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We have studied the meson-baryon interaction in the neutral S = −2 sector using an extended Unitarized 
Chiral Perturbation Theory, which takes into account not only the leading Weinberg-Tomozawa term (as 
all the previous studies in S = −2 sector), but also the Born terms and next-to-leading order contribution. 
Based on the SU(3) symmetry of the chiral Lagrangian we took most of the model parameters from the 
BCN model [1], where these were fitted to a large amount of experimental data in the neutral S = −1
sector. We have shown that our approach is able to generate dynamically both �(1620) and �(1690)

states in very reasonable agreement with the data, and can naturally explain the puzzle with the decay 
branching ratios of �(1690). Our results clearly illustrate the reliability of chiral models implementing 
unitarization in coupled channels and the importance of considering Born and NLO contributions for 
precise calculations.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

The recent analysis of the �−
b → J/ψ�K − decay by the LHCb 

Collaboration showed the presence of two narrow excited �−
states in the K −� invariant mass distribution [2]. On a one to one 
assignation, the peak located at lower energy was identified as the 
�(1690)− while the second one as the �(1820)− . Their masses 
and widths were measured with improved precision in compari-
son with [3], where the typical uncertainties are about 5 MeV. The 
corresponding data treatment and fitting procedure established the 
�(1690)− mass and width as:

M = 1692.0 ± 1.3+1.2
−0.4 MeV, � = 25.9 ± 9.5+14.0

−13.5 MeV. (1)

The LHCb measurement was preceded by the first observa-
tion of the �(1620)0 baryon decaying into �−π+ via the �+

c →
π+π+�− process, which was collected with the Belle detector 
at the KEKB asymmetric-energy e+e− collider [4]. The subsequent 
data analysis determined its mass and width as:

M = 1610.4 ± 6.0+6.1
−4.2 MeV, � = 59.9 ± 4.8+2.8

−7.1 MeV. (2)
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In addition, the �−π+ invariant mass distribution studied in [4]
shed some more light on the structure of hyperon resonances with 
strangeness S = −2 by providing a clear signal of the �(1530)0

resonance and a structure that can be attributed to the �(1690)0

state.
With all previous measurements, and bearing in mind that the 

information reported by LHCb in [2] has not been yet updated in 
the PDG compilation [3], the �(1620) state is rated with a single 
star status and its spin and parity ( J P ) need to be confirmed. Ac-
tually, it has been common practice to assume J P = 1/2− as the 
corresponding spin-parity given the analogy with the �(1405) as 
its counterpart in S = −1. Apparently, the status of the �(1690)0

seems to be clearer since it is rated with three-star and its spin-
parity is established as J P = 1/2− from an experimental evidence 
in the �+

c → K +π+�− decay [5].
On the theoretical side, there is still a long-term controversy 

about the nature of the �(1620) and �(1690) states. There are 
certain indications pointing to the fact that these states may have a 
nontrivial internal structure rather than a plain qqq configuration. 
On the one hand, as already mentioned, the unavoidable analogy 
between �(1620) and �(1405) leads one to interpret the �(1620)

as a molecular state arising from the Unitarized Chiral Perturba-
tion (UChPT) scheme [3,6]. On the other hand, according to the 
study of [5], the spin-parity of the �(1690) should be J P = 1/2− , 
a fact that qualifies such a state to decay into the π�, K̄� or K̄�
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by 

https://doi.org/10.1016/j.physletb.2023.137927
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2023.137927&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:edfeijoo@ific.uv.es
https://doi.org/10.1016/j.physletb.2023.137927
http://creativecommons.org/licenses/by/4.0/


A. Feijoo, V. Valcarce Cadenas and V.K. Magas Physics Letters B 841 (2023) 137927
Fig. 1. Feynman diagrams for meson-baryon interaction: WT term (i), direct and 
crossed Born terms (ii) and (iii), and NLO terms (iv). Dashed (solid) lines represent 
the pseudoscalar octet mesons (octet baryons).

channels in s-wave. By inspecting the �(1690) branching ratios in 
[3], one can appreciate that the �π�/�K̄� one is less than 0.09 in 
spite of the fact that π� has a much larger phase space than K̄�. 
This issue was already addressed in [7], where the �(1690) was 
interpreted as a K̄� quasibound state dynamically generated from 
the Chiral Unitary approach in coupled channels [8,9]. The expla-
nation for the smallness of the above branching ratio was found to 
be due to the nearly vanishing π� couplings.

Being chronologically accurate, the S = −2 meson-baryon in-
teraction within the SU(3) UChPT approach in coupled channels 
was first employed in [10], the authors of which found one res-
onance that was assigned to the �(1620) state ruling out any 
possibility of being the �(1690) state. This work was followed by a 
similar study [11], and some of the previous authors revisited the 
meson-baryon interaction in S = 0, −1, −2, −3 sectors yet using a 
SU(6) extension of the Chiral Lagrangian within a coupled channel 
unitary approach in [12]. Among the large number of resonances 
found in these two last studies, the �∗ poles with J P = 1/2− de-
scribe qualitatively the properties of the �(1620), �(1690) and 
�(1950) states. In [7], the �(1690) was dynamically generated in 
good agreement with experimental mass yet with a tiny width. Re-
garding the �(1620) state, only one virtual state was found at an 
energy more than 50 MeV below the experimental location. Re-
cently, a new study [13] based on the same approach as the one 
in [10] pinned the �(1620) down to the experimental value at the 
expense of reducing unnaturally one of the parameters present in 
the unitarization method.

The forthcoming experiments studying hadronic decays of 
charm baryons, governed by c → s transitions, will provide more 
information about the S = −2 baryon spectroscopy. The on-
going measurements of γ p → K +(�∗/�∗) → K +K +/0�∗−/0(→
K +K +/0 K̄�) by GlueX Collaboration [14] can also play a crucial 
role on this issue. Furthermore, the K −� Correlation Function can 
be experimentally accessed with Femptoscopy Technique by ALICE 
at LHC [15] as it was done for K̄ N [16,17].

In view of that, the current theoretical models should be revis-
ited and improved. In this sense, in the present work, we make 
a step forward and, for the first time in this sector, we take 
into account higher order contributions in the Lagrangian from 
which the interaction kernel is derived. In all previous theoret-
ical works [7–13], only a contact Weinberg-Tomozawa (WT)-like 
term was used as interaction. Further perturbative corrections have 
been systematically ignored since they are assumed to play a very 
moderate role, specially, in s-wave. And, so far, it has been seen 
that these models provide a plausible explanation on the nature of 
these �∗ states in terms of meson-baryon molecules. However, we 
wonder how strong this assumption is and whether these higher 
order terms can help to describe accurately the mass and width 
of such states simultaneously, what was not achieved in the above 
cited papers.

In the S = −1 sector by looking at K̄ N interaction we can 
find evidences of the non-negligible role of the s- and u-channels, 
known as direct and cross Born terms, and the tree level next-to-
leading order (NLO) contribution, schematically shown in Fig. 1. 
For instance, in [18], the authors pointed out that the Born con-
tributions reach 20% of the dominant WT contribution just 65
MeV above the K̄ N threshold. As the energy increases moderately, 
the combined effect between the Born and the NLO terms plays 
a crucial role in the reproduction of the total cross section from 
2

K̄ N → η�, η�, K� processes [19,20,1]. At this point, it should be 
recalled that the value of the η-channel thresholds is located a lit-
tle bit more than 200 MeV above K̄ N threshold. Similarly, the dif-
ference between K̄ 0� and the η�0 threshold is around 250 MeV. 
Thus, in the S = −2 sector a similar impact of these terms can be 
expected in the energy regime delimited by the higher thresholds. 
These new pieces in the interaction kernel will enable processes 
that are not connected with the WT term and, consequently, the 
additional interplay among the channels may affect the widths and 
the locations of the dynamically generated states.

With all this in mind, in the present study we have incor-
porated to the meson-baryon interaction in the neutral S = −2
sector, in addition to WT term, the s-, u-channel Born diagrams 
and the tree level NLO contribution, by adapting the BCN model 
(WT+Born+NLO model in [1]). And we show that such an extended 
model is able to generate dynamically both �(1620) and �(1690)

states in a fair agreement with experimental data.

2. Formalism

The derivation of the meson-baryon interaction from effective 
chiral lagrangians has been addressed many times in literature 
[8,9,21]. Precisely for this reason, in this section we only high-
light the main steps and underline the particularities of our model. 
As a starting point, the SU (3) chiral effective Lagrangian up to 
NLO is taken into consideration, Lef f

φB = L(1)
φB +L(2)

φB , with L(1)
φB and 

L(2)
φB being the most general form of the leading order and NLO 

contributions to meson-baryon interaction Lagrangian, respectively, 
defined as

L(1)
φB = i〈B̄γμ[Dμ, B]〉 − M0〈B̄ B〉 − 1

2
D〈B̄γμγ5{uμ, B}〉

−1

2
F 〈B̄γμγ5[uμ, B]〉 , (3)

L(2)
φB = bD〈B̄{χ+, B}〉 + bF 〈B̄[χ+, B]〉 + b0〈B̄ B〉〈χ+〉

+d1〈B̄{uμ, [uμ, B]}〉 + d2〈B̄[uμ, [uμ, B]]〉
+d3〈B̄uμ〉〈uμB〉 + d4〈B̄ B〉〈uμuμ〉 . (4)

The 3 × 3 unitary matrix B contains the fundamental baryon 
octet (N, �, �, �), in both equations. The incorporation of the 
pseudoscalar meson octet (π, K , η) requires a more complicated 
prescription, uμ = iu†∂μU u†, to preserve the chiral symmetry. The 
pseudoscalar fields are collected in a 3 ×3 unitary φ matrix, which 
enters via U (φ) = u2(φ) = exp

(√
2iφ/ f

)
, where f is the meson 

decay constant. In Eqs. (3) and (4), the symbol 〈. . . 〉 stands for 
trace in flavor space.

The Low Energy Constants (LECs) D and F present in Eq. (3)
are the so called SU (3) axial vector constants, which are subjected 
to the constraint g A = D + F = 1.26. In the same expression, M0
is the common baryon octet mass in the chiral limit. The covariant 
derivative, [Dμ, B] = ∂μB + [�μ, B] with �μ = [u†, ∂μu]/2 being 
the chiral connection, is present in Eq. (3). Furthermore, in Eq. (4), 
we find χ+ = 2B0(u†Mu† + uMu), which breaks chiral symme-
try explicitly via the quark mass matrix M = diag(mu, md, ms) and 
B0 = − 〈0| q̄q |0〉/ f 2; the latter is related to the order parame-
ter of spontaneously broken chiral symmetry. The corresponding 
LECs at NLO, namely bD , bF , b0 and di (i = 1, . . . , 4), need to be 
determined from experiment since they are not fixed by the sym-
metries of the underlying theory. Given the lack of scattering data 
availability in the S = −2 sector, we effectively assume the SU (3)

symmetry in the present work, and thus we use the LECs obtained 
in the S = −1 sector for the WT+Born+NLO model (see Table (II) 
in [1]).
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Table 1
Dij and Li j coefficients in the NLO potential of the pseudoscalar meson and the baryon octet with strangeness S = −2 and charge Q = 0. The coefficients are symmetric, 
D ji = Dij and L ji = Li j . With the definitions: μ2

1 = m2
K + m2

π , μ2
2 = 5m2

K − 3m2
π , μ2

3 = 4m2
K − m2

π , μ2
4 = 8m2

K − 3m2
π , μ2

5 = 8m2
K − 5m2

π .

Dij π+�− π0�0 K̄ 0� K −�+ K̄ 0�0 η�0

π+�− 2(2b0 + bD − bF )m2
π 0 −(bD − 3bF )μ2

1/
√

6 0 (bD + bF )μ2
1/

√
2 2

√
2(bD − bF )m2

π /
√

3

π0�0 4(b0 + bD − bF )m2
π (bD − 3bF )μ2

1/2
√

3 (bD + bF )μ2
1/

√
2 (bD + bF )μ2

1/2 −2(bD − bF )m2
π /

√
3

K̄ 0� 2(6b0 + 5bD )m2
K /3 2

√
2bDm2

K /
√

3 −2bDm2
K /

√
3 (bD − 3bF )μ2

2/6

K −�+ 2(2b0 + bD + bF )m2
K −2

√
2bF m2

K −(bD + bF )μ2
2/

√
6

K̄ 0�0 2(2b0 + bD )m2
K (bD + bF )μ2

2/2
√

3

η�0 2(2b0μ
2
3 + bDμ2

4 + bF μ2
5)/3

Li j π+�− π0�0 K̄ 0� K −�+ K̄ 0�0 η�0

π+�− −d1 + d2 + 2d4 0
√

3(d1 − d2)/
√

2 −2d2 + d3 (d1 + 3d2)/
√

2 −√
2(d1 − 3d2)/

√
3

π0�0 −d1 + d2 + 2d4 −(d1 − 3d2)/2
√

3 (d1 + d2)/
√

2 −(d1 + d2)/2 0

K̄ 0� (d1 + 3d2 + 2d4)/2
√

6d2 −√
3d2 0

K −�+ 0 −√
2d1 −(d1 + 3d2)/

√
6

K̄ 0�0 d2 + 2d4 (d1 + 3d2)/2
√

3

η�0 d1 + 3d2 + 2d4
In Fig. 1, the different contributions to the meson-baryon in-
teraction kernel are diagrammatically represented. More precisely, 
the contact diagram (i) corresponds to the WT contribution; this 
comes from the term with the covariant derivative in Eq. (3). Next, 
the vertices of diagrams (ii) and (iii), which stand for the direct 
and crossed Born contributions, are obtained from the second and 
third terms of Eq. (3). And finally, the contribution of the NLO con-
tact diagram, i.e. the fourth diagram of Fig. 1, is directly extracted 
from Eq. (4).

Thus, the total interaction kernel up to NLO can be expressed as 
the sum of all those terms: V ij = V W T

i j + V direct
i j + V crossed

i j + V N L O
i j , 

where the elements of the V ij = 〈i|V | j〉 interaction matrix couple 
the meson-baryon channels which, in the present case, amount 
to six: π0�0, π+�− , K̄ 0�, K −�+ , K̄ 0�0 and η�0. The explicit 
expressions for each contribution to the interaction kernel (for 
S = −1 sector) can be found in Eqs. (7)-(10) of [22] that, once pro-
jected onto s-wave, they recover the structure showed by Eqs. (6)-
(8) and (10) in [20]. The expressions for S = −2 are just the same, 
but obviously the corresponding coefficients should be recalculated 
for this sector. Actually, the Cij coefficients of the WT contact 
potential can be found in Table 1 of Ref. [7]. The baryon-meson-
baryon coefficients present in the pseudoscalar-coupling vertexes 
in both Born diagrams can be obtained taking into account the re-
lations (A.5) in Appendix A of Ref. [23]. Finally, one can find the 
NLO Clebsch-Gordan type coefficients, Dij and Li j in Eq. (10) of 
[20], displayed in Table 1.

Once the V ij potential is calculated, the scattering matrix is 
obtained by solving the Bethe-Salpetter (BS) equation in coupled 
channels by factorizing the interaction kernel and the scattering 
amplitude out of the integral equation, leaving a simple system 
of algebraic equations to be solved which, in matrix form, reads 
as (see [1] and the references therein for a more detailed expla-
nation) Tij = (1 − V ilGl)

−1 Vlj , where Tij represents the scattering 
amplitude for a given starting i-channel and an outgoing j-channel, 
and Gl is the loop function standing for a diagonal matrix with el-
ements:

Gl = i
∫

d4ql

(2π)4

2Ml

(P − q )2 − M2 + iε

1

q2 − m2 + iε
, (5)
l l l l

3

where Ml and ml are the baryon and meson masses of the l-
channel. The dimensional regularization is applied on this function 
because of its logarithmic divergence to finally get:

Gl = 2Ml

(4π)2

{
al(μ) + ln

M2
l

μ2
+ m2

l − M2
l + s

2s
ln

m2
l

M2
l

+

qcm√
s

ln

[
(s + 2

√
sqcm)2 − (M2

l − m2
l )2

(s − 2
√

sqcm)2 − (M2
l − m2

l )2

]}
. (6)

The loop function Gl comes in terms of the subtraction constants 
(SC) al that replace the divergence for a given dimensional regu-
larization scale μ, which is taken to be 630 MeV in the present 
work. These constants are unknown, however, one can establish a 
natural size for them following [18], and it comes out to be around 
−2.0; in our study we will allow the substracting constants to vary 
within the interval [−3.5, −1]. In addition, isospin symmetry ar-
guments are frequently used to reduce the number of independent 
SC, in particular, we consider 4 such constants here (aπ� , aK̄� , aK̄�

and aη�).
The dynamically generated resonance states show up as pole 

singularities of the scattering amplitude at 
√

s = zp = MR − i�R/2, 
whose real and imaginary parts correspond to its mass (MR ) and 
the half width (�R/2). The complex coupling strengths (gi , g j) of 
the resonance to the corresponding meson-baryon channels can 
be evaluated assuming a Breit-Wigner structure for the scatter-
ing amplitude in the proximity of the found pole on the real axis, 
Tij(

√
s) ∼ gi g j/(

√
s − zp).

3. Results

Our starting point is a model derived from a chiral Lagrangian 
up to NLO in s-wave (WT+Born+NLO model of [1]), which in-
volves a number of parameters, LECs plus SC, that amount to a 
maximum of 16 in the S = −1 sector. In the sector of interest, 
S = −2(Q = 0), due to a smaller number of available channels a 
number of parameters is reduced to 14, namely: the meson decay 
constant f , the axial vector couplings D and F , the NLO coeffi-
cients b0, bD , bF , d1, d2, d3, d4; and four SC aπ� , aK̄� , aK̄� and 
aη� . In the present work, as first step, all the LECs are assumed to 
be SU (3) symmetric, meaning that the values of f , D , F , b0, bD , 



A. Feijoo, V. Valcarce Cadenas and V.K. Magas Physics Letters B 841 (2023) 137927
Table 2
Values of the parameters for the different models described in the 
text. The subtraction constants are taken at a regularization scale 
μ = 630 MeV.

Model I Model II

aπ� −2.7981 −2.7228

aK̄� −1.0071 −1.0000

aK̄� −3.0938 −2.9381

aη� −3.2665 −3.3984

f / fπ 1.196 (fixed [1]) 1.204

bF , d1, d2, d3 and d4 are fixed to the ones obtained in [1]. Thus, 
the strategy followed consists of varying the SC within a reason-
able natural size range, [−3.5, −1], in order to describe the masses 
and widths of the �(1620) and �(1690) states in the best possible 
way. This procedure is called Model I in the present study.

It is worth mentioning that, prior to proceed with the full in-
teraction kernel, we take the leading order contact term (WT) as 
the only contribution in the interaction kernel and tried to repro-
duce the �∗ of interest by means of tuning the SC. As found in 
the literature mentioned above, one is able to dynamically gener-
ate two poles, but the features of those could not reproduce the 
experimental masses and widths of �(1620) and �(1690) at the 
same time. First of all, for WT-based models even if two reso-
nances are generated there exists a mutual incompatibility in pin-
ning both masses down simultaneously. Furthermore, the width of 
the �(1690) remains invariably small around 1 MeV. The �(1620)

resonance can be reproduced very well, but only allowing some of 
the SC to take unnatural-size values.

By contrary, the situation rather improves when all contribu-
tions are included in the kernel. This is clearly seen by inspect-
ing the results for Model I in Table 3 using the corresponding 
parametrization from Table 2. The most eye-catching output is the 
closeness of both masses to the experimental values simultane-
ously. In particular, the energy location of the pole associated to 
�(1620) is within the experimental error band (Eq. (2)) while the 
pole related to �(1690) is about 7 MeV below the lower edge of 
the corresponding experimental error band (Eq. (1)). Furthermore, 
the value for the theoretical width of �(1690) is within the error 
band (Eq. (1)). This is in contrast to what happens to the theoreti-
cal �(1620) width that reaches about a factor 2.5 bigger than the 
nominal value (Eq. (2)) (this issue is addressed below).

As a next step, in Model II we decided to consider the global 
scaling factor f as a free parameter of the model, yet keeping 
it constrained within the corresponding error bands of the BCN 
model (Table II of Ref. [1]). Actually, the value of the constant f in 
our model does not correspond exactly to the known experimen-
tal value of fπ , because it effectively takes into account the role of 
kaons and η’s in the system. This is a general feature of the stud-
ies were UChPT models are fitted to the data - effectively f is a bit 
larger than fπ . However, the role of each pseudoscalar meson in 
the S = −2 sector differs from the one in the S = −1 sector, stud-
ied in [1], therefore it is reasonable to readjust the f value for the 
current study.

As it could be expected, because of the increased relative rel-
evance of K̄ ’s and η’s over π ’s in the S = −2 sector, our system 
prefers a bit higher value for f (see results for Model II in Table 2). 
On the other hand, the corresponding SC barely differ from those 
of Model I. These combined modifications provide however a no-
table improvement of the pole location in the complex plane in 
order to describe the experimental states as seen in Table 3. The 
theoretical masses reach values closer to the nominal ones, the 
same can be said about the theoretical �(1690) width. Regarding 
the �(1620) width for Model II, the new value exceeds by 10 MeV 
that of Model I.
4

Table 3
Comparison of the pole positions between the models: Model I and Model II (in 
MeV) with their couplings gi and the corresponding modulus found in J P = 1

2
−

, 
(I, S) = ( 1

2 , −2).

Model I �(1620) �(1690)

M [MeV] 1599.95 1683.04

� [MeV] 158.88 11.51

gi |gi | gi |gi |
π+�− 1.70 + i0.78 1.87 0.44 + i0.07 0.45

π0�0 −1.22 − i0.62 1.37 0.08 − i0.10 0.13

K̄ 0� −2.11 − i0.08 2.11 0.50 − i0.06 0.51

K −�+ 0.81 − i0.22 0.84 1.0 − i0.16 1.01

K̄ 0�0 −0.41 + i0.28 0.50 −1.34 + i0.26 1.37

η�0 −0.23 + i0.13 0.26 −0.74 + i0.13 0.76

Model II �(1620) �(1690)

M [MeV] 1608.51 1686.17

� [MeV] 170.00 29.72

gi |gi | gi |gi |
π+�− 1.73 + i0.85 1.93 0.51 + i0.25 0.57

π0�0 −1.24 − i0.67 1.41 0.09 − i0.06 0.11

K̄ 0� −2.12 − i0.09 2.12 0.81 − i0.02 0.81

K −�+ 0.8 − i0.25 0.84 1.36 + i0.10 1.36

K̄ 0�0 −0.36 + i0.31 0.48 −1.99 + i0.08 1.99

η�0 −0.20 + i0.12 0.24 −1.04 + i0.06 1.04

Fig. 2. Sum of amplitudes squared times a phase space factor. The vertical dashed 
lines represent the channel threshold locations.

To aid the understanding of the apparent incompatibility be-
tween the theoretical and the experimental width of the �(1620)

state and to give an idea of the π� spectrum that our models 
would provide, the quantity qπ | ∑

i T i→π� |2 is represented in 
Figs. 2 and 3, where Ti→π� is the amplitude for the i → π�

transition obtained here with either Model I (Fig. 2) or Model II 
(Fig. 3), with i taking any of the six coupled channels involved in 
this sector and the final π� state can denote any of the physi-
cal channels: π+�− , π0�0. The momentum of the π meson in 
the π� center-of-mass frame, qπ , acts as a phase-space modula-
tor. We note that, in front of each amplitude Ti→π� in the former 
expression, one should have included a coefficient gauging the 
strength with which the production mechanism excites the par-
ticular meson-baryon channel i. Given the qualitative character of 
this production mechanism, we have assumed all these coefficients 
to be equal. Returning to the problem of the oversized theoretical 
�(1620) width, either Fig. 2 or Fig. 3 clearly show an effective re-
duction of the width compared to the theoretical value because of 
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Fig. 3. Sum of amplitudes squared times a phase space factor. The vertical dashed 
lines represent the channel threshold locations.

the Flatté effect [24]. This is a well-known effect that takes place 
when a resonance is located below a threshold of a channel whose 
coupling to this structure is strong, and this is exactly the situation 
with the K̄ 0� which opens 5 MeV above the peak of the theoreti-
cal resonance. If we focus on the first structure generated by Model 
II, which we consider our best model, the width is around 90 MeV 
that it is in much better agreement with the measured one Eq. (2). 
The second structure present in Fig. 3 also shows a threshold ef-
fect produced by the opening of the K −�+ that distorts the typical 
Breit-Wigner shape of a resonance. In any case, and despite being 
merely indicative and lacking of any background by construction, 
the spectra displayed in both Figures reproduces qualitatively well 
the structures present in the experimental π+�− spectrum shown 
in FIG. 2 of [4].

For a general 2-body decay, the total width of a s-wave res-
onance with mass MR into the ith-channel is proportional to 
�i

R ∼ pi |gR,i|2 Mi/MR , [25] where the pi is the modulus of the 
outgoing-particle three-momentum in the parent’s rest frame, and 
gR,i stands for the coupling of the resonance to the corresponding 
ith-channel. If a threshold position is in the vicinity of a resonance, 
as in the case of the K̄� thresholds to the �(1690) resonance (see 
Fig. 3), the effect of the finite width of the resonance on the corre-
sponding partial decay width should be considered by convoluting 
the spectral function of the resonance, see Eq. (17) in Ref. [25]. 
Now, using the corresponding coupling from Table 3, we can com-
pute the �(1690) branching ratios for our best model, Model II.

B1 = �π�
�(1690)

�K̄�
�(1690)

= �π+�−
�(1690) + �π0�0

�(1690)

�K −�+
�(1690) + �K̄ 0�0

�(1690)

= 0.25 ,

B2 = �K̄�
�(1690)

�K̄�
�(1690)

= �K −�+
�(1690) + �K̄ 0�0

�(1690)

�K̄�
�(1690)

= 3.22 .

Comparing our theoretical values of B1 and B2 to the exper-
imental ones [3] we can see that they are not only of the same 
order of magnitude but also, in the case of B2, the branching ratio 
is within the range of the experimental values. Thus, we obtained 
a natural explanation for the �(1690) decay branching ratios even 
without including these data into a fitting procedure.

To complete presenting the results of our model, we also calcu-
late the effective range and scattering length at K̄ 0� threshold and 
show these in Table 4. These values potentially can be extracted 
from the Correlation Function using femtoscopy techniques by AL-
ICE collaboration, similarly to the ongoing analysis of the K −�

ones [15].
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Table 4
Effective range, ref f , and scattering length, a0, for K̄ 0� threshold.

Model I Model II

aK̄ 0�
0 −0.155 + i 0.501 −0.115 + i 0.495

r K̄ 0�
ef f −0.408 − i 0.413 −0.507 − i 0.205

4. Conclusions

We have studied the meson-baryon interaction in the neutral 
S = −2 sector within an extended UChPT scheme, in which we 
take into account not only the leading WT term, but also the Born 
terms and NLO contribution for the first time in this sector. Most of 
the model parameters have been assumed to be SU (3) symmetric 
and taken from the BCN model [1], where these were fitted to the 
large amount of experimental data in the neutral S = −1 sector, 
while the SCs have been taken as a free fitting parameters within 
their natural size limits.

We have shown that our model is able to generate dynamically 
both �(1620) and �(1690) states in a very reasonable agreement 
with the known experimental data. It is also important that the 
molecular nature of these states, provided by the present approach, 
naturally explains the puzzle with the decay branching ratios of 
�(1690). Thus, once again, the reliability of the chiral models with 
unitarization in coupled channels and the importance of consider-
ing Born and NLO contributions for precise calculations have been 
proved.
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