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ABSTRACT 

Claims reserving are of utmost importance for an insurance company because they are 

the ones that will allow the company to face the liabilities acquired in the following 

periods. For this reason, implementing an accurate calculation of reserves is very 

important, since this amount will have an impact on the financial statements, besides 

being one of the important points to measure the solvency of such entity. For this purpose, 

a widely used model has been the deterministic Chain Ladder model, however, in the last 

decades, more sophisticated models including stochastic processes have been developed, 

thus, the calculation can be more accurate. The objective of this work is to use different 

models for the calculation of reserves, such as Clark LDF and Clark Cape Cod, in order 

to evaluate them and choose a reserve model that is accurate. Among the results found in 

this analysis, the Clark LDF model has shown less variability in the reserve projections, 

as opposed to the Chain Ladder model. 

Keywords: Claims reserving, Chain Ladder model, Clark LDF, Cape Cod Model. 
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1. INTRODUCTION  

The projections of claims incurred and claims paid are of utmost importance in an 

insurance company, this is because the solvency of that company will depend on its ability 

to assume its liabilities in terms of claims, therefore, determining reserves amount that is 

capable of facing the claims that will be reported will be crucial to be solvent in the long 

term. 

The objective of this work is to briefly study and apply the Clark method and compare it 

with other methods used when estimating reserves, to determine how efficient and 

accurate the Clark method could be compared to other methods. It is interesting to review 

the Clark method, since it has not been reviewed in this master's degree in actuarial and 

financial sciences, and it is important to know new methodologies for the calculation of 

reserves. 

In recent decades various models have been developed to estimate the reserves of an 

insurance company, due to the importance of these reserves, what has been sought is 

greater precision at the time of estimating these values, since they directly affect the 

income statements of insurance undertakings. There can be deterministic models, such as 

the classic Chain Ladder model, or stochastic models such as Mack Chain Ladder model, 

multivariate Chain Ladder model, Munich Chain Ladder model, the Clark method, etc. 

In this work we will briefly review Chain Ladder and Mack Chain Ladder models, and, 

additionally, we will give more emphasis on Clark's method, which employs the LDF and 

Cape Cod models. The objective will be to replicate that methodology and apply it to 

claims data to compare the results of the projected reserves with some other classical 

models and to be able to draw conclusions about it. 

This work is structured as follows: First, we will present a brief theoretical review of 

reserving methods, and then we will review the mathematical development of the method 

proposed by Clark (2003). Once we have analyzed the model in depth, we will proceed 

to use it on a claims dataset and compare the results with other models we have applied. 

Additionally, we have developed a Shiny application to show the obtained results. 

Finally, we will present the conclusions of this master thesis and the bibliography. 

2. BACKGROUND 

Over the last decades, the calculation of insurance reserves has presented a great 

development, due to the search for a better precision in its estimation, which will 

influence the solvency of an insurance company. An adequate reserve will determine if it 

is capable of facing the future obligations that may arise from the provision of insurance 

services. 

As we have mentioned, several models have been developed with different 

methodologies, ranging from classical and deterministic models to models that use more 

statistics, such as stochastic models. 

In general, the reserves have been represented in a matrix format, with the upper left 

triangle representing the losses amount at the time of the analysis and the lower right 

triangle the loss values for the following periods to be estimated. This matrix is structured 

as follows: in the rows 𝑖 is the year in which claims occurred, while in the columns 𝑗 is 

the year of development or payment of loss, i.e., the first cell on the upper left is the losses 

amount of claims that occurred in year 𝑖, which is paid in the same year, with 𝑗 being 
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equal to 0. Therefore, to give a more practical example, if we have a matrix of losses and 

reserves, which has 10 years of occurrence, starting in 2000, that is, 10 rows, and this 

matrix has 9 years of development, 10 columns, taking into account that the first column 

is the year of development 0, the cell on the upper right is the losses amount of claims 

occurred in year 2000, that is paid after 9 years of its occurrence, in 2009. For this reason, 

we can say that the last year of the claim’s occurrence in the matrix, known as origin 

period or accident year, is called 𝐼, while the last year of development would be 𝐽 = 𝐼 −
1. 

Accordingly, let us introduce some notation: we start with a random variable 𝑐𝑖,𝑗, which 

refers to the incremental amounts, i.e., it represents the incremental amount paid for 

claims occurred in the accident year 𝑖  in the development period 𝑗. It is important to 

mention that these amounts have been paid in calendar year 𝑖 + 𝑗. 

Now, to represent these amounts cumulatively, we will introduce the notation 𝐶𝑖,𝑗, which 

refers to the total amount of claims occurred in period 𝑖 that have been paid up to the 

development period 𝑗, thus, in the last development period 𝐽, the cumulative amount 𝐶𝑖,𝐽, 

of all claims that occurred in 𝑖, will have been paid.  

By way of summary, in the upper left triangle we have the observed values of losses, it is 

known as run-off triangle in literature, and the values to be predicted are in the lower right 

triangle, therefore, the time at which they are evaluated is in period 𝐼, for this reason, if 

cell 𝑖 + 𝑗 < 𝐼, that cell has a real loss amount, on the contrary, if cell 𝑖 + 𝑗 ≥ 𝐼, that cell 

should be predicted. 

In Table 1, we can see a matrix in which the above mentioned is visualized. 

Accident 

year 𝒊 

Development year 𝒋 

0 1 2 … 𝒋 … 𝑱 − 𝟐 𝑱 − 𝟏 𝑱 = 𝑰 − 𝟏 

1         ⋯ 

2        ⋯  

3       ⋯   

⋮ Observations ⋯    

i     ⋯     

⋮    ⋯ To predict 

𝑰 − 𝟐   ⋯       

𝑰 − 𝟏  ⋯        

𝑰 ⋯         

Table 1. Losses and reserves matrix 

Source: Own elaboration 
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Continuing with the explanation of the matrix, we are now interested in identifying the 

current values, future values, and ultimate values in the matrix containing cumulative 

losses. The current values would be the counter diagonal of the matrix, that is, we do not 

place them in period 𝐼, and they would be all the accumulated amounts of claims paid per 

year of origin until the period 𝐼. The next diagonal (from left to right) would be the 

projected values for the following period per year of origin; it is very common to work 

with annual periods, in this way, each diagonal that continues after the counter diagonal 

(from left to right), are the future values for the following years. Finally, to know the 

ultimate value to be paid up to period 𝐼 + 𝐽, by year of origin, the last column of the 

matrix must be taken. 

Therefore, if we wish to know the future value, or in other words, the reserve needed to 

meet the future payments of the period of origin 𝑖, it could be calculated as follows: 

𝑅𝑖 = ∑ �̂�𝑖ℓ = �̂�𝑖,𝐼 − 𝐶𝑖,𝐼−𝑖

𝐼−1

ℓ=𝐼−𝑖+1

. 
(1) 

Finally, the total reserve is: 

𝑅 = ∑𝑅𝑖

𝐼

𝑖=2

. 
(2) 

2.1.CHAIN LADDER MODEL 

Once we have outlined the structure of the matrix for predicting reserve amounts, we will 

proceed to a summary of certain models that will help us to predict these future loss 

amounts. 

To begin this brief review, we will start with the model that has been used the most, and 

one of the pioneers, is the deterministic Chain Ladder method. This method has been 

widely used due to its simplicity, since it does not require any advanced software and 

does not use any statistical tool that generates difficulties at the time of its use. In such a 

way that, as a summary, the method consists of calculating the cumulative losses value 

of the following development year by means of the value of the preceding period 

multiplied by a development factor. 

The formula for the value of the cumulative loss for the following period according to the 

Chain Ladder method is as follows: 

𝐶𝑖,𝑗+1 = 𝑓𝑗 ∙ 𝐶𝑖,𝑗 (3) 

where:  

𝑓𝑗  is the development factor. 
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Therefore, we are interested in knowing how to calculate the development factor of the 

classical Chain Ladder method and the rest of the projected values, which are given using 

the following formulas. For more details, see Amin et al. (2018): 

𝑓𝑗 =

∑ 𝐶𝑖,𝑗+1

𝐼−𝑗−1

𝑖=1

∑ 𝐶𝑖𝑗

𝐼−𝑗−1

𝑖=1

 (4) 

�̂�𝑖𝑗 = 𝐶𝑖,𝐼−𝑖 ∙ ∏ 𝑓𝑙
𝑗−1

𝑙=𝐼−𝑖
. (5) 

2.2.MACK CHAIN LADDER MODEL  

The Chain Ladder model only allows us to estimate the reserves amount but not the 

variability around this amount. To measure the uncertainty related to the calculation of 

the reserve, some stochastic methods have been developed.  

Mack (1993) describes a free distribution model that reproduces the same results than the 

Chain Ladder method and introduces the calculation of the standard errors of the reserve 

estimation. For this, Mack (1993) begins by describing the assumptions made by the 

classical Chain Ladder model and the theorems that support these assumptions, to finally 

estimate the standard errors.  

The implicit assumptions of the Chain Ladder model are:  

𝐸(𝐶𝑖,𝑘+1|𝐶𝑖1, … , 𝐶𝑖𝑘) = 𝐶𝑖𝑘 ∙ 𝑓𝑘 , 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑘 ≤ 𝐼 − 1 (6) 

{𝐶𝑖𝑙, … , 𝐶𝑖𝐼}, {𝐶𝑗𝑙, … , 𝐶𝑗𝐼}, 𝑖 ≠ 𝑗, are independent. (7) 

Regarding the theorems that support the assumptions, we have: 

Theorem 1: Let 𝐷 = {𝐶𝑖𝑘|𝑖 + 𝑘 ≤ 𝐼 + 1} be the set of all data observed so far. 

Under the assumptions (6) and (7) we have 

𝐸(𝐶𝑖𝐼|𝐷) = 𝐶𝑖,𝐼+1−𝑖 ∙ 𝑓𝐼+1−𝑖 ∙ … ∙ 𝑓𝐼−1. (8) 

Theorem 2: Under the assumptions (6) and (7) the estimators 𝑓𝑘 , 1 ≤ 𝑘 ≤ 𝐼 − 1, are 

unbiased and uncorrelated. 

Now, to calculate the mean squared error and standard errors, Mack (1993) begins by 

defining the mean squared error formula: 

𝑚𝑠𝑒(�̂�𝑖𝐼) = 𝐸 ((�̂�𝑖𝐼 − 𝐶𝑖𝐼)
2
|𝐷) (9) 
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where  𝐷 = {𝐶𝑖𝑘|𝑖 + 𝑘 ≤ 𝐼 + 1} is the set of all observed data. 

𝑚𝑠𝑒(�̂�𝑖) = 𝐸 ((�̂�𝑖 − 𝑅𝑖)
2
|𝐷) = 𝐸 ((�̂�𝑖𝐼 − 𝐶𝑖𝐼)

2
|𝐷) = 𝑚𝑠𝑒(�̂�𝑖𝐼). 

(10) 

Now, applying the general rule, we have that: 

𝐸(𝑋 − 𝑎)2 = 𝑉𝑎𝑟(𝑋) + (𝐸(𝑋) − 𝑎)2. (11) 

Based on the above equation, we can obtain the following expression: 

𝑚𝑠𝑒(�̂�𝑖𝐼) = 𝑉𝑎𝑟(𝐶𝑖𝐼|𝐷) + (𝐸(𝐶𝑖𝐼|𝐷) − �̂�𝑖𝐼)
2
. (12) 

Now, we define the variance of 𝐶: 

𝑉𝑎𝑟(𝐶𝑖,𝑘+1|𝐶𝑖𝑙, … , 𝐶𝑖𝑘) = 𝐶𝑖𝑘 ∙ 𝜎𝑘
2, 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑘 ≤ 𝐼 − 1 (13) 

with 𝜎𝑘
2 being an unknown parameter, which is defined in the following equation: 

�̂�𝑘
2 =

1

𝐼 − 𝑘 − 1
∑𝐶𝑖𝑘 (

𝐶𝑖,𝑘+1

𝐶𝑖𝑘
− 𝑓𝑘)

2

, 1 ≤ 𝑘 ≤ 𝐼 − 2

𝐼−𝑘

𝑖=1

 . 
(14) 

Based on the above, the following theorem is obtained: 

Theorem 3: Under the assumptions (6), (7) and (13) the mean squared error 𝑚𝑠𝑒(�̂�𝑖) can 

be estimated by: 

𝑚𝑠𝑒(�̂�𝑖) = �̂�𝑖𝐼
2 ∑

�̂�𝑘
2

𝑓𝑘
2

(

 
 1

�̂�𝑖𝑘

+
1

∑ 𝐶𝑗𝑘

𝐼−𝑘

𝑗=1 )

 
 

𝐼−1

𝑘=𝐼+1−𝑖

. 

(15) 

For a better understanding about the model that has been developed by Mack, it is 

recommended to review his article (Mack, 1993).  

In addition, more stochastic reserve estimation models are available, such as the 

Bornhuetter-Ferguson, Merz and Wüthrich, GLM and Bootstrap models, etc., for more 

details of these models, see the following articles: Amin et al. (2018), Schmidt and Zocher 

(2008) and England and Verrall (2002). 

2.3.CLARK METHOD – LDF AND CAPE COD MODELS  

As mentioned, for the estimation of insurance reserves, we will use the methodology 

proposed by David Clark (Clark, 2003), therefore, this article will serve as the main guide 



11 

 

to develop and apply the LDF and Cape Cod models to our data. To summarize, this 

methodology consists first on estimating a pattern of emerging losses, in order to estimate 

the value of the loss per year. In such a way that, when we have obtained this emerging 

loss pattern, the main models to develop for the estimation of reserves will be the LDF 

model and the Cape Cod model. To use these models, we must identify the distribution 

of the occurrence of real losses and, once we have identified this distribution, we will use 

the models mentioned in this distribution. 

Based on what was mentioned in the previous paragraph, to estimate our model, we start 

by estimating the pattern of emerging losses, to estimate this pattern we will use two 

curves, the Weibull and the Log-logistic curve. These curves are widely used in the 

actuarial field; therefore, we will estimate the parameters of these curves and we will use 

the maximum likelihood function to select the appropriate parameters. Next, we detail the 

functions of the curves that will be used to estimate this pattern.  

The Log-logistic curve has the form: 

𝐺(𝑡|𝜔, 𝜃) =
𝑡𝜔

𝑡𝜔 + 𝜃𝜔
 . 

(16) 

The Weibull curve has the form: 

𝐺(𝑡|𝜔, 𝜃) = 1 − 𝑒𝑥𝑝(−(𝑡 𝜃⁄ )𝜔) (17) 

where 𝜃 is a scale parameter and 𝜔 is a shape parameter. 

It is important to mention that these curves are used because the behavioral pattern 

presented by these curves is an increasing pattern; therefore, the methodology proposed 

by Clark (2003) seeks to find a curve in which the amount of the loss moves as fast as 

possible from 0% to 100% in an increasing pattern. 

Now that we have established the two curves that will be used to estimate the increasing 

pattern of losses, we will define the two models that will be used to estimate the reserves 

amount. The models proposed by Clark (2003) are the LDF model and the Cape Cod 

model. Basically, the difference between these two models is that the LDF model 

considers that the estimation of the loss development for each year is independent, 

therefore, a parameter must be estimated for each year of estimation, while the Cape Cod 

model considers that there is a relationship between the expected loss values for each year 

in the period studied, and this existing relationship is given by an exposure base, which 

can be the level premium or known in the insurance sector as the earned premium, 

therefore, this model will only have 3 parameters to be estimated.  

In the following, we set out the models that have been mentioned, for this purpose we 

establish that the expected incremental loss value, �̂�𝑖,𝑗 , with the two models is: 

Model #1 “Cape Cod” 

The expected loss is estimated based on the growth curve and the expected loss ratio: 
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�̂�𝑖,𝑗 = Premium𝑖 ∙ 𝐸𝐿𝑅 ∙ [𝐺(𝑗|𝜔, 𝜃) − 𝐺(𝑗 − 1|𝜔, 𝜃)] (18) 

with 3 parameters to estimate: 

𝐸𝐿𝑅,𝜔, 𝜃. (19) 

Model #2 “LDF” 

The expected loss is estimated based on the growth curve and an estimated ultimate loss 

for each accident year: 

�̂�𝑖,𝑗 = 𝑈𝑙𝑡𝑖 ∙ [𝐺(𝑗|𝜔, 𝜃) − 𝐺(𝑗 − 1|𝜔, 𝜃)] (20) 

with 𝑛 + 2 parameters to estimate: 𝑛 accident year (one ultimate loss for each accident 

year), 𝜔, 𝜃. 

Based on the above, it is important to take into account that the LDF model presents an 

over parameterization, as mentioned in Clark (2003), if we have a triangle in which 10 

years are considered, there would be a total of 55 data, therefore, for the LDF model, 12 

parameters should be estimated, while for the Cape Cod model only 3. It is important to 

highlight that the Cape Cod method could present a higher variance of the estimated 

process, however, the total variance could be somewhat lower due to the fact that the 

variance of the parameters is larger in the LDF model. It is worth mentioning that what is 

sought is greater precision and less variability in the estimation of reserves, since this will 

allow us to deal with claims. 

Now, the next step is to define the distribution of the real losses, in order to be able to 

estimate the variance around the estimated value. To do this, Clark (2003) proposed to 

use the Poisson distribution, and once we have considered this distribution, by means of 

the maximum likelihood function, we will select the best parameters. 

To estimate the variance around the estimated value, it is important to keep in mind that 

the variance is divided into two parts, we have the process variance and the parameters 

variance. The variance process refers to the randomness that the stock estimates can take, 

while the parameters variance refers to the uncertainty in our parameters. 

Process variance 

For this section, it is important to note that, in any period analyzed, the loss has a constant 

ratio of variance mean, which is given by the following expression: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑀𝑒𝑎𝑛
= 𝜎2 ≈

1

𝑛 − 𝑝
.∑

(𝑐𝑖,𝑗 − �̂�𝑖,𝑗)
2

�̂�𝑖,𝑗

𝑛

𝑖,𝑗

 
(21) 

where: 

𝑝 is the number of parameters 
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𝑐𝑖,𝑗 is the actual incremental loss 

�̂�𝑖,𝑗 is the expected incremental loss 

(This is recognized as being equivalent to a chi-square error term). 

Furthermore, it should be noted that the previously defined variable, 𝐺(𝑡|𝜔, 𝜃), is the 

pattern of the occurrence of losses, therefore, the actual loss will present a distribution 

around this variable. 

As mentioned in previous paragraphs, the variable 𝑐𝑖,𝑗 is the variable that we call the 

incremental real loss, therefore, we are interested in assuming a distribution to this 

variable in order to model it, for this reason, Clark (2003) proposes that 𝑐𝑖,𝑗  follows an 

over dispersed Poisson distribution. One of the main advantages of assuming a discrete 

distribution in a continuous variable is that by having a discrete variable, small changes 

in the variable will not be taken into account, since being a discrete distribution and 

Poisson, we will have a large mass in zeros. These small incremental values do not 

necessarily represent a loss of precision, since generally the mean is larger than the 𝜎2 

scale factor. Additionally, Clark (2003) mentions that the maximum likelihood method 

aims to estimate the mean and variance of the reserve’s distribution, therefore, once these 

two parameters are estimated by means of the maximum likelihood function, we will be 

able to adopt some other distribution.  

To estimate the second part of the variance, the variance of the parameters, we first 

proceed to establish the maximum likelihood function for the estimation of the best 

parameters. 

Best Parameters 

Likelihood = ∏Pr(𝑐𝑖)

𝑖

= ∏
𝜆𝑖

𝑐𝑖 𝜎2⁄
∙ 𝑒−𝜆𝑖

(𝑐𝑖 𝜎2⁄ )!
= ∏

(𝜇𝑖/𝜎
2)𝑐𝑖 𝜎2⁄ ∙ 𝑒−𝜇𝑖 𝜎2⁄

(𝑐𝑖 𝜎2⁄ )!
𝑖𝑖

 
(22) 

LogLikelihood = ∑(𝑐𝑖 𝜎2⁄ ) ∙ ln(𝜇𝑖/𝜎
2) − 𝜇𝑖/𝜎

2 − ln((𝑐𝑖 𝜎2⁄ )!)

𝑖

 (23) 

𝑙 = ∑ 𝑐𝑖 ∙ ln(𝜇𝑖) − 𝜇𝑖

𝑖

     if 𝜎2 is assumed to be known. (24) 

Based on what has been developed, we now apply it to the first model, the Cape Cod 

model. 

𝑙 = ∑(𝑐𝑖,𝑗 ∙ ln(𝐸𝐿𝑅. 𝑃𝑖[𝐺(𝑗) − 𝐺(𝑗 − 1)]) − 𝐸𝐿𝑅 ∙ 𝑃𝑖[𝐺(𝑗) − 𝐺(𝑗 − 1)])

𝑖,𝑗

 
(25) 

where: 

𝑐𝑖,𝑗 is the actual loss in accident year 𝑖 and development period 𝑗 
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𝑃𝑖 is the premium for accident year 𝑖 

𝐹𝑜𝑟 
𝛿𝑙

𝛿𝐸𝐿𝑅
= 0, 𝐸𝐿�̂� =

∑ 𝑐𝑖,𝑗𝑖,𝑗

∑ 𝑃𝑖 ∙ [𝐺(𝑗) − 𝐺(𝑗 − 1)]𝑖,𝑗
. 

(26) 

Applied to the second model, LDF model: 

𝑙 = ∑(𝑐𝑖,𝑗 ∙ ln(𝑈𝑙𝑡𝑖. [𝐺(𝑗) − 𝐺(𝑗 − 1)]) − 𝑈𝑙𝑡𝑖. [𝐺(𝑗) − 𝐺(𝑗 − 1)])

𝑖,𝑗

 
(27) 

𝛿𝑙

𝛿𝑈𝑙𝑡𝑖
= ∑(

𝑐𝑖,𝑗

𝑈𝑙𝑡𝑖
− [𝐺(𝑗) − 𝐺(𝑗 − 1)])

𝑗

 
(28) 

For 
𝛿𝑙

𝛿𝑈𝑙𝑡𝑖
= 0,    𝑈𝑙�̂�𝑖 =

∑ 𝑐𝑖,𝑗𝑗

∑ [𝐺(𝑗) − 𝐺(𝑗 − 1)]𝑗
. 

(29) 

Now that we have obtained the best parameters, we can calculate the second part of the 

variance, the variance of the parameters. 

Parameter’s variance 

To calculate the variance of the estimated parameters, it is necessary to calculate the 

information matrix of the second derivative (I), a calculation known as Delta Method. 

And once we have obtained this matrix, we proceed to calculate the variance of the 

reserves, which considers the process variance and the parameters variance. In this master 

thesis the development of the variance of the parameters will be reviewed superficially, 

if more detail is required, it is recommended to review the main article by Clark (2003).  

In the case of the Cape Cod model, the information matrix of the second derivative is 

3 × 3, since, as mentioned above, for this method it is only necessary to estimate three 

parameters. This matrix is shown below. 

𝐼 =

[
 
 
 
 
 
 
 
 
 ∑

𝜕2𝑙𝑦,𝑗

𝜕𝐸𝐿𝑅2

𝑦,𝑗

∑
𝜕2𝑙𝑦,𝑗

𝜕𝐸𝐿𝑅𝜕𝜔
𝑦,𝑗

∑
𝜕2𝑙𝑦,𝑗

𝜕𝐸𝐿𝑅𝜕𝜃
𝑦,𝑗

∑
𝜕2𝑙𝑦,𝑗

𝜕𝜔𝜕𝐸𝐿𝑅
𝑦,𝑗

∑
𝜕2𝑙𝑦,𝑗

𝜕𝜔2

𝑦,𝑗

∑
𝜕2𝑦, 𝑗

𝜕𝑤𝜕𝜃
𝑦,𝑗

∑
𝜕2𝑙𝑦,𝑗

𝜕𝜃𝜕𝐸𝐿𝑅
𝑦,𝑗

∑
𝜕2𝑙𝑦,𝑗

𝜕𝜃𝜕𝜔
𝑦,𝑗

∑
𝜕2𝑙𝑦,𝑗

𝜕𝜃2

𝑦,𝑗 ]
 
 
 
 
 
 
 
 
 

. 

(30) 

Once we have calculated the information matrix of the second derivative, to calculate the 

covariance matrix, we simply calculate it using the inverse of the I-matrix. 
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∑ =

[
 
 
 
 

𝑉𝑎𝑟(𝐸𝐿𝑅) 𝐶𝑜𝑣(𝐸𝐿𝑅,𝜔) 𝐶𝑜𝑣(𝐸𝐿𝑅, 𝜃)

𝐶𝑜𝑣(𝜔, 𝐸𝐿𝑅) 𝑉𝑎𝑟(𝜔) 𝐶𝑜𝑣(𝜔, 𝜃)

𝐶𝑜𝑣(𝜃, 𝐸𝐿𝑅) 𝐶𝑜𝑣(𝜃, 𝜔) 𝑉𝑎𝑟(𝜃) ]
 
 
 
 

≥ −𝜎2 ∙ 𝐼−1 . 

(31) 

For the case of the LDF model, since we have mentioned that this model uses 𝑛 + 2 

parameters, where 𝑛 is the number of periods to be used in the model, we have a matrix 

of size (𝑛 + 2) × (𝑛 + 2). Like the previous matrix, the covariance matrix is calculated 

with the inverse of the 𝐼 matrix calculated for the LDF model. 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ∑

𝜕2𝑙1,𝑗

𝜕𝑈𝑙𝑡1
2

𝑗

0 … 0 ∑
𝜕2𝑙1,𝑗

𝜕𝑈𝑙𝑡1𝜕𝜔
𝑗

∑
𝜕2𝑙1,𝑗

𝜕𝑈𝑙𝑡1𝜕𝜃
𝑗

0 ∑
𝜕2𝑙2,𝑗

𝜕𝑈𝑙𝑡2
2

𝑗

… 0 ∑
𝜕2𝑙2𝑗

𝜕𝑈𝑙𝑡2𝜕𝜔
𝑗

∑
𝜕2𝑙2,𝑗

𝜕𝑈𝑙𝑡2𝜕𝜃
𝑗

⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 … ∑
𝜕2𝑙𝑛,𝑗

𝜕𝑈𝑙𝑡𝑛
2

𝑗

∑
𝜕2𝑙𝑛,𝑗

𝜕𝑈𝑙𝑡𝑛𝜕𝜔
𝑗

∑
𝜕2𝑙𝑛,𝑗

𝜕𝑈𝑙𝑡𝑛𝜕𝜃
𝑗

∑
𝜕2𝑙1,𝑗

𝜕𝜔𝜕𝑈𝑙𝑡1
𝑗

∑
𝜕2𝑙2,𝑗

𝜕𝜔𝜕𝑈𝑙𝑡2
𝑗

… ∑
𝜕2𝑙𝑛,𝑗

𝜕𝜔𝜕𝑈𝑙𝑡𝑛
𝑗

∑
𝜕2𝑙𝑦,𝑗

𝜕𝜔2

𝑦,𝑗

∑
𝜕2𝑙𝑦,𝑗

𝜕𝜔𝜕𝜃
𝑦,𝑗

∑
𝜕2𝑙1,𝑗

𝜕𝜃𝜕𝑈𝑙𝑡1
𝑗

∑
𝜕2𝑙2,𝑗

𝜕𝜃𝜕𝑈𝑙𝑡2
𝑗

… ∑
𝜕2𝑙𝑛,𝑡

𝜕𝜃𝜕𝑈𝑙𝑡𝑛
𝑡

∑
𝜕2𝑙𝑦𝑗

𝜕𝜃𝜕𝜔
𝑦,𝑗

∑
𝜕2𝑙𝑦,𝑗

𝜕𝜃2

𝑦,𝑗 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 . 

(32) 

Finally, to calculate the variance of the reserves, the variance process and the variance of 

the parameters are taken into account. 

The process variance of 𝑅: 

𝜎2.∑𝜇𝑖,𝑗. 
(33) 

And for the parameter’s variance, we use the following formula, with the covariance 

matrix Σ: 

𝑉𝑎𝑟(𝐸[𝑅]) = (𝜕𝑅)′ ∙ Σ(𝜕𝑅). (34) 
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Once we have developed the entire method proposed by Clark (2003), i.e., the calculation 

of reserves by means of the LDF model and the Cape Cod model, it is important to 

highlight all the assumptions of this models: 

▪ incremental losses are independent and identically distributed (𝑖𝑑𝑑) 

▪ the variance/mean scale parameter 𝜎2 is fixed and known 

▪ variance estimates are based on an approximation to the Rao-Cramer lower bound. 

3. NUMERICAL APPLICATION 

To start whit these, numerical examples we make a brief presentation of the data that we 

will use, and then, the following steps to estimate the models.  

The claims data we will use is the ABC database included in the ChainLadder package 

(Gesmann et al,. 2023) in R. This database is an accumulated run- off triangle of a 

company's 11-year portfolio of workers' compensation claims. Therefore, we will make 

a brief visual description of the used data, with the first year of origin losses, we will plot 

the growth function discussed by Clark (2003). In this way, we will adjust the Weibull 

and the Log-logistic distributions with these data and using the information criteria AIC 

and BIC, we will determine which curve is the most appropriate to model the used data, 

and thus have an idea of which curve to use in the models developed by Clark in his 

analysis.  

Once we have reached this point, we will proceed to estimate the reserves with the 

different methods. We will start with the deterministic Chain Ladder model, then, we will 

use the Mack Chain Ladder model, this last one presents the same reserve values of the 

deterministic Chain Ladder model, however, as we mentioned in the previous section, it 

allows us to obtain the standard errors, so we can evaluate the estimation we have made 

and compare its uncertainty with that of the Clark methods. Finally, we will estimate the 

Clark LDF and Clark Cape Cod models with the two distributions mentioned, to observe 

the differences that the results of the model present when using these distributions.  

We begin by presenting the following run-off triangle to visualize the incremental claims 

amount according to the accident year and their respective development. 
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Accident year 

𝑖 

Incremental amount by development year 𝑗 

1 2 3 4 5 6 7 8 9 10 11 

1977 153,638 188,412 134,534 87,456 60,348 42,404 31,238 21,252 16,622 14,440 12,200 

1978 178,536 226,412 158,894 104,686 71,448 47,990 35,576 24,818 22,662 18,000 NA 

1979 210,172 259,168 188,388 123,074 83,380 56,086 38,496 33,768 27,400 NA NA 

1980 211,448 253,482 183,370 131,040 78,994 60,232 45,568 38,000 NA NA NA 

1981 219,810 266,304 194,650 120,098 87,582 62,750 51,000 NA NA NA NA 

1982 205,654 252,746 177,506 129,522 96,786 82,400 NA NA NA NA NA 

1983 197,716 255,408 194,648 142,328 105,600 NA NA NA NA NA NA 

1984 239,784 329,242 264,802 190,400 NA NA NA NA NA NA NA 

1985 326,304 471,744 375,400 NA NA NA NA NA NA NA NA 

1986 420,778 590,400 NA NA NA NA NA NA NA NA NA 

1987 496,200 NA NA NA NA NA NA NA NA NA NA 

Table 2. Incremental amount by origin year 𝑖 and development year 𝑗 

Source: Own elaboration 

To estimate the models, we need the accumulated claims losses, therefore, the following triangle presents the above one in a cumulative way: 
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Accident year 𝑖 
Accumulated amount by development year 𝑗 

1 2 3 4 5 6 7 8 9 10 11 

1977 153,638 342,050 476,584 564,040 624,388 666,792 698,030 719,282 735,904 750,344 762,544 

1978 178,536 404,948 563,842 668,528 739,976 787,966 823,542 848,360 871,022 889,022 NA 

1979 210,172 469,340 657,728 780,802 864,182 920,268 958,764 992,532 1,019,932 NA NA 

1980 211,448 464,930 648,300 779,340 858,334 918,566 964,134 1,002,134 NA NA NA 

1981 219,810 486,114 680,764 800,862 888,444 951,194 1,002,194 NA NA NA NA 

1982 205,654 458,400 635,906 765,428 862,214 944,614 NA NA NA NA NA 

1983 197,716 453,124 647,772 790,100 895,700 NA NA NA NA NA NA 

1984 239,784 569,026 833,828 1,024,228 NA NA NA NA NA NA NA 

1985 326,304 798,048 1,173,448 NA NA NA NA NA NA NA NA 

1986 420,778 1,011,178 NA NA NA NA NA NA NA NA NA 

1987 496,200 NA NA NA NA NA NA NA NA NA NA 

Table 3. Accumulated amount by origin year 𝑖 and development year 𝑗 

Source: Own elaboration 
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In a more visual way, we proceed to graph the development of each accident year in an 

accumulated way: 

 

Figure 1. Accumulated claims amount 

Source: Own elaboration 

 

Figure 2. Accumulated claims amount by period 

Source: Own elaboration 

In the graphs presented, we can observe the pattern of behavior of the accumulated losses, 

this pattern is the one we seek to model, that is, this pattern is called a growth function in 

the article by Clark (2003), and, therefore, we will use two curves (Weibull and Log-

logistic) to find out which distribution best fits the data.  

In the following graph we can observe the development of the claims amount in a non-

cumulative way, that is, the claims amount that develops period after period according to 

the origin period or accident year. As we can see, the claims amount is decreasing as the 

periods go by, highlighting the first 3 periods in which more than 50% of the claims 

amount have been disbursed according to the accident year. 
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Figure 3. Incremental claims amount  

Source: Own elaboration 

Now, we proceed to fit the Weibull and Log-logistic distribution functions to our data, to 

have an idea of which curve we should use to estimate the Clark LDF and Clark Cape 

Cod models. Applying the AIC and BIC information criteria, we present the following 

results: 

Information criteria  

Distribution AIC BIC 

Weibull 3.770 4.565 

Log-logistic 8.763 9.559 

Table 4. Information criteria 

Source: Own elaboration 

Based on the information criteria presented (AIC and BIC), we can see that our data best 

fit the Weibull distribution.  

Next, we can observe the development of the claims amounts for the period 1977, which 

are the data we have fitted. 

 

Figure 4. Claims amount - 1977  

Source: Own elaboration 
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The following graph shows the growth curve for the 1977 period. 

 

Figure 5. Growth function - 1977  

Source: Own elaboration 

CHAIN LADDER 

Once we have performed a brief analysis of our data, we proceed to estimate the proposed 

models. We start with the deterministic Chain Ladder method since its estimation is quite 

simple. For this, using the formula for the development factors described in the previous 

section, we obtain the following factors: 

Development factors 2.309 1.421 1.200 1.113 1.073 1.048 1.034 1.026 1.020 1.016 

Table 5. Development factors Chain Ladder 

Source: Own elaboration 

Applying these development factors, we obtain the following matrix: 
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Accident 

year 𝑖 

Accumulated amount by development year 𝑗 

1 2 3 4 5 6 7 8 9 10 11 

1977 153,638 342,050 476,584 564,040 624,388 666,792 698,030 719,282 735,904 750,344 762,544 

1978 178,536 404,948 563,842 668,528 739,976 787,966 823,542 848,360 871,022 889,022 903,477 

1979 210,172 469,340 657,728 780,802 864,182 920,268 958,764 992,532 1,019,932 1,040,522 1,057,440 

1980 211,448 464,930 648,300 779,340 858,334 918,566 964,134 1,002,134 1,028,236 1,048,994 1,066,050 

1981 219,810 486,114 680,764 800,862 888,444 951,194 1,002,194 1,036,480 1,063,477 1,084,946 1,102,586 

1982 205,654 458,400 635,906 765,428 862,214 944,614 989,539 1,023,392 1,050,048 1,071,246 1,088,663 

1983 197,716 453,124 647,772 790,100 895,700 960,849 1,006,547 1,040,981 1,068,095 1,089,658 1,107,375 

1984 239,784 569,026 833,828 1,024,228 1,140,421 1,223,371 1,281,553 1,325,396 1,359,918 1,387,372 1,409,929 

1985 326,304 798,048 1,173,448 1,408,060 1,567,797 1,681,832 1,761,818 1,822,091 1,869,551 1,907,292 1,938,303 

1986 420,778 1,011,178 1,436,983 1,724,284 1,919,895 2,059,540 2,157,490 2,231,299 2,289,417 2,335,635 2,373,611 

1987 496,200 1,145,527 1,627,905 1,953,379 2,174,979 2,333,178 2,444,142 2,527,757 2,593,597 2,645,956 2,688,977 

Table 6. Accumulated amount by origin year 𝑖 and development year 𝑗 

Source: Own elaboration
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In summary, we present below the values of this matrix developed, separating the 

amounts of current losses and the amounts of future losses by year of origin: 

Years Current Value Future Value Ultimate Value 

1977 762,544 - 762,544 

1978 889,022 14,455 903,477 

1979 1,019,932 37,508 1,057,440 

1980 1,002,134 63,916 1,066,050 

1981 1,002,194 100,392 1,102,586 

1982 944,614 144,049 1,088,663 

1983 895,700 211,675 1,107,375 

1984 1,024,228 385,701 1,409,929 

1985 1,173,448 764,855 1,938,303 

1986 1,011,178 1,362,433 2,373,611 

1987 496,200 2,192,777 2,688,977 

Total 10,221,194 5,277,760 15,498,955 

Table 7. Chain Ladder model results 

Source: Own elaboration 

As we can see, we have a total of 10.2 million of present value of claims amounts, 

applying the deterministic Chain Ladder model, we obtain that 5.3 million remains to be 

developed, in other words, having 11 origin period, at the end of 11 periods of 

development for each origin period, we obtain a claims amount of 15.5 million. This 

estimated value (5.3 million) is 52% of the current claims amounts. 

MACK CHAIN LADDER 

Continuing with the model estimations, we proceed to use the Mack Chain Ladder model, 

which will present the same values of future losses, however, this model will now 

estimate the standard errors, that is, the possible deviations from what we estimated with 

the deterministic Chain Ladder model. This is the added value of this model and the 

reason for using this model in this analysis, since, in this way, it will allow us to compare 

the classic Chain Ladder model with the models developed by Clark (2003).  

Using the MackChainLadder function of the ChainLadder package of R, we proceed to 

obtain the following results for the eleven development periods we are calculating: 
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Mack Chain Ladder 

Years 
Current 

Value 

Dev.To. 

Date 

 Ultimate 

Value 

 Future 

Value  
 Mack.S. E  CV% 

1977 762,544 1.00 762,544 - - 
 

1978 889,022 0.98 903,477 14,455 285 2.0 

1979 1,019,932 0.97 1,057,440 37,508 923 2.5 

1980 1,002,134 0.94 1,066,050 63,916 2,758 4.3 

1981 1,002,194 0.91 1,102,586 100,392 5,715 5.7 

1982 944,614 0.87 1,088,663 144,049 7,613 5.3 

1983 895,700 0.81 1,107,375 211,675 14,854 7.0 

1984 1,024,228 0.73 1,409,929 385,701 22,419 5.8 

1985 1,173,448 0.61 1,938,303 764,855 37,293 4.9 

1986 1,011,178 0.43 2,373,610 1,362,432 62,244 4.6 

1987 496,200 0.19 2,688,977 2,192,777 107,919 4.9 

Total 10,221,194 0.66 15,498,954 5,277,760 152,283 3.0 

Table 8. Mack Chain Ladder model results 

Source: Own elaboration 

The first column of the table above shows the current values, the second column refers to 

the percentage that the current values represent compared to the ultimate values. The third 

and fourth columns show the ultimate value of the losses and the projected value of the 

reserve by accident year, respectively. Finally, in the fifth and sixth columns of the table 

there are the standard errors of the estimate, i.e., in the sixth column we can see the 

percentage by which the reserve estimate is dispersed, based on the calculated standard 

error (fifth column), being this value 3% overall. 

Next, we present some graphs of the estimated model: 
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Figure 6. Mack Chain Ladder model graphs 

Source: Own elaboration 

To summarize, what we expect from the graph of the standardized residuals is that they 

are random, i.e., they do not show a clear trend and are close to zero, so that the residuals 

of the model used are showing a slight trend. Additionally, we can also visualize that the 

residuals increase and are greater than zero as the years of development pass with respect 

to the origin period. 

CLARK LDF MODEL 

As for the models proposed by Clark (2003), we start with the Clark LDF model. For this, 

in the same way, we will use the ClarkLDF function of the R package ChainLadder. It is 

important to mention that, a priori, based on the fit of our data that we made in previous 

paragraphs, we have obtained that our data fit a Weibull distribution, therefore, we 

proceed to use this distribution to estimate the growth function of the Clark LDF model. 

Also, it should be noted that the information criteria do not have to be an absolute truth, 

that is, it is also important to take into account the results of the models considering the 

other options that did not present the best AIC or BIC, in order to make a decision, 

considering the practical or theoretical knowledge of the analyst. 

Next, we present the results of the estimated model. It is important to note that the model 

we will estimate, like the previous one, only estimates eleven development periods for 

each source period. 
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Clark LDF model (Weibull) 

Origin 

Current 

Value 
Ldf 

Ultimate 

Value 

Future 

Value 
St. Error CV% 

1977 762,544 1.00 762,544 - -  

1978 889,022 1.01 894,574 5,552 3,970 71.5 

1979 1,019,932 1.02 1,037,148 17,216 7,262 42.2 

1980 1,002,134 1.04 1,037,045 34,911 10,697 30.6 

1981 1,002,194 1.07 1,067,393 65,199 15,132 23.2 

1982 944,614 1.12 1,054,336 109,722 20,221 18.4 

1983 895,700 1.20 1,078,598 182,898 27,054 14.8 

1984 1,024,228 1.36 1,395,497 371,269 41,378 11.1 

1985 1,173,448 1.67 1,962,910 789,462 67,379 8.5 

1986 1,011,178 2.40 2,426,726 1,415,548 107,371 7.6 

1987 496,200 5.06 2,508,246 2,012,046 184,120 9.2 

Total 10,221,194 
 

15,225,019 5,003,825 276,442 5.5 

Table 9. Clark LDF model (Weibull) 

Source: Own elaboration 

Based on the results presented, it can be extracted that the estimated reserve amount is 5 

million, thus obtaining a total loss value of 15.23 million. As with the previous results, 

columns 5 and 6 show the calculation of the standard errors of the estimates and the 

percentage that these represent in relation to the estimated reserve value, thus obtaining 

an overall value of 5.5% standard error in relation to the estimated future value. The 

maximum value of the growth function of this model is 0.9916 

Next, we present a graph of the results obtained from the Clark LDF model with Weibull 

distribution: 
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Figure 7. Standardized residuals method: CLarkLDF; Growth function: Weibull 

Source: Own elaboration 

As previously mentioned, we expect the standardized residuals to present a random 

behavior around 0, in a certain way, the standardized residuals have the desired behavior, 

taking into account that there is a very slight tendency.  

Now, to compare the results of the model estimation with the different distributions 

proposed by Clark (2003), we proceed to estimate the model, using the Log-logistic 

distribution. 
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Clark LDF model (Log-logistic) 

Origin Current Value Ldf Ultimate Value  Future Value   Std. Error  CV% 

1977          762,544                 1.00  762,544                   -                   -    
 

1978          889,022                 1.02  902,124            13,102           3,114             23.8  

1979       1,019,932                 1.03  1,054,564            34,632           5,188             15.0  

1980       1,002,134                 1.06  1,062,035            59,901           7,006             11.7  

1981       1,002,194                 1.10  1,098,179            95,985           9,163               9.5  

1982          944,614                 1.15  1,084,851          140,237         11,487               8.2  

1983          895,700                 1.23  1,102,352          206,652         14,612               7.1  

1984       1,024,228                 1.37  1,404,703          380,475         21,496               5.6  

1985       1,173,448                 1.65  1,934,626          761,178         34,263               4.5  

1986       1,011,178                 2.35  2,371,924       1,360,746         54,203               4.0  

1987          496,200                 5.39  2,674,852       2,178,652       101,540               4.7  

Total     10,221,194    15,452,754       5,231,560       147,530               2.8  

Table 10. Clark LDF model (Log-Logistic) 

Source: Own elaboration 
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The graphs of the estimated model are presented below: 

 

Figure 8. Standardized residuals method: CLarkLDF; Growth function: Log-logistic 

Source: Own elaboration 

According to the above results, the future reserve value is 5.23 million, thus obtaining a 

total of 15.45 million, and the coefficient of variation is 2.8%. On the other hand, if we 

observe the graphs of the last estimated model, we can see that the standardized residuals 

present a behavior more in line with expectations. The maximum value of the growth 

function of this model is 0.9131. 

CLARK CAPE COD MODEL 

Finally, to finish the estimation of the reserve models, we proceed to estimate the Clark 

Cape Cod model, using the ClarkCapeCod function of the ChainLadder package of R. 

As with the estimation of the previous model, we first estimate the model with the Weibull 

distribution. It is important to note that, for the model to estimate future reserve values, it 

considers the premium and the expected loss ratio. The results are shown below: 
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Clark Cape Cod model (Weibull) 

Origin Current Value Premium ELR Future Growth Factor Future Value Ultimate Value Std. Error CV% 

1977           762,544     1,920,000     0.58                                 -                      -              762,544               -    
 

1978           889,022     1,940,000     0.58                             0.00              4,971            893,993         9,934     199.8  

1979        1,019,932     1,960,000     0.58                             0.01            13,665         1,033,597       16,886     123.6  

1980        1,002,134     1,980,000     0.58                             0.02            28,584         1,030,718       24,999       87.5  

1981        1,002,194     2,000,000     0.58                             0.05            53,684         1,055,878       34,891       65.0  

1982           944,614     2,020,000     0.58                             0.08            95,004         1,039,618       46,881       49.3  

1983           895,700     2,040,000     0.58                             0.14          161,368         1,057,068       61,095       37.9  

1984        1,024,228     2,060,000     0.58                             0.22          264,872         1,289,100       77,580       29.3  

1985        1,173,448     2,080,000     0.58                             0.35          420,456         1,593,904       96,537       23.0  

1986        1,011,178     2,100,000     0.58                             0.53          642,799         1,653,977     118,319       18.4  

1987           496,200     2,120,000     0.58                             0.76          935,499         1,431,699     142,135       15.2  

Total      10,221,194   22,220,000           2,620,901       12,842,095     308,643       11.8  

Table 11. Clark Cape Cod model (Weibull) 

Source: Own elaboration 
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In this model there are new columns, among these columns we have the premium and the 

expected loss ratio (ELR), since, to estimate future values, the Clark Cape Cod model is 

based on this information, as mentioned in the theoretical framework section. As for the 

results of this model, we have a projected reserve amount of 2.62 million, which gives us 

an approximate total amount of claims of 12.8 million, with a variation coefficient of 

11.8%. The maximum value of the growth function of this model is 0.9943. The 

respective graphs of the standardized residuals are presented below: 

 

Figure 9. Standardized residuals method: CLarkCapeCod; Growth function: Weibull 

Source: Own elaboration 

To conclude this section, we estimate the Clark Cape Cod model, now with the Log-

logistic distribution. 
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Clark Cape Cod model (Log-logistic) 

Origin Current Value Premium ELR Future Growth Factor Future Value Ultimate Value Std. Error CV% 

1977           762,544     1,920,000     0.63                                 -                      -              762,544               -      

1978           889,022     1,940,000     0.63                             0.01            12,988            902,010       14,740     113.5  

1979        1,019,932     1,960,000     0.63                             0.02            29,810         1,049,742       22,614       75.9  

1980        1,002,134     1,980,000     0.63                             0.04            52,027         1,054,161       30,283       58.2  

1981        1,002,194     2,000,000     0.63                             0.07            82,069         1,084,263       38,574       47.0  

1982           944,614     2,020,000     0.63                             0.10          123,857         1,068,471       48,049       38.8  

1983           895,700     2,040,000     0.63                             0.14          183,972         1,079,672       59,276       32.2  

1984        1,024,228     2,060,000     0.63                             0.21          273,855         1,298,083       72,886       26.6  

1985        1,173,448     2,080,000     0.63                             0.32          413,644         1,587,092       89,564       21.7  

1986        1,011,178     2,100,000     0.63                             0.48          635,930         1,647,108     110,012       17.3  

1987           496,200     2,120,000     0.63                             0.73          966,360         1,462,560     134,194       13.9  

Total      10,221,194   22,220,000           2,774,511       12,995,705     295,056       10.6  

Table 12. Clark Cape Cod model (Log-logistic) 

Source: Own elaboration 
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In  Table 12, we observe that the future value of reserves is 2.78 million, which means 

an approximate total amount of claims of 13 million, with a standard error amount of 295 

thousand, which means a coefficient of variation of 10.6%. The maximum value of the 

growth function of this model is 0.9323. 

Below are the graphs of the standardized residuals of the estimated model: 

 

Figure 10. Standardized residuals method: CLarkCapeCod; Growth function: Log-

logistic 

Source: Own elaboration 

The above graphs show that there is a slight upward trend in the graph of standardized 

waste and period of origin. 

4. SHINY APPLICATION 

To visualize the results of the models developed in R, an application has been developed 

in Shiny, which will be presented below. 

Shiny is an R package that allows to easily create interactive web apps for anyone can 

use it (Wickham, 2021), it allows the development of interactive data visualizations and 

analysis. 

The structure of the Shiny application in R is divided into 2 main parts, the UI part and 

the server part. Regarding the UI section, this one is in charge of the interface, that is to 

say, in this section we design how we want the app to be visualized for the interaction 

with the user, while in the server part, in this section all the logic and the computational 

part of the application is programmed. These two sections are connected by the function 

shinyApp so that the application can be executed. 

The application consists of 4 tabs: Data, Exploratory Data Analysis (EDA), Models, 

Comparative results 

In the Data tab, we can load our data and visualize if the loading has been correct. 
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Figure 11. Data 

Source: Own elaboration 

In the Exploratory Data Analysis (EDA) tab, we will be able to visualize 5 graphs of our 

data. The purpose of these graphs is to present the loaded data in a visual way.  

 

Figure 12. EDA 

Source: Own elaboration 

In the next tab Models, you can choose the model of which you want to visualize the 

results, the models to choose are Chain Ladder, Mack Chain Ladder, Clark LDF and Clark 

Cape Cod.  
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Figure 13. Models – Mack Chain Ladder 

Source: Own elaboration 

For the Clark LDF and Clark Cape Cod models, two models are calculated, since the first 

model is calculated with the Log-logistic distribution and the second with the Weibull 

distribution. 

 

Figure 14. Models – Clark LDF 

Source: Own elaboration 

Finally, the last tab shows the total results of all the models used. 
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Figure 15. Comparative analysis 

Source: Own elaboration 

The application can be viewed at the following link:  

 https://raidanielriverarubio.shinyapps.io/Reserving_methods/ 

5. COMPARISON OF RESULTS 

Once we have developed all the models that we had proposed at the beginning, we 

proceed to present a summary table of the most relevant of these models, so that we can 

compare them and see an appropriate model that fits our values, in order to make a 

decision about what future values amount would be the most appropriate to reserve. 

  

Mack 

Chain 

Ladder 

Clark LDF 

(Weibull) 

Clark LDF 

(Log-logistic) 

Clark Cape 

Cod 

(Weibull) 

Clark Cape 

Cod (Log-

logistic) 

Current Value 10,221,194 10,221,194 10,221,194 10,221,194 10,221,194 

Future Value 5,277,760 5,003,825 5,231,560 2,620,901 2,774,511 

Ultimate Value 15,498,954 15,225,019 15,452,754 12,842,095 12,995,705 

Dev.To. Date 0.660 0.671 0.661 0.796 0.787 

Std. Error 152,283 276,442 147,530 308,643 295,056 

CV% 3.0 5.5 2.8 11.8 10.6 

Table 13. Models resume  

Source: Own elaboration 

Table 13 shows the results of the estimated models, from which we can mention some 

relevant points: the Clark Cape Cod models are those with the lowest reserve amount, this 

may be due to several factors, one of which is that their estimation method differs slightly 

https://raidanielriverarubio.shinyapps.io/Reserving_methods/
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from the rest, since it considers a premium amount that varies over time and a level of 

loss ratio that is maintained in the periods of analysis (ELR), therefore, the amount of 

reserves will depend directly on the amount of premium expected in the following 

periods. In addition, the growth function of the Log-logistic model presented a value of 

0.91 for the Clark LDF model, while with the Weibull distribution it was 0.99, therefore, 

in the case of the model with Weibull distribution, the reserves pending for the 

development periods that exceed 11 periods will be almost nil, while for the model with 

Log-logistic distribution, these reserves will be greater, since this distribution presents a 

longer tail.  

In addition, with respect to the Clark Cape Cod models, it should also be noted that they 

are the models with the highest level of coefficient of variation and the highest standard 

errors amount 

Another point to highlight is that the models with Weibull distribution were not the best 

estimated models, based on the fact that the coefficient and standard errors were lower 

with the models that used the Log-logistic distribution. At this point, it is worth noting 

that, previously, we had verified that our data fit better to the Weibull distribution when 

we want to model the growth curve, this based on the information criteria (AIC and BIC). 

However, as we have mentioned, the information criteria are not an absolute truth, it is 

also important to take into account the estimation results and to understand the reasons 

for the possible disadvantages of estimations with one distribution or another. In this case, 

the Weibull distributions fit our data because they present a maximum value in the growth 

function of 0.99, however, they present greater variability in the estimates.  

Among the models with the lowest coefficient of variation are the Clark LDF model with 

Log-logistic distribution and the Chain Ladder model, since the first one has a coefficient 

of variation of 2.8%, and the second one a coefficient of 3.0%. In addition, their standard 

errors are 147.5 thousand and 152.3 thousand, respectively. The difference in the 

projected reserves amount of these two models is 273.9 thousand, being the Mack Chain 

Ladder model the one with higher reserves. 

6. CONCLUSIONS 

To conclude this analysis, based on all that has been explained in the previous sections, 

we can conclude that the projection of the reserves amount is very important for insurance 

companies, since, apart from having an impact on their income statement, it will also 

allow them to be able to face the claims that will be reported in the future, in other words, 

the solvency of an insurance company depends a lot on its estimated reserves. Therefore, 

it is of utmost importance to employ an efficient and effective model, so that the reserves 

amount is reliable.  

As we have mentioned, there are several models that have been developed in the last 

decades, from deterministic models to stochastic and more sophisticated models. 

However, it is also important to take into account that the model must also be easy to use 

and simple to explain, for this reason, the deterministic Chain Ladder model has been 

used in the last decades. However, the objective of this analysis was to use a model that, 

in a certain way, can also be quite easy to implement, thanks to technological progress, 

since the model is programmed in free software (R). And, in addition, the results obtained 

are not very complex to understand. Therefore, in view of all these factors, we can 

conclude that the Clark LDF model with Log-logistic distribution has been the model 

with the highest accuracy and the lowest variability with respect to the rest of the models 
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for our database, including Chain Ladder; however, it must be taken into account, as 

mentioned by the author in his article, that this model has a disadvantage, and that is the 

over parameterization of the model. 
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8. ANNEX 

8.1.R CODE 

#### TFM #### 

library(ChainLadder) 

library(dplyr) 

library(tidyverse) 

library(reshape2) 

library(univariateML) 

#### Data & graphs #### 

data("ABC") 

force(ABC) 

Y <- force(ABC) 

Y <- as.triangle(Y) 

Y2<- cum2incr(Y) 

Y2<-as.matrix(Y2) 

Y2 <- as.triangle(Y2) 

# Graficos a presentar 

plot(Y, main = "Accumulated claims amount", xlab = "Development year", ylab = 

"Claims amount") 

plot(Y, lattice = TRUE, main = "Accumulated claims amount by period", xlab = 

"Development year", ylab = "Claims amount") 

plot(Y2, main = "Incremental claims amount", xlab = "Development year", ylab = 

"Claims amount") 

barplot(Y2,  

        legend.text = 

c("1977","1978","1979","1980","1981","1982","1983","1984","1985","1986","1987"), 

        main = "Incremental claims amount by period", xlab = "Development year", ylab = 

"Claims amount" 

        ) 

# Graficos incrementales 

plot(Y2) 
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plot(Y2, lattice = TRUE) 

#### Growth function #### 

v1 <- Y2[1,] 

GF <- cumsum(v1) / sum(v1) 

plot(GF, main = "Growth function", xlab = "Development Year") 

lines(GF, col = "blue") 

#### Distribution adjustment  #### 

barplot(v1, main = "Claims amount - 1977", xlab = "Development Year", ylab = "Claims 

amount") 

barplot(GF, main = "Growth function - 1977", xlab = "Development Year", ylab = 

"Cumulative percentage of claims amount") 

lines(GF, col = "blue") 

comparacion_aic <- AIC( 

  mlllogis(GF), 

  mlweibull(GF) 

) 

AIC <- comparacion_aic %>% rownames_to_column(var = "Distribution") %>% 

arrange(AIC) 

comparacion_bic <- BIC( 

  mlllogis(GF), 

  mlweibull(GF) 

) 

BIC <- comparacion_bic %>% rownames_to_column(var = "Distribution") %>% 

arrange(BIC) 

Comparison <- cbind(AIC, BIC) 

#### Reserving modelsL#### 

#### Chain Ladder deterministic model #### 

n <- ncol(Y) 

f <- sapply(1:(n-1), 

            function(i){ 

              sum(Y[c(1:(n-i)),i+1])/sum(Y[c(1:(n-i)),i]) 
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            } 

) 

CT<- cbind(Y) 

ChainLadder<- function(mat, factor) { 

  n<- ncol(mat) 

  for(k in 1:(ncol(mat)-1)) { 

    mat[(n-k+1):n, k+1] <- mat[(n-k+1):n,k]*factor[k]} 

  return(mat) 

} 

Model1<-ChainLadder(CT,f); Model1 

Current_Value <- CT[cbind(1:nrow(CT), ncol(CT):1)]; Current_Value 

Current_Value <-as.vector(Current_Value); Current_Value 

Ultimate_Value <- Model1[,11] 

Ultimate_Value <- as.vector(Ultimate_Value); Ultimate_Value 

Future_Value <- as.vector(round(Ultimate_Value - Current_Value, 2) )  ; Future_Value 

TotalCV <- round(sum(Current_Value),2); TotalCV 

TotalFV <- round(sum(Future_Value),2); TotalFV 

TotalUV <- round(sum(Ultimate_Value),2); TotalUV 

Years <- 1977:1987; Years 

CLV <- cbind(Years, Current_Value,Future_Value, Ultimate_Value); CLV 

CLV <- as.data.frame(CLV); CLV 

Total_CV <- as.vector(TotalCV); Total_CV 

Total_FV <- as.vector(TotalFV); Total_FV 

Total_UV <- as.vector(TotalUV); Total_UV 

Total_CV<-format(Total_CV, big.mark = ",", scientific = FALSE) 

Total_FV<-format(Total_FV, big.mark = ",", scientific = FALSE) 

Total_UV<-format(Total_UV, big.mark = ",", scientific = FALSE) 

Totales <- cbind(Total_CV, Total_FV, Total_UV); Totales 

CLV; Totales 
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#### Mack Chain Ladder model #### 

#MackChainLadder(Y, weights = 1, alpha=1, est.sigma="log-linear", 

#                tail=T, tail.se=NULL, tail.sigma=NULL, mse.method="Mack") 

 

MCL <- MackChainLadder(Y, weights = 1, alpha=1, est.sigma="Mack", 

                       tail=F, tail.se=NULL, tail.sigma=NULL, mse.method="Mack") 

MCL 

plot(MCL) 

#### Clarck LDF model #### 

### Loglogistic LDF ### 

cldfll <- ClarkLDF(Y, cumulative = TRUE, maxage = 11, 

                   adol = FALSE, adol.age = NULL, origin.width = NULL, 

                   G = "loglogistic") 

cldfll 

plot(cldfll) 

### Weibull LDF ### 

cldfw <- ClarkLDF(Y, cumulative = TRUE, maxage = 11, 

                  adol = FALSE, adol.age = NULL, origin.width = NULL, 

                  G = "weibull") 

cldfw 

plot(cldfw) 

#### Clarck Cape Cod model #### 

### Loglogistic Cape Cod ### 

cccll <- ClarkCapeCod(Y,Premium=1900000+20000*1:11, cumulative = TRUE, 

maxage = 11, 

                    adol = FALSE, adol.age = NULL, origin.width = NULL, 

                    G = "loglogistic") 

cccll 

plot(cccll) 

### Weibull Cape Cod ### 
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cccw <- ClarkCapeCod(Y,Premium=1900000+20000*1:11, cumulative = TRUE, 

maxage = 11, 

                      adol = FALSE, adol.age = NULL, origin.width = NULL, 

                      G = "weibull") 

cccw 

plot(cccw) 

8.2.SHINNY APP 

#Library 

library(ChainLadder) 

library(RColorBrewer) 

library(ggplot2) 

library(plotly) 

library(readr) 

library(tidyr) 

library(shiny) 

library(xtable) 

library(paletteer) 

# Define UI  

ui <- navbarPage( 

  tags$style(type='text/css', '#txt_out {white-space: pre-wrap;}'), 

    title=span(img(src = "Logo.png", align = 'center',height = 60,style="margin-top: -

14px;padding-right:10px; 

    padding-bottom:10px"), strong(span("RESERVING METHODS", style = 

"color:#3A6FC0"))), 

    tabPanel("DATA", 

    sidebarPanel( 

        fileInput("upload","Choose CSV File",  

        buttonLabel = "Upload...", 
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        accept=c('text/csv',  

        'text/comma-separated-values,text/plain', 

        '.csv','xlsx'),multiple = FALSE), 

    checkboxInput('header', 'Header', TRUE), 

    fluidRow( 

        column(6,style=list("padding-right: 5px;"), 

               selectInput('sep', 'Separator', 

                choices=c(Comma=",", 

                Semicolon=';', 

                Tabulation='\t'),selected = ",")), 

        column(6,style=list("padding-left: 5px;"), 

               selectInput("quote", "Quote", 

               choices = c("Double" = '',"Double Quote" = '"',"Single Quote" = "'"),selected = 

"'")) 

    ), 

          radioButtons("disp", "Display", 

                 choices = c(Head = "head", 

                             All = "all"), 

                 selected = "all"), 

        actionButton("Display", "Display"), 

    ), 

        mainPanel( 

            tableOutput("files"), 

            dataTableOutput("contents") 

            )), 

      tabPanel("EDA", 

    navlistPanel( 
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      "Exploratory Data Analysis (EDA)", 

      tabPanel("Figure 1. Accumulated claims amount",plotlyOutput("Figure1",width = 

"100%", height = "630px")), 

      tabPanel("Figure 2. Accumulated claims amount by 

period",plotlyOutput("Figure2",width = "100%", height = "630px")), 

      tabPanel("Figure 3.Development claim amount by accident 

year",plotlyOutput("Figure3",width = "100%", height = "450px")), 

      tabPanel("Figure 4. Incremental claims amount",plotlyOutput("Figure4"),width = 

"100%", height = "450px"), 

      tabPanel("Figure 5. Claims amount - 1977 and Growth function - 

1977",h4(strong("Claims amount - 1977")),plotlyOutput("Figure5"),h4(strong("Growth 

function - 1977")),plotlyOutput("Figure6")), 

      )), 

        navbarMenu("MODELS", 

              tabPanel("ChainLadder",h4(strong("ChainLadder")),br(),h5(strong("Table 1."), 

("Accumulated amount by origin year i and development year 

j")),tableOutput("Model1"),h5(strong("Table 2."), ("Chain Ladder model 

results")),br(),tableOutput("Model1A"),tableOutput("Model1B")),      

tabPanel("MackChainLadder",h4(strong("MackChainLadder")),br(),h5(strong("Table 

1."),("Mack Chain Ladder model results")), 

                     

                       column(6,verbatimTextOutput("Model2")), 

                       column(6,plotOutput("Model2A"))), 

              tabPanel("ClarkLDF", 

                       mainPanel( 

                       tabsetPanel(type = "tabs", 

                      tabPanel("ClarkLDF - Log-logistic",h5(strong("Table 1."),("Clark LDF 

model (Log-Logistic) 

results")),verbatimTextOutput("Model3"),verbatimTextOutput("Model3A"),plotOutput(

"Model3B")), 

                      tabPanel("ClarkLDF - Weibull",h5(strong("Table 1."),("Clark LDF model 

(Weibull) 

results")),verbatimTextOutput("Model3C"),verbatimTextOutput("Model3D"),plotOutpu

t("Model3E")) 
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                      ))),        

              tabPanel("ClarkCapeCod", 

              mainPanel( 

              tabsetPanel(type = "tabs", 

              tabPanel("ClarkCapeCod - Log-logistic",h5(strong("Table 1."),("Clark Cape 

Cod model (Log-logistic) 

results")),verbatimTextOutput("Model4"),verbatimTextOutput("Model4A"),plotOutput(

"Model4B")), 

              tabPanel("ClarkCapeCod - Weibull",h5(strong("Table 1."),("Clark Cape Cod 

model (Weibull) 

results")),verbatimTextOutput("Model4C"),verbatimTextOutput("Model4D"),plotOutpu

t("Model4E")))))),          

        tabPanel("COMPARATIVE ANALYSIS", 

             column(4,h4(strong("Mack Chain Ladder")),verbatimTextOutput("RMCL")), 

             column(4,h4(strong("Clark LDF Log-

logistic")),verbatimTextOutput("RCLOG")), 

             column(4,h4(strong("Clark LDF Weibull")),verbatimTextOutput("RCWEI")), 

             column(4,h4(strong("Clark Cape Cod Log-

logistic")),verbatimTextOutput("RCCLOG")), 

             column(4,h4(strong("Clark Cape Cod 

Weibull")),verbatimTextOutput("RCCWEI"))) 

) 

# Define server logic required to draw  

server <- function(input, output) { 

    output$files <- renderTable(input$upload) 

    mydata<-reactive({ 

        req(input$Display,input$upload,input$header,input$sep, 

input$quote,file.exists(input$upload$datapath)) 

    tryCatch( 

    { 
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    df <- read.csv(input$upload$datapath, 

    header = input$header, 

    sep = input$sep, 

    quote = input$quote)   

           }, 

        error = function(e) { 

        stop(safeError(e)) 

    } 

    ) 

    if(input$disp == "head") { 

        return(head(df)) 

    } 

    else { 

        return(df) 

    } 

}) 

output$contents <- renderDataTable({ 

    req(mydata()) 

    mydata() 

}) 

output$Figure1<- renderPlotly({ 

  Data <- mydata() 

    Data <- Data[!is.na(Data$Value),] 

    Figure1 <- Data%>% 

    ggplot(aes(Period,Value,group = Year,colour=factor(Year)))+ 

    geom_point()+ 

    geom_line()+ 
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    scale_x_continuous(n.breaks = 11)+ 

    scale_y_continuous(n.breaks = 10)+ 

    labs(x= "Development year", y="Claims amount",color="Year")+ 

    theme_bw()+ 

    theme(plot.margin=margin(25,25,25,25),text = element_text(size = 

11),axis.text=element_text(size=9),legend.text=element_text(size=9),panel.grid.major = 

element_line(color='lightgrey'))+ 

    scale_color_grey() 

    Figure1<-ggplotly(Figure1)%>% layout(dragmode = "pan") 

    }) 

output$Figure2 <- renderPlotly({ 

        Data <- mydata() 

    Data <- Data[!is.na(Data$Value),] 

    Figure2 <- Data%>% 

    ggplot(aes(Period,Value,group = Year))+ 

    geom_point(alpha=0.30)+ 

    geom_line(size=0.24)+ 

    facet_wrap(~Year,ncol = 4)+ 

    scale_x_continuous(n.breaks = 6)+ 

    scale_y_continuous(n.breaks = 6)+ 

    theme_bw()+ 

    theme(text = element_text(size 

=10),axis.text=element_text(size=8),legend.text=element_text(size=8), 

          panel.grid.major = element_line(color='lightgrey'), 

          strip.background=element_rect(fill="#EEEEEE"), 

          strip.text.x = element_text(size = 10,  

                                      color = "black",  

                                      face = "bold", 
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                                      margin = unit(c(4,10,4,10), "points")), 

          strip.text.y = element_text(size = 10,  

                                      color = "black",  

                                      face = "bold", 

                                      margin = unit(c(4,10,4,10), "points")))+ 

    labs(x= "Development year", y="Claims amount",color="Year")+ 

    scale_colour_grey(start = 0.6, end = 0) 

    Figure2<-ggplotly(Figure2)%>% layout(dragmode = "pan") 

    }) 

output$Figure3 <- renderPlotly({ 

        Data <- mydata() 

    Data <- Data[!is.na(Data$Value),] 

    Figure3 <- Data%>% 

    ggplot(aes(Period,Value,fill = Year))+ geom_bar(stat = "identity")+ 

    scale_x_continuous(n.breaks = 11)+theme_bw()+ scale_colour_grey(start = 0.6, end 

= 0)+ 

      labs(x= "Development year", y="Claims amount",color="Year") 

    Figure3<-ggplotly(Figure3)%>% layout(dragmode = "pan") 

}) 

output$Figure4 <- renderPlotly({ 

    Data <- mydata() 

  Y  <- as.triangle(Data, origin = "Year", dev = "Period", "Value") 

  Y2 <- cum2incr(Y) 

  Y2 <- as.data.frame(Y2) 

  Y2 <- Y2[!is.na(Y2[["value"]]),] 

  Figure4 <- Y2%>% 

    ggplot(aes(Period,value,group = Year,colour=factor(Year)))+ 
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    geom_point()+ 

    geom_line()+ 

    scale_x_continuous(n.breaks = 11)+ 

    scale_y_continuous(n.breaks = 10)+ 

    labs(x= "Development year", y="Claims amount",color="Year")+ 

    theme_bw()+ 

    theme(plot.margin=margin(25,25,25,25),text = element_text(size = 

11),axis.text=element_text(size=9),legend.text=element_text(size=9),panel.grid.major = 

element_line(color='lightgrey'))+ 

    scale_color_grey() 

  Figure4<-ggplotly(Figure4)%>% layout(dragmode = "pan") 

}) 

output$Figure5 <- renderPlotly({ 

    Data <- mydata() 

  Y  <- as.triangle(Data, origin = "Year", dev = "Period", "Value") 

  Y2 <- cum2incr(Y) 

  n <- 1:ncol(Y2) 

  V1 <- cbind(n,Y2[1,])%>% 

    as.data.frame()%>% 

    rename(Year=n,Amount=V2) 

  Figure5 <- ggplot(V1,aes(x=Year,y=Amount))+ 

    geom_bar(stat = "identity")+ 

    scale_x_continuous(n.breaks = ncol(Y2))+ 

    scale_y_continuous(n.breaks = (ncol(Y2)-1))+ 

    labs(x= "Development year", y="Claims amount",color="Year")+ 

    theme_bw()+ 

    theme(plot.margin=margin(25,25,25,25),text = element_text(size = 

11),axis.text=element_text(size=9),legend.text=element_text(size=9),panel.grid.major = 

element_line(color='lightgrey'))+ 
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    scale_color_grey() 

  Figure5<-ggplotly(Figure5)%>% layout(dragmode = "pan") 

}) 

output$Figure6 <- renderPlotly({ 

    Data <- mydata() 

  Y  <- as.triangle(Data, origin = "Year", dev = "Period", "Value") 

  Y2 <- cum2incr(Y) 

  n <- 1:ncol(Y2) 

  V1 <- cbind(n,Y2[1,])%>% 

    as.data.frame()%>% 

    rename(Year=n,Amount=V2) 

  GF <- cumsum(V1$Amount) / sum(V1$Amount) 

  GF2 <- cbind(n,GF)%>% 

    as.data.frame()%>% 

    rename(Year=n,Percentage=GF) 

  Figure6 <- ggplot(GF2,aes(x=Year,y=Percentage))+ 

    geom_bar(stat = "identity")+geom_line(aes(y=Percentage),size=0.5, color="blue")+ 

    scale_x_continuous(n.breaks = ncol(Y2))+ 

    scale_y_continuous(n.breaks = (ncol(Y2)-1))+ 

    labs(x= "Development year", y="Cumulative percentage of claims 

amount",color="Year")+ 

    theme_bw()+ 

    theme(plot.margin=margin(25,25,25,25),text = element_text(size = 

11),axis.text=element_text(size=9),legend.text=element_text(size=9),panel.grid.major = 

element_line(color='lightgrey'))+ 

    scale_color_grey() 

  Figure6<-ggplotly(Figure6)%>% layout(dragmode = "pan") 
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}) 

output$Model1 <- renderTable({ 

    Data2 <- mydata() 

  Y <- as.triangle(Data2, origin = "Year", dev = "Period", "Value") 

  n <- ncol(Y) 

  f <- sapply(1:(n-1), 

              function(i){ 

                sum(Y[c(1:(n-i)),i+1])/sum(Y[c(1:(n-i)),i]) 

              } 

  ) 

    CT<- cbind(Y) 

  ChainLadder<- function(mat, factor) { 

    n<- ncol(mat) 

    for(k in 1:(ncol(mat)-1)) { 

      mat[(n-k+1):n, k+1] <- mat[(n-k+1):n,k]*factor[k]} 

    return(mat) 

  } 

  CT 

  Model1<-ChainLadder(CT,f) 

  }) 

output$Model1A <- renderTable({ 

  Data2 <- mydata() 

  Y <- as.triangle(Data2, origin = "Year", dev = "Period", "Value") 

  n <- ncol(Y) 

  f <- sapply(1:(n-1), 

              function(i){ 

                sum(Y[c(1:(n-i)),i+1])/sum(Y[c(1:(n-i)),i]) 
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              } 

  ) 

    CT<- cbind(Y) 

  ChainLadder<- function(mat, factor) { 

    n<- ncol(mat) 

    for(k in 1:(ncol(mat)-1)) { 

      mat[(n-k+1):n, k+1] <- mat[(n-k+1):n,k]*factor[k]} 

    return(mat) 

  } 

  CT 

  Model1<-ChainLadder(CT,f) 

  Current_Value <- CT[cbind(1:nrow(CT), ncol(CT):1)]; Current_Value 

  Current_Value <-as.vector(Current_Value); Current_Value 

  Ultimate_Value <- Model1[,11] 

  Ultimate_Value <- as.vector(Ultimate_Value); Ultimate_Value 

  Future_Value <- as.vector(round(Ultimate_Value - Current_Value, 2) )  ; 

Future_Value 

  TotalCV <- round(sum(Current_Value),2); TotalCV 

  TotalFV <- round(sum(Future_Value),2); TotalFV 

  TotalUV <- round(sum(Ultimate_Value),2); TotalUV 

  Years <- 1977:1987; Years 

  CLV <- cbind(Years, Current_Value,Future_Value, Ultimate_Value); CLV 

  CLV <- as.data.frame(CLV); CLV 

}) 

output$Model1B <- renderTable({ 

  Data2 <- mydata() 

  Y <- as.triangle(Data2, origin = "Year", dev = "Period", "Value") 
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  n <- ncol(Y) 

  f <- sapply(1:(n-1), 

              function(i){ 

                sum(Y[c(1:(n-i)),i+1])/sum(Y[c(1:(n-i)),i]) 

              } 

  ) 

    CT<- cbind(Y) 

  ChainLadder<- function(mat, factor) { 

    n<- ncol(mat) 

    for(k in 1:(ncol(mat)-1)) { 

      mat[(n-k+1):n, k+1] <- mat[(n-k+1):n,k]*factor[k]} 

    return(mat) 

  } 

  CT 

  Model1<-ChainLadder(CT,f) 

  Current_Value <- CT[cbind(1:nrow(CT), ncol(CT):1)]; Current_Value 

  Current_Value <-as.vector(Current_Value); Current_Value 

  Ultimate_Value <- Model1[,11] 

  Ultimate_Value <- as.vector(Ultimate_Value); Ultimate_Value 

  Future_Value <- as.vector(round(Ultimate_Value - Current_Value, 2) )  ; 

Future_Value 

  TotalCV <- round(sum(Current_Value),2); TotalCV 

  TotalFV <- round(sum(Future_Value),2); TotalFV 

  TotalUV <- round(sum(Ultimate_Value),2); TotalUV 

  Years <- 1977:1987; Years 

  CLV <- cbind(Years, Current_Value,Future_Value, Ultimate_Value); CLV 

  CLV <- as.data.frame(CLV); CLV 
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  Total_CV <- as.vector(TotalCV); Total_CV 

  Total_FV <- as.vector(TotalFV); Total_FV 

  Total_UV <- as.vector(TotalUV); Total_UV 

   

  Total_CV<-format(Total_CV, big.mark = ",", scientific = FALSE) 

  Total_FV<-format(Total_FV, big.mark = ",", scientific = FALSE) 

  Total_UV<-format(Total_UV, big.mark = ",", scientific = FALSE) 

   

  Totales <- cbind(Total_CV, Total_FV, Total_UV); Totales 

}) 

output$Model2 <- renderPrint({ 

    Data3<-mydata() 

  Y <- as.triangle(Data3, origin = "Year", dev = "Period", "Value") 

  MCL <- MackChainLadder(Y, weights = 1, alpha=1, est.sigma="Mack", 

                         tail=F, tail.se=NULL, tail.sigma=NULL, mse.method="Mack") 

  MCL 

}) 

output$Model2A <- renderPlot({ 

    Data3<-mydata() 

  Y <- as.triangle(Data3, origin = "Year", dev = "Period", "Value") 

  MCL <- MackChainLadder(Y, weights = 1, alpha=1, est.sigma="Mack", 

                         tail=F, tail.se=NULL, tail.sigma=NULL, mse.method="Mack") 

  plot(MCL) 

  }) 

output$Model3 <- renderPrint({ 

    Data4<-mydata() 

  Y <- as.triangle(Data4, origin = "Year", dev = "Period", "Value") 
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  cldfll <- ClarkLDF(Y, cumulative = TRUE, maxage = 11, 

                     adol = FALSE, adol.age = NULL, origin.width = NULL, 

                     G = "loglogistic") 

    cldfll 

}) 

output$Model3A <- renderPrint({ 

    Data4<-mydata() 

  Y <- as.triangle(Data4, origin = "Year", dev = "Period", "Value") 

  cldfll <- ClarkLDF(Y, cumulative = TRUE, maxage = 11, 

                     adol = FALSE, adol.age = NULL, origin.width = NULL, 

                     G = "loglogistic") 

  cldfll$GrowthFunctionMAXAGE 

 }) 

output$Model3B <- renderPlot({ 

    Data4<-mydata() 

  Y <- as.triangle(Data4, origin = "Year", dev = "Period", "Value") 

  cldfll <- ClarkLDF(Y, cumulative = TRUE, maxage = 11, 

                     adol = FALSE, adol.age = NULL, origin.width = NULL, 

                     G = "loglogistic") 

  plot(cldfll) 

 }) 

output$Model3C <- renderPrint({ 

    Data5<-mydata() 

  Y <- as.triangle(Data5, origin = "Year", dev = "Period", "Value") 

  cldfw <- ClarkLDF(Y, cumulative = TRUE, maxage = 11, 

                    adol = FALSE, adol.age = NULL, origin.width = NULL, 

                    G = "weibull") 
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  cldfw 

}) 

output$Model3D <- renderPrint({ 

    Data5<-mydata() 

  Y <- as.triangle(Data5, origin = "Year", dev = "Period", "Value") 

  cldfw <- ClarkLDF(Y, cumulative = TRUE, maxage = 11, 

                    adol = FALSE, adol.age = NULL, origin.width = NULL, 

                    G = "weibull") 

    cldfw$GrowthFunctionMAXAGE 

}) 

output$Model3E <- renderPlot({ 

    Data5<-mydata() 

  Y <- as.triangle(Data5, origin = "Year", dev = "Period", "Value") 

  cldfw <- ClarkLDF(Y, cumulative = TRUE, maxage = 11, 

                    adol = FALSE, adol.age = NULL, origin.width = NULL, 

                    G = "weibull") 

  plot(cldfw) 

  }) 

output$Model4 <- renderPrint({ 

    Data6<-mydata() 

  Y <- as.triangle(Data6, origin = "Year", dev = "Period", "Value") 

  cccll <- ClarkCapeCod(Y,Premium=1900000+20000*1:11, cumulative = TRUE, 

maxage = 11, 

                        adol = FALSE, adol.age = NULL, origin.width = NULL, 

                        G = "loglogistic") 

  cccll 
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}) 

output$Model4A <- renderPrint({ 

  Data6<-mydata() 

  Y <- as.triangle(Data6, origin = "Year", dev = "Period", "Value") 

  cccll <- ClarkCapeCod(Y,Premium=1900000+20000*1:11, cumulative = TRUE, 

maxage = 11, 

                        adol = FALSE, adol.age = NULL, origin.width = NULL, 

                        G = "loglogistic") 

  cccll$GrowthFunctionMAXAGE 

  }) 

output$Model4B <- renderPlot({ 

    Data6<-mydata() 

  Y <- as.triangle(Data6, origin = "Year", dev = "Period", "Value") 

  cccll <- ClarkCapeCod(Y,Premium=1900000+20000*1:11, cumulative = TRUE, 

maxage = 11, 

                        adol = FALSE, adol.age = NULL, origin.width = NULL, 

                        G = "loglogistic") 

  plot(cccll) 

  }) 

output$Model4C <- renderPrint({ 

  Data7<-mydata() 

  Y <- as.triangle(Data7, origin = "Year", dev = "Period", "Value") 

  cccw <- ClarkCapeCod(Y,Premium=1900000+20000*1:11, cumulative = TRUE, 

maxage = 11, 

                       adol = FALSE, adol.age = NULL, origin.width = NULL, 

                       G = "weibull") 

  cccw 
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  }) 

output$Model4D <- renderPrint({ 

  Data7<-mydata() 

  Y <- as.triangle(Data7, origin = "Year", dev = "Period", "Value") 

  cccw <- ClarkCapeCod(Y,Premium=1900000+20000*1:11, cumulative = TRUE, 

maxage = 11, 

                       adol = FALSE, adol.age = NULL, origin.width = NULL, 

                       G = "weibull") 

  cccw$GrowthFunctionMAXAGE 

  }) 

output$Model4E <- renderPlot({ 

  Data7<-mydata() 

  Y <- as.triangle(Data7, origin = "Year", dev = "Period", "Value") 

  cccw <- ClarkCapeCod(Y,Premium=1900000+20000*1:11, cumulative = TRUE, 

maxage = 11, 

                       adol = FALSE, adol.age = NULL, origin.width = NULL, 

                       G = "weibull") 

  plot(cccw) 

}) 

output$RMCL <- renderPrint({ 

    Data3<-mydata() 

  Y <- as.triangle(Data3, origin = "Year", dev = "Period", "Value") 

  MCL <- MackChainLadder(Y, weights = 1, alpha=1, est.sigma="Mack", 

                         tail=F, tail.se=NULL, tail.sigma=NULL, mse.method="Mack") 

  round(summary(MCL)$Totals, 2) 

  }) 

output$RCLOG <- renderPrint({ 

  Data4<-mydata() 
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  Y <- as.triangle(Data4, origin = "Year", dev = "Period", "Value") 

  cldfll <- ClarkLDF(Y, cumulative = TRUE, maxage = 11, 

                     adol = FALSE, adol.age = NULL, origin.width = NULL, 

                     G = "loglogistic") 

    cldfll$Total 

}) 

output$RCWEI <- renderPrint({ 

    Data5<-mydata() 

  Y <- as.triangle(Data5, origin = "Year", dev = "Period", "Value") 

  cldfw <- ClarkLDF(Y, cumulative = TRUE, maxage = 11, 

                    adol = FALSE, adol.age = NULL, origin.width = NULL, 

                    G = "weibull") 

    cldfw$Total 

}) 

output$RCCLOG <- renderPrint({ 

  Data6<-mydata() 

  Y <- as.triangle(Data6, origin = "Year", dev = "Period", "Value") 

  cccll <- ClarkCapeCod(Y,Premium=1900000+20000*1:11, cumulative = TRUE, 

maxage = 11, 

                        adol = FALSE, adol.age = NULL, origin.width = NULL, 

                        G = "loglogistic") 

  cccll$Total 

}) 

output$RCCWEI <- renderPrint({ 

  Data7<-mydata() 

  Y <- as.triangle(Data7, origin = "Year", dev = "Period", "Value") 

  cccw <- ClarkCapeCod(Y,Premium=1900000+20000*1:11, cumulative = TRUE, 

maxage = 11, 
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                       adol = FALSE, adol.age = NULL, origin.width = NULL, 

                       G = "weibull") 

  cccw$Total 

}) 

} 

    # Run the application  

shinyApp(ui = ui, server = server) 


	1. INTRODUCTION
	2. BACKGROUND
	2.1. CHAIN LADDER MODEL
	2.2. MACK CHAIN LADDER MODEL
	2.3. CLARK METHOD – LDF AND CAPE COD MODELS

	3. NUMERICAL APPLICATION
	4. SHINY APPLICATION
	5. COMPARISON OF RESULTS
	6. CONCLUSIONS
	7. BIBLIOGRAPHY
	8. ANNEX
	8.1. R CODE
	8.2. SHINNY APP


