a set of experiments to test our calculations and
provide new insights on the characterization of this microalgae.



Chapter 2

Previous notions

2.1 Scientific challenge

In microbiology, when scientific research is carried out on a particular organ-
ism, a sample of this specie is usually taken and isolated within a laboratory
culture to study its growth over the days in a closed environment. Apart from be-
ing the only viable option for studying the organism in some cases, this technique
minimizes noise in observations as the culture is subject to fixed conditions and
has no external interaction.
Unfortunately, the image taken of the evolution of the organism in a laboratory is
far away from reality. Living beings are in constant interaction with our environ-
ment, whether with other living beings or with environmental phenomena. These
systems are so complex that predicting and estimating their effects on a specie is
impossible. The only solution for understanding, in some way, how an organism
interacts with its environment is to isolate it and study the effects of each interac-
tion separately in the laboratory.
In our case, we will study the effect of certain environmental conditions on the
growth of a population of Alexandrium minutum, as well as the effects of tidal di-
lution and propose a series of biological experiments to confirm our hypotheses.

2.2 Mathematical models in biology

To study the behaviour of a specie and the interaction with its environment we
need to study its evolution over time.

The population evolution after an infinitesimal time increment is mainly pro-
portional to the population. This leads to a linear equation and shows that the
population’s experiences an exponential evolution described as follows:

3



4 Previous notions

{
Ṅ (t) = µ N(t)

N(t0) = N0
=⇒

∫ N(t)

N0

1
N

dN = µ
∫ t

t0

dt =⇒ ln N(t)− ln N0 = µ (t− t0) .

Therefore, the so-called specific growth rate, µ, is calculated as follows:

µ =
ln N − ln N0

t− t0
(2.1)

Mathematical models let us predict, not only the current status of a specie, but the
end-to-end evolution during the course of time. In the upcomming subsections
we will define a set of mathematical models used in microbiology.

2.2.1 Primary Models

Logistic model

The logistic model is the most basic and commonly used model to describe
a population’s evolution over time. Considering the Specific growth rate during
the exponential phase µ and the carrying capacity Nmax (the maximum number of
individuals a population can reach), the logistic model is given by the evolution
law:

dN
dt

(t) = µ

(
1− N(t)

Nmax

)
N(t), µ ≥ 0, Nmax > 0 . (2.2)

On the one hand, population growth is assumed to be linear with a growth
rate µ, hence, the term µN(t). On the other hand, the more a population grows
the more pressure is applied to the population itself. In essence, when the number
of individuals in a population increases, so does the difficulty on maintaining the
population itself. Hence, the term µN(t) N(t)

Nmax
is substracted.

Baranyi-Roberts model

Note that in the logistic model, growth starts immediately but for real cultures
such thing does not happen many often. Usually, cells need some time to adapt to
the medium (this adaptation time is called lag phase, which might depend on the
environment and the specie itself).

The Baranyi-Roberts (BR) [2] model is an adaptation of the logistic model (2.2)
which considers this lag phase and is defined by the evolution law:

dN
dt

(t) = µ
ebt

1 + aebt

(
1− N(t)

K

)
N(t), (2.3)
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where K > 0 is the carrying capacity, µ is the Specific growth rate and a, b > 0 are
parameters representing intrinsic properties of the cell (in this project the physical
meaning of these parameters is unknown).
This equation induces a Cauchy Problem when considering t0 as the time (in days)
of the first observation and N(t0; t0, N0) = N0 in the following way: dN

dt (t; t0, N0) = µ ebt

1+aebt

(
1− N(t;t0,N0)

K

)
N(t),

N(t0; t0, N0) = N0

(2.4)

The solution of (2.4) is

N(t; t0, N0) =
N0 K

(
1+aebt

1+aebt0

) µ
ab

N0

(
1+aebt

1+aebt0

) µ
ab − N0 + K

(2.5)

Note that (2.3) is a non-autonomous differential equation yet it approaches an
autonomous differential equation when t goes to infinity:

lim
t→∞

ebt

1 + aebt =
1
a

=⇒ ebt

1 + aebt =
1
a

(
1− e−bt

a
+ O(e−2bt)

)
⇐⇒

µ
ebt

1 + aebt

(
1− N(t)

K

)
N(t) =

µ

a

(
1− N(t)

K

)
N(t)

(
1 + O(e−2bt)

)
,

from which one recovers the logistic-like law ignoring the exponential correction
term.

2.2.2 Secondary Models

In this section we will describe a set of models to relate the specific growth rate
µ with the environmental variables which we will work with from now on.

Ratkowsky model

Van’t Hoff and Arrhenius [4] put forward the concept that the rate constant for
chemical reactions might be described by the following expression in exponential
form:

k = A e−
E

R T , (2.6)

where k is the specific reaction rate constant, R is the universal gas constant, T
the absolute temperature, E is an empirically determined quantity called the acti-
vation energy and A is a parameter. This equation has become generally known
as the Arrhenius Law and it has had great success in describing the temperature
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dependence of chemical reactions [5].
In microbiology, it has been recognized that temperature is also a cardinal factor
controlling the rate of development of microbial populations and microbiologists
have substituted growth rate constant µ for rate constant k in equation.

D.A Ratkowsky discussed in [11] the fact that when ln µ is plotted against
reciprocal temperature 1

T a curve is obtained instead of a straight line and came
up with an adapted expression of (2.6) that fits empirical data. This expression
was known as the "square-root" relationship and it takes as parameters b and T0

(T0 is presented as a "conceptual temperature of no metabolic significance"):

√
µ = b(T − T0) (2.7)

Afterwards, this relationship was adapted in [11] to describe bacterial growth
throughout the entire temperature range. Considering Tmin, Tmax as the maxi-
mum and minimum temperatures, respectively, at which the rate of growth is
zero and b, c as two parameters which will be adjusted via linear regression, the
final empirical relationship described by Ratkowsky has this form:

√
µ = b(T − Tmin)(1− ec(T−Tmax)) (2.8)

This model is used in Section 5.1.3, while in Section 5.1.1 we use a modification of
it to describe the effect of salinity in the growth of rate of microalgae.

Blackman model

The Blackman model [9] was thought to describe the direct effect of irradi-
ance in bacterial growth and describes the photosynthetic response to irradiance
when there are no inefficiencies in photon usage. Assuming irradiance as limit-
ing substrate for photosynthesis, Blackman (1905) observed that there was a clear
linear relationship between irradiance saturation and the limiting substrate until
saturation. He described this relationship as follows:µ = µmax

I
Ik

, if I ≤ Ik

µ = µmax otherwise
, (2.9)

where Ik indicates the irradiance saturation. This model is used in Section 5.1.2 to
describe the effect of irradiance in the growth of microalgae.

Remark 2.1. Another model which has been widely used to describe the rate of
enzymatic reactions by relating reaction rate with the concentration of substrate is
the Monod model.
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Monod (1942) proposed that the growth kinetics of a culture changes with
substrate concentration the same way the enzymatic reaction rate does. Monod
kinetics is given by the relation

µ = µmax
S

S + Sk
,

where S is the substrate concentration, µmax the maximum Specific growth rate
and Sk the substrate saturation.

2.3 Scientific method

In this section we give a quick view of the differences of the two types of
cultivation techniques and explain a commonly used method for pythoplankton
quantitative analysis.

2.3.1 Continunous and non-continuous cultivation techniques

The two main types of cultivation technique are continuous culture and batch
culture (non-continuous). The key difference between both techniques is that batch
culture is used to grow microorganisms under limited nutrient availability in a
closed system while continuous culture is a technique used to grow microorgan-
isms under optimum and continual supply of nutrients in an open system of cul-
tivation. Below are the main features of each cultivation technique.

Batch culture technique

Batch culture technique is a closed system of cultivation. In this technique at
first nutrient solution is prepared with inoculum (culture organism) and added in
the fermentation tank along with some aeration. Neither fresh medium is added
nor used up media is removed from the cultivation vessel. Thus, the culture’s
volume remains constant. Since fresh media is not added during the course of in-
cubation, concentration of nutrition decreases continuously. Furthermore, various
toxic metabolites also accumulates in the culture vessel. Therefore batch culture
technique gives characteristics growth curve with lag phase, log phase, stationary
phase and decline phase.

2.3.2 Continuous culture technique

Continuous culture technique is an open system of cultivation. In this tech-
nique fresh sterile medium is added continuously in the vessel while used up me-
dia with bacterial culture is continuously removed. The flux at which medium is
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added/removed is key to determine the effect of dilution in the culture’s growth.
In essence, the biomass increases as a consequence of growth, yet it decreases as a
consequence of the flux.

Considering Q as the flux and V the volume of the bio-reactor, we have Q =
d V
d t . Hence, the dilution factor is:

D =
1
V

d V
d t

. (2.10)

Note that D−1 is the time needed to fully renew the bio-reactor’s medium.



Chapter 3

Materials and methods

The environmental variables which relationship with specific growth rate will
be studied are temperature (T), salinity (S) and irradiance or light intensity (I).

3.1 Methodology

In this project we will use the primary model (2.3) and substitute the constant
µ for an expression that describes the growth rate of Alexandrium minutum during
the exponential phase as a function of temperature, salinity and irradiance (note
that the exponential phase corresponds to the fast increase of cell concentration.
In Fig. 3.1 one can see the exponential phase of this particular culture corresponds
to the time frame starting on day 4 until day 21). We will estimate the sample error
produced during the cell count and calculate the propagation of error based on
the variability of the population function with respect to the initial condition. This
estimation provides a regime where the growth is expected to be well-defined by
the primary model we obtain below. The steps that we will take are the following:

• Fit the secondary models described in section 2.2.2 into our experimental
data.

• Use these models to define a function on µ with salinity , temperature and
irradiance as variables.

• Compare the results with the classic Baranyi-Roberts model (2.3) where µ is
given by (2.1).

• Describe the possible variability of S, I and T during the lifetime of a popu-
lation of Alexandrium minutum

9



10 Materials and methods

• Include this variability in the function found for µ and compare the resulting
primary model with the classic Baranyi-Roberts (2.3).

• Consider the hypothetical role of a dilution factor produced by tidal and
study its effect on the population’s function for different dilution values.

• With the results obtained, propose a set of experiments to confirm our cal-
culations and provide new insights on our study.

Before starting this methodology we must choose carefully the experimental
data that will be used to test our calculations.

3.2 Experimental data

We have chosen data from a set of experiments to test the goodness of the
calculations we will perform.

The first set of experiments have been collected from [3]. This paper studies the
effect of salinity, temperature and irradiance alone with the growth of Alexandrium
minutum. The control conditions of the experiments are shown in table 3.2.

Strain Temperature Salinity Irradiance Volume
(oC) (p.s.u.) (mmol photon m−2 s−2) (mL)

A. minutum T1 25 15 120 500

Table 3.1: Control conditions of the experiments brought in reference [3].

To fit the secondary models (Section 2.2.2) that relate temperature, salinity and
irradiance with µ into our experimental data, we will use the tables in 3.2 collected
from [3].

When it comes to fitting the Ratkowsky model (2.8) into experimental data,
only 3 observations are not enough to do an accurate fit. For this reason, we have
collected another experiment brought in [6] to confirm the goodness of Ratkowsky
(2.8).

We have the same problem for irradiance treatments. Unfortunately, we could
not find any other reliable experiments that could be used in this project.

Note that µ values have been calculated considering the exponential phases of
each experiment and using equation (2.1).

Finally, we will use the observations from the salinity treatment (collected from
[3]) shown in 3.2 for S = 15 p.s.u to test the primary models and our hypothesis.
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Temperature treatment

Temperature µ

(oC) (day−1)

10 0.0783581
25 0.179788
30 0.1590288

Salinity treatment

Salinity µ

(p.s.u) (day−1)

7.5 0.122547
15 0.194140
25 0.164341
30 0.119644

37.5 0.007224

Irradiance treatment

Irradiance µ

(mmol photon m−2 s−2) (day−1)

15.0 0.001
120.0 0.169751
240.0 0.179887

Table 3.2: Specific growth rates for different temperatures (top left), salinities (top
right) and irradiances (bottom) collected from [3].

Figure 3.1: Cell concentration with S = 15 p.s.u. regarding the experiment brought
in [3].
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Temperature treatment

Temperature µ

(oC) (day−1)

13 0.16
15 0.23
18 0.3
20 0.37
22 0.31

Table 3.3: Specific growth rates for different temperature values collected from [6].

Day Cells / mL

0 5338
4 7389
8 33686
10 58964
12 87727
14 115022
16 140300
18 156357
20 165061
22 171132
24 171132
26 174251
28 165061
30 148111
32 140300
34 128186
36 132901

Table 3.4: Cell concentration counting with S = 15 p.s.u regarding the experiment
brought in [3].



Chapter 4

Mathematical tools

In this section we will expose a series of concepts, methods and tools seen
during the degree of Mathematics that will be of great use throughout this project.

4.1 Ordinary differential equations

The theory of ordinary differential equations studies evolutionary processes
which are deterministic, finite-dimensional and differentiable with respect the evo-
lution (time) variable.

In the case of our study, the temporary law of evolution of a population of
Alexandrium minutum defines an evolutionary process which is assumed to be ex-
pressed by ordinary differential equations. The BR method, presented in section
2.2.1, is the known model that best describes such processes in microbiology. Note
that this approximation ignores space diffusion properties of the studied popula-
tion.

Next, we recall the definition of evolutionary process. In many common real
situations there is no way to compute the evolution process analytically. Hence,
we will describe below a numerical method that will allow us to find the solu-
tion of the Cauchy problem induced by the differential equation when the initial
condition, in this case the initial concentration of Alexandrium minutum cells is N0.

When the evolution law is given by a differentiable function, then the evo-
lutionary process is differentiable with respect to initial condtions (and parame-
ters). We will see below how the solution of an initial value (or Cauchy) problem
given by the ordinary differential equations and the initial condition is affected by
changes in the initial condition. This will allow us to estimate the propagation of
the error given by the observation of the initial values.

13



14 Mathematical tools

Definition 4.1. An evolutionary process with phase space an open set Ω ⊂ R×Rn and
domain D ⊂ R×Ω is a continuous application

Φ : D −→ Rn

(t; t0, x0) 7→ Φ(t; t0, x0)

such that:

• D is open and, for all (t0, x0) ∈ Ω, I(t0, x0) = {t ∈ R| (t; t0, x0) ∈ D} is an open
interval.

• For every (t0, x0) ∈ Ω, t1 ∈ I(t0, x0):

– t0 ∈ I(t0, x0) and Φ(t0; t0, x0) = x0,

– t2 ∈ I(t1, Φ(t1; t0, x0)) ⇐⇒ t2 ∈ I(t0, x0) and Φ(t2; t1, Φ(t1; t0, x0)) =

Φ(t2; t0, x0).

The so-called Picard’s theorem [8] states that any evolution law given by an
ordinary differential equation defined by a (maybe non-autonomous) vector field
which is (locally) Lipschitz with respect the space variables (and parameters) de-
fines uniquely an evolutionary process. Note that all the laws considered in this
work are differentiable, hence the evolutionary process is also differentiable with
respect to initial conditions and parameters.

Let Φ : D −→ Rn be an evolutionary process induced by the vector field
f : Ω −→ Rn defined in the open set Ω ⊂ R × Rn, which is considered to
be the (enlarged) phase space where the evolution takes place. Then, for every
(t0, x0) ∈ Ω, Φ(.; t0, x0) : I(t0, x0) −→ Rn is the solution of the initial value prob-
lem ẋ = f (t, x), x(t0) = x0.

4.1.1 Integration methods

There exist several analytical methods to find solutions to the initial value prob-
lems mentioned in the previous section. However, the reality is that the differen-
tial equations which describe such problems usually can not be solved analytically
and numerical methods must be used to integrate them.

In this section we will describe a computationally feasible method to find a
solution on the initial value problem:

{
d
dt x(t) = f (t, x(t)),

x(a) = x0
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where x(t) is the solution we want to find, d
dt denotes the derivative with respect

t, and f : [a, b]×Rm −→ Rm the restriction of the vector field defined in Ω = I× ⊆
R× Rn to the interval [a, b] ⊂ I.

As said, to solve this problem we will use numerical integration methods. The
method we will use in this project is Runge-Kutta-Fehlberg 4-5, a one-step method
that obtains a new value of the orbit using only the previous point. We will divide
the interval [a, b] in N + 1 parts, each of these subintervals will be noted as (tn, xn),
tn determined by N, x(tn) the exact value of the orbit and xn its approximation.
We denote step h to the distance of variable t between the current point and the
previous one. It will be noted as hn = tn+1 − tn.

The most important part of these type of algorithms is to choose wisely the
step h. There are two main errors that can be committed when choosing h. On
the one hand, h can be too short and it will imply on an increase of the rounding
errors and the computational effort. On the other hand, choosing a step too big
means a lost in precision and an increase of the error.

Runge-Kutta general form

The Runge-Kutta methods are a set of iterative methods developed by mathe-
maticians C. Runge and M. W. Kutta around 1900. There are two main terms to
define when studying these methods. The first one is the number m of implemen-
tations of the function that will be done every iteration. The second is the order p
related to the error between one value in the orbit and the one that follows.

Butcher [7] states that if a Runge-Kutta method with m steps and order p one
has m ≥ p and, if p ≥ 5, then m ≥ p + 1.

The general form of the Runge-Kutta method of m steps can be written as
follow:

xn+1 = xn + h
m

∑
i=1

bi κi,

where

κi = f (tn + cih, xn + h
i

∑
j=1

ai,j κj) .

A. Iserles proved in [12] that it can be assumed that:

ci =
m

∑
j=1

ai,j.

The set of independent variables of these methods are usually expressed through-
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out the tables of Butcher:

c1 a1,1 a1,2 ... a1,m

c2 a2,1 a2,2 ... a2,m

. . . .

. . . .

. . . .

cm am,1 am,2 ... am,m

b1 b2 ... bm

The order of these methods is determined by the local truncation error when
approximating x(tn+1). The truncation error εn+1 of a Runge-Kutta method in
t = tn+1 is defined as follow:

εn+1 = ||x(tn+1)− xn+1||

Runge-Kutta-Fehlberg (RKF)

This family of methods combine two Runge-Kutta approximations to choose
an optimal value for h in each step of integration to guarantee a small enough
truncation error. We will consider methods RK4 and RK5. Note that the cost
of the algorithm does not increase since when calculating the values of RK5, we
obtain all needed values for method RK4. This version of RKF is commonly noted
as RK45. The general idea of this method is that, given x(tn) and a specific step
hn, we calculate x̂n+1 using RK4 and x̄n+1 using RK5 and fix a certain tolerance
tol for the truncation error. If ||x̂n+1 − x̄n+1|| < tol we accept x̄n+1, otherwise we
recalculate hn. The procedure to choose h is then repeated at each integration step.
The error estimation of both approximations

||x̂n+1 − x̄n+1|| =
∣∣∣∣∣∣∣∣ 1

360
κ1 −

128
4275

κ3 −
2197
7524

κ4 +
1
50

κ5 +
2

55
κ6

∣∣∣∣∣∣∣∣
is used to calculate the optimal next step, for example as

|hn| = 0.9 |h| 5

√
tol

||x̂n+1 − x̄n+1||
,
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where 0.9 is a security factor to guarantee the upper bound on the local truncation
error. The Butcher table for RK45 is

0 0
1
4

1
4

3
8

3
32

9
32

12
13

1932
2197

−7200
2197

7296
2197

1 439
216 −8 3680

513
−845
4104

1
2

−8
27 2 3544

2565
1859
4104

−11
40

25
216 0 1408

2565
2197
4104

−1
5

16
135 0 6656

12825
28561
56430

−9
50

2
55

In this project we use the RK45 method implemented in python available in
[10] to obtain the numerical results Sections 5.2.5, 5.3.4 and 5.4.

4.1.2 Variability with respect to the initial conditions

Now that we know how to find the solutions of the initial value problems ex-
plained in Section 4.1, we discuss how to estimate the variance of these solutions
when the initial conditions change. Note that the law considered in this project to
describe the evolution of Alexandrium minutum is differentiable, hence, the associ-
ated evolutionary process is differentiable with respect to the initial condition.

We must bear in mind that in microbiology, and other branches of science,
the observation of experimental results is not entirely accurate. In essence, the
methods used to carry out these observations have some measurement error as
well as human error. The upcoming sections will give us an estimation of the
propagation of the measurement error. Now, given the following initial value
problem: {

d
dt x(t, x0) = f (t, x(t, x0))

x(t0, x0) = x0
, (4.1)

the first variance equation along the solution x(t, x0) of Section 4.1 with respect to
the initial condition x0 is given by the linear Cauchy Problem:{

d
d t J(t) = Dx f (t, x(t, x0)) J(t)

J(t0) = 1
, (4.2)

where
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J(t) =
∂x
∂x0

(t, x0) .

One can use the RK45 method described in Section 4.1.1 to compute both
x(t, x0) and ∂x

∂x0
(t, x0) simultaneously by solving the following system of equa-

tions:

{
d
dt x(t, x0) = f (t, x(t, x0))
d

d t J(t) = Dx f (t, x(t, x0)) J(t)

{
x(t0, x0) = x0

J(t0) = 1
, (4.3)

This method is used in Sections 5.2.5 and 5.4.

4.1.3 Error propagation

Once described how to calculate the variational of a differential equation with
respect the initial condition, we will talk about the Taylor expansion and how it’s
going to be useful in the upcoming sections to estimate the propagated observa-
tional initial error.

Let f be a (n+1)-derivable function in an interval I. Then for all a, x ∈ I, we
have:

f (x) =
n

∑
j=0

f (j)(a)
j!

(x− a)j + Rn(x) , (4.4)

where

Rn(x) = f (x)−
n

∑
j=0

f (j)(a)
j!

(x− a)j .

The Lagrange Mean Value Theorem guarantees the existence of c ∈ 〈x, a〉 such
that:

Rn(x) =
f (n+1)(c)
(n + 1)!

(x− a)n+1 .

In essence, given the Cauchy Problem in Eq. (4.1), where x0 is the observed ini-
tial value and let x̂0 be the actual initial value (unknown), using Taylor’s expansion
of order 1, one can conclude

x(t, x̂0) = x(t, x0) + ε
∂x(t, x0)

∂x0
+ o(ε2) , (4.5)

where ε is an upper bound of observation error estimation.
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4.2 Fitting Linear and non-linear models

In the course of this project we will use the mathematical models described
in Section 2.2.2 to give an expression of a population of Alexandrium minutum’s
growth rate during the exponential phase as a function of some environmental
variables of our selection. Each of these methods contain parameters of which
nothing is known about a priory. For this reason we need to fit the models into
our experimental data in order to find the values of these parameters that best
approach our case. If the model to fit is linear, the algorithm to use is Least-
Square method. Unfortunately, this method is not useful for non-linear models, in
such case one can use the so-called Levenberg-Marquardt algorithm.

4.2.1 Linear models. The Least squares problem

Given a parameter vector p ∈ Rn, a control vector y ∈ Rm, n generating
functions f = ( f0, ..., fn−1)

T and an estimated measurement vector x̂ ∈ Rm, a
linear model is a relation of the form x̂ = p0 f0(y)+ p1 f1(y)+ ... + pn−1 fn−1(y) =

< p, f (y) >. This relation induces the following over-determined m× n system,
Fp = x̂ :



f0(y0) f1(y0) ... fn−1(y0)

f0(y1) f1(y1) ... fn−1(y1)

. . .

. . .

. . .
f0(ym−1) f1(ym−1) ... fn−1(ym−1)





p0

p1

.

.

.
pn−1


= x̂ . (4.6)

The goal is to find a vector parameter p which minimizes the quadratic error
||x̂− F p||22. In particular, the solution of this least-squares problem is the solution
of the n× n linear system of normal equations FT F p = FT x̂.

4.2.2 The Levenberg Marquardt algorithm

Let f be a function which maps a parameter vector p ∈ Rm to an estimated
measurement vector x̂ = f (p), x̂ ∈ Rn. Given an initial parameter estimate p0 and
a measured vector x, the Levenberg-Marquardt algorithm is an iterative method
which minimizes the squared distance εT ε with ε = ||x − x̂||. In essence, the
method consists on solving the Least-Squares problem given by the following nor-
mal equation:

JT J δp = JT ε , (4.7)
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where J is the Jacobian martix ∂ f
∂p and δp is a stepsize which minimizes the resid-

ual error ||x − f (p + δp)||. The Levenberg-Marquardt algorithm solves a slight
variation of 4.7, known as the augmented normal equations

Nδp = JT ε ,

where N is identical to JT J except for the diagonal elements, which are given
by a so-called damping term τ > 0 such that Nii = τ + [JT J]ii. In each iteration
of the algorithm one has to evaluate whether p + δp reduces the residual error.
If it does, p + δp is accepted and the process repeats for a decreased damping
term τ, otherwise the damping term is increased and the normal equations are re-
calculated.

4.3 Hermite Interpolation

At the end of this project we study how the specific growth rate of a population
of Alexandrium minutum is affected by the variation of the environmental variables,
and to do so we first need to describe these variables as functions of time. Doing
such thing can be a hard task sometimes because all the information we have about
these functions are a discrete set of values. For this reason, we use a method of
interpolation to find polynomials which equals these functions in the values that
are known (this numerical method is applied in Section 5.3).

In numerical analysis, Hermite interpolation is a generalization of Lagrange
interpolation. While Lagrange allows computing a polynomial of degree less than
n that takes the same value at n given points as a given function, Hermite com-
putes a polynomial of degree less than mn such that the polynomial and its m− 1
first derivatives have the same values at n given points as the function and its
m− 1 first derivatives.

Existence and uniqueness
Given a closed interval [a, b] and x0, ..., xm ∈ [a, b], with x0 < x1 < ... < xm a
function f ∈ Cr[a, b], r > 0 for which it’s only known f j(xi) for j <= ni and
i <= m. There exists one unique polynomial of degree n, with n = ∑m

i=0 ni − 1,
such that

f j(xi) = Pj(xi) .

Numerical calculation
The calculation of Hermite’s polynomial of degree n can be made by using a
generalized Newton divided differences procedure, considering a set of m points
{x}m

0 , the values these points take in the function {y}m−1
0 with their respectives nj
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derivatives (j = 0, ..., m).
Consider the table of points

(x0, f (0)0 ) , . . . , (x0, f (n0−1)
0 )

(x1, f (0)1 ) , . . . , (x1, f (n1−1)
1 )

. .

. .

. .

(xm, f (0)m ) , . . . , (xm, f (nm−1)
m )

Hence, the Hermite interpolated polynomial of degree n can be written as:

Pn(x) = f [x̂0] +
n

∑
i=0

f [x̂0, ..., x̂i+1]∏
j≤i

(x− x̂j) , (4.8)

where

f [x̂i, ..., x̂i+j] =


f [x̂i+1,...,x̂i+j]− f [x̂i ,...,x̂i+j−1]

x̂i+j−x̂i
, if x̂i 6= x̂i+j

f j
l (xl)

j! if x̂i = x̂i+j for l such that xl = x̂i

.



Chapter 5

Results

5.1 Growth rate

In this section, we will test the secondary models presented in section 2.2.2
that relate the specific growth rate µ with the environmental variables S, I and T.

5.1.1 Specific growth rate and Salinity - Modifying Ratkowsky Model

The relationship between the Specific growth rate and salinity is similar to the
one defined by the Ratkowsky model, yet it can be seen in Figure 5.1 that the
curve described has a quadratic form in a central interval while it experiments an
exponential drop out of it.

To describe this relationship we assumed that there exists a certain salinity
value, Sopt, at which µmax is reached. Also, we must consider the minimum and
maximum salinity values, Smin, Smax resp., for which population growth actually
exists. Hence, Smin ≤ Sopt ≤ Smax.
In addition, when µmax is reached, we can assume that the osmotic pressure inside
and outside the cell are equal and that it is not necessary to waste energy on active
transportation related to salinity. Under these assumptions made, we consider an
interval of S centered at Sopt on which the cell is able to control its cytoplasm
composition with no additional effort. Hence, inside of this interval the curvature
has a quadratic form, specified by parameter b.

Once surpassed the boundaries of the central interval, the osmotic regulation
systems are overwhelmed and the cell has difficulty maintaining its internal com-
position properly. This effect is mathematically reflected on both exponential
terms, specified by parameters cmax and cmin in the following relation that we
propose:

22
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µ(S) = µmax

(
1− b

(
S− Sopt

Sopt

)2
) (

1− ecmin (Smin−S)
)2 (

1− ecmax (S−Smax)
)2

. (5.1)

Now, we must fix the parameter b at a specific value to ensure µ(S) ≥ 0 ∀S ∈
[Smin, Smax]. One has

µ(S) ≥ 0 ⇐⇒ 1− b
(

S− Sopt

Sopt

)2

≥ 0 . (5.2)

Note that Sopt is unknown and hence the maximum MS of
(

S−Sopt
Sopt

)2
for S ∈

[Smin, Smax] takes different values depending on its position inside of the interval
[Smin, Smax]:

• If Sopt ≥ Smax+Smin
2 , then MS =

(
Smin−Sopt

Sopt

)2
.

• If Sopt <
Smax+Smin

2 , then MS =
(

Smax−Sopt
Sopt

)2
.

If we consider

b∞ =
1

max{
(

Smax−Sopt
Sopt

)2
,
(

Smin−Sopt
Sopt

)2
}

,

then, for b = b∞ one can guarantee (5.2), and (5.1) can be written as follows:

µ(S)=µmax

(
1− b∞

(
S− Sopt

Sopt

)2
)(

1− ecmin (Smin−S)
)2 (

1− ecmax (S−Smax)
)2

. (5.3)

Now we will test the model by fitting it into a set of experimental results from table
3.2 at top right. Since the model includes a lot of parameters we will fix some of
them to decrease the degree of freedom; in particular cmin = 1, cmax = 0.5, Smin = 0.
Due to the fact that it is not a linear model, we will use the Levenberg-Marquardt
algorithm (Section 4.2.2) gnuplot implementation to fit the experimental data.

Reference µmax ± SE Sopt ± SE Smax ± SE
day−1 (p.s.u) (p.s.u)

Hwang 2000 0.1731± 0.0063 18.92± 0.58 39.25± 0.70

Table 5.1: Fitted parameters of 5.3 to data from Table 3.2.
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Figure 5.1: Relationship between salinity and Alexandrium minutum Specific
growth rate µ(S). The green curve corresponds to (5.3) with fitted paramteres
in Table 5.1 while red dots are the values of experimental data from Table 3.2.

5.1.2 Specific growth rate and Irradiance - Blackman Model

To find the relationship between µ and irradiance we will take the experimen-
tal data from table 3.2 and fit those points to the Blackman model (2.9), using the
Least-Squares method (Section 4.2.1). Unfortunatelly, the only empirical experi-
ments found that study the relationship between irradiance and µ only tested 3
different values for light intensity and therefore the error analysis is inaccurate.
One can appreciate in Figure 5.2 that growth is limited by a certain irradiance Ik.

µmax Ik

(d−1) (mmol photon m−2s−2)

0.1799± 0.021 129.15± 22.12

Table 5.2: Fitted parameters of (2.9) to data from Table 3.2 at top right.

5.1.3 Specific growth rate and Temperature - Ratkowsky Model

To test the Ratkowsky model defined in (2.8) we will use two datasets. The first
one, found in Table 3.2, has tested 5 different temperature values and it will work
to confirm the relationship described by Ratkowsky. The second one, from table
3.2 at top left, with only 3 different temperature values, is not enough to provide
reliable fits for the parameters a and b, yet it will be useful later when we want
to relate the three environmental variables with µ and test the results comparing
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Figure 5.2: Relationship between irradiance and Alexandrium minutum Specific
growth rate

to the data found in Table 3.2. Both fits are done using the Least-Squares method
(Section 4.2.1).
Experiment 1 - Schmidt [6]
Repeating the process for the salinity relationship with µ we have fixed the pa-
rameters Tmin = 0 and c = 0.5 to decrease the degrees of freedom and, therefore,
uncertainty.

Reference Tmax b
(oC) (d (oC)−1)

schmidt [6] 25.25± 0.2690 0.03180± 0.00053

Table 5.3: Fitted parameters of (2.8) with data in Table (5.1.3).

Experiment 2 - Hwang2000 [3]
Repeating the process for the salinity relationship with µ we have fixed the pa-
rameters Tmin = 5 and c = 0.5 to decrease the degrees of freedom and, therefore,
uncertainty.

Reference Tmax b
(oC) (d (oC)−1)

Hwang 2000 [3] 31.45± 1.39 0.02324± 0.007638

Table 5.4: Fitted parameters of (2.8) with data in Table 3.2 at top left.

Maximums and minimums
It is easy to see in figure 5.3 that the minimums of µ(T) are in T ∈ {Tmin, Tmax}
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Figure 5.3: Relationship between temperature and Alexandrium minutum Specific
growth rate’s square root using Ratkowsky’s model

when the growth rate is zero and the maximum is located somewhere near Tmax

before the fast exponential drop. To obtain the maximum, one has to solve for

dµ

dT
(T) = 2 b2 (T−Tmin)

(
1− ea(T−Tmax)

) (
1− ea(T−Tmax) (1 + 2 a (T − Tmin))

)
= 0 .

Note that a, Tmin, Tmax, b are fixed values (they are determined by other envi-
ronmental variables and intrinsic properties of the cell which we are considering
to be fixed). In the figure 5.4 it can be seen how the function starts positive and
decreases up to negative values, crossing 0 at one particular point.

Figure 5.4: Plot of 1− ea(T−Tmax) (1 + a (T − Tmin)) when T ∈ (Tmin, Tmax).

For T ∈ (Tmin, Tmax),
dµ
dT (T) = 0 reduces to solve

f (T) = 1− ea(T−Tmax) (1 + a (T − Tmin)) = 0 (5.4)

It is easy to see that there exists a unique temperature value such that the
condition (5.4) is hold. In essence, since 0 < a < 1,

f (Tmin) = 1− ea (Tmin−Tmax) > 0, f (Tmax) = −a (Tmax − Tmin) < 0 ,

and by the Bolzano’s theorem, there exists T such that f (T) = 0.
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Moreover, since f ′ = −a e(T−Tmax) (2 + a (T − Tmin)) < 0 ∀T ∈ (Tmin, Tmax) we
have that f is strictly decreasing. Hence, the point T such that f (T) = 0 is unique.
To find the solution of (5.4) we apply a fix point simple iteration scheme, defined
by the iteration function

g(T) = − ln (1 + a (T − Tmin))

a
+ Tmax ,

which is a local contraction. We start the iteration at T = Tmax. Using the parame-
ters adjusted in 5.1.3, with ε = 10−8 the maximum for µ(T) is T = 27.76 oC, which
can be confirmed in figures 5.4 and 5.3.

5.2 Multi-factorial growth rate

In this section we want to give a multi-factorial expression of µ based on the
expressions found in section 5.1 which relates µ with each of the environmental
variables S, I and T.

The process will be the following: multiply the two expressions to give a gen-
eral expression of µ depending on these variables, make some statements about
the parameters to keep consistency, use experimental data to test the calculations
and finally use the resulting expression of growth rate µ(S, I, T) in Baranyi-Roberts
(2.3) and compare with experimental data.
To test our analytical calculations we used as data sources the results shown in
table 3.2 of three experiments that study the effect of these variables on a popula-
tion’s growth. The control conditions of these experiments are:

S = 15, T = 25, I = 120 .

5.2.1 Salinity and Temperature

We will give an expression of the specific growth rate using the curves µ(S)
and µ(T) described by (5.3) and (2.8):

µ(T) = bT (T − Tmin)
2
(

1− eaT (T−Tmax)
)2

µ(S) = µS,max

(
1− b∞

(
S−Sopt

Sopt

)2
) (

1− ecmin (Smin−S)
)2 (

1− ecmax(S−Smax)
)2

(5.5)
Let M = ||µ(T)||∞,[Tmin,Tmax ]

and N = ||µ(S)||∞,[Smin,Smax ]
. We consider

ψ(T) =
µ(T)

M
, ρ(S) =

µ(S)
N

,



28 Results

and define
µ(S, T) = µmaxψ(T)ρ(S) ,

for a suitable parameter µmax to be determined. By definition in (5.3), we know
that for T = 25 we have µ(Sopt) = µmax |T=25. Then, one considers

µmax =
µmax |T=25 M N bT

µ(T = 25)
∈ [0, 1] . (5.6)

We represent the corresponding surface in Figure 5.5. Using the data in table 3.2,
we have µ|T=25(18.92) = 0.1731 day−1, and according to (5.6), µmax = 0.1793 day−1.
Hence, the parameters of the surface fixed in order to match the conditions shown
in Table 3.2 are shown in Table 5.2.1.

Parameter Value

Smin 0

Sopt 18.92

Smax 39.25

cmin 1

cmax 0.5

µmax 0.1793

Tmin 5

Tmax 31.96

aT 0.5

Table 5.5: Fixed parameters to plot surface µ(S, T).

By construction, the critical points of µ(S, T) are given by the Cartesian product
of the critical points of µ(S) and µ(T). Hence, the maximum (Sopt, T), where T
is the maximum of µ(T), and the minimums (Smin, Tmin), (Smax, Tmin), (Smin, Tmax)

and (Smax, Tmax). See Figure 5.5 at the top left for a representation of the surface
µ(S, T).

5.2.2 Irradiance and Temperature

To study the relationship between growth with I and T we will consider salinity
to be fixed by a certain S0 and use Blackman (2.9) and Ratkowsky (2.8) model to
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give and expression of µ(I, T) as independent variables, setting some statements
about the parameters involved to ensure consistency with other expressions of the
growth rate. Consider

µ(T) = bT (T − Tmin)
2
(

1− eaT(T−Tmax)
)2

,

µ(I) =

{
µI,max

I
Ik

, If I < Ik

µI,max otherwise

. (5.7)

Combining both expressions as done before for µ(S, T), we get:

µ(I, T) =


λ (T − Tmin)

2
(

1− eaT (T−Tmax)
)2

I
Ik

, If I < Ik

λ (T − Tmin)
2
(

1− eaT (T−Tmax)
)2

otherwise
, (5.8)

where λ is determined from the relation

µ(S = 15, T = 25) = λ f (25)
120
129

⇐⇒ λ =
129 µ(S = 15, T = 25)

120 f (25)
.

In Figure 5.5 one can find the surface µ(I, T) at the top right. The parameters
used have been collected from Tables 5.4 and 5.2 or calculated according to the
conditions shown in Table 3.2.

Parameter Value

Tmin 5

Tmax 31.96

aT 0.5

Ik 129

λ 4.768 · 10−4

Table 5.6: Fixed parmeters to plot µ(I, T).

One has the critical points given by the Cartesian product of the critical points of
µ(I) and µ(T). Hence, the minimums (0, Tmin), (0, Tmax). Note that the image of
the surface’s upper bound is reached at (I, T) for I >= Ik and T the maximum
for Ratkowsky (see Figure 5.5 for a representation of the surface and the critical
points).
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Figure 5.5: Surface of µ(S, T) generated by the curves µ(S), µ(T) (top left), surface
of µ(I, T) generated by the curves µ(I), µ(T) (top right) and surface of µ(I, T)
generated by the curves µ(S), µ(I) (bottom).

5.2.3 Irradiance and Salinity

To study the relationship between growth with S and I we will consider tem-
perature to be fixed at a certain T0 and use the models described in (5.3), (2.9)
resp.) to give and expression of µ with (S, I) as independent variables, setting
some statements about the parameters involved to ensure consistency with other
expressions of the growth rate. Consider


µ(S) = µS,max

(
1− b∞

(
S−Sopt

Sopt

)2
) (

1− ecmin (Smin−S)
)2 (

1− ecmax(S−Smax)
)2

,

µ(I) =

{
µI,max

I
Ik

, If I < Ik

µI,max otherwise

.

We want to find a value τ such that
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µ(S, I) =

τ g(S) I
Ik

, If I < Ik

τ g(S), otherwise
, (5.9)

being

g(S) =

(
1− b∞

(
S− Sopt

Sopt

)2
) (

1− ecmin (Smin−S)
)2 (

1− ecmax(S−Smax)
)2

.

Using the results obtained in Section (5.2.1) and the parameters in Table 5.2, to
determine τ we impose that

µ(S = 15, T = 25) = τ g(15)
120
129

⇐⇒ τ =
129 µ(S = 15, T = 25)

120 g(15)
.

With the function described above, we represent the resulting surface µ(S, I) in
Figure 5.5 at bottom. The parameters used have been collected from Tables 5.1
and 5.2 or calculated according to the conditions shown in Table 3.2.

Parameter Value

Smin 0

Smax 39.25

Sopt 18.92

Ik 129

τ 0.1861

cmin 1

cmax 0.5

Table 5.7: Fixed parameters to plot µ(S, I)

One has the critical points of µ(S, I) given by the product of the critical points of
(5.3) and (2.9). Hence, the minimums (Smin, 0), (Smax, 0). Note that the image of
the surface’s upper bound is reached at (Sopt, I) for I >= Ik (see figure 5.5 for a
representation of the surface and the critical points).

5.2.4 Irradiance, Temperature & Salinity

Now we want to use the three surface found above to define a 4-dimensional
surface described by Irradiance, Temperature and Salinity. Let µ(S, I, T) be the



32 Results

final surface, µ(S, I), µ(I, T) and µ(S, T) the equations found in (5.9), (5.8) and
(5.2.1) respectively. Let

f (T) = (T − Tmin)
2
(

1− eaT(T−Tmax)
)2

, g(S) =

1− 1

(
S−Sopt

Sopt
)2

∞

(
S− Sopt

Sopt

)2
 .

We want to find δ > 0 such that

µ(S, I, T) =

δ f (T) g(S) I
Ik

If I < Ik

δ f (T) g(S) otherwise
. (5.10)

In particular, using the results obtained in Section 5.2.1 and the parameters ad-
justed in table 5.2, to determine δ we impose the following condition

µ(S = 15, T = 25) = δ f (25) g(15)
120
129

⇐⇒ δ =
129 µ(S = 15, T = 25)

120 f (25) g(15)
.

One has the critical points given by the product of the critical points of µ(S). µ(T),
µ(I). Hence, the minimums are (0, I, T), (S, 0, T), (S, I, 5) for all S, I, T, and the
maximum is (18.92, I, T0), where T0 is the maximum for (2.8) and I >= 129.

5.2.5 Numerical tests

We use the expression (5.10) in the Baranyi-Roberts model (2.3) and compare
it to the old version of the model where µ is given by (2.1). The Baranyi-Roberts
differential equation with (5.10) is written as:

dN(t)
dt

= µ(S, I, T)
ebt

1 + aebt

(
1− N(t)

K

)
N(t) . (5.11)

First of all, we need to find proper values for a and b. To do so, we will use the
least-squares method (Section 4.2.1) to fit (5.11) into the values from the table 3.2.
The parameters, with the respective standard deviation are:

a = −0.3003± 0.02647, b = 0.01953± 0.0040

With a and b fixed, we want to compare the resulting N(t; t0, N0) with the exper-
imental observations from table 3.2 and the old version of Baranyi-Roberts. As it
can be observed in figure 3.1, the exponential phase starts on the fourth day of
experiment and ends in the 20th. Therefore, using equation (2.1) and table 3.2 ,
we have:

µ =
ln (165062)− ln (7390)

20− 4
= 0.1941 day−1 .
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Assume that the sampling error of the initial value N0 plus the possible deviations
due to the digitization of the experimental data are fitted by a certain ε > 0. Using
RK45 (section 4.1.1) to solve the system of equations :


dN(t)

dt = µ(S, I, T) ebt

1+aebt

(
1− N(t)

K

)
N(t)

dJ(t)
dt = µ(S, I, T) ebt

1+aebt

(
1− 2 N(t)

K

)
J(t)

{
N(t0) = N0

J(t0) = 0
, (5.12)

where

J(t) =
∂N(t)
∂N0

.

Note that the experimental data from Table 3.2 is contained in the interval
N(t)± ε ∂N(t)

∂N0
during the lag and exponential phases. In figure 5.6 one can appre-

ciate how the classic version of Baranyi-Roberts (where µ = 0.1941 is given by (2.1))
is out of the interval N(t)± ε ∂N(t)

∂N0
during the lag and exponential phases, which

means that calculating the growth rate from the relation of Alexandrium minutum
with its environment is a more accurate approach than estimating the growth rate
using (2.1).

Figure 5.6: Comparison of the two versions of Baranyi-Roberts with a and b fitted
and S = 15 p.s.u, T = 25 oC and I = 120 mmol photon m−2 s−2 and ε = 100. Yellow
dots correspond to the evolutionary process given by calculating mu as (2.1) and
the red dots correspond to the evolutionary process given by µ(S, I, T).

5.3 Variability of environmental conditions

The purpose in this section is to study the variation day-to-day of the environ-
mental conditions used to describe the specific growth rate µ.
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5.3.1 Irradiance (I)

We will consider two scenarios: a population of Alexandrium minutum grown
in their natural habitat (coastal sea) and one in a laboratory culture.

Laboratory culture

In this scenario, the irradiance given to the culture has a pattern 12:12, which
means the culture is given a constant irradiance I0 for the first 12 hrs of the day
while the other 12 hours receives an irradiance of 0. We consider a smooth tran-
sition from I0 to 0 taking place in 2 ε units of time. Hence, irradiance’s variation
over a day can be expressed as follows:

I(t) =


I, t ∈ [ε, 12− ε)

f (t), t ∈ [12− ε, 12 + ε]

0, t ∈ (12 + ε, 24− ε)

g(t), t ∈ [24− ε, 24 + ε]

, (5.13)

where f , g ∈ C1, and extended periodically with period 24.
Concerning f , we impose f (12− ε) = I, f ′(12− ε) = 0 f (12 + ε) = 0, f ′(12−

ε) = 0 f (12 + ε) and Hermite interpolation provides the degree 4 polynomial of
degree 4 which approaches the function f.

P(t) = I − I
4 ε2 (t− (12− ε))2 +

I
8 ε3 (t− (12− ε))2(t− (12 + ε)) . (5.14)

Analogously, when the lights are turning on, if we consider the button to be
pressed at time t = t0 − ε (and therefore, it’s totally pressed by time t = t0 + ε),
the polynomial that describes this smooth increase is the following:

Q(t) =
I

4 ε2 (t− (t0 − ε))2 − I
8 ε3 (t− (t0 − ε))2(t− (t0 + ε)) . (5.15)

To summarize, the variation of irradiance over a day is expressed by

I(t) =



I
4 ε2 (t + ε)2 − I

8 ε3 (t + ε)2(t− ε), t ∈ [0, ε]

I, t ∈ (ε, 12− ε)

I − I
4 ε2 (t− (12− ε))2 + I

8 ε3 (t− (12− ε))2(t− (12 + ε)), t ∈ [12− ε, 12 + ε]

0, t ∈ (12 + ε, 24− ε)
I

4 ε2 (t− (t0 − ε))2 − I
8 ε3 (t− (t0 − ε))2(t− (t0 + ε)), t ∈ [24− ε, 24)

.

(5.16)
The Figure 5.8 illustrates an example of this function with an irradiance I = 0.5

and ε = 0.1.
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Figure 5.7: Smooth increase (left) and smooth decrease (right) when light is turned
on at hour 24− ε and turned off at hour 12− ε, respectively, with ε = 0.1.

Figure 5.8: I(t) evaluated in t ∈ [0, 24) for I = 0.5 and ε = 0.1 .

Natural habitat

We will take as assumptions that other uncontrolled environmental variables
such as humidity, air temperature or any other phenomena that can vary irradi-
ance, remain constant over Alexandrium minutum’s lifespan and we will consider
only the intra-day variability of I as a function of the sun’s position and the angle
it forms with the population of Alexandrium minutum.

S0

I0

Let S0 be the sun’s position when it forms a π
2 angle with the observer, i.e

Alexandrium minutum, and consider the maximum irradiance it receives during
the day , I0, which is reached at that specific point. If we consider the irradiance
to only depend on the angle θ ∈ [0, 2π] that forms the sun’s position with the
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observer, the function f I0 that describes I is the following:

f I0(θ) =

{
I0 sin(θ) , θ ∈ [0, π)

0 , θ ∈ [π, 2π)
. (5.17)

Note that the variability of θ over a day is pretty simple to parameterize by t
(assuming 12 hrs of sunlight):

θ(t) =
t2π

24
=

tπ
12

.

Hence,

f I0(t) =

{
I0 sin( tπ

12 ) , t ∈ [0, 12)

0 , t ∈ [12, 24)
. (5.18)

5.3.2 Temperature (T)

Due to the fact that sea surface temperature moves in a range of 2-3 C during
the course of the day and the lifespan of a population of Alexandrium minutum is
short (around 30 days), we will assume that the effects of the temperature varia-
tions in the growth rate are insignificant and therefore consider T to be constant
over the lifespan of Alexandrium minutum.

5.3.3 Salinity (S)

Salinity is a very important component that affects the physical and chem-
ical properties of seawater. It determines the temperature of oceans and their
surroundings, pressure, density, freezing point, insolation, evaporation, humidity,
and oceanic currents flow. It influences seawater movements and the habitat of
marine life. Ocean Salinity is affected by several factors. These are evaporation,
rainfall, river water influx, ocean currents, atmospheric pressure, wind direction,
and global warming.

With all these factors, the geographical location and the surroundings are key
to determine the variation of salinity in the sea.

As per Alexandrium minutum, which is normally located in the coastal sea and
given the short lifespan of a population, the variability of salinity in that period of
time can be neglected since it is impossible to control all parameters that determine
the variation of salinity.
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5.3.4 Numerical tests

Let I(h) be the irradiance described as a function of time, whether in the nat-
ural habitat (5.18) or in a laboratory (5.16). Consider S = S0, I = I0 and T = T0 to
be fixed. The new function for growth rate, expressed as a continuous function of
time, is described as follow:

µ(S0,T0,I0)(h) =

δ fT gS
I(h)

Ik
If I(h) < Ik

δ fT gS otherwise
, (5.19)

where fT = f (T0) , gS = g(S0) and f (T), g(S) are defined in Section 5.2.4.
Our purpose is to substitute the constant µ in BR (2.3) by µ(S0,T0,I0)(h) into our

model and re-compute the solution of the Cauchy Problem. However, note that
BR (2.3) is the evlution law of Alexandrium minutum with days as the evolution
variable, yet µ(S,T)(h) is a function of the total hours. Therefore, we need to do a
variable change in the evolution law (2.3).
Before substituting µ by µ(S0,T0,I0)(h) we proceed to do the variable change. Con-
sider the BR model:

dN(t)
dt

= µ
ebt

1 + aebt

(
1− N(t)

K

)
N(t), (5.20)

We must do the following variable change:

24 t = h ⇐⇒ 24 dt = dh ⇐⇒ dt =
dh
24

Applying this change into (5.20) and substituting µ by µ(S0,T0,I0)(h) :

dN(h)
dh

24 = µ(S0,T0,I0)(h)
eb h

24

1 + aeb h
24

(
1− N(h)

K

)
N(h) . (5.21)

Note that the growth rate is the inverse of the amount of time each cell needs to
assimilate the resources needed in order to increase its biomass up to the volume
at which cell division happens. Moreover, µ describes the average inverse of days
each cell needs to divide. On the other hand, µ(S0,T0,I0)(h) gives the inverse of
hours each cell needs to divide, considering also the 12 hrs of the day at which
growth does not exists because there are no resources (in this case, irradiance).
Hence, to give an expression of the growth rate in hours that is equivalent to the
growth rate in days, we must multiply µ(S0,T0,I0)(h) by 2, because we must only
consider the time a cell needs to assimilate the resources if and only if there are
resources, and there is irradiance only for 12 hours out of 24 every day. Thus, the
new BR model expressed in hours has this form:
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dN(h)
dh

=
µ(S0,T0,I0)(h)

12
eb h

24

1 + aeb h
24

(
1− N(h)

K

)
N(h) . (5.22)

With the evolution law (5.22) defined, we can use the parameters fitted in
Section 5.2.5 and a RK45 implementation in Python [10] to compute the solution
of the Cauchy Problem induced by (5.22), with N(h0) = N0. Moreover, (5.22) is
differentiable with respect N0, therefore we can calculate ∂N(h)

∂N0
and estimate the

propagation of the error (Section 4.1.3) in the evolution process due to deviations
in N0.

The solution of BR (5.22) with I(h) as (5.16) is plotted in Figure 5.9. Comparing
with the experimental data from Table 3.2 and the solution of 5.22 with growth rate
calculated as (2.1), one can appreciate the precision of the new model in replicating
the evolution of the cell concentration given by Table 3.2 during the exponential
and lag phase. Moreover, Figure 5.9 shows how the variance of N(h) is almost
negligible before reaching the stationary phase.

Analogously, the solution in a natural habitat, which irradiance function is
given by in (5.18) is plotted in Figure 5.9 in comparison with the experimental
data from Table 3.2 and the solution of 5.22 with growth rate calculated as (2.1).
Note that the light cycle corresponding to the evolutionary process plotted in 5.10
does not correspond to the light cycle applied in experiment 3.2, yet it is interesting
to see how similar both curves are. This is due to the fact that the average amount
of irradiance the culture would receive with a light cycle of (5.18) is the same as
the culture regarding the experimental data 3.2 received. In addition, Figure 5.10
shows how the variance of N(h) is almost negligible during lag and exponential
phase. We have I0 = 240, imposing the average irradiance the population of
microalgae receives to be 120 and thus emulate the control conditions presented in
Table 3.2.

Figure 5.9: Comparison of BR (5.22) when the growth rate is given by (2.1) ver-
sus µ(S0,T0,I0)(h), with I(h) given by (5.16) (left) and variation of N(h) with re-
spect to initial condition N0 (right) with S0 = 15 p.s.u, T0 = 25 oC, I0 = 120
mmol photon m−2 s−2 and a, b are parameters fitted in 5.2.5.
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Figure 5.10: Comparison of BR (5.22) when the growth rate is given by (2.1) ver-
sus µ(S0,T0,I0)(h), with I(h) given by (5.18) (left) and variation of N(h) with re-
spect to initial condition N0 (right) with S0 = 15 p.s.u, T0 = 25 oC, I0 = 120
mmol photon m−2 s−2 and a, b are parameters fitted in 5.2.5.

5.4 Continuous culture

We consider now the effect of a continuous culture (Section 2.3.2) in a popula-
tion of Alexandrium minutum depending on the dilution factor applied.
Hence, in equation (5.23) we add to the previous BR model a term modelling the
effect of the dilution factor.

dNc(h)
dh

= µ(S0,T0,I0)(h)
ebh

1 + aebh

(
1− Nc(h)

K

)
Nc(h)− D Nc(h) . (5.23)

The dilution factor in the sea is due to the tides, rainfalls and other environ-
mental phenomena. To model dilution’s variance over time can be a hard task,
due to the large amount of factors involved and, sometimes, such variance is neg-
ligible. Thus, we are considering the dilution factor D as a constant.

With the evolution law (5.23) defined, we can use the parameters fitted in
Section 5.2.5 and the conditions for salinity, temperature and irradiance from Table
3.2 to emulate the control conditions and use RK45 to compute the solution of
the Cauchy Problem induced by (5.23), with Nc(h0) = N0. Moreover, (5.23) is
differentiable with respect to the parameter D, therefore we can calculate ∂Nc(h)

∂D
and estimate the propagation of the error (Section 4.1.3) in the evolution process
due to deviations in D. This means to solve the system of equations:

dNc(h)
dh = µ(S0,T0,I0)(h)

ebh

1+aebh

(
1− Nc(h)

K

)
Nc(h)− D Nc(h)

dJ(h)
dh = µ(S0,T0,I0)(h)

ebh

1+aebh

(
1− 2 Nc(h)

K − D
)

J(h)− Nc(h)

{
Nc(t0) = N0,

J(t0) = 0
,

(5.24)
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where now

J(h) =
∂Nc(h)

∂D
.

We will solve this system for different values of D and see how it affects to the
evolution of N over time. Note that during the exponential phase of the culture of
Table (3.2) the average growth rate is around 0.18 day−1. Hence, since we want to
compare the effect of dilution with the control conditions we consider the values

D0 = 0 day−1 = 0 hour−1

D1 = 0.1 day−1 = 0.004167 hour−1

D2 = 0.2 day−1 = 0.008333 hour−1

D3 = 0.3 day−1 = 0.01250 hour−1

D4 = 0.4 day−1 = 0.01667 hour−1

The solution with a light cycle of 12:12 and I(h) given by (5.16) is plotted in
Figure 5.11. In Figure 5.12 we show the continuous evolutionary process which
would take place in the natural habitat, with a light cycle described as (5.18).
In both figures one can appreciate small drops in cell concentration during the
day. This behaviour corresponds to the hours of the day with no irradiance in
which there is not cell division due to lack of resources and the effects of dilution
decrease the cell concentration. One can appreciate in both figures how for D = D4

cell concentration never increases. However, dilution does not affect individual
cell division itself. Note in Figure (5.11) (right) how the variability of Nc(h) with
respect parameter D is negligible for all values of D during exponential and lag
phase. Note that the absolute value of the variation of Nc(h) with respect to the
parameter D increases exponentially at the stationary phase due to the fact that
the BR model we are discussing in this project only applies for lag and exponential
phase and does not consider stationary phase.
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Figure 5.11: Evolutionary process given by continuous culture Nc(h) (left) and
variation of Nc(h) (right) with respect parameter D, where D takes the values
shown in 5.4 and irradiance is calculated as (5.16).

Figure 5.12: Evolutionary process given by continuous culture Nc(h) (left) and
variation of Nc(h) (right) with respect parameter D, where D takes the values
shown in 5.4 and irradiance is calculated as (5.18).



Chapter 6

Conclusions

In this project we have seen how the evolution law given by the BR model
serves to describe the evolutionary process described by a population of Alexan-
drium minutum during the lag and exponential phases, either in a laboratory cul-
ture or in its natural environment. Ordinary differential equations will enable us
to include the parameter corresponding to the maintenance energy into the BR
model and thus characterize the stationary phase of this evolutionary process.
We used RK45 to compute the population evolution with great precision, regard-
less of the complexity of their evolution law, ensuring a virtually negligible com-
putational error.

We can conclude that the relationship between population growth and the
environment where the microalgae develops can be written as the product of the
expressions that relate this growth to each of the environmental variables. Hence,
we can assume that the specific growth rate is the inverse of the time each cell
needs to assimilate the necessary resources for the cell to divide under optimal
environment conditions. Throughout the use of Blackman’s model we can assume
that irradiance is a growth-limiting substrate for photosynthesis (simillar to the
nutrient substrate) and its effect is key to understant how the population evolves
along the hours of the day, depending on the level of irradiance that cells receive.
Finally, with the study of the continuous culture we have seen how adding dilution
in a BR-type population model does not affect the rate at which cells divide or
their ability to do so, but rather the evolutionary process itself, decreasing cell
concentration proportionally to it.
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Chapter 7

Perspectives

Now that we have studied how to calculate the optimal conditions for irradi-
ance, salinity and temperature there are many questions we could ask to ourselves
about the interaction of this microalgae with its environment and how its evolution-
ary process depends on the type of interactions the specie has. As next steps for
this investigation, we propose the following set of experiments:

• This project could not study the effect of different nutrient sources on a
population of Alexandrium minutum’s specific growth rate due to the fact
that the few existing experiments found had unreliable data. For this reason
we propose these two experiments:

– Test which nutrient source is optimal, whether phosphate or nitrate.

– Assume that the Blackman’s model describes the relation between nu-
trient substrate and growth rate and add this relation to find a new
expression of the specific growth rate that includes nutrient and test
the results by studying some cultures with different nutrient substrate
concentration.

• From a mathematical point of view it would be interesting to study the host-
parasite oscillation dynamics given by a combined experiment. This type of
relation, along with competitive relations, would be described with a Lotka-
Volterra-like model.

• It has been observed how populations of Alexandrium minutum migrate to
the seabed when cells receive no irradiance and go back to surface with
day light. We propose to cultivate a population of Alexandrium minutum in a
column of liquid to study the effects of migration in the evolutionary process
and the migration time.
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Appendix. Iterative method to
find fixed points in contractile
functions

import numpy as np

tmin = 5
tmax = 31.45
a = 0.8

def contractive(temp):
return -np.log(1 + a*(temp - tmin))/a + tmax

# The parameter temp is the starting point of the iteration
def itera(temp =25.5 , eps=1e-8):

T = temp
aux = T
T = contractive(T)
iter = 0
while iter < 1000:

while abs(aux - T) >= eps:
aux = T
T = contractive(T)
iter += 1

return T
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