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Abstract

The aim of this paper is to construct non-trivial cycles in the first
higher Chow group of the Jacobian of a curve having special torsion
points. The basic tool is to compute the analogue of the Griffiths’
infinitesimal invariant of the natural normal function defined by the
cycle as the curve moves in the corresponding moduli space. We prove
also a Torelli like theorem. The case of genus 2 is considered in the
last section.
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Introduction

The aim of this paper is to construct non-trivial cycles in the first higher
Chow group of the Jacobian of a curve having special torsion points. Let
C be a curve of genus g ≥ 2 such that there exist two points p, q ∈ C with
n[p−q] = 0 (n > 1) in its Jacobian variety J(C). In other words, there exists
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a map h : C −→ P1 of degree n totally ramified at these points. Generalizing
a construction by Collino one can produce a polygonal cycle P (C, p, q) for
the first higher Chow group CHg−1(J(C), 1) ∼= Hg−1(J(C),Kg). We prove
that the image of P (C, p, q) in the higher Jacobian by the regulator map
is non-trivial. The basic tool is to compute the analogue of the Griffiths’
infinitesimal invariant of the natural normal function defined by the cycle
as C moves in the corresponding moduli space. We prove also that the
infinitesimal invariant contains enough information to recover the map h.
The hyperelliptic case (n=2) has been considered by Collino and has inspired
this note.

The genus 2 case deserves special attention since one has as many polyg-
onal cycles as torsion points. As in the paper by Collino we prove the infinite
generation of the group H1(J(C),K2)/P ic(J(C))⊗C∗, by using an argument
of Bardelli and Nori. Moreover we are able to compute the infinitesimal in-
variant in a very explicitely way.

The paper is organized as follows: section 1 is devoted to the definitions
of the polygonal cycle and of the regulator map in the primitive higher Ja-
cobian. In section 2 we study the infinitesimal deformations of the triples
(C, p, q). In section 3 we introduce some properties of the adjoint of dif-
ferential forms. This is the main tool to express the infinitesimal invariant
of the corresponding normal function in section 4. In section 5 we prove
non-triviality and Torelli-like Theorems. Finally, in section 6 we consider the
genus 2 case concerning the independence of the cycles.

1 The cycle P (C, p, q)

1.1. We consider curves of genus g ≥ 2 with the property that the surface
C − C = {[x − y] ∈ J(C), x, y ∈ C} intersects the subgroup of n-torsion
points of J(C). Equivalently, curves such that there exist different points
p, q ∈ C with n[p − q] = 0. We choose a parameter in P1 and we denote
by h a rational function such that div(h) = n · p − n · q. The isomorphism
classes of the objects (C, h, p, q) define an algebraic scheme. By the theory of
the Hurwitz schemes its dimension is 2g− 1. We are interested in the image
Xg,n of this scheme in the moduli space of 2-pointed curves, obtained by the
obvious map, which sends (C, h, p, q) to (C, p, q). Clearly, the dimension of
Xg,n is still 2g − 1.

1.2. Let C, h, p, q as above. We denote by ix : C −→ J(C) the embedding
defined by ix(y) = [y − x]. The curves A1 := Image(ip), Ai := A1 + (i −
1)[p− q], i = 1, . . . , n are isomorphic to C. Let hi : Ai −→ P1 be the rational
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functions determined by h under the isomorphisms

φi : C −→ Ai

x 7−→ [x− p] + (i− 1)[p− q].

Observe that

0 ∈ A1 ∩ A2, [p− q] ∈ A2 ∩ A3, . . . , (n− 1)[p− q] ∈ An ∩ A1.

Hence we have a polygon contained in the Jacobian variety with vertexs
over the multiples of the torsion point [p− q]. Since zeroes and poles of the
functions hi are exactly the vertices, the equality div(h1) + · · ·+ div(hn) = 0
holds. Then

P (C, p, q) :=
n∑

i=1

(Ai, hi)

is a well-defined cycle for the Quillen group Hg−1(J(C),Kg).

1.3. Here we recall some standard facts about higher Jacobians and regula-
tors. We follow closely the notations used in [2].

Let us denote by JK(J(C)) the subgroup of the Deligne-Beilinson coho-
mology group HD(J(C), Z(g)) given by:

JK(J(C)) =H2g−2(J(C), C)/(F gH2g−2(J(C), C) + H2g−2(J(C), Z(g)))
∼= F 1H2(J(C), C)∗/H2(J(C), Z(1)).

Following Collino, we will refer to JK(J(C)) as the higher Jacobian of J(C).
One defines a regulator map over the subgroup

BL(J(C)) ⊂ Hg−1(J(C),Kg)

of cycles homologous to zero:

reg : BL(J(C)) −→ JK(J(C)).

The cycle P (C, p, q) is homologous to zero. Indeed, denote by γi the
preimage h−1(λ) of a path λ from 0 to ∞ in P1. By definition the cycle
P (C, p, q) is homologically trivial if the chain

∑n
i=1 γi is a boundary in J(C).

This is so, since the integral of any holomorphic one-form along γi is zero,
since it is equal to the integral of the trace of the form (which is equal to
zero) along the path λ.

1.4. The definition of the cycle P (C, p, q) depends on the choice of a param-
eter in P1. Different choices of the parameter change the cycle by an element
in the image of the cup-product map

Chowg−1(J(C))⊗ C∗ −→ BL(J(C)).
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So, it is convenient to consider the primitive higher Jacobian

PJK(J(C)) := PF 1H2(J(C), C)∗/H2(J(C), Z(1)),

where PF 1H2(J(C), C)∗ is the space orthogonal to the class of C. It is a
consequence of [5], Proposition 3.1, that for C general (with our property)
the Hodge-group of algebraic one-cycles has dimension 1.

We denote also by reg the regulator with image in the primitive higher
Jacobian.

2 Infinitesimal deformations of (C, p, q)

We fix C and p, q as in the last section. Let h be, as above, a map h : C −→ P1

such that h(p) = 0 and h(q) = ∞.

2.1. Recall the Hurwitz formula ωC
∼= h∗(ωP1) ⊗ OC(R), where R is the

ramification divisor of h. Under our hypothesis, we can put the equality of
effective divisors R = R0+(n−1)(p+q). Since ωP1

∼= OP1(−0−∞), we get that
the divisor R0 belongs to the linear series |ωC(p + q)|. Moreover, this divisor
corresponds to a meromorphic differential form dh/h ∈ H0(C, ωC(p + q)).
Observe that dh/h is h∗(dz/z), where z is a standard parameter in P1. It
vanishes exactly at the points in R0 and it has poles in p and q with residues
n and −n respectively.

2.2. The vector space H1(C, TC(−p − q)) parametrizes the first-order de-
formations of (C, p, q). For an element η ∈ H1(C, TC(−p − q)), we denote
by

Cη
π−→ Spec C[ε]/(ε2)

an infinitesimal deformation representing η, and P, Q sections of π with values
p, q respectively at the point 0. We identify P, Q with its images in Cη. It is
a standard fact that the image of η by the forgetful map

H1(C, TC(−p− q)) −→ H1(C, TC) ∼= Ext1(C, ωC)

is represented by the extension:

0 −→ OC −→ Ω1
Cη |C −→ ωC −→ 0.

Lemma 2.1. The extension

0 −→ OC −→ Ω1
Cη

(log(P + Q)) |C −→ ωC(p + q) −→ 0.

represents the class

η ∈ Ext1(ωC(p + q),OC) ∼= H1(C, TC(−p− q)).
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Proof. Consider a generator of the tangent space of Spec C[ε]/(ε2) at the
origin and lift it to a vector field on Cη. By contracting with this vector field
the following diagram holds:

0 0y y
Ω1
Cη |C −−−→ ωCy y

Ω1
Cη

(log(P + Q)) |C −−−→ ωC(p + q)y y
Op+q Op+qy y

0 0.

Then, adding the kernels in the first two rows we reach to:

0 −−−→ OC −−−→ Ω1
Cη |C −−−→ ωC −−−→ 0y=

y y
0 −−−→ OC −−−→ Ω1

Cη
(log(P + Q)) |C −−−→ ωC(p + q) −−−→ 0,

proving the lemma.

2.3. We would like to identify the subspace Th of the elements η cor-
responding to infinitesimal deformations Cη which preserve the condition
n[p − q] = 0. This is equivalent to say that h extends to H : Cη −→ P1

such that H∗(0) = n · P and H∗(∞) = n · Q. Observe that in this case
dh/h extends to the meromorphic form dH/H on Cη. Hence dh/h belongs
to the kernel of the coboundary operator in the long sequence of cohomology
associated with the sequence of the lemma:

∂η : H0(C, ωC(p + q)) −→ H1(C,OC).

This means that Th is contained in the orthogonal subspace of < dh/h >
with respect to the cup-product map

H1(C, TC(−p− q))⊗H0(C, ωC(p + q)) −→ H1(C,OC).

2.4. Since Th has the expected dimension 2g − 1 = dimXg,n, then it is
exactly the orthogonal of dh/h and it is isomorphic to the tangent space
TXg,n(C, p, q) at the general element.
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2.5. By using the dual of the exact sequence

0 −→ Th −→ H1(C, TC(−p− q))
∪dh/h−→ H1(C,OC) −→ 0

we can prove the following lemma, which summarizes the previous results:

Lemma 2.2. The space Th of the infinitesimal deformations of (C, p, q) pre-
serving the condition n[p−q] = 0 is the orthogonal of dh/h by the cup product.
Its dual is the cokernel of the map

H0(C, ωC(−p− q)) −→ H0(C, ω⊗2
C )

given by the multiplication with dh/h.

2.6. Remark. Assume that p + q is not a g1
2 linear series. In this case it

is easy to check that Th maps isomorphically into a subspace of H1(C, TC),
whose dual is the cokernel of the map given by the product with dh/h:

H0(C, ωC) −→ H0(C, ω⊗2
C (p + q)).

3 The adjoint image

In this section we recover some basic properties on adjunction of sections of
a line bundle on a curve. The proof of (3.1) can be found in [3], or in section
3 of [6].

3.1. Let C be a curve equipped with an invertible sheaf L. Let η ∈
Ext1(L,OC) ∼= H1(C, L∗) be an extension class represented by the short
exact sequence

0 −→ OC −→ E −→ L −→ 0.

Denote by K(η) the kernel of the coboundary map

∂η : H0(C, L) −→ H1(C,OC),

sending x to η ∪ x.
Given α1, α2 ∈ K(η) ⊂ H0(C, L), there exist, by construction, liftings

α̃1, α̃2 ∈ H0(C, E). We denote by ωη,α̃1,α̃2 ∈ H0(C, L) the image of the wedge
product α̃1 ∧ α̃2 under the map:

∧2H0(C, E) −→ H0(C,∧2E) ∼= H0(C, L).
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It is easy to check that different choices of the liftings α̃1, α̃2 change the
section ωη,α̃1,α̃2 by an element in the subspace generated by the initial forms
α1 and α2. Therefore we get a well-defined element

[ωη,α1,α2 ] := [ωη,α̃1,α̃2 ] ∈ H0(C, L))/ < α1, α2 >,

called the adjoint image of α1 and α2.

3.2. One has the following non-vanishing result for the adjoint image:

Proposition 3.1. Let D be the fixed divisor of the sub-linear system of
|L | generated by two linearly independent sections α1, α2 ∈ K(η). Then
[ωη,α1,α2 ] = 0 if and only if η belongs to the kernel of the map

H1(C, L∗) −→ H1(C, L∗(D)).

Hence, D = 0 implies

ωη,α̃1,α̃2 /∈< α1, α2 > .

3.3. Typically we will apply the above construction in the following case:
L will be the sheaf ωC(p + q) and η ∈ H1(C, TC(−p − q)) will be a first
order deformation of (C, p, q). We keep the notation h for the degree n map
C −→ P1. We will assume that η belongs to the subspace of the deformations
preserving the condition n[p− q] = 0. In particular dh/h lives in K(η).

Let α ∈ K(η) be a differential form linearly independent of dh/h. Then,
the construction described in 3.1, with L = ωC(p + q), yields a meromorphic
differential form ωη,α̃,dH/H ∈ H0(C, ωC(p+q)), where H is a rational function
on Cη extending h.

3.4. Now we give a different approach to adjunction that points out that it
can be described as a Massey product.

As in the beginning of the section we fix a curve C, an invertible sheaf L
and elements α1, α2 ∈ H0(C, L), ξ ∈ H1(C, L∗) such that α1∪ξ = α2∪ξ = 0.
Assume that < α1, α2 >⊂ H0(C, L) is base-point-free. Let

0 −→ OC −→ E −→ L −→ 0

be an extension representing ξ ∈ H1(C, L∗) ∼= Ext1(L,OC). Then, choosing
liftings of α1, α2 to global sections of E , is equivalent to giving a diagram as
follows

0 −−−→ L∗ −−−→ < α1, α2 > ⊗OC −−−→ L −−−→ 0y y y=

0 −−−→ OC −−−→ E −−−→ L −−−→ 0.
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By definition, the dual of L∗ −→ OC corresponds to the adjoint image defined
in (3.1). By taking cohomology in the diagram one finds that the adjunction
image is simply a section of L mapping to ξ by the coboundary map attached
to the first row in the diagram

H0(C, L) −→ H1(C, L∗).

Observe that this proves the Proposition 3.1 for the case D = 0. The general
case can be proved in the same way by changing slightly the exact sequence
above.

We use now Dolbeault resolution of the exact sequence

0 −→ L∗ −→< α1, α2 > ⊗OC −→ L −→ 0

to find an explicit formula for the adjoint image as follows. A representative
of ξ is locally of the form s dz, where s ∈ C∞(L∗). The conditions αi ∪ ξ
translates into

αi · s dz = ∂ρi

where ρi are C∞ functions on C. By the definition of the coboundary map,
the section represented by

ρ1 α2 − ρ2 α1

maps to ξ. Therefore, also represents the adjoint image (defined up to an
element in < α1, α2 >). Observe that this expression is just the definition of
the Massey product in Dolbeault cohomology.

4 The infinitesimal invariant

Now we will assume that the curve C belongs to a family of curves π : C −→ B
such that the cycle P (C, p, q) moves with the curve in the corresponding
family of Jacobian varieties π : J C −→ B, that is to say: there exists a map
over B, H : C −→ P1 × B and two sections P, Q : B −→ C of π, such that
for all b ∈ B, the map hb : Cb −→ P1 × {b} induced by H has degree n and
h∗b(0) = nPb, h∗b(∞) = nQb.

In this case the definition of normal function and the construction of the
attached Griffiths’ infinitesimal invariant can be extended to our situation,
as we recall briefly below (we refer to [2] and [7] for the details).

4.1. Associated to π we can consider the family of primitive higher Jacobians
PJK(J C) −→ B. We will consider a relative cycle in J C

P =
n∑

i=1

(Ai, Hi)
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such that Pb ∈ BL(JCb), ∀b ∈ B. Then one has a holomorphic section

ν : B −→ PJK(J C)

b 7−→ regb(Pb)

where regb stands for the regulator map in JCb.

4.2. Similarly to the classical case one can define the invariant δν as an
element in the middle cohomology of the complex

F gH2g−2 −→ F g−1H2g−2 ⊗ Ω1
B −→ F g−2H2g−2 ⊗ Ω2

B

where F iHj are the Hodge subsheaves of Hj := Rjπ∗C ⊗ OB. Briefly we
recall that the infinitesimal invariant is defined by applying the Gauss-Manin
connection to a lifting of the normal function to the Hodge bundle. Therefore
the non vanishing of this invariant implies that the normal function is not
torsion.

4.3. From now on we will assume that the dimension of B is 2g − 1 and
that the corresponding moduli map Φ : B −→ Xg,n is generically finite.
Therefore, for a general b ∈ B, dΦ provides an isomorphism between TB(b)
and Thb

=< dhb/hb >⊥⊂ H1(Cb, TCb
(−p − q)). We point out that locally

the normal function can be thought as a normal function on an open set
of the moduli space Xg,n of elements (C, p, q). Moreover, assuming that
h0(C,OC(p + q)) = 1, the normal function can be defined on an open set of
the image of Xg,n in the moduli space of curves. In this case the description
of the tangent space is given by the Remark 2.6.

4.4. Next, we consider the restriction of the complex in 4.2 to a generic b ∈ B
and we project onto the graded primitive part. With our identifications one
obtains:

P g,g−2 −→ T∗
hb
⊗ P g−1,g−1 −→ ∧2T∗

hb
⊗ P g−2,g.

By dualizing, we see δν([Cb]) as a linear map on the middle cohomology of
the complex

∧2Thb
⊗ P 2,0 −→ Thb

⊗ P 1,1 −→ P 0,2.

4.5. In section 5 of [2] Collino relates the infinitesimal invariant of a normal
function with forms obtained by adjunction. Taking care of minor changes
one checks that the same computation works in our case showing the following
statement:

Theorem 4.1. With the above notations, fix C = Cb, for a generic b. For
every η ∈ Th, α ∈ K(η) and µ (0,1) form such that

∫
C

α ∧ µ = 0, it holds:

δν[C](η ⊗ (α ∧ µ)) = n

∫
C

µ ∧ ωη,α,
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where ωη,α, is the holomorphic part of the form ωη,α̃,dH/H obtained by adjunc-
tion on C.

We point out that one has the decomposition

H0(C, ωC(p + q)) = H0(C, ωC)⊕ < dh/h >,

hence the form ωη,α̃,dH/H decomposes into an holomorphic part and a mul-
tiple of dh/h. Notice also that different choices of the liftings change the
adjunction form by a multiple of α, hence orthogonal to µ.

5 Non-triviality of the cycle

5.1. Now we can prove the regulator of our cycle is not torsion in gen-
eral. Equivalently, we have to prove the non-vanishing of the infinitesimal
invariant.

Theorem 5.1. For a general (C, p, q), the cycle P (C, p, q) is not torsion.

Proof. We proceed by contradiction. Assume the infinitesimal invariant is
trivial and then, by Theorema 4.1, we have∫

C

µ ∧ ωη,α = 0;

for every η, α and µ as in the Theorem. We fix an holomorphic form α ∈
H0(C, ωC) such that the pencil < α, dh/h >⊂ H0(C, ωC(p+ q)) is base point
free. Let us define

Th,α = {η ∈ Th | η ∪ α = 0}.
Set V the 2 dimensional vector space generated by dh/h and α. The base

point free condition implies that V fits in the following exact sequence

0 −→ TC(−p− q) −→ V ⊗OC −→ ωC(p + q) −→ 0.

Hence, one has

0 → V −→ H0(C, ωC(p+q)) −→ H1(C, TC(−p−q))
f−→ V ⊗H1(C,O) → 0,

where f stands for the map (∪α,∪dh/h). Hence Th,α
∼= H0(C, ωC(p + q))/V

has dimension g − 1. We denote by < α >⊥ the subspace of H1(C,OC)
orthogonal to α with respect to the standard pairing

(β, µ) 7→
∫

C

β ∧ µ.
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The vanishing of the invariant says that the pairing

bα : Th,α⊗ < α >⊥ −→ C

(η, µ) 7−→
∫

C

µ ∧ ωη,α

is trivial for our α. Hence, for all η ∈ Th,α one gets ωη,α ∈< µ >⊥. Since the
adjunction map for fixed α,

Th,α −→ H0(C, ωC)

is linear and injective by Proposition 3.1, one has that the image has di-
mension g − 1 and so is equal to < µ >⊥. Then, there exists a deformation
η0 ∈ Th,α such that the adjunction form ωη0,α is a multiple of α, this contra-
dicts Proposition 3.1.

5.2. Observe that one deduces from the proof the following statement: if
< α, dh/h > is base point free, then the pairing bα defined above is non-
degenerated.

Assume now that < α, dh/h > is not base point free and denote by F the
base locus of the corresponding linear system. Then V =< dh/h, α > fits
now in the exact sequence:

0 −→ TC(−p− q + F ) −→ V ⊗OC −→ ωC(p + q − F ) −→ 0.

One deduces from this that cupping with α and dh/h induces a surjective
map

H1(C, TC(−p− q + F )) −→ V ⊗H1(C,OC).

Since H1(C, TC(−p − q)) −→ H1(C, TC(−p − q + F )) is also surjective, the
kernel Th,α of the composition has dimension g− 1 and the pairing bα is well
defined.

Let x be a point in the support of F . Denote by ξx ∈ H1(C, TC) the
Schiffer variation attached to this point. By definition of x and the general
properties of the Schiffer variations we have

ξ′x ∪ α = 0 ξ′x ∪ dh/h = 0,

where ξ′x stands for a lifting of ξx to H1(C, TC(−p− q)). Therefore ξ′x ∈ Th,α.
Since the deformation ξ′x is in the kernel of the map

H1(C, TC(−p− q)) −→ H1(C, TC(−p− q + x)),

Proposition 3.1 implies that bα(ξ′x, µ) = 0 for all µ ∈< α >⊥. Then bα

degenerates.
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Proposition 5.2. If C is general, the rational function h can be recovered,
up to constant, by the infinitesimal invariant.

Proof. Since C is general we can assume that the divisor R0 is simple. We
deduce from the discusion above that R0 is recovered from the infinitesi-
mal invariant as the locus where the linear form bα is identicaly 0. Since
ωC(−R0) ∼= OC(p + q), we get also the points p, q and then h is given by the
equality div(h) = n · p− n · q.

6 Independence of polygonal cycles for g = 2

6.1. In this section we restrict ourselves to the case g = 2. Since the
difference map C×C −→ J(C), (x, y) 7→ [x−y] is surjective, any torsion point
gives rise to a polygonal cycle. Then we have countably many meromorphic
functions on C, defined up to constant, each of them giving a map into P1

totally ramified at 0 and ∞.

6.2. We consider the subgroup H(C) of the multiplicative group of the
function field K(C)∗ generated by these functions. Then there is a natural
map

H(C) −→ H1(J(C),K2).

By using a standard monodromy argument we can see that the image of
this map is infinitely generated. We do not enter into the details since this
result is not new: Collino used ideas of Nori [4] and Bardelli[1] to get the
same result.

6.3. As a first step to understand the image of this regulator we will compute
the infinitesimal invariant analyticaly using meromorphic differential forms.

We use the notations n, h, p, q and R0 as in section 2. Fix a point x ∈ C
different from p, q, and the points of the support of R0. Let α, β be a basis of
holomorphic forms such that α vanishes at x. Let zx be a local coordinate in
a small neighborhood Ux of the point x, and let ξx be the Schiffer variation
represented in Dolbeault cohomology by the element

∂ρx

zx

∂

∂zx

,

where ρx stands for a C∞ function on C which is constant 1 in Ux and constant
0 on the complementary of a small open set containing the closure of Ux.

We denote by ξh
x ∈ H1(C, TC(−p − q)) the unique element mapping to

ξx and such that ξh
x ∪ dh/h = 0. The condition ξh

x ∪ α = 0 is automatically
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fullfiled. Finally, we put zx A0
x(zx) dzx and Bx(zx) dzx for the restrictions to

Ux of α and β respectively. Then:

Proposition 6.1. The following formula holds

δν([C])(ξh
x ⊗ (α ∧ ξh

xβ)) = 2πi n A0
x(0)Bx(0)

dh
h

(x) · dh
h

(σ(x))
dh
h

(x) + dh
h

(σ(x))
,

σ being the hyperelliptic involution on C.

Proof. We do the computation in several steps:
Step 1. Computation of ξh

x .
By definition is represented by an element of the form

∂ρx

zx

∂

∂zx

+ c1∂(ρp)
∂

∂zp

+ c2∂(ρq)
∂

∂zq

,

for some constants c1, c2, where ρp, ρq are defined in a similar way that ρx

and zp, zq are local coordinates at p and q such that h has local expres-
sions zn

p and z−n
q respectively. We will denote by Ap(zp)dzp, Aq(zq)dzq and

Bp(zp)dzp, Bq(zq)dzq the local expressions of α and β.
We impose

ξh
x ∪ dh/h = ∂ρ

and we get the existence of a meromorphic function f ∈ H0(C,OC(p+q+x))
such that

ρ = f +
ρxg(zx)

zx

+
c1nρp

zp

− c2nρq

zq

,

where g(zx)dzx is the local expression of dh/h. Observe that this equality
give us the local expressions of f at x, p and q. By imposing that the sum of
the residues of the forms fα and fβ are zero, we get

−nc1Ap(0) + nc2Aq(0) = 0

−nc1Bp(0) + nc2Bq(0)− g(0)Bx(0) = 0.

Hence

c1 =
g(0)Aq(0)Bx(0)

n Ap(0)Bq(0)− n Aq(0)Bp(0)

c2 =
g(0)Ap(0)Bx(0)

n Ap(0)Bq(0)− n Aq(0)Bp(0)
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Step 2. Computation of the adjoint form.
Here we use the description given in 3.4 in terms of representatives in

Dolbeault cohomology. The form ωξh
x ,α,dh/h (defined in the quotient by <

α, dh/h >) is represented by

(A0
xρx + c1ρpAp + c2ρqAq)dh/h − (f +

ρxg(zx)

zx

+
c1nρp

zp

− c2nρq

zq

)α.

It is a straightforward computation to simplify the expression above to find
that

[ωξh
x ,α,dh/h] = [−fα].

Step 3. Final computation.
By definition we have

δν([C])(ξh
x⊗ (α∧ξh

xβ)) = n

∫
C

(
∂ρx

zx

∂

∂zx

+ c1∂ρp
∂

∂zp

+ c2∂ρq
∂

∂zq

)β∧ (−fα).

We point out that we should replace the adjoint form by its holomorphic
part, but adding to −fα a multiple of dh/h does not modify the value of the
integral.

Due to the definition of the functions ρx, ρp and ρq the integral can be
separated into three parts, each one on a small open set around the points.
Then we only need to compute the residues at each point. The result we get
is

2πi n (A0
x(0)Bx(0)g(0) + c2

1nAp(0)Bp(0)− c2
2nAq(0)Bq(0)).

Next, by replacing the values of c1 and c2 found in the step 1 and simplifying:

δν([C])(ξh
x ⊗ (α ∧ ξh

xβ)) = ng(0)Bx(0)(A
0
x(0)−

1

n

Bx(0)g(0)
Bq(0)

Aq(0)
− Bp(0)

Ap(0)

).

Finally we compute the residues of the meromorphic differential form

β/α dh/h

and we get

0 = n
Bp(0)

Ap(0)
− n

Bq(0)

Aq(0)
+

Bx(0)

A0
x(0)

g(0) +
Bσ(x)(0)

A0
σ(x)(0)

gσ(0),

where the functions A0
σ(x), Bσ(x) and gσ(x) come, with the obvious meaning,

from the local expressions at σ(x) of α, β and dh/h.
Combining the last two formulas and using that

Bx(0)/A0
x(0) = Bσ(x)(0)/A

0
σ(x)(0)

it is easy to end the proof of the Proposition.
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