
GRAU DE MATEMÀTIQUES
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Abstract

The main goal of this work is to understand a proof of a generalized version of Roth’s
theorem proposed by Lang. Due to the large scope of this proof, we will begin with older,
more foundational results in Diophantine approximation, as they provide context, and
introduce the general structure of the main proof in this work.

Then we will study the theory of absolute values over number fields, in order to use the
results and tools derived from it, such as the height functions. These functions, together
with the index of a polynomial will play a huge role in the proof of the more general
version of Roth’s theorem.

We will then present the proof of the theorem, and finish off this work with a few
applications of the theorem, as well as a discussion on an inherent limitation of the proof
that carries over into other renowned theorems that depend on Roth’s theorem, such as
Falting’s theorem on the finiteness of rational points in curves of genus greater or equal
to two.
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1 Introduction

Fundamentally, Diophantine approximation is about how well an irrational number can
be approximated by rational numbers. It is a well known fact that Q is dense in R, so
obviously any irrational number can be approximated by rational numbers to any given
accuracy, which is usually written as ∀α ∈ R ∀ε > 0, there exist p/q ∈ Q such that
|α− p/q| < ε. Our intuition tells us that to make |α− p/q| small, we should make p and
q big, to, crudely, approximate α to more decimal places. We encode this intuition into
the statement ∣∣∣∣∣α−

p

q

∣∣∣∣∣ ≤ 1

f(q)

for some increasing function f . We do not include p on the right side of the inequality
because it is in fact q in this case that limits how precise p/q can be. Moreover, p is
closely related to q through the fact that they approximate α.

An obvious question is how the number of approximations of α is affected by the
function f . Clearly if f is a positive constant, there are an infinite number of approxima-
tions, but it is not at all clear whether this remains the case for a function that increases
’more rapidly’ with q. In fact, if one were to take this reasoning to it’s natural limit and
take 1/f(q) = 0, then there are obviously no integers p, q that satisfy the inequality for
α ∈ R ∖ Q. This suggests the possibility that just by knowing α and f , there may be a
way to know whether or not there are finitely many solutions to the inequality, perhaps
even the exact number of them.

In 1842 Dirichlet was one of the first notable mathematicians to provide insight into
this problem, by finding a lower bound for f(q) that preserves an infinite number of
solutions to the inequality. Dirichlet proved that given α ∈ R,∀ε > 0 there are infinitely
many p/q ∈ Q such that ∣∣∣∣∣α−

p

q

∣∣∣∣∣ ≤ 1

q2

and shortly thereafter, in 1844, Liouville would provide an upper bound for f(q), by
proving that given an algebraic number α ∈ R of degree d over Q, there exist only finitely
many p/q ∈ Q such that ∣∣∣∣∣α−

p

q

∣∣∣∣∣ ≤ 1

qd
.

These results would set the tone for the future study of this inequality, which is why the
results that follow are improvements on the exponent d in Liouville’s proof. Mathemati-
cians were looking for an exponent that determined whether the inequality had finitely or
infinitely many solutions. For a long time this conjectured exponent seemed to be a func-
tion of α, τ(α), as the upper bounds kept getting stronger but always kept a dependence
with d.

Liouville 1844 τ(α) ≤ d

Thue 1909 τ(α) ≤ 1 + d/2

Siegel 1921 τ(α) ≤ 2
√
d

Gelfand, Dyson 1947 τ(α) ≤
√
2d

In 1955, however, Roth proved his major result, Roth’s Theorem [9], which proved that
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given an algebraic number α ∈ Q. ∀ε > 0, there are only finitely many p/q ∈ Q such that∣∣∣∣∣α−
p

q

∣∣∣∣∣ ≤ 1

q2+ε
.

Together with Liouville’s result, this completely characterized the relationship between
the aforementioned τ(α) and the solutions to |α− p/q| < 1/qτ(α).

The importance of this result cannot be understated, as evidenced by the numerous
generalizations it has gotten over the years. In fact, the centerpiece of this work is the
proof of a slight modification of Lang’s generalization of Roth’s Theorem [8]:

Theorem 1.1 (Roth’s theorem). Let K be a number field, let S ⊂ MK be a finite set
of absolute values on K, and assume that each absolute value in S has been extended
in some way to K. Given α ∈ K, then, ∀ε > 0 there exist only finitely many β ∈ K
satisfying the inequality

∏
v∈S

min{1, ∥β − α∥v} ≤
1

HK(β)2+ε
. (1)

Everything in the previous expression is defined in chapter 3, where we will also explain
how this result can be reduced to the one Roth proved in 1955.

In this work we will mainly follow the proof of Roth’s Theorem found in [1]. The
preliminary results from chapter 3 come mainly from [1, 2, 5]
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2 Classical results in Diophantine approximation

Before moving on to the theory of absolute values over number fields, we give the proofs to
some of the earliest results in Diophantine approximation. Liouville’s result is particularly
interesting, as it follows the same general structure as the proof of Roth’s Theorem. We
will be sure to highlight the similarities.

Proposition 2.1 (Dirichlet, 1842). Let α ∈ R∖Q. Then there are infinitely many rational
numbers p/q ∈ Q such that ∣∣∣∣∣α−

p

q

∣∣∣∣∣ ≤ 1

q2

Proof. For any integer Q ≥ 1 consider the set

{qα− ⌊qα⌋| q ∈ {0, 1, ..., Q}}

which contains Q+ 1 distinct numbers in [0, 1] because α is irrational. Dividing now the
interval [0, 1] into Q segments of equal length, by the pidgeon hole principle there is at
least one of these segments that contains two numbers from the set. This means there
exist two integers 0 ≤ q1 < q2 ≤ Q such that

|(q1α− ⌊q1α⌋)− (q2α− ⌊q2α⌋)| ≤ 1/Q

Which given 1 ≤ q2 − q1 ≤ Q, can be rewritten as∣∣∣∣∣⌊q2α⌋ − ⌊q1α⌋
q2 − q1

− α

∣∣∣∣∣ ≤ 1

Q(q2 − q1)
≤

1

(q2 − q1)2

Relabeling ⌊q2α⌋ − ⌊q1α⌋ = p ∈ Z and q2 − q1 = q ∈ Z we obtain the desired inequality∣∣∣∣∣α−
p

q

∣∣∣∣∣ ≤ 1

q2

Remark 2.1.1 There is a latter result, by Hurwitz in 1891, which proves that the
1/q2 from Dirichlet’s result can be changed to 1/(q2

√
5), and that 1/

√
5 is best possible.

More details can be found in [4, Theorems 193 and 194].

Now the first result in the opposite direction, before Roth proved τ(α) = 2.

Proposition 2.2 (Liouville, 1844). Let α ∈ Q be an algebraic number of degree d ≥ 2.
∀ε > 0, there are only finitely many p/q ∈ Q such that∣∣∣∣∣α−

p

q

∣∣∣∣∣ ≤ 1

qd+ε
(*)

Proof.
Despite being a much weaker result than the one Roth would prove 111 years later, the
structure of this proof is remarkably similar. We will show the steps Liouville took to
prove this, and we will later see that even in the proof of the more general version of
Roth’s Theorem, the same steps are taken.
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Step 1: Construction of the polynomial
Given we have chosen an algebraic number α with degree d, an obvious candidate is the
minimal polynomial of α over Q, which we will call P (x) ∈ Z[X].
Step 2: The polynomial must vanish at p/q
We assume that p/q closely approximates α, and want to show that P (p/q) = 0. Now,
given P (x) ∈ Z[X], there is some N ∈ Z such that P (p/q) = N/qd. We now apply Taylor’s
theorem to expand P around x = α, to find an upper bound for P (p/q), which will show
P (p/q) must be 0.

P (x) =

d∑
i=1

1

i!
·
diP

dxi
(α)(x− α)i

Notice that the sum ranges from i = 1 to i = d because P (α) = 0, so for a p/q satisfying
(*), this allows us to write∣∣∣∣∣Nqd

∣∣∣∣∣ = |P (p/q)| ≤

∣∣∣∣∣α−
p

q

∣∣∣∣∣ ·
(

d∑
i=1

∣∣∣∣∣ 1i! · diPdxi (α)
∣∣∣∣∣ · |x− α|i−1

)
= C(α)

∣∣∣∣∣α−
p

q

∣∣∣∣∣ ≤ C(α)

qd+ε

From the hypothesis that p/q satisfies (*), and where we’ve labelled the constant term
depending only on α,C(α). Rearranging we obtain

|N | ≤
C(α)

qε

So taking q > C(α)1/ε implies that N ∈ Z must be 0, which is equivalent to P (p/q) = 0.

Step 3: The polynomial cannot vanish at p/q
P (x) is the minimal polynomial of α over Q, meaning it is irreducible in Q[X], so it follows
p/q cannot be a root of P (x).

Despite the simplicity of this step, the proof of Roth’s theorem requires the construc-
tion of multivariable polynomials, which makes the nonvanishing step the hardest of the
whole proof.
Step 4: Proof ot the proposition
We assume that (*) allows infinitely many solutions,to the inequality. This assumption
implies that we can choose one of the solutions n/m such that m > C(α), where C(α)
is the constant from step 2. We see in step 2 that this implies P (n/m) = 0, yet step
3 proves that P (n/m) ̸= 0. The contradiction implies we can’t choose a solution n/m
such that m > c(α), which in turn implies we have finitely many solutions n/m to the
inequality (*).

Remark 2.2.1
This proposition tells us that any given algebraic number has a certain rational number
p/q closest to it in the sense of satisfying (*). Liouville used this to explicitly construct a
certain class of Transcendental numbers which are now known as Liouville numbers due
to the following property:
Given x ∈ R, we say x is a Liouville number if for every n ∈ N there exists a rational
number p/q ∈ Q such that

0 <

∣∣∣∣∣x−
p

q

∣∣∣∣∣ < 1

qn
.
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Assuming we have x ∈ R that satisfies this inequality yields a contradiction if we assume
x is algebraic of degree d over Q, as Liouville’s result says there are finitely many p/q ∈ Q
such that |x− p/q| < 1/qd. Liouville used this to prove for the first time that the number

∞∑
i=0

10−n! = 0.11000100000...

now called Liouville’s constant is transcendental. This was the first explicit number proven
to be transcendental, as Liouville’s result was the first one to give a way of construct-
ing transcendental numbers. Even today, aside from numbers like Liouville’s constant,
constructed specifically to be transcendental, there are very few known transcendental
numbers.

Despite these advances brought upon by Liouville’s result, it is not good enough for
most applications to Diophantine equations, as the exponent d+ε is often too large. This
led to others improving upon the exponent from Liouville’s result, as seen in the earlier
table, but it was only in 1955 that Roth proved the result for an exponent that didn’t
depend on the degree, d, of the algebraic number α.
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3 Theory of absolute values and absolute valued number
fields

Definition 3.1. An absolute value on a field K is a function | · | : K ! [0,∞) such that

• |x| ≥ 0, and |x| = 0 if and only if x = 0

• |xy| = |x| · |y|

• |x+ y| ≤ |x| + |y| (triangle inequality).

Moreover, if an absolute value satisfies the following stronger condition for all x, y ∈ K,
too, it is called non-archimedean.

• |x+ y| ≤ max{|x|, |y|} (Ultrametric inequality)

Now, the distance d(x, y) := |x−y| between any two elements x, y ∈ K induces a topol-
ogy on K, and if two absolute values define the same topology, they are called equivalent.

Before the following section, we note the existence of the trivial absolute value:

|x| =

{
0 x = 0

1 x ̸= 0

3.1 Introduction and the degree formula

A place v is an equivalence class of non-trivial absolute values acting on a number field
K, where two non-trivial absolute values belong to the same equivalence class if and only
if they define the same topology over K. The absolute value in the equivalence class de-
termined by the place v is denoted by | · |v. Given the field extension L/K and v a place
of K, then any place w of L such that the restriction of | · |w over K is a representative of
v, is said to lie over v, or equivalently, we say that w extends v. This is written as w|v,
due to the fact that non-archimedean places in number fields correspond to prime ideals.

Given a number field with an absolute value (K, | · |K), a completion of K, which we
denote here by (L, | · |L), is a number field with an absolute value, complete as a metric
space and for which there exists an embedding i : K ! L such that i(K) is dense in L,
with |x|K = |i(x)|L ∀x ∈ K. This completion is unique up to isomorphism.
Now, with our notation, the completion of K with respect to a place v is the extension
field Kv with a place w such that:

• w|v.

• The topology induced by w on Kv is complete.

• K is a dense subset of Kv in that same topology induced by w (In this case the
embedding would just be the identity).
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The completion exists and is unique up to isometric isomorphisms [3]. Frequently, due to
abuse of notation, the place w is denoted v as well.
We have now covered the groundwork for the proposition that will immediately give us
the local degree sum formula. Let K be a field with a fixed non.trivial absolute value | · |v.

Proposition 3.2. Let L/K be a finite degree field extension generated by a single element
ζ with monic minimal polynomial f(t) over K. Suppose that this polynomial can be
decomposed into

f(t) = fn1
1 (t) · · · fnr

r (t)

where fi(t) ∈ Kv[t] are different irreducible monic factors, then for each i ∈ {1, 2, ..., r}
there exists an injective homomorphism of field extensions over K

φi : L! Ki
∼= Kv[t]/(fi(t)) ⊂ Cv

ζ ! t

Now, for every i, there is a unique extension | · |i of | · |v, and each one of these extensions
is pairwise non-equivalent. Furthermore, Ki is the completion of L with respect to | · |i
and the embedding φi. Finally, for any absolute value | · |w extending | · |v to L, there is
a unique i such that | · |i restricted to L is equal to | · |w.

Proof: [1, Proposition 1.3.1.]

Corollary 3.3 (Degree formula). If L is a finite dimensional, separable field extension of
K, then ∑

w|v

[Lw : Kv] = [L : K]

Proof.
By the primitive element theorem, we can write L = K(α) for some element α ∈ L. Let
P (X) be the minimal polynomial of this same α over K. Then, given that L/K is a
separable field extension, we can factorize P (X) over Kv like so

P (X) = P1(X) · · ·Pn(X)

Now, the embeddings σ : L ↪! Cv correspond to the maps of α to the roots of P (X), so
by proposition 3.1 we have that for each w ∈ ML that has been extended from a given
v ∈ MK , [Lw : Kv] = degree(Pj(X)), where j is the unique place such that, borrowing
the notation from proposition 3.1, | · |w is equal to the restriction of | · |j to L. Therefore

[L : K] = deg(P (X)) =
n∑

i=0

deg(Pi(X)) =
∑
w|v

[Lw : Kv]

from this result, we can see why the terms [Lw : Kv] are important for a field extension
L/K, and absolute values w ∈ ML, v ∈ KK , w|v. This motivates the definition of the
local degree of L/K in w, and the normalized absolute value associated to v. They are,
respectively

nw = [Lw : Kv] ∥x∥w = |x|nw
w

7



Remark 3.1.2 We will prove Lang’s generalization of Roth’s theorem, which only
deals with finite field extensions of the type K/Q, so we will always have the hypothesis
of a finite dimensional, separable field extension. This will make Corollary 3.1.1 useful
later.

3.2 The product formula

Definition 3.4. Let L/K be a finite dimensional field extension of degree n. The trace
and norm of an element x ∈ L are defined to be the trace and determinant, respectively,
of the endomorphism of the K-vector space L

Tx : L! L, Tx(α) = xα

TrL/K(x) = Tr(Tx) NL/K(x) = det(Tx).

Note that this definition of NL/K(x) implies NL/K : L −! K, as L is a K-vector
space, hence all the coefficients in the matrix representation of Tx are in K, and therefore
det(Tx)∈ K. We want to find a formula for NL/K(x) which will be necessary to later
prove the product formula. We begin by looking at the characteristic polynomial of Tx

fx(t) = det(tId − Tx) = tn − a1t
n−1 + · · ·+ (−1)nan ∈ K[t]

And notice that
a1 = TrL/K(x) an = NL/K(x)

From this observation, we can derive the following proposition.

Proposition 3.5. If L/K is a separable extension and σ : L! K varies over the different
K-embeddings of L into an algebraic closure K of K, then we have, for a given x ∈ L

i) fx (t) =
∏

σ(t− σ(x))

ii) TrL/K(x) =
∑

σ σ(x)

iii) NL/K(x) =
∏

σ σ(x)

Proof.
Given L/K is a separable, finite field extension we want to prove that

fx(t) = (px(t))
d d = [L : K(x)] = [L : K]/[K(x) : K]

Where px(t) is the minimal polynomial of x over K, which we write as

px(t) = tm + c1t
m−1 + · · ·+ cm m = [K(x) : K].

Consequently {1, x, ..., xm−1} is a basis of K(x)/K, and if we call the basis of L/K(x)
{α1, ..., αd}, then it is a classic result that the basis of L/K is

α1, xα1, ..., x
m−1α1; ...;αd, xαd, ..., x

m−1αd

And in this basis we have

Tx


α1

xα1
...

xm−1αd

 =


xα1

x2α1
...

(−c1xm−1 − · · · − cm)αd
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It is easy to see then that the matrix of Tx(y) = xy with respect to this basis is only
made of the same block repeated d times all throughout the diagonal. This block is


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . · · ·
0 0 0 · · · 1

−cm −cm−1 −cm−2 · · · −c1


And one can easily verify it’s characteristic polynomial is px(t), as it should be, so the
characteristic polynomial of the big matrix is fx(t) = (px(t))

d as expected.

Now, L/K is a separable finite field extension, so L/K(x) is also a separable finite
field extension, and by the primitive element theorem we can write L = K(x, y) for some
y ∈ L. From this, we know that all the K-embeddings of L are uniquely determined by
the images of x and y. From the degrees of each field extension, we can then state that
the equivalence relation

τ ∼ σ ⇐⇒ τ(x) = σ(x)

partitions HomK(L,K) into m = [K(x) : K] equivalence classes of d = [L : K(x)]
elements each. If we call σ1, ..., σm the representatives of each equivalence class, we see
that

px(t) =
m∏
i=0

(t− σi(x))

Which implies

fx(t) = (px(t))
d =

m∏
i=0

(t− σi(x))
d =

m∏
i=0

∏
σ∼σi

(t− σ(x)) =
∏

σ∈HomK(L,K)

(t− σ(x))

This proves i), ii), and iii) due to Vietà’s equations, which we alluded to before the
beginning of the proposition.

We follow this by stating without proof an important result on how an absolute value
v is extended from a complete field K to a finite dimensional extension Kv, as we will
need it to obtain a crucial relationship that we will need for the product formula.

Proposition 3.6. Let K be a complete field relative to an absolute value | · |v and let L
be a finite dimensional field extension of K. Then there is a unique extension of | · |v to
an absolute value | · |w of L. For any x ∈ L the equation

|x|w = |NL/K(x)|1/[L:K]
v

holds. Moreover, L is complete with respect to | · |w.
Proof.: [1, Proposition1.2.7]

Now, given v ∈MQ we have the following embeddings

Q ↪−! Qv ↪−! Qv ↪−! Cv

| · |v 7! | · |v1 7! | · |v2 7! | · |v3

that extend | · |v to a unique absolute value over Cv, | · |v3 . This is because
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i) The first embedding is a completion, therefore the absolute value over Qv can be de-
fined by |x|v1 = limn!∞ |xn|v for a succession {xn} ⊂ Q, n ∈ N with x = limn!∞ xn.

ii) By proposition 3.6, given Qv is complete relative to | · |v1 .

iii) Cv is the completion of Qv, so by the same logic as the first embedding, | · |v3 is a
unique extension of | · |v2 .

Hence | · |v3 is a unique extension of | · |v. Furthermore, it is worth noting that we may
assert more generally that an absolute value on a complete field admits a unique extension
to its algebraic closure, since the latter is a union of finite dimensional extensions.

Cv is algebraically closed, therefore every finite field extension of Q can also be em-
bedded into Cv. Let K be a finite field extension of Q, and let the embeddings of K into
Cv be σ1, ..., σN . Each such embedding can be used to define an absolute value on K,
defined by

|x|σi = |σi(x)|v
which allows us to map the embeddings of K into Cv to the absolute values:

ψ : {embeddings K ↪! Cv} −! {w|v : w ∈MK , v ∈MQ}.

Now, in our proof of Roth’s theorem we will only study finite dimensional field extensions
of characteristic 0, so by the primitive element theorem we can suppose K/Q is a finite
dimensional field extension and K is generated by a single element ξ. Therefore by
proposition 3.2 the map ψ is exhaustive and

#ψ−1(v) = nv

as every absolute value | · |w extending | · |v is realized by exactly nw embeddings
This was the last result we needed in order to prove the product formula, which we will
now prove after giving a definition.

Definition 3.7. Given a prime p, and x ∈ Q∗, let ordp(x) be the unique integer such
that x can be written as

x = pordp(x) ·
a

b
a, b ∈ Z, p ∤ ab

If x = 0, we set ordp(x) = ∞ by convention. Then the p-adic absolute value of x ∈ Q is

|x|p = p−ordp(x)

Proposition 3.8 (Product formula). Let K be a number field, and let x ∈ K∗. Then∏
v∈MK

∥x∥v = 1

Proof Let P be the set of all primes, and we begin by showing that the proposition is true
for K = Q, as it will be needed afterwards. From the definition of the p-adic absolute
value, it is easy to see that ∏

p∈P
∥x∥p =

1

|x|∞

10



Thus, ∏
v∈MQ

∥x∥v =
∏

v∈MQ

|x|1v = |x|∞
∏
p∈P

|x|p = 1.

We will now prove for a number field K, let x ∈ K∗, therefore NK/Q(x) ∈ Q∗ and we have

1 =
∏

v∈MQ

|NK/Q(x)|

=
∏

v∈MQ

∏
σ∈Hom(K,Cv)

|σ(x)| by proposition 3.5

=
∏

v∈MQ

∏
w|v, w∈MK

|x|nw
w from the exhaustive definition for absolute values

=
∏

v∈MQ

∏
w|v, w∈MK

∥x∥w =
∏

v∈MK

∥x∥w

3.3 Heights

Before being able to write the following theorem, we must define the various height func-
tions, they are a way to measure the ’size’ of points in projective spaces, or even polyno-
mials.

Given a number field K, for an α ∈ K we define it’s height, relative to K, as the height
of the corresponding projective point (α, 1) ∈ P1(K):

HK(α) =
∏

v∈MK

max{∥α∥v, 1}

We also define hk(α) = lnHK(α) which often appears in the literature. These definitions
clearly depend on the field K, which may not always be desirable, thus, we also have the
absolute (multiplicative) height, defined as

H(α) = HK(α)1/[K:Q]

Which can be proven to be independent of the field K using the sum formula. In addition,
we also have h(α) = lnH(α).
Remark 3.3.0. This definition comes from a broader definition for points P ∈ Pn(K),
which is defined as

HK(P ) =
∏

v∈MK

max{∥x0∥v, ∥x1∥v, ..., ∥xn∥v}

And is independent of the choice of homogenous coordinates for P, and also HK(P ) ≥ 1.
The second fact comes from the first, and the first comes from the product formula. That
said, this height definition is of no relevance to us for Roth’s theorem, as we will only
look at single elements of number fields, but it gives context to the definition we will use.

Now, given a polynomial P ∈ K[X1, ..., Xm] written as

P (X1, ..., Xm) =

r1∑
j1=1

· · ·
rm∑

jm=1

pj1,...,jmX
j1
1 · · ·Xjm

m

11



We write
|P |v = max{|pj1,...,jm |v : jh ∈ {1, ..., rh} ∀h ∈ 1, ...,m}

which in turn allows us to define the same heights for a polynomial P ∈ K[X1, ..., Xm]:

HK(P ) =
∏

v∈MK

max{1, |P |nv
v }

H(P ) = HK(P )/[K:Q]

For polynomials, too, hK(P ) = lnHK(P ), h(P ) = lnH(P )

Theorem 3.9 (Finiteness of bounded points). For any numbers A,B ≥ 0, the set{
P ∈ Pn(Q)|H(P ) ≤ A and [Q(P ) : Q] ≤ B

}
is finite. In particular, for any fixed number field K, the set{

P ∈ Pn(K)|HK(P ) ≤ B
}

is also finite. Proof. [2, Theorem B.2.3]

Proposition 3.10 (Gelfand’s inequality). This is a result for projective polynomial
heights. Let r1, ..., rm be positive integers, and let P1, ..., Ps ∈ Q[X1, ..., Xm] be poly-
nomials with algebraic coefficients such that degXi(P1 · · ·Pm) ≤ ri ∀i ∈ {1, ...,m}. Then

s∑
r=0

h(Pi) ≤ h(P1 · · ·Ps) + r1 + · · · rm

Proof. Gauss’ lemma allows us to write, for non-archimedean v ∈ S

|P1 . . . Ps|v = |P1|v · · · |Ps|v

On the other hand, for archimedean v ∈ S we have [1, pages 229-233]

s∏
i=1

|Pi|v ≤ er1+···+rm |P1 · · ·Ps|v

These formulas allow us to compute

s∏
i=0

HK(Pi) =

s∏
i=0

∏
v∈MK

|P1 · · ·Ps|nv
v

≤
∏

v∈M0
K

|P1 · · ·Ps|nv
v

∏
v∈M∞

K

env(r1+···+rm)|P1 · · ·Ps|nv
v

≤ e[K:Q](r1+···+rm)HK(P1 · · ·Ps)

Taking [K : Q]th roots and then taking logarithms yields Gelfand’s inequality.

12



Lemma 3.11. Let K/Q be a finite dimensional field extension, and let x, y ∈ K. Then

H(x+ y) ≤ 2H(x)H(y) and H(xy) ≤ H(x)H(y)

Proof. We begin with the second inequality:

HK(xy) =
∏

v∈MK

max{1, ∥xy∥v} =
∏

v∈MK

max{1, ∥xy∥v}

≤
∏

v∈MK

max{1, ∥x∥v}max{1, ∥y∥v}

= HK(x)HK(y)

Taking [K : Q]th roots on both sides gives the desired inequality. Now, we begin by
defining the following function

ε(v) =

{
1 v is arquimedean

0 v is not arquimedean

Hence, we write

H(x+ y) =
∏

v∈MK

max{1, |x+ y|}nv/[K:Q]
v

≤
∏

v∈MK

max{1, 2ε(v)|y|v, 2ε(v)|x|v}nv/[K:Q]
v

≤
∏

v∈MK

2ε(v)nv/[K:Q]max{1, |x|v}nv/[K:Q]
v ·max{1, |y|v}nv/[K:Q]

v

≤ 2H(x)H(y)

Lemma 3.12. For every algebraic number α with polynomial P (x) ∈ Z[X] there is an
integer M > 0 such that Mα is an algebraic integer.
Proof.
Let P (x) =

∑n
i=0 aix

i, making sure an > 0, and consider Q(x) = an−1
n P (x). Clearly

Q(α) = 0, and we can write Q(α) =
∑n

i=0 aia
n−1−i
n (anx)

i = 0, so anα is the root of a
monic polynomial, with an ∈ Z.

13



4 Preliminary results

Throughout the proof of Roth’s theorem, previously known lemmas and bounds will be
used. To make the actual proof of Roth’s theorem read more smoothly, they’ll be stated
and proven beforehand in this section.

4.1 Notation and defintions

Before moving on to the results however, we will establish the notation we will use here-
forward, and give a few definitions that will be used in for the remaining part of the book.
⌊x⌋ : R −! Z denotes the floor function
⌈x⌉ : R −! Z denotes the ceiling function
For a polynomial P , degXh

(P ) refers to the degree of P in the variable Xh.
Given a polynomial with coefficients in a number field K, P ∈ K[X1, ..., Xm] written as

P (X1, ..., Xm) =

r1∑
j1=1

· · ·
rm∑

jm=1

pj1,...,jmX
j1
1 · · ·Xjm

m

We write

∂i1,...,imP =
1

i1!i2! · · · im!

∂i1+...+imP

∂Xi1
1 · · ·Xim

m

and
|P |v = max{|pj1,...,jm |v : jh ∈ {1, ..., rh} ∀h ∈ 1, ...,m}

Though we may also write just |P |, which is to be understood as |P |∞.
Let K be a number field, α = (α1, ..., αm) ∈ Km a point, and (r1, ..., rm) ∈ Zm an
m-tuple of nonnegative integers. We define the index of a polynomial P (X1, ..., Xm) ∈
K[X1, ..., Xm] with respect to (α1, ..., αm; r1, ..., rm) as the value

Ind(P ) = min
i1,...,im

{
i1

r1
+ · · ·+

im

rm
| ∂i1,...,imP (α) ̸= 0

}

denoted by Ind(P ).
δij refers to the Kronecker delta that equals 1 iff i=j and is 0 otherwise.

4.2 Results

Lemma 4.1. Given a polynomial P (X1, ..., Xm) ∈ Z[X1, ..., Xm], and an m-tuple of non-
negative integers (i1, ..., im), the following is true:
a)∂i1...imP ∈ Z[X1, ..., Xm].
b)If degXh

(P)≤ rh for each 1 ≤ h ≤ m then |∂i1...imP | ≤ 2r1+...+rm |P |.

Proof.
a)We begin by noting that for i ≤ j :

1

i!

diXj

dXi
=
(
j

i

)
Xj−i defining

(
j

i

)
= 0 for i > j

14



So writing the polynomial P as

P (X1, ..., Xm) =

r1∑
j1=1

· · ·
rm∑

jm=1

pj1,...,jmX
j1
1 · · ·Xjm

m

And differentiating, we obtain the following equation

∂i1,...,imP =

r1∑
j1=1

· · ·
rm∑

jm=1

pj1,...,jm

(
j1
i1

)
· · ·

(
jm
im

)
Xj1−i1

1 · · ·Xjm−im
m

Where pj1,...,jm ∈ Z by hypothesis, and
(
j

i

)
is an integer too, so ∂i1,..,1mP ∈ Z[X1, ..., Xm].

Now, (
j

i

)
≤

j∑
k=0

(
j

k

)
= (1 + 1)j = 2j

So, from our definition of |P | we have:

|∂i1,...,imP | ≤ max
j1,...,jm,i1,...,im

|pj1,...,jm | · max
j1,...,jm,i1,...,im

∣∣∣∣(j1i1) · · ·(jmim)
∣∣∣∣

≤ max
j1,...,jm,i1,...,im

|pj1,...,jm | · max
j1,...,jm

∣∣2j1+...+jm
∣∣ ≤ 2r1+...+rm |P |

As desired.

Lemma 4.2. Let P ∈ Z[X1, ..., Xm] with deg(Xh) ≤ rh ∀h ∈ {1, ...,m}, and let β =
(β1, ..., βm) be an m-tuple of algebraic numbers in the number field K. Then, for all
m-tuples j = (j1, ..., jm) ∈ Zm

≥0 we have

HK(∂jP (β)) ≤ 4(r1+...+rm)[K:Q]HK(P )
m∏

h=1

HK(βh)
rh

Proof.
Let (j1, ..., jm) = j be any positive m-tuple of integers. Lemma 4.1 allows us to write

T (X1, ..., Xm) = ∂jP (X1, ..., Xm) ∈ Z[X1, ..., Xm].

and also implies that given another m-tuple of positive integers (i1, ..., i) we have

|∂i1,...,imT | = |∂i1+j1,...,im+jmP | ≤ 2r1+...+rm |P |

We now begin by using the triangle inequality for both the archimedean and non-archimedean
absolute values. For the archimedean absolute values we only have to consider v = ∞

15



because T ∈ Z[X1, ..., Xm]. Now, given rh ≥ 1:

|T (β1, ..., βm)|∞ =

∣∣∣∣∣
r1∑

s1=1

· · ·
rm∑

sm=1

ts1,...,smβ
s1
1 · · ·βsmm

∣∣∣∣∣
∞

≤ (r1 + 1) · · · (rm + 1) · |T |∞
m∏

h=1

max{|βh|∞, 1}rh

≤ 2r1+...+rm · 2r1+...+rm |P |
m∏

h=1

max{|βh|∞, 1}rh

≤ 4r1+...+rm · |P |
m∏

h=1

max{|βh|∞, 1}rh

For non-archimedean absolute values the inequalities will look different, due to the ultra-
metric triangle inequality.

|T (β)|v =

∣∣∣∣∣
r1∑

s1=1

· · ·
rm∑

sm=1

ts1,...,smβ
s1
1 · · ·βsmm

∣∣∣∣∣
v

≤

∣∣∣∣∣
r1∑

s1=1

· · ·
rm∑

sm=1

βs11 · · ·βsmm

∣∣∣∣∣
v

≤
m∏

h=1

max{|βh|v, 1}rh

Every term on the right hand side of the inequality is bigger or equal to 1, which means
we can write

max{|T (β1, ..., βm)|v, 1} ≤ 4r1+...+rm · |P |
m∏

h=1

max{|βh|v, 1}rh

For the arquimedian places, and

max{|T (β1, ..., βm)|v, 1} ≤
m∏

h=1

max{|βh|v, 1}rh

for the non-archimedean places. Now, for each v ∈MK we raise each side of the inequality
to the power of it’s corresponding local degree nv = [Kv : Qv] and take the product over
all v ∈MK to obtain

HK(T (β1, ..., βm)) ≤ 4(r1+...+rm)[K:Q)] · |P |[K:Q]
m∏

h=1

HK(βh)
rh

Where we have employed
∑

v∈M∞
K
nv = [K : Q] from Corollary 3.1.1. , and the fact that

MQ only has 1 archimedean place.

We note that given P has integer coefficients, |P |[K:Q] = HK(P ). This is easily verified
by noting max{|P |v, 1} = 1 ∀v ∈M0

K , and
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Lemma 4.3 (Liouville’s inequality). Let K/Q be a number field, and let α ∈ K∗, and
let S⊂MK be a set of absolute values on K∗. Then

∏
v∈S

min{∥α∥v, 1} ≥
1

HK(α)

Proof.
By the product formula, and using that α is not 0, we have∏

v∈MK

∥α∥v = 1,

From this, and the definition of the height of an element over K we get

HK(α) =
∏

v∈MK

max{∥α∥v, 1} =
∏

v∈MK

∥α∥v ·
∏

v∈MK

max{
1

∥α∥v
, 1} =

∏
v∈MK

max{
1

∥α∥v
, 1}

=
∏

v∈MK

1

min{∥α∥v, 1}

Taking reciprocals, and from the fact that S ⊂MK we get the result:

1

HK(α)
=
∏

v∈MK

min{∥α∥v, 1} ≤
∏
v∈S

min{∥α∥v, 1}

Lemma 4.4. Given an algebraic integer α of degree d over Q with minimal polynomial

Q(X) = Xd + ad−1X
d−1 + ...+ a1X + a0 ∈ Z[X]

(Which is also the minimal polynomial of α over Q by Gauss’ lemma.) Then for every
r ≥ 0, it is possible to write

αr = a
(r)
d−1α

d−1 + a
(r)
d−2α

d−2 + ...+ a
(r)
1 α+ a

(r)
0

Where the terms a
(r)
i are integers satisfying |a(r)i | ≤ (|Q|+ 1)r for all i ∈ {1, 2, ..., d}.

Proof.
The proof will be done by induction on r. Clearly the statement is true for 0 ≤ r ≤ d− 1

since we can take a
(r)
i = δir. It is also true for r = d since we can use the minimal

polynomial, but it is not necessary for the proof. We assume now that the lemma is true
for r = l, and will prove it’s thus true for r = l + 1. By hypothesis:

αl+1 = α ·
d−1∑
i=0

a
(l)
i α

i = a
(l)
d−1α

d +
d−2∑
i=0

a
(l)
i α

i = a
(l)
d−1

d−1∑
i=0

−aiαi +
d−2∑
i=0

a
(l)
i α

i

Where on the last step we have employed Q(α) = 0. Merging the sums we now have:

αl+1 =

d−2∑
i=0

{
(a

(l)
i − aia

(l)
d−1)α

i
}
− ad−1a

(l)
d−1α

d−1

17



Meaning we can set

a
(l+1)
i = a

(l)
i − aia

(l)
d−1 a

(l+1)
d−1 = −ad−1a

(l)
d−1

And now we’re ready to come up with a bound for the coefficients in the case r = l + 1:

|a(l+1)
i | ≤ |a(l)i |+ |ai| · |a(l)d−1| ≤ (|ai|+ 1) ·max

{
|a(l)d−1|, |a

(l)
i |
}
≤ (|Q|+ 1)l · (|Q|+ 1)

where the last inequality comes from the induction hypothesis. And so we arrive at the
desired bound

|a(l+1)
d−1 | ≤ (|Q|+ 1)l+1

Lemma 4.5. Let P,Q ∈ K[X1, ..., Xm] be polynomials, and fix both (r1, ..., rm) ∈ Zm

and a point (α1, .., αm) ∈ Km. The index with respect to (α1, .., αm; r1, .., rm) has the
following properties:

a) Ind (∂i1,...,imP ) ≥ Ind(P )−
∑m

h=1 ih/rh .

b) Ind(P +Q) ≥ min{ Ind(P ), Ind(Q)} .

c) Ind(PQ) = Ind P + Ind Q .

Proof.

a) Let Q = ∂i1,...,imP , α = (α1, ..., αm), and let (j1, .., jm) be anm-tuple of integers cor-
responding to the index of Q with respect to (α1, .., αm; r1, .., rm), that is, Ind(Q) =
j1

r1
+...+

jm

rm
and ∂j1,...,jmQ(α) ̸= 0. This then implies that ∂i1+j1,...,im+jm(α) ̸= 0 and

thus we get Ind(P ) ≤ Ind(Q)+
∑m

h=1 ih/rh ⇔ Ind(∂i1,...,imP ) ≥ Ind(P )−
∑m

h=1 ih/rh

b) Let (j1, .., jm) be an m-tuple of integers corresponding to the index of P +Q with
respect to (α1, .., αm; r1, .., rm). This means that at least one of ∂j1,...,jmP (α) or
∂j1,...,jmQ(α) is non zero, and it must be the one with the smaller index Ind(P+Q) =

j1

r1
+ ...+

jm

rm
≥ min{Ind(P ), Ind(Q)}

c) We know from the product rule that

∂j1,...,jm(PQ) =
∑
i1+i′1

· · ·
∑

im+i′m

Ci1,...,im(∂i!,...,imP )(∂i′1,...,i′mQ)

which implies that given an m-tuple of integers (j1, ..., jm) corresponding to the in-
dex of PQ, there exists at least one pair of m-tuples (i1, ..., im) and (i′1, ..., i

′
m) such

that ih + i′h = jh ∀h ∈ {1, ...,m} and (∂i1,...,imP (α)) ̸= 0, (∂i′1,...,i′mQ(α)) ̸= 0. This
in turn means that the indices of P and Q with respect to (α1, .., αm; r1, .., rm) will

satisfy Ind(P )≤
i1

r1
+ ... +

im

rm
and Ind Q ≤

i′1
r1

+ ... +
i′m
rm

, this gives the first of the
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two inequalities: Ind PQ ≥ Ind(P ) + Ind(Q).

To obtain the opposite inequality, we begin by looking at the m-tuples for P and Q.
The set of m-tuples corresponding to the index of P is finite, so it has a minimum, we
will call the minimum of this set ordered lexicographically (l1, ..., lm). This means
that for any other m-tuple (i1, ..., im) in the set, there exists an h ∈ {1, ...,m} such
that ih > lh. We do the same for Q, and call the minimum from it’s set of m-tuples
corresponding to Ind Q (l′1, ..., l

′
m). We now define (j1, ..., jm) = (l1 + l′1, ..., lm + l′m)

and notice that due to taking the minimum we have

∂j1,...,jm(PQ)(α) =
∑
i1+i′1

· · ·
∑

im+i′m

Ci1,...,im(∂i1,...,imP (α))(∂i′1,...,i′mQ(α))

= (∂l1,...,lmP (α))(∂l′1,...,l′mQ(α)) ̸= 0

Which gives an upper bound for the index of PQ: Ind(PQ) ≤
j1

r1
+ · · · +

jm

rm
=

l1 + l′1
r1

· · ·
lm + l′m
rm

= Ind(P ) + Ind(Q).

Combining both inequalities gives the desired result

As an aside, the index of the 0 polynomial is infinity, due to never being non zero
regardless of how many times it is differentiated, which also means only 0 has Index
infinity. It is worth noting that with this, we have proven that the index is a valuation
from the polynomials of m variables to Q. This is important, because this proof of Roth’s
theorem hinges on reaching a contradiction through the use of the index of a certain
polynomial, and that can be done because the index has these ’nice’ properties.

Lemma 4.6 (Siegel’s Lemma). Let A = (aij) be a matrix with coefficients in Z, whose
absolute value is defined to be |A| = max

j,k
{|ajk|}. Let z = (z1, ..., zN ) and we similarly

define it’s absolute value to be |z| = max (|z1|, ..., |zN |) .

The lemma states that given an M × N matrix A with coefficients in Z, not all 0, and
assuming N > M, then there exists a vector Z ∈ ZN satisfying

Az = 0, z ̸= 0, |z| ≤ (N |A|)
M

N−M

Proof. Let Z = (N |A|)
M

N−M , and z = (z1, ..., zN ) ∈ ZN be any vector such that 0 ≤ zi ≤ Z
∀i ∈ {1, ..., N}. Given |ajk| ≤ |A|, 0 ≤ zi ≤ Z, the matrix is M x N, and accounting for
zeroes, Az takes at most (N |A|Z+1)M distinct values. Now, due to the choice of Z we have
(N |A|Z+1)M ≤ (N |A|)M (Z+1)M = ZN−M (Z+1)M < (Z+1)N , meaning the cardinality
of the set of distinct possible vectors z is strictly bigger than the cardinality of the set of
distinct values Az can take. Hence, there exist z(1) ̸= z(2) such that Az(1) = Az(2), and
z := z(1) − z(2) satisfies the conditions of the lemma.
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Lemma 4.7. Given r1, ..., rm ∈ Z, and a fixed ε ∈ (0, 1), then there are at most

(r1 + 1) · · · (rm + 1) · e−mε2/4

m-tuples of integers (i1, ..., im) that satisfy the following conditions

0 ≤ ij ≤ rj ∀j ∈ {1, 2, ...,m}
1

m

m∑
j=0

ij

rj
≤

1

2
− ε

Proof.
Let I(m, ε) denote the set of m-tuples we want to count. Clearly then we have

#I(m, ε) =
∑

(i1,...,im)∈I(m,ε)

1 ≤
∑

(i1,...,im)∈I(m,ε)

exp
ε

2

(
m

2
−mε−

m∑
j=0

ij

rj

)

Where we use the hypothesis that 0 ≤
m

2
− mε −

∑m
j=0

ij

rj
and et ≥ 1 for t ≥ 0. We

continue, expanding now the sum to all possible i-tuples

≤
r1∑

i1=0

· · ·
rm∑

im=0

exp
ε

2

(m
2
−mε−

m∑
j=0

ij

rj

)
= exp

(
−mε2

2

)
r1∑

i1=0

· · ·
rm∑

im=0

exp
ε

2

(
m

2
−

m∑
j=0

ij

rj

)

And using the very fact that we’re adding over every possible configuration of (i1, ..., im),
the latest sum is equal to

exp

(
−mε2

2

)
m∏

h=1

(
rh∑

im=0

exp
ε

2

(1
2
−

i

rh

))

Now, given et ≤ 1 + t+ t2 for all |t| ≤ 1 we can find a bound for the summation above

r∑
i=0

exp
ε

2

(1
2
−
i

r

)
≤

r∑
i=0

{(
1 +

ε

4
+
ε2

16

)
−

(
ε

2
+
ε2

4

)
i

r
+
ε2i2

4r2

}

≤ (r + 1)

(
1 +

ε2

48
+

ε2

12r

)

≤ (r + 1)

(
1 +

ε2

4

)

Substituting back into the product, we get

#I(m, ε) ≤ exp

(
−mε2

2

)
m∏

h=1

(
(rh + 1)

(
1 +

ε2

4

))

≤ exp

(
−mε2

2

)
m∏

h=1

(
(rh + 1) exp

ε2

4

)

= (r1 + 1) · · · (rm + 1) exp

(
−mε2

4

)
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Before finally embarking on the endeavour of proving Roth’s theorem, we will prove
two lemmas to simplify our task. The first is the reduction lemma, which reduces the
scope of the proof to the algebraic integers, and the second one is a result equivalent to
Roth’s theorem, which is the one we will prove. It is worth mentioning beforehand that
for this generalization of the original version of Roth’s theorem, we specifically consider
the field extension K/Q, so every algebraic number we consider has a minimal polynomial
in Z[X].

Lemma 4.8. If Roth’s theorem is true for all algebraic integers, then it is true for all
algebraic numbers.
Proof.
We will prove this by contradiction. Let α ∈ K be an algebraic number, and suppose
Roth’s theorem is false for α, this implies there exist infinitely many β ∈ K satisfying
(1). Now, for a given β ∈ K that satisfies (1), we affirm that

∞ = #
{
β ∈ K | β satisfies (1.1)

}
≤
∑
S′⊂S

#

{
β ∈ K

∣∣ ∏
v∈S′

∥β − α∥v ≤
1

HK(β)2+ε

}
(4.1)

Because for every β ∈ K that satisfies (1), there is always some non-empty subset of S,
Sβ :=

{
v ∈ S : ∥β − α∥v ≤ 1

}
such that

∏
v∈S

min
{
1, ∥β − α∥v

}
=
∏
v∈Sβ

∥β − α∥v ≤
1

HK(β)2+ε

By Hypothesis of Roth’s Thorem, S ⊂ MK is finite, however the sum in (4.1) is infinite,
so by the pidgeon hole principle there’s at least one of the terms in the sum that’s infinite.
From this, we deduce that for this lemma, after replacing S by one of it’s subsets (which
will henceforth be called S), we can further assume there are infinitely many β ∈ K such
that, for every ε > 0 ∏

v∈S
∥β − α∥v ≤

1

HK(β)2+ε

Now we choose an integer D > 0 such that Dα is an algebraic integer, and let β ∈ K
satisfy both (1) and HK(β) > HK(D)1+6. Finally, From the definition of HK(·) we get
HK(Dβ) ≤ HK(D)HK(β) and∏

v∈S
∥D∥v ≤

∏
v∈S

max{∥D∥v, 1} ≤
∏

v∈MK

max{∥D∥v, 1} = HK(D)

With all of this, we can finally show that Roth’s theorem is false for Dα, finishing the
proof.∏

v∈S
∥Dβ −Dα∥v ≤

HK(D)

HK(β)2+ε
=

HK(D)

HK(β)2+ε/2
·

1

HK(β)ε/2

≤
HK(D)

(HK(Dβ)/HK(D))2+ε
·

1

(HK(D)1+6/ε)ε/2
=

1

HK(Dβ)2+ε/2

Hence, if Roth’s theorem is true for algebraic integers, then it is also true for algebraic
numbers.
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Theorem 4.9. Let K be a number field, S ⊂MK a finite set of absolute values over K,
with each one of them extended in some way to K. Given α ∈ K, ε > 0, and a function
ζ : S ! [0, 1] such that ∑

v∈S
ζv = 1

Then there are finitely many β ∈ K such that

∥β − α∥v ≤
1

HK(β)(2+ε)ζv
∀v ∈ S (2)

We will see shortly that this Theorem is in fact equivalent to Roth’s theorem.

Theorem 4.10. Theorem 2.3 is true if and only if Theorem 4.9 is true.
Proof We will first assume Theorem 2.1 to be true, and then assume true the hypotheses
of Theorem 4.7. We denote by ζ : S ! [0, 1] the function from the hypotheses of theorem
4.7, and then assume β ∈ K satisfies (2). Multiplying ∥β − α∥ over v ∈ S and using∑

v∈S ζv = 1 we get

∏
v∈S

min{1, ∥β − α∥v} ≤
∏
v∈S

∥β − α∥v ≤
1

HK(β)2+ε

And applying Theorem 2.1 we get that there are only finitely such β’s in K that satisfy
(2).

We now assume Theorem 4.7 is true, and that there are infinitely many β ∈ K satisfy-
ing (1). We will prove the assertion by contradiction, by showing that each one of those
β’s must satisfy (2) for at least one v ∈ S, meaning infinite β ∈ K satisfy (2), contrary
to our hypothesis that Theorem 4.7 is true. Let s = #S, and consider

ζv : S ! [0, 1], ζv =
av

s
with av ∈ Z≥0 and

∑
v∈S

av = s

Clearly there’s a finite amount of these maps, which will be denoted by Z.Now let β ∈ K
satisfy (1), we want to show this implies it satisfies (2) for one of the maps in Z. For
every v ∈ S we define a real number λv(β) by the formula

min{1, ∥β − α∥v} =
1

HK(β)(2+ε)λv(β)

which ensures that λv(β) ≥ 0. We now multiply over S, keeping in mind we have assumed
Roth’s theorem to be true∏

v∈S
min{1, ∥β − α∥v} =

1

HK(β)(2+ε)
∑

v λv(β)
≤

1

HK(β)(2+ε)

And we obtain that
∑

v λv(β) ≥ 1, from this∑
v∈S

2sλv(β) ≥ 2s ≥ s

This implies that we can always find integers av(β) satisfying our desired properties from
before:

0 ≤ av(β) ≤ 2sλv(β)and
∑
v∈S

av(β) = s
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Meaning av(β)/s belongs to Z, as desired. Therefore, the infinite amount of β’s in K
that satisfy (2) also satisfy (1) for some φv ∈ Z, contradiction. This completes the proof
of the theorem.
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5 Proof of Roth’s Theorem

5.1 Construction of the Auxiliary Polynomial

We begin the proof by constructing a Polynomial P (X1, ..., Xm) ∈ Z[X1, ..., Xm] with
bounded coefficients that vanishes to high order at (α, ..., α) ∈ Kn. We note that this is
the equivalent of step 1 from Liouville, 1844.

Proposition 5.1. Let α be an algebraic integer of degree d over Q, let ε > 0 be a fixed
constant, and let m be an integer such that

emε2/4 > 2d

Let also r1, ..., rm be given positive integers. Then there exists a polynomial P (X1, ..., Xm) ∈
Z[X1, ..., Xm] satisfying the following conditions

i) P has degree at most rh in the variable Xh ∀h ∈ {1, ...,m}

ii) The index of P with respect to (α, ..., α; r1, ..., rm) satisfies

Ind(P ) ≥
m

2
· (1− 2ε)

iii)
|P |∞ ≤ B(α)r1+···+rm

Where B(α) is a constant that only depends on α

Proof.
As usual we will write

P (X1, ..., Xm) =

r1∑
j1=1

· · ·
rm∑

jm=1

pj1,...,jmX
j1
1 · · ·Xjm

m

Where this time the coefficients Pj1,...,jm are unknown and must be determined. Account-
ing for any coefficients that may be 0, the number of coefficients is

N = (r1 + 1) · · · (rm + 1)

As shown in lemma 4.1, differentiation with respect to an m-tuple (i1, .., im) yields

∂i1,...,imP = Pi1,...,im =

r1∑
j1=1

· · ·
rm∑

jm=1

pj1,...,jm

(
j1
i1

)
· · ·

(
jm
im

)
Xj1−i1

1 · · ·Xjm−im
m

Which we now evaluate at (α, ..., α) to have the polynomial equal 0 and use that to
determine it’s coefficients. Using now lemma 4.4 to express the powers of α larger than
d-1 gives

Pi1,...,im(α, ..., α)

=

r1∑
j1=1

· · ·
rm∑

jm=1

pj1,...,jm

(
j1
i1

)
· · ·

(
jm
im

)
αj1−i1+···+jm−im

=

r1∑
j1=1

· · ·
rm∑

jm=1

pj1,...,jm

(
j1
i1

)
· · ·

(
jm
im

)( d∑
k=1

a
(j1+···+jm−i1−···−im)
k αk

)

=

d∑
k=1

(
r1∑

j1=1

· · ·
rm∑

jm=1

pj1,...,jma
(j1+···+jm−i1−···−im)
k

(
j1
i1

)
· · ·

(
jm
im

))
αk
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Thus, Pi1,...,im(α, ..., α) = 0 if the sums within the big parenthesis from the previous
expression equal 0. This is equivalent to saying Pi1,...,im(α, ..., α) = 0 if we choose pj1,...,jm
to satisfy the linear system of equations

r1∑
j1=1

· · ·
rm∑

jm=1

pj1,...,jma
(j1+···+jm−i1−···−im)
k

(
j1
i1

)
· · ·

(
jm
im

)
= 0

For every k ∈ {1, ..., d}.
We are now in a spot to impose the conditions we desire from our polynomial, and see
what coefficients pj1,...,jm the linear system of equations yields. To obtain a polynomial
satisfying ii), we need Pi1,...,im(α, ..., α) = 0 for all m-tuples satisfying

i1

r1
+ · · ·

im

rm
≤
m

2
· (1− 2ε) =

m

2
−mε.

Lemma 4.7 tells us that there are at most (r1 + 1) · · · (rm + 1)e−mε2/4 such m-tuples,
therefore, to obtain a Polynomial that satisfies ii), it suffices to choose coefficients pj1,...,jm
that satisfy a system of M linear equations with integer coefficients

M ≤ d · (r1 + 1) · · · (rm + 1)e−mε2/4 = dNe−mε2/4 ≤
dN

2d
=
N

2
< N

Where M is bounded by the possibility of having d linear equations for each possible m-
tuple. We haveM < N , so all that is left is to find a bound for the coefficients of the linear
equations, and we can use Siegel’s lemma to obtain the coefficients of the polynomial with
our desired properties.

By lemma 4.4 again, we know that |a(l)k | ≤ (|Q|+1)l, whereQ is the minimal polynomial
of α over Q, so using the same bound as before for the binomial coefficients we get∣∣∣∣∣(j1i1) · · ·(jmim)a(j1+···+jm−i1−···−im)

k

∣∣∣∣∣ ≤ 2j1+···+jm(|Q|+ 1)(j1+···+jm)

≤ (2|Q|+ 2)r1+···+rm

Applying now Siegel’s lemma yields the existence of a polynomial P such that

|P |∞ ≤
(
N(2|Q|+ 2)r1+···+rm

)M/N−M

≤ N(2|Q|+ 2)r1+···+rm

≤ 2r1+···+rm(2|Q|+ 2)r1+···+rm

= B(α)r1+···+rm

Where B(α) is a constant that depends only on α, and with this P satisfies conditions i),
ii), and iii).

5.2 The index of the Auxiliary Polynomial must be large

After proving the existence of a Polynomial with desirable properties, we now prove that
if (β1, ..., βm) ∈ Kn are ’close’ to (α, ..., α) ∈ K

n
, then the polynomial will vanish to high

order at (β1, ..., βm), that is, Ind(P ) with respect to (β1, ..., βm; r1, ..., rm) is large. Notice
how this is the equivalent of step 2 from Liouville, 1844.
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Proposition 5.2 (Large index). Given 0 < δ < 1, and given ε such that 0 < ε < δ/28.
Let α ∈ K be an algebraic integer over Q and let m be an integer satisfying once again
emε2/4 > 2d. Let also r1, ..., rm be given positive integers, and use proposition 5.1 to
choose a polynomial P (X1, ..., Xm) ∈ Z[X1, ..., Xm] satisfying the properties given in that
same proposition. With that done, let S ⊂ MK be a finite set of absolute values on K,
with each one of them extended in some way to K, and let

ζ : S ! [0, 1] satisfy
∑
v∈S

ζv = 1 (5.2-i)

Suppose that β1, ..., βm ∈ K satisfy

∥βh − α∥v ≤
1

HK(βh)(2+δ)ζv
∀v ∈ S, ∀h ∈ 1, ..,m (5.2.-ii)

and suppose further that

max
1≤h≤m

{HK(βh)
rh} ≤ min

1≤h≤m
{HK(βh)

rh}1+ε (5.2-iii)

and tha there exists a constant C(α, δ) such that

C(α, δ) ≤ H(βh) ∀h ∈ 1, ...,m (5.2-iv)

If all of these hypotheses are met, then the index of P with respect to (β1, ..., βm; r1, ..., rm)
is large:

Ind(P ) ≥ εm

Recall from Theorems 4.10 and 4.11, that the hypotheses before and including 5.2-i
imply a finite number of β ∈ K can satisfy 5.2-ii. Assuming both true later allows us to
seamlessly use this proposition when we assume there are infinite β ∈ K that satisfy (1),
and this proposition is key to finding a contradiction from that hypothesis. It is worth
remarking here too, that the structure of this proof of Roth’s theorem implies choosing
the βi that approximate α ’well enough’, meaning we choose them before the positive
integers r1, ..., rm, so we must be vigilant regarding the dependence on these integers.
Now, before moving on to the proof of this proposition, we need one more lemma.

Lemma 5.3. Let r1, ..., rm be given positive integers, let P (X1, ..., Xm) ∈ Z[X1, ..., Xm] be
a polynomial such that degXh

(P ) ≤ rh, and let θ = Ind(P ) with respect to (α, ..., α; r1, ..., rm).
Let 0 < δ < 1 be another given constant and choose θ0 such that 0 < θ0 < θ. Let S ⊂MK

be a finite subset of absolute values on K with each one extended in some way to K, and
suppose both hypotheses 5.2-i and 5.2-ii are satisfied. We will write D = min

h
{HK(βh)

rh},
and let j = (j1, ..., jm) be an m-tuple satisfying

m∑
h=1

jh

rh
≤ θ0

With all this, then∏
v∈S

∥∂jP (β1, ..., βm)∥v ≤ (4H(α))[K:Q](r1+···+rm)HK(P )D−(2+δ)(θ−θ0)

Proof. Let T = ∂jP . We want to apply Taylor’s theorem around (α, ..., α) in a step rem-
iniscent of Liouville, 1844. However, we need bounds for the Taylor coefficients and abso-
lute values v ∈ MK defined at α ∈ K. For this reason, we will henceforth suppose every
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v ∈MK has been extended in some way to K(α) in order to estimate |∂i1,...,imT (α, ..., α)|v
for the considered m-tuples (i1, ..., im). We note that |∂i1,...,imT (α, ..., α)|v is the sum of
at most (r1 + 1) · · · (rm + 1) terms, each of which has a magnitude satisfying

|∂i1,...,imT |∞max{1, |α|v}r1+···+rm = |∂i1+j1,...,im+jmP |∞max{1, |α|v}r1+···+rm

≤ |P |∞(2max{1, |α|v})r1+···+rm

Now, we recall that for r ≤ 1, (r + 1) ≤ 2r, so

|∂i1,...,imT (α, ..., α)|v ≤ (r1 + 1) · · · (rm + 1)|P |∞(2max{1, |α|v})r1+···+rm

≤ |P |∞(4max{1, |α|v})r1+···+rm

Using this bound, we will confirm that just as P is a polynomial that vanishes to high
order at (α, ..., α), T also vanishes to a fairly high order at (α, ..., α). From lemma 4.5 we
have the following inequality for the index of T with respect to (α, ..., α; r1, ..., rm)

Ind(T ) = Ind(∂jP ) ≥ Ind(P )−
m∑

h=1

jh

rh
≥ θ − θ0

The Taylor expansion of T about (α, ..., α) is thus

T (X1, ..., Xm) =

r1∑
i1=0

· · ·
rm∑
im

i1

r1
+ · · ·+

im

rm
≥θ−θ0

∂i1,...,imT (α, ...α)(X1 − α)i1 · · · (Xm − α)im

Which we evaluate at Xh = βh for each absolute value v ∈ S, with nv = [Kv : Qv]

T (β1, ..., βm)

≤
r1∑

i1=0

· · ·
rm∑
im

i1

r1
+ · · ·+

im

rm
≥θ−θ0

|∂i1,...,imT (α, ...α)|v|(β1 − α)|i1v · · · |βm − α|imv

≤ (r1 + 1) · · · (rm + 1) max
i1

r1
+ · · ·+

im

rm
≥θ−θ0

{|∂i1,...,imT (α, ...α)|v|(β1 − α)|i1v · · · |βm − α|imv }

≤ 4r1+···+rm |P |v max
i1

r1
+ · · ·+

im

rm
≥θ−θ0

{
1(

HK(β1)i1/nv · · ·HK(βm)im/nv
)(2+δ)ζv

}

We now bound the product of heights to make this bound easier to use

HK(β1)
i1/nv · · ·HK(βm)im/nv =

(
HK(β1)

r1
)i1/r1nv · · ·

(
HK(βm)rm

)im/rmnv ≥ D(θ−θ0)/nv

From this we get

|T (β1, ..., βm)|v ≤
4r1+···+rm |P |v

D(θ−θ0)(2+δ)ζv/nv

We can raise each side of this inequality to the power nv, multiply over all v ∈ S, and
using that

∑
v∈S ζv = 1 we finally obtain the desired bound

∏
v∈S

∥T (β1, ..., βm)∥v ≤
4(r1+···+rm)[K:Q]HK(P )

D(θ−θ0)(2+δ)
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We can now move on to proving Proposition 5.2.
Proof. Let j = (j1, ..., jm) be m-tuple such that

∑m
h=1 jh/rh ≤ mε. We will show that

∂jP (β1, ..., βm) = 0 (The index w.r.t (β1, ..., βm; r1, ..., rm) is also large). We must note
first that 0 < δ < 1 and 0 < ε < δ/28 =⇒ 0 < ε < 1/4 =⇒ θ = m(1−2ε)/2 > mε = θ0,
so we can use lemma 5.3 for the m-tuple we have chosen. Lemma 5.3 gives, recalling the
definition of T: ∏

v∈S
∥∂j(β1, ..., βm)∥v ≤

4(r1+···+rm)[K:Q]HK(P )

D(θ−θ0)(2+δ)

≤
(4B(α))(r1+···+rm)[K:Q]

D(m(2+δ)(1−2ε)/2−mε)

Where we have used the properties ii) and iii) of the auxiliary polynomial. On the other
hand lemma 4.2 says

HK(∂jP (β1, ..., βm)) ≤ 4(r1+···+rm)[K:Q]HK(P )
m∏

h=1

HK(βh)
rh

≤ (4B(α))(r1+···+rm)[K:Q]Dm(1+ε)

Where we also used one of the hypotheses of this proposition in the last inequality. Now,
lemma 4.3, due to it’s own hypotheses tells us that either ∂jP (β1, ..., βm) = 0, or∏

v∈S
∥∂jP (β1, ..., βm)∥v ≥ HK(∂jP (β1, ..., βm))−1

We want to show that ∂jP (β1, ..., βm) = 0, so we will assume the inequality and reach a
contradiction. Liouville’s inequality provides a link between the two inequalities we had
derived, and implies

Dm(2+δ)(0.5−2ε)−(1+ε) ≤ (4B(α))2(r1+···+rm)[K:Q]

From 0 < δ < 1 and 0 < ε < δ/28 we get

(0.5− 2ε)(2 + δ)− (1 + ε) > δ/2− 5ε− 2εδ > δ/2− 7ε > δ/2− δ/4 = δ/4

Which implies
Dmδ/4 < (4B(α))2(r1+···+rm)[K:Q]

and, together with another hypothesis from this proposition

max
1≤j≤m

{HK(βh)
rh} ≤ D1+ε < (4B(α))8(r1+···+rm)[K:Q](1+ε)/mδ.

Choosing now j such that rj = maxmh=1{rh} gives us the following inequality:

HK(βj) < (4B(α))8[K:Q](1+ε)/δ

Which allows us to choose a constant C(α, δ) to complete the proof. Recall that hypothesis
5.2-iv is to assume that for every h ∈ {1, ...,m} C(α, δ) ≤ HK(βh). since HK(βj) <
(4B(α))8[K:Q](1+ε)/δ choosing C(α, δ) sufficiently large we obtain the desired contradiction,
which implies that ∂jP (β1, ..., βm) = 0.

If we wanted an explicit C(α, δ), the following would suffice

C(α, δ) = min
δ

{
(4B(α))8[K:Q](1+ε)/δ

}
= (4B(α))8

Where we also considered [K : Q] ≥ 1.

28



5.3 The index of the Auxiliary Polynomial must be small

We just showed that our auxiliary polynomial which vanishes to high order at (α, ..., α),
also vanishes to fairly high order at (β1, ..., βm). We will now show that the opposite must
be true given our hypotheses, and this contradiction will be the cornerstone of our proof
that that there aren’t an infinite number of points (β1, ..., βm) that closely approximate
(α, ..., α). This step that was comparatively easy in Liouville’s proof is not so simple here
due to the increased complexity of the auxiliary polynomial.

We illustrate the different approach we will take here for a polynomial with one variable
over the rationals.

Example 5.4. Let P (X) ∈ Z[X] be a polynomial such that |P |∞ ≤ Br and let Ind(P ) =
I with respect to (p/q; r) for integers p, q, r with r ≥ 1. We can write

P (X) = (qX − p)rIR(X)

Where R(X) is a polynomial with integer coefficients by Gauss’ lemma. From this it is
clear that

max{|p|∞, |q|∞} ≤ |P | ≤ Br

Which yields

Ind(P ) = I ≤
lnB

lnH(p/q)

This result sheds some light onto the hypotheses we’ll take for the main result of this
section, Roth’s lemma. Moreover, Ind(P ) and lnH(p, q) are inversely proportional, which
suggests that we may be able to make Ind(P ) as small as desired for large enough H(p/q).
The argument we will make hinges on this.

Before proving Roth’s lemma, we will prove a lemma in order to obtain another poly-
nomial with desirable properties. We will need to define the following for the lemma: the
differential operator

∆ =
∂i1+...+im

∂Xi1
1 · · ·Xim

m

and the order of a differential operator ord(∆)= i1 + · · · im.

Now, given K a field of characteristic 0, and ϕ1, ..., ϕm ∈ K(X), a Generalized Wronskian
determinant of ϕ1, ..., ϕm is any determinant of the form

det
(
(∆iϕj)1≤j,k≤k

)
where the operators ∆i satisfy ord(∆i) ≤ i− 1.

Lemma 5.5. Let ϕ1, ..., ϕk ∈ K(X1, ..., Xm) be rational functions over a field of charac-
teristic 0. Then ϕ1, ..., ϕk are K−linearly independent if and only if there exists a nonzero
generalized Wronskian of ϕ1, ..., ϕk.
Proof.
We will only prove that if ϕ1, ..., ϕk are K−linearly independent, then there exists a non
zero generalized Wronskian for them, as this is all we will need for the proof of Roth’s
lemma. The proof will be by induction on the number of rational functions, k. For k=1,
we have det(∆1ϕ) = ϕ given that ∆1 must have order 0, so for k=1 the full version of
this lemma states that ϕ is K−linearly independent iff ϕ ̸= 0.
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We now assume that the lemma is true (in the direction we want to prove) for ev-
ery set of k − 1 rational functions in K(X1, ..., Xm), and that ϕ1, ..., ϕk are K−linearly
independent. Our aim is to find a non zero generalized Wronskian of these k func-
tions. Now, for a non zero function λ ∈ K(X1, ..., Xm), any generalized Wronskian of
λϕ1, ..., λϕk, det(∆i(λϕj)1≤i,j≤k) is a K(X1, ..., Xm)−linear combination of generalized
Wronskians of ϕ1, ..., ϕk, det(∆i(ϕj)1≤i,j≤k). This can be verified using the product rule
and the multilinearity of the determinant, and suitably grouping up the same derivatives
of λ ∈ K(X1, ..., Xm) into the same matrix to factor them out. This observation means
that proving the existence of a nonzero generalized Wronskian for λϕ1, ..., λϕk, will give
us the existence of the nonzero Wronskian we are looking for. ϕ1 ∈ K(X1, ..., Xm), so we
can take λ = 1/ϕ1. We have thus reduced reduced to the case where ϕ1 = 1, and we note
that this change preserves the linear independence of the ’new’ ϕ1, ..., ϕm.

Consider the K−linear span of ϕ1, ..., ϕm

V = Kϕ1 + · · ·+Kϕm ⊂ K(X1, ..., Xm)

Due to the K−linear independence, we have dim V =k. Moreover, for every i ≥ 2,
ϕi /∈ K as ϕ1 = 1. In particular, ϕ2 /∈ K so it’s not a constant function, and perhaps after
relabelling the variables, we may assume the variable X1 appears in ϕ2, implying

∂ϕ2

∂X1
̸= 0

From this observation we define the K-vector subspace of V

W =

{
ϕ ∈ V

∣∣∣ ∂ϕ

∂X1
= 0

}

and define t := dimW . ϕ1 ∈W and ϕ2 /∈W , so 1 ≤ t ≤ k − 1. W is a vector subspace of
V, so we can choose a basis for it: {ψ1, ..., ψt} , and extend it to a basis {ψ1, ..., ψk} of V.
From the inequality for t, we notice we can apply the induction hypothesis to the basis
of W. This means there are differential operators ∆∗

1, ...,∆
∗
t satisfying

det(∆∗
iψj)1≤i,j≤t ̸= 0 and ord(∆∗

i )1≤i≤t ≤ i− 1

Now we need to find similar differential operators for the remaining basis of V. We claim
that

∂ψt+1

∂X1
, · · · ,

∂ψk

∂X1
are K−linearly independent

This assertion follows from the observation that

k∑
i=t+1

ci
∂ψi

∂X1
= 0 ⇐⇒

k∑
i=t+1

ciψi ∈W =⇒ ct+1 = · · · = ck = 0

As they are K−linearly independent from the basis of W. Therefore {ψt+1, ..., ψk} is a
K-basis of V/W, and because 1 ≤ dim(W/V ) = dimW − dimV ≤ k − 1, we can now
apply the induction hypothesis obtaining differential operators ∆∗

t+1, ...,∆
∗
k satisfying

det

(
∆∗

i

∂ψj

∂X1

)
t+1≤i,j≤k

̸= 0 and ord(∆∗
i )1≤i≤t ≤ i− t− 1
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To fit together all the operators we obtained, we now define

∆i =

∆∗
i 1 ≤ i ≤ t

∆∗
i

∂

∂X1
t+ 1 ≤ i ≤ k

Note that ord(∆i) ≤ i− 1 for all 1 ≤ i ≤ k. Furthermore, we have

∆iψj = ∆i
∂ψj

∂X1
= 0 for 1 ≤ j ≤ t and t+ 1 ≤ i ≤ k

because for 1 ≤ j ≤ t ψj ∈W . This means that the determinant looks like this

det(∆iψj)1≤i,j≤k = det

∆∗
iψj ∆∗

tψ0

0 ∆∗
i

∂ψj

∂X1


With the big matrix being separated into 4 major blocks 0 ≤ i, j ≤ t , t+ 1 ≤ i ≤ k and
0 ≤ j ≤ k, t + 1 ≤ j ≤ k and 0 ≤ i ≤ k and t + 1 ≤ i, j ≤ k. Now, there is only way
to arrange this matrix into 4 submatrices of the size of the aforementioned boxes such
that only one out of those 4 matrices has determinant 0, and that is by having those 4
submatrices be precisely the ones shown above. Thus, from Laplace’s expansion of the
determinant by complementary minors, we obtain

det(∆iψj)1≤i,j≤k = det(∆∗
iψj)1≤i,j≤t·det

(
∆∗

i

∂ψj

∂X1

)
t+1≤i,j≤k

̸= 0 By induction hypothesis

This doesn’t quite complete the proof yet, as this shows there exists a nonzero generalized
Wronskian for {ψ1, ..., ψk}. Now, by construction ψ1, ..., ψk and ϕ1, ..., ϕk span the same
K−vector space. Because of this we can write

ψj =

k∑
l=1

ajlϕl ∀j ∈ {1, ..., k} for some invertible matrix (ajl) with coefficients in K

It follows from this that

0 ̸= det(∆iψj)1≤i,j≤k = det

(∑
l

ajl∆iϕl

)
= det(ajl)det(∆iϕl)1≤i,l≤k

ajl is invertible so det(∆iϕl)1≤i,l≤k ̸= 0, which concludes the proof.

We can now move on to proving Roth’s lemma, which implies that our auxiliary
polynomial P(X1, ..., Xm) cannot in fact vanish to high order at (β1, ..., βm). The lemma
we just proved is essential as a core idea in the proof of Roth’s lemma is to use Wronskians
to eliminate a variable and then perform an induction over the number of variables. It is
the following lemma that completed the proof of the original version of Roth’s theorem,
so it is appropriately named after Roth, too.

Proposition 5.6 (Roth’s lemma). Let m be a positive integer and let P ∈ Q[X1, ..., Xm]
be a polynomial with algebraic coefficients and degXh

(P ) ≤ rh. Let β = (β1, ..., βm) be
an m-tuple of algebraic numbers. Fix a real number 0 < η satisfying

rh+1

rh
≤ η2

m−1
for all 1 ≤ h ≤ m− 1 (5.5-i)
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and
η2

m−1
min

1≤h≤m
{rhh(βh)} ≥ h(P ) + 2mr1 (5.5-ii)

Then the index of P with respect to (β1, ..., βm; r1, ..., rm) satisfies

Ind(P ) ≤ 2mη

Remark. It should be noted that we will be able to choose a ver small η. Notice how
for η ≥ 1/2 the result of the lemma is trivial as Ind(P ) ≤ m (differentiating P in each
variable as many times as the highest power of that variable), therefore we may assume
η < 1/2. Now, given η is small, (5.5-i) tells us the degrees rh are rapidly decreasing,
which in turn tells us from (5.5-ii) that the heights H(βh) are very rapidly increasing.
Proof. Let K be a number field such that d = [K : Q], P ∈ K[X1, ..., Xm], and
βi ∈ K ∀i ∈ {1, ...,m}. The proof is by induction, so we begin by looking at the case for
m = 1. Let l be the order of vanishing of P (X) atX = β1, meaning P (X) = (X−β1)R(X)
for some polynomial R(X) with R(β1) ̸= 0, and Ind(P ) = l/r1 with respect to (β1; r1).
Proposition 3.10, Gelfand’s inequality yields

H(β1)
r1 Ind(P ) =H(β1)

l = H(X − β1)
l ≤ H(X − β1)

lH(Q) ≤ H(P )er

(Different Heights)

which implies

Ind(P ) ≤
lnH(P ) + r1

r1 lnH(β1)
≤

lnH(P ) + 2r1

r1 lnH(β1)
≤ η using 5.5-ii

Which proves the result for m = 1.
Note that we obtained a better bound than required for the induction. This will be
relevant later to sharpen our estimate when using induction with m = 1.

We now assume Roth’s lemma is true for polynomials with strictly less than m variables,
and will prove it for a polynomial P (X1, ..., Xm) of m variables with the properties of our
auxiliary polynomial. We begin by writing

P (X1, ..., Xm) =

k∑
j=1

ϕj(X1, ..., Xm−1)ψj(Xm) (*)

where the ϕj and ψj are polynomials with coefficients in Q. Now, this decomposition of
P into the sum of products of lesser degree polynomials may not be unique, so we will
choose one that minimizes k. Moreover, note that one possible decomposition is ψj = Xj

m

for j ∈ {0, 1, ..., rm}, so
k ≤ rm + 1 (**)

We now show that the polynomials ϕj and ψj are Q−linearly independent which will
allow us to apply lemma 5.4. We do this by contradiction, suppose the polynomials ϕj
are linearly dependent over Q, this implies the existence of some constants cj ∈ Q such
that

∑
j cjϕj = 0. Relabelling if necessary, we assume ck ̸= 0 which gives the relation

ϕk = −
k−1∑
j=1

cj

ck
ϕj
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which then gives

P (X1, ..., Xm) =
k∑

j=1

ϕjψj =
k−1∑
j=1

ϕjψj −
k−1∑
j=1

cj

ck
ϕjψk =

k−1∑
j=1

ϕj

(
ψj −

cj

ck
ψk

)

contradicting the minimality of k. We can prove that ψ1, ..., ψk are Q−linearly indepen-
dent in exactly the same way, so both ϕ1, ..., ϕk and ψ1, ..., ψk are Q−linearly independent.

With that groundwork done, we can now define

U(Xm) := det

(
1

(i− 1)!

∂i−1

∂Xi−1
m

ψj(Xm)

)
1≤i,j,≤k

Which is the classical Wronskian determinant of ψ1, ..., ψk. These polynomials areQ−linearly
independent, so from lemma 5.4 we know that U(Xm) ̸= 0. Similarly, we can find differ-
ential operators

∆′
i =

1

i1! · · · im!

∂i1+···+im

∂Xi1
1 · · · ∂Xim−1

m−1

with ord(∆′
i) = i1 + · · · + im−1 ≤ i − 1 ≤ k − 1 ≤ rm and a generalized Wronskian

determinant satisfying

V (X1, ..., Xm−1) := det(∆′
iϕj)1≤i,j≤k ̸= 0

After defining these two poltnomials with coefficients in K, we can now define a third
polynomial and exploit that U(Xm) and V (X1, ..., Xm−1) do not share any variables to
compute

W (X1, ..., Xm) := det

(
∆′

i ·

(
1

(j − 1)!

∂j−1

∂Xj−1
m

)
P (X1, ..., Xm)

)
1≤i,j≤k

= det

(
∆′

i ·

(
1

(j − 1)!

∂j−1

∂Xj−1
m

)
k∑

h=1

ϕh(X1, ..., Xm−1)ψh(Xm)

)
1≤i,j≤k

= det

(
k∑

h=1

∆′
iϕh ·

1

(j − 1)!

∂j−1ψh

∂Xj−1
m

)
1≤i,j≤k

= det(∆′
iϕh)1≤i,h≤k · det

(
1

(j − 1)!

∂j−1ψh

∂Xj−1
m

)
1≤h,j≤k

= V (X1, ..., Xm−1)U(Xm)

Immediately lemma 5.4 pays off, allowing us to use our auxiliary polynomial P to create a
polynomial W with m variables that factorizes into two polynomials with fewer variables
than W and P. This will allow us to use Roth’s lemma in 1 and m− 1 variables to bound
the indices of U and V, which will lead to a bound for Ind(W ), which will in turn allow
us to find a bound for Ind(P ). Before proceeding we note that W ∈ K[X1, ..., Xm], and
that ∂j−1/∂X

j−1
m varies with the columns of the matrix used to define W, which will be

relevant later.
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Now, for the following section of the proof we will be using the projective height of a
polynomial instead of the height we have used previously. This height is defined to be
the height of the polynomial’s coefficients taken as homogenous coordinates:

HK(P ) =
∏

v∈MK

∥P∥v and h(P ) =
1

[K : Q]

∑
v∈MK

ln ∥P∥v

Where ∥P∥v is defined as usual. Over Q we have, for example

h(6x2 + 3xy + 12y) = h([6 : 3 : 12]) = h([2 : 1 : 4]) = ln(4) +
∑
v∈M0

Q

ln(1) = ln(4)

With this height, and given U and V are polynomials in independent variables, there are
no cancellations and we get

h(U) + h(V ) = h(W )

Now we need to estimate the degrees and heights of U and V.

The remaining part of the proof will be a series of smaller results, which together result
in the full proof of Roth’s lemma.

a) degXm(U) ≤ krm and degXj (V ) for all j ∈ {1, ...,m− 1}
Proof. each determinant is of size k as shown in lemma 5.4, and the entries of the
determinants for V and U have degree at most rj with respect to each variable Xj .

b) h(W ) ≤ k(h(P ) + 2r1)
Proof. The determinant is the sum of k! terms, each of which is the product of
k polynomials with at most degree rj for the variable Xj . Therefore, from the
definition of W, and using lemma 4.1 we can find a bound for the height of each
entry in the determinant of W.

H(∆′
i∂jP (X1, ..., Xm)) ≤ 2r1+···+rmH(P )

Where ∆′
i and ∂j are defined as used in the definition of the polynomial W. Now,

It follows from the maximum in the definition of the height that

H(W ) ≤ k! ·
(
2r1+···rmH(P )

)k
as we are adding k! terms, each of them bounded by the bound of an individual
entry to the power k (each term in the sum is the product of k polynomials, all
bounded by the same term). hence,

h(W ) ≤ k
(
h(P ) + (r1 + · · ·+ rm) ln 2

)
+ ln k!

Now, due to 5.5-i

r1 + · · ·+ rm ≤ r1(1 + η′ + · · ·+ η′m−1) with η′ = η2
m−1

for simplicity

we have a finite geometric sum which we can bound by taking m ≥ 2 and η′ ≤
(1/2)2 = 1/4.

r1 + · · ·+ rm ≤ r1(1 + η′ + · · · ) ≤
4

3
r1
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On the other hand, kk ≥ k!, so

ln k!

k
≤ ln k ≤ k − 1 ≤ rm ≤

1

2
r1

This all coalesces into

h(W ) ≤ k

(
h(P ) +

(
4

3
ln 2 +

1

2

)
r1

)
≤ k(h(P ) + 2r1)

As we wanted. We note however, that we could replace the 2 by
4

3
ln 2 +

1

2
, which is

smaller, but looks less aesthetic.

We now look to bound the indices of U,V, and W.

c) If Roth’s lemma is true for polynomials in m− 1 or fewer variables, then

Ind(U) ≤ kη2
m−1

and Ind(V ) ≤ 2k(m− 1)η2

with respect to (βm; rm) and (β1, ..., βm−1; r1, ..., rm−1) respectively. Applying lemma
4.5 to this yields

Ind(W ) ≤ Ind(U) + Ind(V ) ≤ 2k(m− 1)η2 + kη2
m−1

with respect to (β1, ..., βm; r1, ..., rm). Proof. To use our induction hypothesis, we
must make sure U and V satisfy hypotheses (5.5-i) and (5.5-ii). We begin with V.
V has m′ = m − 1 variables, degrees bounded by r′j = krj , and η′ = η2, we now
check the conditions.

r′j+1

r′j
=
rj+1

rj
≤ η2

m−1
= η′2

m′−1
(5.5-i ✓)

The projective height of a polynomial is clearly bigger than 0, so the bound for
h(W ) from b) works for h(V ) too, which gives h(V ) ≤ k(h(P ) + 2r1). this allows
us to write

r′jh(βj) = krjh(βj) ≥ kη′−2m
′−1

(h(P ) + 2mr1) (as η2
m−1

= η′2
m′−1

)

= kη′−2m
′−1

(h(P ) + 2r1) + 2kη′−2m
′−1

(m− 1)r1

≥ η′−2m
′−1
h(V ) + 2η′−2m

′−1
m′r1 (k ≥ 1)

For all j ∈ {1, ...,m− 1}, proving 5.5-ii) for V. A detail that is omitted in this proof
is the assertion that the auxiliary polynomial we will be using, P, satisfies 5.5-i) and
5.5-ii). Knowing whether this is true is important, as we just used it to prove V
satisfies 5.5-i) and 5.5-ii), and will shortly do the same for U, but it is omitted for
now as we will prove it once we move on to proving Roth’s theorem using all the
results we are proving now. It is better this way as what we have labelled η in this
proof will be labelled ω in the proof of the Theorem, and this value will span many
of the results we are proving now. We finish up with V by using induction ot show
that

Ind()(β1, ..., βm−1; r1, ..., rm−1)(V ) = k Ind()(β1, ..., βm−1; r
′
1, ..., r

′
m−1)(V ) By definition

≤ k(2m′η′) = 2k(m− 1)η2
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We now move on to showing U satisfies 5.5-i) and 5.5-ii).

U has m′′ = 1 variable, degree bounded by r′′ = krm, and we write η′′ = η2
m−1

.
Since U only has 1 variable, 5.5-i) is empty, so we only need to check 5.5-ii)

h(U) + r′′ ≤ k(h(P ) + c1r1) + krm ≤ k(h(P ) + 2r1)

≤ η2
m−1

krmh(βm) = η′′r′′h(βm)

Where we have used the less aesthetic estimate for h(W ) (and h(U)) we mentioned

before, where c1 =
4

3
ln 2 +

1

2
≈ 1.4242 and thus c1 + η2

m−1 ≤ c1 + 1/4 ≤ 2 as m ≥ 2.

Applying now Roth’s lemma for a polynomial in 1 variable which we proved to begin
the induction we get

Ind((βm; rm))(U) = k Ind()(βm; r′′)(U) ≤ kη′′ = kη2
m−1

This completes the proof for c), all that is left now is to relate the index of W back
to the index of P. By construction, if P vanishes to high order at a point (β1, ..., βm),
then the same will be true for every entry in the matrix used to define W, therefore
W will also vanish to high order. The following result quantifies this intuition into
a concrete statement.

d) With the same notation used previously, we have the following bound for Ind(W )

Ind((W )) ≥
k

2
min

{
Ind((P )), ( Ind((P )))2

}
− k

rm

rm−1

Proof. Similarly to b), we begin by estimating the index of the entries of the matrix
used to define W, with respect to (β1, ..., βm; r1, ..., rm).

Ind

(
∆′

i

(
1

(j − 1)!

∂j−1

∂Xj−1
m

P

))
= Ind(∂i1,...,im−1,j−1P )

≥ Ind(P )−
m−1∑
h=1

(
ih

rh

)
−
j − 1

rm
(From lemma 4.5)

≥ Ind(P )−
i1 + · · ·+ im−1

rm−1
−
j − 1

rm
(From 5.5-i, with η < 1/2)

≥ Ind(P )−
rm

rm−1
−
j − 1

rm
(as ord(∆′

i) = i1 + · · ·+ im−1 ≤ i− 1 ≤ k − 1 ≤ rm)

Now, we know that W is the sum of the product of k polynomials, one from each
column, and of the form ∂i1,...,im−1,j−1P for j ∈ {1, ..., k}. Using lemma 4.5 gives a
lower bound for the index of W with respect to (β1, ..., βm; r1, ..., rm)

Ind(W ) ≥ min
k! terms in sum for W

{Ind
(
Product of k polynomials, ∂i1,...,im−1,j−1P ∀j

)
}

Applying lemma 4.5 again for the product of k polynomials now yields

Ind(W ) ≥
k∑

j=1

min
i1,...,im−1

Ind(∂i1,...,im−1,j−1P )
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Substituting in the lower bound for ∂i1,...,im−1,j−1P we obtained previously, only
when it is positive (The index is nonnegative) results in the following inequality

Ind(W ) ≥
k∑

j=1

max
{
Ind(P )−

rm

rm−1
−
j − 1

rm
, 0
}

≥
k∑

j=1

max
{
Ind(P )−

j − 1

rm
, 0
}
−

krm

rm−1

All that is left now is finding a lower bound for

k∑
j=1

max
{
Ind(P )−

j − 1

rm
, 0
}

As a function of Ind(P ), we will consider two cases.

Case 1. Ind(P ) ≥
k − 1

rm

This case is simple, as it suffices to compute

k∑
j=1

(
Ind(P )−

j − 1

rm

)
= k Ind(P )−

(k − 1)k

2rm
≥
k

2
Ind(P )

Case 2. Ind(P ) ≤
k − 1

rm

We begin by defining N = ⌊rm Ind(P )⌋. From our case we have N ≤ k − 1,

and if we assume that j0 is the smallest j such that Ind(P )−
j0 − 1

rm
< 0, we get

N ≤ rm Ind(P ) < j0 − 1 =⇒ N + 1 = j0 − 1, meaning for this case we only need
to find a bound for

k∑
j=1

max
{
Ind(P )−

j − 1

rm
, 0
}
=

N+1∑
j=1

(
Ind(P )−

j − 1

rm

)

This sum becomes

N+1∑
j=1

(
Ind(P )−

j − 1

rm

)

= (N + 1)Ind(P )−
N(N + 1)

2rm

= (N + 1)

(
Ind(P )−

⌊rm Ind(P )⌋
2rm

)
From the definition of N

≥ (N + 1)
1

2
Ind(P ) ≥ rm Ind(P )

Ind(P )

2
Definition of N

≥
k

2
Ind(P )2 assuming k ≤ rm
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We know that k ≤ rm + 1 though, so we now check the case assuming k = rm + 1.
Substituting k − 1 = rm we obtain

q(N) :=
N+1∑
j=1

(
Ind(P )−

j − 1

rm

)
= (N + 1)Ind(P )−

N(N + 1)

2(k − 1)

q(N) is a quadratic function of N with negative leading coefficient, meaning it will
achieve it’s minimum value for either the minimum or maximum value of N. By
definition, we have the following bounds for N

(k − 1) Ind(P )− 1 ≤ N = ⌊(k − 1) Ind(P )⌋ ≤ (k − 1) Ind(P )

We now use these bounds to compute the minimum and find a lower bound for
q(N).

q((k − 1) Ind(P )− 1) = q((k − 1) Ind(P )) =
(k − 1) Ind(P )2 + Ind(P )

2

Since q(N) takes on the same value at both extremes we know it’s the minimum,
now, since Ind(P ) ≤ 1 we have

q(N) ≥
(k − 1) Ind(P )2 + Ind(P )

2
≥
k Ind(P )2

2

This completes the second case.

Consequently, and after rearranging, we find the following bound for Ind(W ) :

Ind(W ) +
krm

rm−1
≥

k∑
j=1

max
{
Ind(P )−

j − 1

rm
, 0
}
≥
k

2
min{ Ind(P ), Ind(P )2}

As already mentioned, Ind(P ) ≤ m, therefore

Ind(W ) +
krm

rm−1
≥
k

2
min{ Ind(P ), Ind(P )2} ≥

k Ind(P )2

2m
.

From c) we also have an upper bound for Ind(W ), which implies that

Ind(W ) +
krm

rm−1
≤ 2k(m− 1)η2 + kη2

m−1
+

krm

rm−1

≤ k
(
2(m− 1)η2 + 2η2

m−1
)

hypothesis 5.5-i)!

≤ k(2mη2)

Together, both bounds yield

k Ind(P )2

2m
≤ k(2mη2) =⇒ Ind(P )2 ≤ (2mη)2

The index is nonnegative, so we finally obtain

Ind(P ) ≤ 2mη
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5.4 Completion of the Proof of Roth’s Theorem

We have finally assembled all the necessary results needed to complete the proof of Roth’s
theorem, although, more precisely, we will prove Theorem 4.9, which was proven to be
equivalent to Roth’s Theorem. For convenience, and aesthetic purposes, we will restate
the result in this section, however, instead of ε as before we will use δ.

Theorem 5.7. Let K be a number field, let S ⊂MK be a finite set of absolute values on
K with each absolute value extended in some way to K. Given α ∈ K and δ > 0, suppose
that

ζ : S ! [0, 1] is a function satisfying
∑
v∈S

ζv = 1

Then there are only finitely many β ∈ K such that

∥β − α∥v ≤
1

HK(β)(2+δ)ζv
∀v ∈ S (2)

Proof. We will assume there are infinitely many solutions to (2) and derive a contradic-
tion. The basic scheme of the proof is to pic a large integer m, and suppose there are
solutions β1, ..., βm to (2) satisfying certain conditions. We then use the results we have
proven in this chapter to produce a polynomial with certain properties, and show it’s
index is both bigger and smaller than mε with respect to (β1, ..., βm; r1, ..., rm), providing
us with our desired contradiction.

Due to the numerous conditions and hypotheses employed in the results of this section
which will be used in this proof, we will briefly list them here again for convenience. Each
constant is defined in the result it belongs to.

(5.1 hypothesis)

(a) Given ε > 0, choose m such that emε2/4 > 2[Q(α) : Q] = 2d

(5.1 results)

(a) degXh
(P ) ≤ rh ∀h ∈ {1, ...,m}

(b) Ind(P ) ≥
m

2
(1− 2ε) w.r.t (α, ..., α; r1, ..., rm)

(c) |P |∞ ≤ B(α)r1+···+rm

(5.2 hypotheses)

(a) 0 < ε < δ/28

(b) ∥βh − α∥v ≤
1

HK(βh)(2+δ)ζv

(c) D := min
1≤h≤m

{H(βh)rh} ≤ max
1≤h≤m

{H(βh)rh} ≤ D1+ε

(d) C(α, δ) ≤ min
1≤h≤m

{H(βh)}

(5.2 result)
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(a) Ind(P ) ≥ εm w.r.t (β1, ..., βm; r1, ..., rm)

(5.5 hypotheses)

(a) rh+1 ≤ ωrh ∀h ∈ {1, ...,m− 1}
(b) ln |P |∞ + 2mr1 ≤ ω lnD

1. (5.5 result)

(a) Ind(P ) ≤ 2mω2−m+1
w.r.t (β1, ..., βm; r1, ..., rm)

We assume now that there are infinitely many solutions to (2). Decreasing δ only serves
to make the Theorem stronger, so we can assume that 0 < δ < 1. We now choose the
quantities in the list in the following order:

1. Choose ε such that 0 < ε < δ/28, which implies 0 < ε < 1/28. Therefore ε satisfies
the hypotheses of 5.1a) and 5.2a.

2. Choose a positive integer m such that emε2/4 > 2[Q(α) : Q] = 2d. Then all the
hypotheses of 5.1 are true, and we can define ω := ω(m, ε) = (ε/4)2

m−1
, which

implies 2ω2−m+1
= ε/2 < ε

3. (2) has infinitely many solutions in K by assumption, but since K only has finitely
many elements of bounded height by Theorem 3.4, so we can find a solution β1 with
a height as large as we desire. In particular:

H(β1) ≥ C(α, δ) lnH(β1) ≥
m(lnB(α) + 2)

ω

4. We then use β1 to choose m−1 more solutions to (2) successively, namely β2, ..., βm
that satisfy

H(βh+1)
ω ≥ H(βh)

2 ∀h ∈ {1, ...,m− 1}

Since ω < 1, we have H(βh+1) ≥ H(βh) ∀h ∈ {1, ...,m − 1}, which satisfies hy-
pothesis 5.2d). We note that by choosing βh’s satisfying (2), have also verified that
hypothesis 5.2b) is true.

5. Choose a positive integer r1 such that H(β1)
ωr1 ≥ H(βm)2

6. Our aim is to choose positive integers r2, ..., rm so that all the H(βh)
rh ’s are ap-

proximately equal. Using r1 as our ’base point’, we can define

rh =

⌈
r1 lnH(β1)

lnH(βh)

⌉

Where ⌈x⌉ is the ceiling function. We want to verify these choices of rh’s satisfy
hypothesis 5.2c)

r1 lnH(β1) ≤ rh lnH(βh) By definition of rh and ⌈x⌉
≤ r1 lnH(β1) + lnH(βh) As rh ≤ 1 + r1 lnH(β1)/ lnH(βh)

≤ r1 lnH(β1) + lnH(βm) As H(βh) is increasing over h

≤ r1 lnH(β1) + ωr1 lnH(β1)/2 From our choice of r1

≤ (1 + ε)r1 lnH(β1) From our definition of ω and ε << 4
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Taking exponents gives

H(β1)
r1 ≤ H(βh)

rh ≤ H(β1)
r1(1+ε) ∀h ∈ {1, ...,m}

Therefore D = H(β1)
r1 and max

1≤h≤m
{H(βh)

rh} ≤ D(1+ε), satisfying hypothesis 5.2c).

Now, from the definition of rh we can compute

rh+1

rh
=

⌈
r1 lnH(β1)

lnH(βh+1)

⌉
⌈
r1 lnH(β1)

lnH(βh)

⌉

≤

(
r1 lnH(β1)

lnH(βh+1)
+ 1

)/(
r1 lnH(β1)

lnH(βh)

)

=
lnH(β1)

lnH(βh+1)
+
r1 lnH(βh)

lnH(β1)

≤
ω

2
+
ω

2
= ω From our choice of r1 and βh’s in (4) and (5)

Hence rh+1 ≤ ωrh, which verifies hypothesis 5.5a).
We have now verified every hypothesis except for 5.5b), so we can use propositions
5.1 and 5.2.

7. Proposition 5.1 provides an auxiliary Polynomial P (X1, ..., Xm) ∈ Z[X1, ..., Xm]
satisfying the three results 5.1a), 5.1b) and 5.1c).

8. Now that we have the polynomial, applying proposition 5.2 yields

Ind(P ) ≥ mε with respect to (β1, ..., βm; r1, ..., rm)

9. All that’s left is verifying hypothesis 5.5b) to apply Roth’s lemma to the auxiliary
polynomial as well. We identify ω = η2

m−1
and use the fact that

lnD = r1 lnH(β1) and r1 = max
h

{rh} As H(βh) increases in h

to compute

ln |P |∞ + 2mr1

lnD
≤

(r1 + · · ·+ rm) lnB(α) + 2mr1

lnD
From result 5.1c)

≤
r1(ln |P |∞ + 2)

lnH()β1

≤ ω From our choice of β1 back in (3)

This completes the verification of all the hypotheses and allows us to apply Roth’s
lemma to the auxiliary polynomial with η = ω2−m+1

= ε/4. This yields

Ind(P ) ≤ 2mη = mε/2 with respect to (β1, ..., βm; r1, ..., rm)

However, (8) and (9) together give an impossible bound for Ind(P ) with respect to
(β1, ..., βm; r1, ..., rm)

mε ≤ Ind(P ) ≤ mε/2

Contradicting the hypothesis that there are infinitely many β ∈ K that satisfy (2). This
proves Theorem 4.9, which, by Theorem 4.10, is equivalent to a proof of Roth’s Theorem.
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5.5 On the effectivity of the proof

Having now proved Roth’s Theorem, we delve into it’s significance to Diophantine Ap-
proximation. Roth’s Thorem is purely qualitative, it simply tells us there are finitely
many solutions, but doesn’t provide any details regarding those solutions, if there are
any. This is due to the assumptions that engineer the proof: we begin by assuming there
is a solution β1 whose height is as large as needed, then β2 has a much larger height that
depends on the height of the previous solution, and so on. We do not have a way to know
anything about β1, much less the solutions that come after it that depend on it, and due
to assuming there is a solution, there may not be any, and we would still have a finite
amount of solutions.

It is in fact still an open problem to make Roth’s proof effective, that is, give an effective
algorithm to compute all the elements of the set of solutions. On the other hand, ever
since Roth, progress has been made on finding quantitative results, which means giving
an upper bound for the number of solutions.
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6 Applications of Roth’s theorem: the unit equation

Here we begin to reap the rewards for proving this version of Roth’s theorem, but first of
all we must define the ring of S-integers.

Definition 6.1 (Ring of S-integers). Given S ⊂ MK a set of absolute values containing
the archimedian absolute values M∞

K , then the ring of S-integers of K is defined as

RS = {x ∈ K | |x|v ≤ 1 ∀v ∈MK ∖ S}

We note that this definition comes from generalizing the ring of integers of K, which
comes from the observation that the non-archimedean absolute values M0

K are those
corresponding to the prime ideals. The ring of integers of K can be characterized with
absolute values as

RK = {x ∈ K | |x|v ≤ 1 ∀v ∈M0
K}

With this we are ready to show that the two variable S-unit equation has finitely many
solutions.

Theorem 6.2 (Siegel, Mahler). Let K/Q be a field extension, let S ⊂MK be a finite set
of absolute values on K that includes all the archimedean absolute values, and let RS be
the ring of S-integers of K. Then the S-unit equation

U + V = 1

Has only finitely many solutions in S-units U, V ∈ R∗
S

The proof will rely on Roth’s theorem, so we need a way to find a link between the
solutions of the unit equation and Diophantine approximation. We begin by noticing
that by definition, U, V ∈ R∗

S means there is some absolute value w ∈ S such that both
|U |w and |V |w are large (≥ 1). U, V ̸= 0, so we can rearrange the equation into∣∣∣∣∣UV − 1

∣∣∣∣∣
w

≤
1

|V |w

Meaning U/V is a good approximation of 1. This of course doesn’t contradict Roth’s
theorem, we must use properties of R∗

S and manipulate this equality some more. By [2,
Theorem C.3.3] R∗

S is finitely generated, so we can substitute U = aXm and V = bY m

for some integer m. We will then show that X/Y is almost as close to
m
√

−b
a as U/V is

to 1, while HK(X/Y ) is approximately HK(U/V )1/m. This means that we can make the
height smaller without significantly changing the approximation distance, this allows us
to take m as large as necessary to contradict Roth’s theorem.
Proof.(of Theorem 6.1) Suppose there are infinitely many solutions U, V ∈ R∗

S to the
S-unit equation U + V = 1. Let s = #S be the number of absolute values in S, and fix
a positive integer m = 2s + 1. R∗

S is finitely generated, so it’s quotient group R∗
S/R

∗m
S

is also finite and we can fix a set of coset representatives, A. Hence, every element of
R∗

S can be written as an element of A multiplied by a member of R∗m
S , that is, an m-th

power. This defines a map

{(U, V ) ∈ R∗
S ×R∗

S | U + V = 1} ! A×A

(U, V ) 7−! (a, b)
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With U/a, V/b ∈ R∗m
S . However the set on the left is the one we assume is infinite, but

clearly A×A is finite, so by the pidgeonhole principle there must be some (a, b) ∈ A×A
that corresponds to infinitely many (U, V )’s. Writing U/a = Xm and V/b = Y m, which
is equivalent to saying there exist a, b ∈ A such that

aXm + bY m = 1

has infinitely many solutions X,Y ∈ R∗
S . Now, the set S has finitely many elements, and

we can assign each solution to an absolute value by assigning (X,Y ) to the absolute value
w that maximizes ∥Y ∥w. Since we have infinite solutions and s is finite, there’s at least
an absolute value corresponding to an infinite number of solutions, we call it w, and fix

α =
m
√

−b
a . Then

1

aY m
=
aXm + bY m

aY m
=
Xm

Y m
+
b

a
=
Xm

Y m
− αm =

∏
ζ∈µm

(
X

Y
− ζα

)

Where µm is the set of all the mth roots of unity. By taking ∥Y ∥ to be large, we are
ensuring that at least one of the factors in the product is small. Moreover, if we consider
geometrically where the points ζα lie on the complex plane, it makes sense to claim only
one (at the absolute most two) of the factors |X/Y − ζα| is ’small’. To see this, let
ζ, ζ ′ ∈ µm be distinct mth roots of unity. Then, using the triangle inequality we get∣∣∣∣∣XY − ζα

∣∣∣∣∣
w

+

∣∣∣∣∣XY − ζ ′α

∣∣∣∣∣
w

≥ |ζα− ζ ′α|w ≥ C1

Where we define this constant C1 = C1(K,S,m) independently of X and Y , as they only
depend on the smallest ’distance’ between tw of the ζα. Furthermore, despite depending
on α, since α comes from our choice of S and m, C1 is well defined. It follows then that

1

|aY m|w
=
∏

ζ∈µm

∣∣∣∣∣XY − ζα

∣∣∣∣∣
w

≥

(
min
ζ∈µm

∣∣∣∣∣XY − ζα

∣∣∣∣∣
w

)
·

(
C1

2

)m−1

Since at most two terms of the sum can be equal to C1/2, which only happens when it

equals min
ζ∈µm

∣∣∣∣∣XY − ζα

∣∣∣∣∣
w

, therefore

1

∥Y ∥mw
≥ C2 min

ζ∈µm

∥∥∥∥∥
(
X

Y
− ζα

)∥∥∥∥∥
w

We now use the pidgeon hole principle in a similar way as before. The pidgeons are the
solutions (X,Y ), and we place them into th epidgeonholes that are the m roots of unity,
according to which root of unity ζ ∈ µm minimizes ∥(X/Y ) − ζα∥w. We call the mth

degree unity corresponding to the pidgeonhole with infinite solutions ξ. Therefore

1

∥Y ∥mw
≥ C2

∥∥∥∥∥
(
X

Y
− ξα

)∥∥∥∥∥
w

Which shows that X/Y is a good approximation to ξα, all that is left now is finding a
way to relate ∥Y ∥w to the height of X/Y .
We chose w in order to maximize ∥Y ∥v, and given that ∥Y ∥v = 1 ∀v /∈ S we have

∥Y ∥v = max
v∈S

∥Y ∥v ≥
(∏

v∈S
∥Y ∥v

)1/s
=
( ∏

v∈MK

max{1, ∥Y ∥v}
)1/s

= HK(Y )1/s
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Using now that
H(x+ y) ≤ 2H(x)H(y) H(xy) ≤ H(x)H(y)

and that (X,Y ) is a solution of aXm + bY m = 1, we can compute

HK

(
Xm

Y m

)
= HK

(
1

aY m
−
b

a

)
≤ 2[K:Q]HK

(
1

aY m

)
HK

(
b

a

)

≤ 2[K:Q]HK

(
1

Y m

)
HK

(
b

a

)
HK

(
1

a

)
Using thatHK(Tm) = HK(T )m and takingmth roots we obtain another constant C3(K,S,m)
such that

HK(X/Y ) ≤ C3HK(1/Y ) = C3HK(Y )

Together with the other bound we get

∥Y ∥w ≥ C
−1/s
3 HK(X/Y )1/s

And combining this now with the inequality showing X/Y is a good approximation to ξα
we get

1/(C2C
m
4 )

HK(X/Y )m/s
≥

∥∥∥∥∥
(
X

Y
− ξα

)∥∥∥∥∥
w

By assumption, we have infinitely many X,Y ∈ R∗
S satisfying this inequality, but since

we chose m = 2s+1, m/s = 2+1/s > 2, so Roth’s theorem tells us there are only finitely
many solutions to this inequality in K. This contradicts our assumption, hence, there’s
only finitely many solutions to the unit equation over R∗

S .

To complement this theorem, we will announce a much stronger result that provides
a quantitative outlook on the unit equation, thanks to Evertse.

Theorem 6.3. Let K/Q be a field extension, let S ⊂ MK be a finite set of absolute
values on K that includes all archimedean absolute values, and let RS be the ring of
S-integers of K. Then for any A,B ∈ K∗ the S-unit equation

AU +BV = 1

has at most 3 · 7[K:Q]+2#S solutions (U, V ) over R∗
S .
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