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A B S T R A C T 

CUSP is a powerful formalism that reco v ers, from first principles and with no free parameter, all the macroscopic properties 
of dark matter haloes found in cosmological N -body simulations and unveils the origin of their characteristic features. Since 
it is not restricted by the limitations of simulations, it co v ers the whole mass and redshift ranges. In the present Paper we use 
CUSP to calculate the mass–scale relations holding for halo density profiles fitted to the usual NFW and Einasto functions in the 
most rele v ant cosmologies and for the most usual mass definitions. We clarify the origin of these relations and provide accurate 
analytic expressions holding for all masses and redshifts. The performance of those expressions is compared to that of previous 
models and to the mass–concentration relation spanning more than 20 orders of magnitude in mass at z = 0 obtained in recent 
simulations of a 100 GeV WIMP universe. 
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 I N T RO D U C T I O N  

ark Matter (DM) haloes play a central role in cosmology. Unfortu-
ately, owing to the difficulty of treating analytically DM clustering
n the highly non-linear regime, their study has so far been carried
ut by means of N -body simulations with limited mass and force
esolutions. 

This is the reason that, besides a few studies on dwarf haloes with
 ∼ 5 × 10 8 M � at z = 3 − 4 (Moore et al. 2001 ; Col ́ın et al.

004 ; Ishiyama et al. 2013 ) and microhaloes with M ∼ 10 −5 M � and
edshifts z = 31 − 32 (Anderhalden & Diemand 2013 ; Ishiyama
014 ), halo density profiles have for a long time been determined
or objects with masses M � 10 10 M � and redshifts z � 2 (see
eferences below). Only very recently, simulations have managed to
o v er haloes with masses spanning 6 orders of magnitude (Ishiyama
t al. 2020 ) and even 20 orders of magnitude (Wang et al. 2020 )
hereafter WBFetal) at z = 0. 

The usual way to deal with the halo density profiles drawn from
imulations is by fitting them to the NFW (Navarro, Frenk & White
995 ) or Einasto (Einasto 1965 ) parametric functions. Even though
he fits are not perfect (Zhao et al. 2009 ; Mu ̃ noz-Cuartas et al. 2011 )
nd introduce spurious ef fects (Salv ador-Sol ́e, Manrique & Solanes
005 ), this procedure is sufficient for most purposes. One important
esult of that treatment is that the halo density profile appears to be
niv ersal e xcept for the mass and redshift dependence of only one
arameter (NFW 1996 ). A big effort has thus gone to determine those
ependencies through the so-called mass-concentration, M − c , or
haracteristic mass-scale radius, M s − r s , relations dependent on z. 
 E-mail: e.salvador@ub.edu 
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Simple analytic expressions, called ‘toy models’, were put for-
ard that fit the relations found in simulations for haloes with
 � 10 10 M � and z � 3 (e.g. Avila-Reese et al. 1999 ; Col ́ın et al.

004 ; Dolag et al. 2004 ; Gao et al. 2008 ; Duffy et al. 2008 ; Macci ̀o
t al. 2008 ; Zhao et al. 2009 ; Mu ̃ noz-Cuartas et al. 2011 ; Klypin,
rujillo-Gomez & Primack 2011 ; Prada et al. 2012 ; van den Bosch
t al. 2014 ; Dutton & Macci ̀o 2014 ; S ́anchez-Conde & Prada 2014 ;
eitmann et al. 2015 ; Klypin et al. 2016 ; Child et al. 2018 ). These

oy models sho w, ho we ver, significant dif ferences between authors
ue to the different halo samples and data treatment employed. The
ar gest diver gence is found at the high-mass end due to the different
irialization criteria used to get rid of haloes out of equilibrium (e.g.
udłow et al. 2016 and references therein). Another more technical
ifference between those models is that some of them (Bhattacharya
t al. 2013 ; Diemer, Kravtsov & More 2013a ; Ludłow et al. 2014 ;
iemer & Kravtsov 2015 ; Diemer & Joyce 2019 ; see also Prada et al.
012 ) treat the concentration c as a function of the halo seed height
≡ δ/ σ ( M ) instead of mass M . 
With the aim to go beyond the M and z ranges co v ered by

imulations some ‘phenomenological’ models were developed with a
umber of free parameters that were tuned through the fit to basically
he same numerical data. 

The phenomenological models of first generation relied on the
mpirical fact that halo concentration c decreases with increasing
ass M (Navarro et al. 1996 ; Bullock, Kolatt & Siga Y. et 2001 ;
ke, Navarro & Steinmetz 2001 ; Neto et al. 2007 ; Macci ̀o et al.
008 ; Diemer & Kravtsov 2015 ). As in hierarchical cosmologies
he smaller the mass of haloes, the earlier they form, that behaviour
uggested that the central density of a halo should be proportional
o the cosmic density at the halo formation time. Unfortunately, all
hese models led to an M − c relation of the power-law form, while
ater simulations showed that the real M − c relation flattens towards
© 2023 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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ow-masses (S ́anchez-Conde & Prada 2014 ; Ishiyama 2014 ; Ludłow 

t al. 2016 ). 
The phenomenological models of second generation (Manrique 

t al. 2003 ; Salvador-Sol ́e et al. 2007 ; Ludłow et al. 2014 ; Correa
t al. 2015 ; Ludłow et al. 2016 ; Diemer & Joyce 2019 ) reco v ered
hat flattening. Manrique et al. ( 2003 ) took advantage of the fact that
ccreting haloes seem to grow inside-out (Salvador-Sol ́e, Solanes & 

anrique 1998 ; Huss, Jain & Steinmetz 1999 ) so that the mass
ccretion rate predicted e.g. in the extended-Press-Schecter (EPS) 
ormalism (Press & Schechter 1974 ; Bond et al. 1991 ; Bower 1991 ;
acey & Cole 1994 ) determined the halo density profile, with an M

c relation that agreed with the results of simulations (Salvador- 
ol ́e et al. 2007 ). Correa et al. ( 2015 ) took the relation between

he formation time and concentration found in simulations and also 
sed the mass accretion history (MAH) of haloes predicted by 
he EPS formalism, while Ludłow et al. ( 2014 ) and Ludłow et al.
 2016 ) followed the opposite scheme: they used the MAH found in
imulations, which turns out to be very similar to their mass profile
ogether with the halo formation time predicted by the EPS formalism 

van den Bosch 2002 ). (Strictly speaking, the MAH of a halo refers to
ts ‘mass a g gregation history’ rather than the mass accretion history
ecause haloes grow not only through smooth accretion but also 
hrough major mergers.) Lastly, Diemer & Joyce ( 2019 ) relied on
he observ ed constanc y of the scale radius r s of accreting haloes at
he late accreting phase (Zhao et al. 2003 ; Lu et al. 2006 ; Salvador-
ol ́e et al. 2005 ; Diemer, More & Kravtsov 2013b ). 
Interestingly, the inside-out growth of accreting haloes assumed 

y Manrique et al. ( 2003 ) is implicit in the three remaining models.
ndeed, as assumed by Diemer & Joyce ( 2019 ), Correa et al.
 2015 ) found that accreting haloes grow by keeping the scale radius
nchanged as expected in inside-out growth, and the similarity 
etween MAHs and mass profiles used by Ludłow et al. ( 2014 ) and
udłow et al. ( 2016 ) is also implied by that growth. This suggests

hat the inside-out growth of accreting haloes supported by the results
f simulations (e.g. Salvador-Sol ́e et al. 1998 ; Fukushige & Makino
001 ; Loeb & Peebles 2003 ; Zhao et al. 2003 ; Salvador-Sol ́e et al.
005 ; Lu et al. 2006 ; Romano-D ́ıaz et al. 2006 ; Diemand, Kuhlen &
adau 2007 ; Cuesta et al. 2008 ; Wang et al. 2011 ; Ludłow et al. 2013 )

s crucial for the flattening of the M − c relation. Yet, that evolution
eemed too simplistic and was actually seen as a ‘pseudo-evolution’ 
Diemer et al. 2013a ; Wang et al. 2020a ): haloes would apparently
tretch outwards with increasing cosmic time even if they do not 
ccrete simply because of the increase of the virial radius due to the
ecrease of the cosmic mean density. Ho we ver, that argument is in
ontradiction with the fact that the density profile of haloes never falls
ff before the virial radius. Moreo v er, using the CUSP ( ConflUent
ystem of Peak trajectories ) formalism (Manrique & Salvador-Sol ́e 
995 , 1996 ; Manrique et al. 1998 ), Salvador-Sol ́e et al. ( 2012a )
see also Salvador-Sol ́e & Manrique 2021 ) showed that the inside-
ut growth of accreting haloes is a natural consequence of the way
ccreted matter virializes. 

As mentioned earlier, the Correa et al. ( 2015 ) model does not
istinguish between smooth accretion and major mergers, but the 
ther models do. In the Ludłow et al. ( 2016 ) and Diemer & Joyce
 2019 ) models, the effects of major mergers were taken into account
n specific non-trivial manners (see Section 5.2 ). Whereas Manrique 
t al. ( 2003 ) simply ignored them based on the assumption that
iolent relaxation causes haloes to loose the memory of their past 
istory so that halo structure should not depend on their assembly 
rocess. That assumption seemed to contradict the ‘assembly bias’ 
ound in simulations (Gottl ̈ober, Klypin & Kravtsov 2001 ; Gottl ̈ober
t al. 2002 ; Sheth & Tormen 2004 ; Fakhouri & Ma 2009 , 2010 ;
ahn et al. 2009 ; Chen et al. 2020 ; Ramakrishnan, Paranjape &
heth 2021 ; Hellwing, Cautun & van de Weygaert 2021 ) suggesting

hat the halo density profile does depend on their merger history
e.g. Hester & Tasitsiomi 2010 ; Wang et al. 2020a ). Ho we ver, using
USP, Salvador-Sol ́e & Manrique ( 2021 ) have recently pro v en its
alidity, which explains the more compelling results of simulations 
howing that all halo properties (except for the subalo abundance, as
lso found by CUSP; see Salvador-Sol ́e, Manrique & Botella 2022b )
re independent of their assembly history (Wang & White 2009 ;
ao, Zentner & Wechsler 2018 ). 
Thus, CUSP confirms the validity of the Manrique et al. ( 2003 )
odel. But it does even better. It allows one to accurately derive from

rst principles and with no single free parameter all macroscopic 
roperties of virialized haloes (in particular, their density profiles; 
alv ador-Sol ́e et al. 2012a ; Salv ador-Sol ́e et al. 2012b ; Juan et al.
014b ) from the ellipsoidal collapse and virialization of their seeds,
riaxial peaks (maxima) in the random Gaussian linear density field. 
t is thus much more powerful than any phenomenological model for
he mass–scale relation. 

In this Paper, we use it to infer very practical, accurate and phys-
cally moti v ated, analytic expressions for the mass–scale relations 
alid for all masses and redshifts in the most rele v ant cosmologies and
sual halo mass definitions. In Section 2 , we remind the deri v ation
ith CUSP of the mean spherically averaged halo density profile. 

ts fit to the usual NFW and Einasto analytic profiles is discussed
n Section 3 . The analytic expressions for the resulting M − c and
 s − r s relations are given in Section 4 and their comparison to

revious models relying on the results of simulations is carried out
n Section 5 . The results are summarized in Section 6 . 

 T H E  DENSITY  PROFILE  PREDI CTED  BY  

USP  

ll macroscopic properties of haloes predicted by CUSP are in very
ood agreement with the results of simulations. The reader is referred
o Salvador-Sol ́e & Manrique ( 2021 ) for a comprehensive review of
his formalism and the proofs of the two fundamental aspects of
alo growth mentioned abo v e. This is the case, in particular, of the
pherically averaged density profile. Further, we briefly remind how 

t is derived (the corresponding numerical code is available from 

ttps://gitlab.com/cosmoub/cusp ). 
The ellipsoidal collapse time (along all three axes) of triaxial 

atches at some initial time t i depends not only on their mass and
ize, but also on their shape and concentration (e.g. Peebles 1980 ). In
ther words, it is a function of the density contrast δ, smoothing radius
 f , ellipticity e , prolateness p , and curvature x of the corresponding
eaks. Ho we ver, the probability distributions functions of e , p and x
f peaks with δ at R f are very sharply peaked (Bardeen et al. 1986 ),
o all patches traced by peaks with given δ and R f have essentially
he same values of e , p, and x and collapse at the same time. In other
ords, the ellipsoidal collapse time of patches essentially depends 
n δ and R f of the peaks tracing them like in spherical collapse.
onsequently, for any given δ( t ) relation, we can find the radius R f 

f the Gaussian filter such that the collapsing patches at t i traced
y peaks with δ at R give rise to haloes with mass M at t . Those
( t ) and R f ( M , t ) relations establish, by construction, a one-to-one
orrespondence between haloes with M at t and peaks with δ on R f 

t t i . 
As shown by Juan et al. ( 2014a ), these two relations, which depend

n cosmology and halo mass definition, are fully determined by the
onsistency conditions that: (i) all the DM in the universe at any t
s locked inside haloes and (ii) the mass M of haloes is equal to the
MNRAS 521, 1988–2001 (2023) 
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M

Table 1. Coefficients in the halo-peak correspondence. 

Cosmology Mass d s 0 s 1 s 2 A 

WMAP7 M vir 1 .06 0 .0422 0 .0375 0 .0318 25 .7 
M 200 1 .06 0 .0148 0 .0630 0 .0132 12 .4 

Planck14 M vir 0 .928 0 .0226 0 .0610 0 .0156 11 .7 
M 200 0 .928 0 .0341 0 .0684 0 .0239 6 .87 

Table 2. Cosmological parameters. 

Cosmology �� 

�m 

h n s σ 8 �b 

WMAP7 0 .73 0 .27 0 .70 0 .97 0 .81 0 .046 
Millennium 0 .75 0 .25 0 .73 1 .0 0 .90 0 .045 
Planck14 0 .68 0 .32 0 .67 0 .96 0 .83 0 .049 
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olume-integral of their density profile. Specifically, if we write the
ensity contrast δ for ellipsoidal collapse at t and the rms density
uctuation (or 0th-order spectral moment) σ 0 ( R f ) of peaks in the
ensity field at t i filtered with a Gaussian window as proportional to
he homologous quantities in top-hat spherical collapse (denoted by
ndex th), 

( t, t i ) = r δ( t) δth ( t, t i ) (1) 

0 ( R f , t, t i ) = r σ ( M, t) σ th 
0 

(
R f 

th , t i 
)
, (2) 

here R f 
th = [3 M /(4 π )] 1/3 , δth ( t, t i ) = δth 

c ( t) D ( t i ) /D ( t), with δth 
c ( t)

qual to the critical linearly extrapolated density contrast for spherical
ollapse at t and D ( t ) equal to the linear growth factor, then the
umerical functions r δ and r σ one is led to are well fitted, in all cases
nalysed, by the simple analytic expressions, 

 δ( t ) ≈ a d ( t ) 

D( t ) 
(3) 

nd 

 σ ( M, t) ≈ 1 + S( t ) r δ( t ) ν th ( M, t ) 

S( t) = s 0 + s 1 a( t) + log 

[
a s 2 ( t) 

1 + a( t) /A 

]
, (4) 

here ν th ( M, t) ≡ δth ( t, t i ) /σ th 
0 ( R f 

th , t i ) = δth 
c ( t ) /σ

th 
0 ( M, t ) is the

constant) linearly extrapolated top-hat height of the collapsing patch.
In Table 1, we provide the values of the coefficients in those fitting

unctions for the cosmologies (see Table 2 ) and mass definitions used
n the simulations we will compare our predictions to. Those mass
efinitions, which arise from the use of the Spherical Overdensity
SO) halo-finding algorithm, correspond to haloes delimited by
he radius R encompassing an o v erdensity 	 ( z) relative to the
haracteristic cosmic density ρ	 

( z): the ‘virial mass’, M vir , is for
 ( z) equal to the cosmology-dependent virial o v erdensity 	 vir ( z)

e.g. Bryan & Norman 1998 ; Henry 2000 ) and ρ	 

( z) equal to the
ean cosmic density ρcos ( z), whereas M 200 is for a fixed value of
 ( z) equal to 200 and ρ	 

( z) equal to the critical cosmic density
crit ( z). 
Differentiating with respect to R f the density field smoothed with

 Gaussian filter, we obtain the differential equation 

d δ

d R f 
= −〈 x〉 [ δ( R f ) , R f ] σ2 ( R f ) R f , (5) 

here 〈 x 〉 ( δ, R f ) is the mean curvature of peaks with δ at R f and
2 ( R f ) is the second order spectral moment. Given the one-to-one
orrespondence between haloes and peaks, d δ/d R f is related, through
( t , t i ) and M ( R f , t , t i ) given by equations ( 1 ) and ( 2 ), to the inverse
NRAS 521, 1988–2001 (2023) 
f the instantaneous mass accretion rate of an accreting halo and
he solution δ( R f ) is the continuous peak trajectory tracing its mass
rowth M ( t ). 
The trajectory δ( R f ) solution of equation ( 5 ) determines the

ntrinsic (i.e. unconvolved with respect to the smoothing window)
ean spherically averaged density profile, ρp ( r ), of the protohalo.

ndeed, taking the origin of the coordinate system at the peak on scale
 f , the density contrast δ at r p = 0 is nothing but the convolution with

he Gaussian window of that radius of the (i.e. unconvolved) density
ontrast field δp (r p ) in the protohalo. That is, after integrating over
he polar angles, we have 

( R f ) = 

√ 

2 

π

1 

R f 
3 

∫ ∞ 

0 
d r p r 

2 
p δp ( r p ) exp 

( 

− r 2 p 

2 R f 
2 

) 

, (6) 

here δp ( r p ) is the spherical average of δp (r p ). Consequently, given
he mean peak trajectory δ( R f ) of purely accreting haloes with M at
 , by solving the Fredholm integral equation of first kind in equation
 6 ), we can find the mean density profile δp ( r p ) of their protohaloes
Salvador-Sol ́e et al. 2012a ). 

Once we know the mean density profile δp ( r p ), we can calculate
he mean total energy profile 

 p ( r p ) = 4 π
∫ r p 

0 
d r r 2 ρp ( r) 

{ [
H i r − v p ( r) 

]2 

2 
− GM p ( r) 

r 

} 

(7) 

 p ( r p ) = 4 π
∫ r p 

0 
d r r 2 ρp ( r) , (8) 

here G is the gravitational constant, ρp ( r p ) stands for ρc ( t i )[1 +
p ( r p )], H i is the Hubble constant at t i , and 

 p ( r p ) = 

2 G 

[ 
M p ( r p ) − 4 πr 3 p ρc ( t i ) / 3 

] 
3 H ( t i ) r 2 p 

(9) 

s the peculiar velocity caused by the mass excess within r p . 
Monitoring the ellipsoidal collapse and virialization through shell

rossing (though not apocentre crossing, which is at the base of the
nside-out growth of the accreting haloes), we are led to the relation 

 = − 3 

10 

GM 

2 

E p ( M) 
. (10) 

etween the radius r and mass M within it in the final virialized object
see Salvador-Sol ́e et al. 2012a for details). Equation ( 10 ) resembles
he virial relation for homogeneous systems with null confining
ressure, but it differs from it in that E p ( M ) is not the energy of the
alo, E ( M ), but that of the protohalo, which is not conserved during
llipsoidal collapse and shell crossing. Lastly, differentiating the
rofile M ( r ) given by equation ( 10 ), we obtain the mean spherically
veraged density profile ρ( r ) of virialized haloes with M at t . 

We emphasize that, even though this profile has been derived
ssuming purely accreting haloes, it coincides with the profile of
aloes of the same mass at the same cosmic time having suffered
ajor mergers because, as sho wn in (Salv ador-Sol ́e & Manrique

021 ), the violent relaxation suffered by haloes after a major merger
auses them the memory loss of their past history. This fundamental
esult, formally pro v en in Salvador-Sol ́e & Manrique ( 2021 ), is
onfirmed by the results of simulations (Ascasibar, Hoffman &
ottl ̈ober 2007 ; Wang & White 2009 ; Mao et al. 2018 ). 

 A NA LY T I C  FITS  TO  T H E  DENSITY  PROFILE  

his theoretical mean spherically averaged halo density profile,
hich is numerical, can be fitted to the usual analytic expressions
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Figure 1. Mean spherically averaged density profile predicted by CUSP 
(solid line) for z = 0 haloes with M vir = 10 13 M � in the WMAP7 cosmology 
and its unconstrained best fit to the NFW function down to 10 −2 R (dashed 
line). 
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Figure 2. Same as Fig. 1 but for the Einasto fit down to 10 −3 R . 

Figure 3. Best r s values found in the non-parametric fits to the NFW (lower 
brown line) and the Einasto (upper pink line) of the density profiles predicted 
by CUSP for haloes with different r −2 values (corresponding to M vir masses 
spanning from 10 −5 M � h −1 to 10 15 M � h −1 ) in the WMAP7 cosmology at 
z = 0. (A colour version of this Figure is available in the online version of 
this Journal). 
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sed for simulated haloes, namely the two-parametric NFW profile 
Navarro et al. 1995 ), 

( r) = ρs 
4 r 3 s 

r ( r + r s ) 
2 , (11) 

nd the three-parametric Einasto profile (Einasto 1965 ), 

( r) = ρs exp 

{
− 2 

α

[(
r 

r s 

)α

− 1 

]}
, (12) 

here α is the so-called shape parameter. The parameters charac- 
erizing them are the scale radius r s or the concentration c ≡ R / r s ,
here R is the radius of the halo, and the characteristic density ρs or

he characteristic mass within r s , 

 s = 16 πf (1) ρs r 
3 
s , (13) 

ith f ( x ) = ln (1 + x ) − x /(1 + x ), in the NFW case, or 

 s = 2 π

(
2 

α

)1 − 3 
α

e 
2 
α f (1) ρs r 

3 
s , (14) 

ith f ( x ) = � (3/ α) − � (3/ α, 2 x α / α), where � ( x ) and � ( x , y ) are
he gamma and incomplete gamma functions, respectively, in the 
inasto case. Alternatively, one can use the total mass M , related to
 s through 

 s = M 

f (1) 

f ( c) 
, (15) 

or the appropriate function f ( x ) in the NFW and Einasto cases. 
Note that parameters r s , M s and α refer to the internal structure

f haloes, which is kept fixed during inside-out growth, whereas 
arameters c and M involve their global structure, which varies as
aloes grow. This is the reason why the relations between the former
arameters are hereafter referred to as the ‘internal relations’ and the 
elations between the latter are referred to as ‘global relations’. 

Figs 1 and 2 illustrate the goodness of the analytic fits to the
ensity profiles derived by means of CUSP. As can be seen, the fits
re excellent, with the residuals having the typical S-shape found 
n simulations (e.g. Navarro et al. 2004 ). Moreo v er, not only do the
heoretical density profiles have the same shape as the empirical 
nes but, as we will see in Section 5 , the typical values of the fitting
arameters also agree. 
In Fig. 3 , we compare the radius r −2 , where the logarithmic slope

f the theoretical density profile is equal to −2, to the proxy r s of the
est fitting NFW and Einasto functions (equations [ 11 ] and [ 12 ]).
hile in the case of the Einasto profile the difference between r −2 

nd r s is small (1 . 06 � r s /r −2 � 0 . 96) for haloes of all masses at z =
MNRAS 521, 1988–2001 (2023) 
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Figure 4. Domains of acceptability (according to the χ -square test) of the 
NFW (brown upper-left to lower-right hatched area) and Einasto (pink upper- 
right to lower-left hatched area) fits to the density profiles predicted by CUSP 
for haloes with M 200 in the WMAP7 cosmology with no free-streaming cutoff. 
The solid-black line marks the M ∗( z) curve and the dashed-black lines bracket 
the region 10 −4 ≤ M / M ∗( z) ≤ 10 4 around it. (A colour version of this Figure is 
available in the online version of this Journal). 
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 (a similar results is obtained at any other z), in the case of the NFW
rofile the solution is only acceptably good (0 . 9 � r s /r −2 � 0 . 8)
or large halo masses ( M � 10 8 M � h −1 ). The reason for the better
ehaviour of the Einasto fitting function is, of course, that it involves
ore parameters. In the case of the NFW function r s is smaller than

 −2 ( c larger than the real concentration), particularly at the low-mass
nd where the NFW function yields deficient fits to the very steep
ensity profiles of low-mass haloes at low redshifts (see Fig. 4 ).
n contrast, the Einasto fits are acceptable o v er the whole ( M , z)
lane. 
By fitting the numerical profiles of haloes of all masses and

edshifts, we have obtained the numerical dependence on M and
 of the NFW and Einasto parameters, the so-called M − c and
 s − r s relations, predicted by CUSP. Since those relations will

e compared to those based on the results of simulations, we have
tted the numerical density profiles inferred by CUSP as done for the
ensity profiles found in simulations: by χ2 minimization o v er the
adial range from R to 10 −2 R with a constant logarithmic step. There
re two possible ways to carry out the fits: keeping all the parameters
ree or enforcing their relation with the halo mass (or maximum
ircular velocity), which reduces the number of free parameters by
ne. In principle, letting all parameters free yields a better fit, but the
ass of the halo with the best fitting density profile slightly differs

rom that of the real halo, so there is no clear advantage in any of
he two procedures. In Section 5.2 , where the CUSP-based M − c
elation will be compared to that found by WBFetal we will carry out
nconstrained fits as done by those authors. Ho we ver, in Section 5.1
here the models our predictions will be compared to use both kinds
f fits, we will adopt the geometric mean of the values obtained in
he two kinds of fits. This is enough, indeed, because the relative
ifference between the parameter values found in the two ways is
mall ( < 3 per cent at 10 −4 M ∗( z) and up to about 6 per cent at M =
NRAS 521, 1988–2001 (2023) 
0 3 M ∗( z), where M ∗( z) is the critical mass for ellipsoidal collapse
t z solution of the equation σ [ M ∗( z), z] = δc ( z). 

 A NA LY T I C  MASS–SCALE  R E L AT I O N S  

he fact that major mergers yield halo density profiles identical
o those arising from accretion (Salvador-Sol ́e & Manrique 2021 ),
hich develop inside-out, causes the typical spherically averaged
ensity profiles of virialized haloes to be fully determined by those
f peaks at t i . The result is that halo density profiles are close to
he NFW and Einasto form with the respective internal parameters
atisfying very simple relations. 

Indeed, the M −2 − r −2 relation, with M −2 ≡ M ( r −2 ), is basically
 power law. The reason for this is that both σ 2 ( R f ) and 〈 x 〉 [ δ(R f ),
 f ] are closely power laws (in the halo mass range, the CDM power
pectrum behaves as a power law) and so is also the mean trajectory
( R f ) of accreting haloes (equation [ 5 ]). Since the boundary condition
at R f ( M , t ) is also close to a power law of M (equation [ 2 ]), the
hole solution δ( R f ) will essentially behave as a power law of M

t every fixed R f too. And the same is true for the unconvolved
rotohalo density contrast δp ( r ) at any fixed r , which implies that the
otal energy of protohaloes E p ( M ) is also closely a power law of M
equations [29] – [30] in Salvador-Sol ́e et al. 2012a ). Equation ( 10 )
hen implies that the mass M inside the radius r along the evolution of
ny accreting halo is approximately a power law too, with the same
ndex for all haloes, which explains that the M −2 − r −2 relation in
ll accreting haloes approximately satisfies the same linear log–log
elation. 

Therefore, since r s is a good proxy for r −2 (Fig. 3 ), the M s − r s 
elation must be close to a power law, 

 s = r 0 

(
M s 

M 0 

)τ

, (16) 

ith index τ independent of mass. Moreover, as r s and M s are internal
arameters, τ must also be independent of z. And, as can be seen by
ividing equation ( 13 ) by equation ( 14 ), the third internal parameter,
, must also have an approximately fixed value at least for large
asses where both the NFW and Einasto profiles provide acceptable
ts. 
Strictly speaking, since the power-law form of r s (equation [ 16 ])

s just a good approximation, τ and α will slightly depend on
 s . Moreo v er, since the fit of the density profiles to the usual

nalytic functions is not perfect, the best fitting values of the internal
arameters will also slightly vary with z due to the variation of the
tted radial range with halo growth (Salvador-Sol ́e et al. 2012a ).
onsequently, we must allow for τ and α to slightly depend on both
 s and z. 
The expressions 

τ

τ0 
= 1 + t 1 (1 + z) t 2 

[
M s 

M 0 (1 + z) t 3 

]t 4 

(17) 

nd 

α

α0 
= 1 + α1 ( z) 

{ 

1 + 

[
M c ( z) 

M s 

] 1 
2 
} α2 ( z) 

+ 

{ 

1 + 

[
M s 

M c ( z) 

] 1 
2 
} α3 

, 

(18) 

ith 

α1 ( z) = a 1 , 1 [1 − a 1 , 2 erf ( z)] 

α2 ( z) = a 2 , 1 (1 − z/ 2) a 2 , 2 

og [ M c ( z)] = log ( M 1 ) exp ( m z) , 
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Table 3. Coefficients in the NFW and Einasto M s − r s relations. 

Cosmology Mass Profile r 0 (10 −5 Mpc) M 0 (M �) τ 0 t 1 t 2 t 3 t 4 

WMAP7 M vir NFW 9 .46 1.00 × 10 5 0 .325 0 .183 − 0 .192 − 0 .346 .0145 
Einasto 10 .2 8.91 × 10 4 0 .311 0 .213 − .0234 0 .0183 

M 200 NFW 9 .75 1.00 × 10 5 0 .317 0 .199 − 0 .124 − 0 .221 .0134 
Einasto 10 .8 8.91 × 10 4 0 .325 0 .155 − .0325 0 .0224 

Planck14 M vir NFW 8 .04 1.00 × 10 5 0 .280 0 .382 − 0 .113 − 0 .349 .00854 
Einasto 8 .91 8.91 × 10 4 0 .344 .0717 − 0 .117 0 .0467 

M 200 NFW 8 .59 1.00 × 10 5 0 .314 0 .219 − 0 .134 − 0 .238 .0134 
Einasto 10 .0 8.91 × 10 4 0 .353 .0510 − 0 .100 0 .0503 

Planck14 ∗ M 200 Einasto 10 .1 8.91 × 10 4 0 .347 .0673 – – .0388 

Note. ∗Mass-unconstrained fit with α fixed according to equation ( 18 ) with coefficients given in Table 4 . 

Table 4. Coefficients in the Einasto M s − α relation. 

Cosmology Mass M 1 (M �) m α0 a 1, 1 a 1, 2 a 2, 1 a 2, 2 α3 

WMAP7 M vir 2.63 × 10 10 − 0 .0648 0 .317 − 1 .275 0 .0348 0 .00434 0 .445 − 0 .0523 
M 200 0.69 × 10 10 − 0 .0615 0 .290 − 1 .189 0 .0306 0 .00449 0 .545 − 0 .0538 

Planck14 M vir 7.66 × 10 10 − 0 .0543 0 .300 − 1 .250 0 .0457 0 .00487 0 .621 − 0 .0502 
M 200 1.89 × 10 10 − 0 .0355 0 .300 − 1 .219 0 .0287 0 .00478 0 .455 − 0 .0605 

Planck14 ∗ M 200 9.43 × 10 9 − 0 .0542 0 .302 − 1 .204 – 0 .00396 – –

Note. ∗Mass-unconstrained three-parametric fit. 
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here erf is the error function, giv e e xcellent fits to the numerical
elations predicted by CUSP. In Tables 3 and 4 we provide the best
alues of the coefficients for the cases of interest used in this work. 

Taking into account the definition of concentration, c = R / r s , and
quation ( 15 ), the previous internal relations lead to the M − c relation

log ( c) + τ ( M, z) log 

[
f (1) 

f ( c) 

]
= 

1 

3 
log 

[
[ M/M 0 ] 1 −3 τ ( M,z) 

μ( z) 

]
(19) 

( z ) = 

4 π	 ( z ) ρ	 

( z ) r 3 0 

3 M 0 
(20) 

ith τ ( M , z) given by equation ( 17 ) and the M − α relation given by
quation ( 18 ) with M s replaced by Mf (1)/ f ( c ). Note that the M − α

elation has an extra implicit dependence on z through c . 
The goodness of the previous analytic fitting expressions for the 

FW and Einasto M s − r s and M − c relations is seen in Figs 5 , 6 ,
nd 7 , where they are compared to the numerical relations directly
rising from the fits to the halo density profiles predicted by CUSP
or different cosmologies and mass definitions (see Section 5 ). The 
arge oscillations found in the best fitting values of α (Fig. 7 ) show
he difficulty of determining this parameter due to the de generac y
n the three-parametric fit. Fortunately, the best values of the other 
wo parameters, r s and ρs (or M s ) are weakly dependent on the exact
alue of α, so they are well determined anyway (see Fig. 6 ). 

We remark that, while the M s − r s and M s − α relations 
equations [16] – [18] ) are explicit for r s and α, the M − c and M −

relations are implicit for c and α, so the former are more practical
han the latter. Nevertheless, in small mass ranges the dependence 
f c on M can be approximated by a simple power-law relation as
ound in classical toy models. Indeed, f ( c ) is essentially constant 1 

nd τ is little dependent on M , so the M − c relation in equation
 19 ) is close to a linear log–log relation. On the other hand, the same
pproximations (i.e. f ( c ) constant and τ ≈ 1/3) also lead to 

 ∝ [ 	 ( z ) ρ	 

( z ) ] −1 / 3 , (21) 
 f ( c ) is a smooth function of c , and c is little dependent on M because τ is 
lose to 1/3. 

t
a  

m  

t

mplying that c is roughly proportional to (1 + z) −1 in small redshift
anges as found by Bullock et al. ( 2001 ), though equation ( 21 ) is a
etter approximation. 

 C O M PA R I S O N  WI TH  P R E V I O U S  M O D E L S  

he comparison of those CUSP-based analytic mass–scale relations 
o previous toy and phenomenological models will be achieved in 
he two different mass and redshift regimes probed by simulations 
nd for both the ‘global’ and ‘internal’ relations. These two kinds of
elations are equi v alent, but, while the former is the most commonly
sed, the latter informs more directly on halo growth. 
There are of course small differences in the data treatment and

tting procedure used by different authors (including ourselves), but 
hey are not expected to significantly affect the comparisons. The 
nly differences that, in principle, might substantially affect them 

re: (i) while the concentration obtained by means of CUSP refers to
he mean density profile of haloes with a given mass, that considered
n most models is the median value and (ii) while CUSP deals by
efinition with virialized haloes, simulations include to some extent 
aloes out of equilibrium. Point (i) could be a problem because the
oncentration of haloes of a given mass is lognormally distributed 
ith a notable scatter (Dutton & Macci ̀o 2014 ), implying that the
ean concentration is substantially larger than the median one. 
o we ver, the concentration calculated by means of CUSP is not the
ean concentration of haloes with fixed mass, but the concentration 

f the mean density profile of those haloes and, as shown in the
ppendix, this latter value coincides with the median concentration. 
hus, there is no problem in this respect. Regarding point (ii), we
ust say that the departure from equilibrium of haloes really causes

he M − c and M s − r s relations at the high-mass end at every redshift
o differ between different models and the CUSP-based ones. Indeed, 
 large fraction of simulated haloes in that mass regime, where major
ergers are more common, are not fully relaxed and, even though

he authors enforce different virialization criteria in order to select 
MNRAS 521, 1988–2001 (2023) 
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Figure 5. Top panel: M s − r s relations resulting from the fits to the NFW 

profile of the halo density profiles predicted by CUSP in the WMAP7 
cosmology (thin lines) and the corresponding fits to the analytic equation 
( 16 )-( 17 ) (thick lines) for all rele v ant M vir masses and z = 0, 2, 3, 5, and 9 
(from top to bottom). To a v oid o v erlapping the curves for z > 0 have been 
progressively shifted 0.2 dex downwards. The regions where the NFW fits 
are deficient are marked with dashed lines. Bottom panel: same as the top 
panel, but for the M − c relations using the analytic equation ( 19 ). No shift 
has been applied to these curves. 
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hose which are, this objective is not fully accomplished (Ludłow
t al. 2016 ). 

.1 High-mass low-redshift regime 

urther, we compare our analytic relations to previous toy models in
he high- M low- z regime. 

Among all the models focusing on the NFW profile we have
hosen those provided by Zhao et al. ( 2009 ), Mu ̃ noz-Cuartas et al.
 2011 ) and Klypin et al. ( 2011 ) since they all refer to the same
MAP7 cosmology (Komatsu et al. 2011 ) or close to it (see Table 2 )

nd the same M vir masses, which we also adopt for the CUSP-
ased relations. Other more recent toy models (Prada et al. 2012 ;
NRAS 521, 1988–2001 (2023) 
utton & Macci ̀o 2014 ; Klypin et al. 2016 ; Ishiyama et al. 2020 )
sing other cosmologies, parametrizations or fitting techniques give
imilar results, ho we ver. We must also say that Zhao et al. ( 2009 )
nd Mu ̃ noz-Cuartas et al. ( 2011 ) adjust two parameters, while Klypin
t al. ( 2011 ) adjust only one parameter (they enforce the value of the
aximum circular velocity V max ). This is the reason why we use the

ybrid fit technique explained in Section 3 . 
For the Einasto profile, the toy models available are those provided

y Gao et al. ( 2008 ) for the Millennium cosmology (with parameters
lose to the Planck ones; see the parameters values in Table 2 )
Springle et al. 2005 ) and by Dutton & Macci ̀o ( 2014 ) and Klypin
t al. ( 2016 ) for the Planck14 cosmology (Planck Collaboration et al.
014 ; Klypin et al. 2016 ) (see Table 2 ). The masses adopted in all
hose studies are M 200 . We thus use the CUSP-based relations for
hat cosmology and mass definition. Again, Gao et al. ( 2008 ) and
utton & Macci ̀o ( 2014 ) used unconstrained fits, while Klypin et al.

 2016 ) used constrained ones. Ludłow et al. ( 2013 ) repeated the
tudy by Gao et al. ( 2008 ) for the same cosmology and with more
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Figure 7. Same as Fig. 6 for the M − α relations. The lowest curve on the 
left corresponds to z = 0, and the uppermost one to z = 9. 
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Figure 8. Top panels: comparison between the NFW M − c relation predicted 
by CUSP and provided by the toy models by Zhao et al. ( 2009 ), Mu ̃ noz- 
Cuartas et al. ( 2011 ) and Klypin et al. ( 2011 ) at different redshifts for M vir 

masses in essentially the same WMAP7 cosmology. Bottom panels: same as 
top panels, but for the toy models restricted to masses M < 10 M ∗( z). (A 

colour version of this Figure is available in the online version of this Journal). 
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articles per halo, but they focus on z = 0, so we compare our analytic
xpressions to the former model. 

As the fit to the three-parametric Einasto function is somewhat 
egenerate, the simulations employed to build the latter models 
se many more particles per halo than in the NFW case so as to
etter determine the halo density profiles. But then halo samples 
ave substantially higher mass limits, which makes it difficult to 
etermine reliable M − α relations. To alleviate this problem, Gao 
t al. ( 2008 ) replace this relation between α and M by another one
etween α and the time-invariant linear (top-hat) height ν th ( M, z) ≡
th 
c ( z ) /σ

th ( M, z ) of protohaloes with M at z, which compresses the
catter in the data. Of course, this procedure does not break the
e generac y in α; it just smooths out the relation. The price to pay
or this is that any real trend in the data is harder to detect. Dutton &

acci ̀o ( 2014 ) adopted the same relation found by Gao et al. ( 2008 )
nd Klypin et al. ( 2016 ) just repeated the fit. Thus, the fact that the
 − α curves derived from the ν th − α relations inferred from all 

hree authors essentially coincide does not make them more reliable. 
n the contrary, they are the relations worst determined. Fortunately, 

he uncertainty in α has little effect on the associated M − c relation
e.g. Gao et al. 2008 ; see also Section 5.2 ). 

In all Figures below, the curves predicted by CUSP, from now 

n called ‘theoretical relations’, are plotted in thick solid line even 
hough there should be essentially no halo in equilibrium with masses
 > 10 3 M ∗( z), where the typical time elapsed since the last major
erger is smaller than a few (2 − 3) crossing times (Raig, Gonz ́alez-
asado & Salvador-Sol ́e 2001 ). Regarding the curves of the toy
odels, from now on called ‘empirical relations’, they are plotted 

n thin solid line within the mass range co v ered by the data, and in
hin-dashed line their extrapolations beyond that mass range. 

.1.1 Global relations 

he theoretical and empirical NFW M − c relations are compared 
n Fig. 8 , top panel. At z = 0 all the curves are quite similar.
n particular, the theoretical relation fully coincides with the toy 
odel by Zhao et al. (2009) . Ho we v er, the y markedly differ at the

igh-mass end. While the theoretical curve keeps on decreasing at 
he same accelerated rate, the empirical curves change their trends 
ne xpectedly: the curv e corresponding to the toy model by Zhao et al.
 2009 ) suddenly levels off and those of the toy models by Mu ̃ noz-
uartas et al. ( 2011 ) and Klypin et al. ( 2011 ) keep on decreasing at
 constant rate and bend upwards, respectively. The same divergent 
ehaviour of the toy models is observed at higher redshifts, though
t progressively smaller masses. Only when the curves are truncated 
t 10 M ∗( z) are they much similar to each other (see Fig. 8 , bottom
anel) and to our predictions. 
In the Einasto case (see Fig. 9 ), the result is similar except for the

act that there is a more marked discrepancy between the theoretical
redictions and the toy models as well as between the toy models
hemselves. This is likely due to the fact that, for the abo v e mentioned
easons, the empirical curves are restricted to more massive haloes 
han in the NFW case, which are the most affected by the departure
rom equilibrium. Only the toy model by Klypin et al. ( 2016 ) reaches
oderately massive haloes and the corresponding M − c curves are 

ndeed the closest to the theoretical ones. But the largest discrepancy
MNRAS 521, 1988–2001 (2023) 
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Figure 9. Top panels: same as the top panels of Fig. 8 for the Einasto M − c 
relation predicted by CUSP and the toy models by Gao et al. ( 2008 ), Dutton & 

Macci ̀o ( 2014 ) and Klypin et al. ( 2016 ) at different redshifts for M 200 masses 
in several Plank14 -like cosmologies. Bottom panels: same as top panels for 
the M − α relations. (A colour version of this Figure is available in the online 
version of this Journal). 
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of this Journal). 
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s in the M − α relations. While α is little dependent on M and z
n the theoretical curves, it markedly depends on both arguments in
he empirical ones. We recall that there is a large de generac y in the

parameter so that the M − α relation is quite uncertain. The fact
hat the empirical M − α curves are very similar to each other does
ot mean they are more reliable than the theoretical ones. They are
imilar simply because Dutton & Macci ̀o ( 2014 ) adopted the same
 − α relation as Gao et al. ( 2008 ) and Klypin et al. ( 2016 ) fitted

heir own data with identical ν th − α functionality . Interestingly , at
 = 0 the theoretical M − α curve is consistent, between 10 11 M � h −1 

nd 10 15 M � h −1 , with a constant value of α of about 0.18 as found
y Ludłow et al. ( 2016 ) in their simulations restricted to that mass
ange and redshift. 

To sum up, for haloes with masses M < 10 M ∗( z) at z � 2 there is
ood agreement between the theoretical global relations and previous
oy models targeting masses M > 10 10 h −1 M �. These results indicate
hat 10 M ∗( z) mark the upper mass limit at each redshift for halo
amples not to be affected by the departure from equilibrium of
NRAS 521, 1988–2001 (2023) 
hose objects. The comparison regarding the M − α relation in the
inasto case is little compelling due to the big uncertainty affecting

his relation in the toy models considered and the marked departure
rom equilibrium of very massive haloes as included in the toy models
ealing with the Einasto profile. Klypin et al. ( 2011 ) found, indeed,
hat the fit of the density profiles of haloes out of equilibrium leads
o higher values of α than in relaxed haloes, where it is close to α ≈
.18 (see also Klypin et al. 2016 ), which agrees with the results by
udłow et al. ( 2016 ) at z = 0 and with our predictions. 

.1.2 Internal relations 

n Fig. 10 , top panel, we see that, at z = 0, all NFW M s −
 s curves essentially overlap in the same approximate power-law
elation. As z increases, the logarithmic slope of the empirical
urves slightly shifts at the high-mass end where it varies notably
rom author to author. This suggests that the different behaviour
f the theoretical an empirical curves at high-masses at every z
imply reflects the abo v e mentioned bias introduced by haloes out
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Figure 11. Top panels: same as Fig. 9 , but for the M s − r s relations. Middle 
panels: corresponding M s − α relations. Bottom panels: same as middle 
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figure is available in the online version of this Journal.). 
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f equilibrium. Indeed, when the curves are truncated at 10 M ∗( z)
Fig. 10 , bottom panel), not only do they all essentially coincide
ith each other but also with the thoeretical curves. On the contrary,

he slope of the theoretical relation remains much more constant 
ith varying redshift, as expected. In fact, the only slight change 
isappears when the fit is carried o v er the same radial range at all
edshifts. 

The Einasto relations are shown in Fig. 11 . The theoretical M s −
 s and M s − α curves for dif ferent z no w almost coincide e ven
ithout taking a fixed fitting radial range (see top and middle 
anels). This reflects the fact that the Einasto function provides 
etter fits to the halo density profiles than the NFW function due
o the extra parameter α (see Fig. 3 ). On the contrary, the empirical
urves show a marked dependence on z, even more marked than for
he NFW profile (Fig. 10 ), likely due to the slight coupling of r s 
ith the poorly determined α parameter, whose wrong dependence 
n z artificially boosts that of r s . Once again, when the relations
re truncated at 10 M ∗( z), all the M s − r s curves almost fully
 v erlap and their dependence on z disappears (we have skipped
his figure to a v oid being repetiti ve). Ho we ver, the corresponding
mpirical M s − α curves, depicted in Fig. 11 bottom panel, still get 
part from the theoretical one and show a marked dependence on 
. 

The conclusion of the comparison of the internal relations is 
hat, in the mass range M � 10 M ∗( z), where most haloes are in
quilibrium, the toy models behave as predicted by CUSP: the 
 s − r s relation is close to a time-inv ariant po wer law, and the

ependence of α on M s is much less marked and closer to constant
han found at large masses, according to the predictions of CUSP. 
ince it is very unlikely that these results are simultaneously met 
or other causes, they give strong support to the halo growth 
onditions evidenced by CUSP. Unfortunately, the mass range (of 
wo orders of magnitude) and the redshift interval (below z = 2
nly) co v ered by those toy models are too narrow to be more 
onclusive in this respect. 

.2 Whole mass range at redshift zero 

his limitation is amply o v ercome by the simulation recently 
erformed by WBFetal at z = 0 in a flat Lambda 100 Gev WIMP
niverse with the Plank14 cosmological parameters (see Table 2 ). 
hese authors fitted the empirical M − c relation found for M 200 

asses to the Einasto relation (with unconstrained fits). We can thus
heck the validity of the Einasto CUSP-based analytic expressions 
erived for those cosmology and mass definition o v er the whole mass
ange. 

WBFetal studied two cases: with and without free-streaming mass 
ut-off of the CDM power spectrum. For simplicity, we concentrate 
ere on the case of no cut-off, though CUSP can also deal with
 mass cut-off (see Vi ̃ nas, Salvador-Sol ́e & Manrique 2012 ). To
his end we have carried out unconstrained fits to the density 
rofiles predicted by CUSP in the same cosmology and for the 
ame mass definition and derived the analytic M − c and M − α

elations (see the resulting values of the coefficients in Tables 3 
nd 4 ). 

In Figure 12 , we depict the M 200 –α relation obtained from those
ts. Like in Fig. 7 , the best values of α show large oscillations,

hough its trend is quite well determined anyway, particularly in 
he range −3 � log ( M 200 / M �) � 7. Ne vertheless, the v alues of the
ther two parameters, M s (or ρs ) and r s , are very well determined.
his is important because, even though our α values deviate from 
MNRAS 521, 1988–2001 (2023) 
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Figure 12. Raw M 200 –α relation (black line) resulting from unconstrained 
fits to the Einasto function of the density profiles of current haloes predicted 
by CUSP (with no free-streaming mass cut-off) o v er the whole mass range 
analysed by WBFetal in the same cosmology. We also plot the best α( M 200 ) 
fit according to the analytic expression ( 18 ) with M s = Mf (1)/ f ( c ) (blue line) 
and a constant α value of 0.22 (green line). To a v oid o v erlapping with the raw 

relation, the blue curve has been shifted upwards by 0.001. (A colour version 
of this Figure is available in the online version of this Journal). 

t
r  

I  

f  

i  

(  

a  

v  

(  

l  

M  

c  

e
 

t  

f
e  

M  

m  

∼  

T  

−  

i  

o  

(  

s

2

t
(

Figure 13. Same as Fig. 12 , but for the r s and M s values resulting from the 
unconstrained (triparametric) fits to the density profiles predicted by CUSP 
(black line) and from the constrained (biparametric) fits using the two α( M 200 ) 
relations plotted in Fig. 12 : the one according to the equation ( 18 ) (blue line) 
and the other one with α = 0.22 (green line). To a v oid o v erlapping these two 
latter curv es hav e been shifted 0.2 dex upwards and do wnwards, respecti vely. 
(A colour version of this Figure is available in the online of this Journal). 
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hose around 0.16 found by WBFetal, 2 the corresponding M s −
 s relation is very stable and insensitive to the exact α values.
ndeed, as shown in Figure 13 , the raw r s and M s values arising
rom the unconstrained fits with oscillating α values are essentially
dentical to those found by fixing α according to the analytic equation
 18 ) or taking it fixed and equal to 0.22. Indeed, a constant α as
dopted by WBFetal is also a good approximation since the absolute
ariation in the value of this parameter o v er 15 orders of magnitude
between the maximum at log ( M 200 ) ∼ 9 and the low-mass end at
og ( M 200 ) ∼ −6) is only of ∼0.02. As can be seen, the two theoretical
 s − r s relations obtained in that way are almost identical and

lose to a straight line o v er more than 20 orders of magnitude, as
xpected. 

The corresponding M − c relations are depicted in Fig. 14 where
hey are compared to the empirical M − c relation found by WBFetal
rom the fits to the density profiles of simulated haloes (with fixed α
qual to 0.16). As can be seen, there is good agreement between both
 − c relations: the largest difference between the two curves over
ore than 20 orders of magnitude at M 200 ∼ 10 9 M � is just a factor
1.15 and much smaller than the rms scatter of the empirical c values.
hat agreement is particularly remarkable given that the WBFetal M
c relation was obtained by linking by hand the relations obtained

n a mosaic of 8 narrow mass ranges which do not exactly match each
ther and even substantially deviate from the general trend adopted
see their Fig. 3 ), meaning that this empirical relation could locally
NRAS 521, 1988–2001 (2023) 

ome what de viate from the real relation. 

 The reason for that difference could be due to the fact that WBFetal fit 
he staked density profiles in a different range of radii abo v e an unspecified 
possibly mass-dependent) ‘convergence radius’ larger than 10 −3 R 200 . 

p  

m  

t  

c  

M  

t  
In Fig. 14 , we also depict the M − c relations obtained from several
henomenological and toy models. Among all those M − c relations,
he ones showing a global trend similar to that of the WBFetal relation
re the phenomenological models by Correa et al. ( 2015 ), Ludłow
t al. ( 2014 ) (in its latest v ersion giv en in Ludłow et al. 2016 ) and,
t a lesser extent, by Diemer & Joyce ( 2019 ). As mentioned earlier,
ll these models rely on (or are consistent with) the fact that haloes
row inside-out during accretion as found in CUSP. But what about
heir treatment of major mergers? Do they also implicity assume that
he density profile arising from major mergers is indistinguishable
rom that of haloes grown by smooth accretion? 

The equality between the mass profile and MAH of haloes at
he base of Ludłow et al. ( 2014 ) model rigorously holds for purely
ccreting haloes only. When a halo undergoes a major merger its
ass suddenly increases by a factor of about two, while the mean

or critical) cosmic density does not change. Major mergers thus
ause discontinuities in the halo MAHs that are not reflected in their
ass profiles which are necessarily continuous. There should thus

e a small trend for halo MAHs to decline slightly more steeply
han their mass profiles at high- z, where major mergers are more
requent (e.g. Zhao et al. 2003 ). That trend is indeed observed in
he comparison between the two kinds of profiles made in Ludłow
t al. ( 2014 ) (see their Fig. 4 ). Fortunately, this effect is expected to
nly affect the density profile derived from the MAH at very small
adii, typically smaller than r s , so it should not affect the M − c
elation derived in this way. Only for haloes with very low masses
ear the free-streaming cut-off where essentially the whole density
rofile is set during the initial rapid growth phase (with very frequent
ajor mergers) should this effect have noticeable consequences for

he M − c relation derived from MAHs. But Ludłow et al. 2016
hanged their model in that mass regime. Instead of monitoring
AHs, they monitor the history of the collapsed mass, that is, all

he mass that is eventually assembled in the final object regardless of
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Figure 14. Same as Fig. 13 (same lines and colours), but for the M 200 –c relation (the blue and green lines are not shifted now and almost o v erlap). F or 
comparison we plot the M 200 –c relation (for median c values) found by WBFetal by fitting the density profiles of simulated haloes to the Einasto profile with a 
fixed value of α of 0.16 (solid red line) and the corresponding typical rms scatters (dashed red lines). The M − c relations predicted by other phenomenological 
and toy models are also shown (black lines). (A colour version of this Figure is available in the online version of this Journal). 
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hether it comes from the main progenitor. When doing this, these 
uthors implicitly follow what would be the putative MAH of the 
nal halo had it been evolving by pure accretion thanks to the fact

hat, as considered in CUSP, the density (and mass) profile of haloes
merging from major mergers is indistinguishable from that of purely 
ccreting haloes. It is thus unsurprising that the model by Ludłow 

t al. 2016 shows a similar good behaviour than the CUSP-based
odel. The Ludłow et al. 2016 model is just slightly less accurate

ecause it uses the EPS formalism instead of CUSP. We remark also
hat it includes two free parameters, while the CUSP-based model is
arameter-free. 
In the models by Correa et al. ( 2015 ) and Diemer & Joyce ( 2019 ),

he inside-out growth implied by the constancy of the scale radius
s only seen at the late phase of their evolution. In Correa et al.
 2015 ) model this is not important because the model does not rely
n whether accreting haloes grow inside-out or not, it just relies
n the mass aggregation history predicted by the EPS model without 
aking the distinction between smooth accretion and major mergers. 
o we ver, the Diemer & Joyce ( 2019 ) model explicitly assumes

hat, during the late accretion (or pseudo-accretion) phase haloes 
row inside-out by keeping the r s unchanged. In the initial phase 
ominated by major mergers, it is assumed that it is the concentration
 which is kept approximately constant. This approximation not only 
omplicates the model (it harbours five free parameters because of 
he necessity to define the frontier between the two different growth 
hases dependent on halo mass), but it is not accurate enough. If
 were really kept constant in major mergers, M s would be kept
ssentially proportional to M 200 (equation [ 15 ]) and, since R 200 is
roportional to M 200 to the 1/3, r s should also be proportional to M s 

o the 1/3. It is true that, according to the predictions of CUSP, τ
s not far from 1/3 (see the value of τ 0 in Tab. 3), which explains
hat the Diemer & Joyce ( 2019 ) model yields acceptable predictions.
o we ver, it slightly deviates from this value depending on mass (and

edshift), which causes the M − c relation predicted by the Diemer &
oyce ( 2019 ) model not to flatten enough. 
t  
The conclusion of the comparison o v er the full halo mass range is
hus that the predictions of CUSP agree with the results of numerical
imulations o v er the full mass range of 20 orders of magnitude at z =
. The fact that the phenomenological models of second generation 
hat reco v er the flattening of the M − c relation include implicitly the
nside-out growth of accreting haloes and implicitly the similarity 
f the density profiles of haloes regardless of their assembly history
ives strong support to such growth conditions explicitly accounted 
or in CUSP (and pro v en in Salvador-Sol ́e & Manrique 2021 ). 

 SUMMARY  A N D  C O N C L U S I O N S  

he CUSP formalism allows one to accurately derive from first 
rinciples and with no free parameter all macroscopic halo properties 
including substructure; Salvador-Sol ́e, Manrique & Botella 2022a ; 
alvador-Sol ́e et al. 2022b ; Salvador-Sol ́e et al. 2022 ) and to clarify

he origin of all their features (Salvador-Sol ́e & Manrique 2021 ).
n this Paper, it has been applied to derive the mass–scale relations
atisfied by halo density profiles. Specifically, we have analysed 
ow the two fundamental characteristics of halo growth evidenced 
y CUSP, namely that accreting haloes grow inside-out and that 
aloes having suffered major mergers are indistinguishable from 

hose having grown by pure accretion, translate into those relations. 
We have shown that such characteristics lead to an intrinsic M −2 −

 −2 relation of the real non-parametric density profiles that is time-
nvariant and very close to a power law with index τ around 1/3.
o we ver, the proxy relation M s − r s and the global shape parameter
found from the fit of the profiles to the usual NFW and Einasto

arametric functions slightly deviate from those simple trends due to 
he fact that these functionalities do not yield a perfect fit, so, even
hough accreting haloes grow inside-out, the best fitting values of the
nternal and shape parameters, r s , M s , and α, slightly shift with mass
nd redshift as the total fitted radial range expands. 

We have shown that, while the Einasto function gives acceptable 
ts to the halo density profile o v er the whole mass and redshift range,

he NFW function is only acceptable, at low- z, for high-masses.
MNRAS 521, 1988–2001 (2023) 
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imple analytic expressions have been provided that give very good
ts to the ‘internal’ M s − r s and M s − α relations, as well as to the
global’ M − c and M − α relations for haloes of all masses and
edshifts obtained from the fitting to the NFW and Einasto functions
f the non-parametric halo density profiles predicted by CUSP. Even
hough the two kinds of relations are equi v alent, the former are more
ractical given their simpler form. In particular, the M − c relation
s far from a power law as found in some classical toy models; it
rogressively flattens in log-log towards low-masses. On the other
and, it shows a dependence on redshift which differs from a simple
ower law of 1 + z as also found in some phenomenological models.
The performance of our CUSP-based analytic M − c and M s −

 s relations and the associated M − α and M s − α relations in the
inasto case has been compared to that of several toy models holding
t high masses ( M � 10 10 h 

−1 M �) and low redshifts ( z � 2), as well
s to several phenomenological models supposed to co v er all halo
asses. We find good agreement between the predicted M − c and
 s − r s relations and the toy models provided halo masses stay below

0 M ∗( z) at any redshift. At higher masses the agreement deteriorates
ue to the fact that the predictions of CUSP are for virialized haloes,
hereas simulated haloes with higher masses progressively get apart

rom equilibrium (an increasing fraction of them have suffered a too
ecent major merger and have had no time to relax). Regarding the
 − α and M s − α relations, our predictions substantially deviate

rom those found by Gao et al. ( 2008 ) at very high masses where
aloes are out of equilibrium. They are, ho we ver, consistent with
 roughly constant value of α ∼ 0.18 as found by Ludłow et al.
 2016 ). 

On the other hand, we have found good agreement with the
mpirical Einasto M − c relation recently derived by WBFetal from
 simulation of haloes at z = 0 with masses spanning more than
0 orders of magnitude. The relations predicted by CUSP behave
lightly better than any other phenomenological model put forward
o far including those of Correa et al. ( 2015 ), Ludłow et al. ( 2016 )
nd Diemer & Joyce ( 2019 ). We have shown that the latter models,
hich also behave reasonably well, also implicitly assume the earlier
entioned fundamental characteristics of halo growth accounted for

y CUSP and pro v en in Salvador-Sol ́e & Manrique ( 2021 ). These
haracteristics were also assumed in the old phenomenological model
y Manrique et al. ( 2003 ) using of the EPS formalism. Ho we ver, the
ew mass–scale relations derived here from the CUSP formalism are
ore accurate and practical and arise from first principles, that is,

hey do not rely on any arguable assumption and do not use any free
arameter. 
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PPENDIX  A :  M E D I A N  C O N C E N T R AT I O N  A N D  

EAN-PROFILE  C O N C E N T R AT I O N  

he mean density profile of haloes of a given virial or M 200 mass
 and the corresponding radius R is, like the density profile of
ndividual haloes of that mass, approximately of the NFW or Einasto
orm. Thus, according to equations ( 13 ) or ( 14 ) and equation ( 15 ),
he characteristic density of the mean density profile, ρs ( 〈 ρ〉 ), equal
o the mean density of individual haloes at the scale radius r s ( 〈 ρ〉 ),
atisfies the relation 

 = f [ R/r s ( 〈 ρ〉 )] C ρs ( 〈 ρ〉 ) r 3 s ( 〈 ρ〉 ) , (A1) 

here C is a constant equal to 16 π and 2 π (2 /α) 1 −
3 
α exp (2 /α) in the

ases of the NFW and Einasto profiles, respectively, and f ( x ) is the
orresponding function. On the other hand, the characteristic density 
s at the scale radius r s of each individual halo satisfies the same

elation 

 = f [ R/r s ] Cρs r 
3 
s . (A2) 

e thus have 

 ln r s = 

1 

3 

(
ln 

{
f [ R/r s ( 〈 ρ〉 )] 

( R/r s ) 

}
− 	 ln ρs 

)
, (A3) 

ith 	 ln r s = ln r s − ln [ r s ( 〈 ρ〉 )] and 	 ln ρs = ln ρs − ln ρs ( 〈 ρ〉 ).
aking into account the relation 

ln ρs = ln ρs ( 〈 ρ〉 ) + 

d ln ρ

d ln r 

∣∣∣∣
ln r s 

	 ln r s , (A4) 

alid to first order, where, by definition of scale radius, the logarith-
ic deri v ati ve in the right-hand member is equal to −2, we arrive

t 

 ln r s = ln 

{
f [ R/r s ( 〈 ρ〉 )] 

f ( R/r s ) 

}
+ 

	ρs 

ρs ( 〈 ρ〉 ) , (A5) 

here 	ρs = ρ[ r s ( 〈 ρ〉 )] − ρs ( 〈 ρ〉 ). Note that ρ[ r s ( 〈 ρ〉 )] is the density
f each individual halo at the scale radius of the mean density profile.
Taking into account that f ( x ) is a very smooth function of x , the term

n { f [ R / r s ( 〈 ρ〉 )]/ f ( R / r s ) } in equation ( A5 ) can be neglected. Thus,
ividing r s and r s ( 〈 ρ〉 ) by R , equation ( A5 ) can be rewritten in the
orm 

c 

c( 〈 ρ〉 ) ≈ exp 

[
	ρs 

ρs ( 〈 ρ〉 ) 
]
. (A6) 

ince c / c ( 〈 ρ〉 ) is lognormally distributed (Dutton & Macci ̀o 2014 ),
quation ( A6 ) implies that 	ρs / ρs ( 〈 ρ〉 ) is (approximately) normally
istributed. Moreo v er, since the mean of the latter variable is null, we
onclude that the median of c / c ( 〈 ρ〉 ) is exp (0) = 1 or, equi v alently,
hat the median concentration of haloes with M very nearly coincides
ith the concentration of the mean density profile, c ( 〈 ρ〉 ). 
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