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Abstract 

 

Climate change poses a persistent and worsening threat to humanity. A key component which will 

contribute to the transition to sustainable practices is the development and implementation of green 

technology (GT). Significant research has been conducted investigating the determinants of innovation. 

One central determinant is immigration and location. While the literature investigating immigration, 

innovation and location is time-tested and there exists a growing body of studies relevant to the determinants 

of GT, little has been done to understand the impact of immigration on GT in particular. This paper 

motivates the construction of a unique cross-sectional dataset using shares of foreign workers and inventors, 

and patent counts. Negative binomial estimations help to investigate shares of foreign workers as a potential 

determinant of GT at the U.S. MSA level.  
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1   Introduction 

Climate change is a persistent and worsening challenge which our society faces, one that threatens global 

welfare. The imperative to combat it grows greater with each passing year. Experts believe that the world 

now possesses sufficient capital, policy instruments, and scientific knowledge to halve carbon emission by 

2030 (IPCC, 2022). However, the consequences of inaction loom and may be calamitous (Haines and Patz, 

2004; McMichael et al., 2006). Solutions must therefore involve a dynamic shift to a low-carbon economy 

through innovation and the implementation of low-carbon technologies and other sustainable practices. One 

contribution to this transition will be made by the development and improvement of green technologies 

(GT), those technologies intended to mitigate or reverse the effects of human activity on the environment. 

GT is also known by several other names such as environmental innovation (Durán-Romero and Urraca-

Ruiz, 2015). Studies by Favot et al. (2023), Desheng et al. (2021), and Chen et al. (2021) explain how green 

innovation can be assessed by a variety of different methods including research and development 

expenditures, green total factor productivity and, most importantly for present study, green patents.   

Patents have long been the foci of economic studies including those related to topics of immigration, and 

to what extent international migration in particular affects innovation. The mechanisms suggest that 

influxes in high skilled labor have the potential to spur innovation in the locations which receive it. 

Additionally, it is supposed that skilled migration may also import new knowledge onto host societies, 

which also has implications for patenting activity. GT patents are a particular case which is beginning to 

become the focus of a number of other studies. Recently, investigative efforts have been made to better 

classify GT and study its determinants. Papers such as Favot et al. (2023) have succeeded in selecting 

classification measures for GT patents which identify the greatest number of patents closest to GT in sample 

datasets using methodology developed by the Organization for Economic Co-operation and Development 

(OECD). The relationship between immigration and GT, however, is still somewhat understudied. Some 

evidence suggests that the development of environmental technologies requires a more complex and 
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diversified knowledge set due to their novelty. Considering the potential that migrants have to introduce 

new knowledge to their destination, there is reason to believe that there may be a connection between the 

two. 

The USA is one of the global leaders in innovation and has a rich history of migration, one which has long 

attracted skilled workers. Studies of this kind may be undertaken at the country level. However, previous 

research indicates that certain geographical areas like cities or metropolitan statistical areas (MSAs) are not 

only hubs for immigration, but also for innovation and patenting activity. Therefore, the present study 

examines the case of migration and innovation in U.S. MSAs. In addition to the country’s characteristics 

which make it an appropriate location for the purpose of this study, government databases like the U.S. 

Census Bureau, the Integrated Public Use Microdata Series (IPUMS), and the U.S. Patent and Trademark 

Office provide ample data for these purposes. This study exploits the IPUMS USA dataset for the year 2006 

and U.S. patent data from the USPTO’s PatentsView database in order to investigate the relationship 

between shares of international immigrants and GT patents.  

This thesis contributes to the literature in two ways: first, it considers an understudied relationship between 

shares of skilled immigrants and inventors and GT at a relevant geographical scale in the U.S. Second, it 

employs a unique dataset which relies on an uncommon aspect of PCT data which identifies inventor 

nationality and exploits the most recent and appropriate methods of GT identification in patent data. The 

results of the present study indicate that shares of highly skilled migrants are positively correlated with 

overall counts of GT patents in U.S. MSAs in 2006. This is also true in the cases of certain subsets of this 

classification such as Y02 patents, “which […] can be considered as countering the effects of climate 

change, namely technologies or applications which can decrease greenhouse gases (GHG) emission or 

remove (and store) GHG from the atmosphere” (Angelucci, et al., 2018, p. S86). While the shares of skilled 

migrants retain some explanatory power in this analysis, the inclusion of variables which capture the shares 

of foreign inventors appear to be more related to GT patents. Not only are the share of skilled migrants and 

foreign inventors able to explain changes in counts of patents, but they also have implications for the 
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technological specialization of MSA as higher shares of foreign inventors were positively correlated with 

indicators of revealed technological advantage (RTA) in Y02 technologies. The results have important 

implications for the relationship between shares of skilled foreigners and inventors and the generation of 

GT.  

The rest of this thesis is organized as follows: Section II summarizes relevant findings of related papers, 

Section III provides an in-depth description of the data sources used and variables created for the purpose 

of this study, Section IV describes the methodology used in this analysis, Section V presents and discusses 

the results of this analysis, and Section VI concludes this thesis.  

 

2   Literature Review 

Remedying climate change will depend on the engagement and efforts from a variety of industries and 

fields which may be more directly implicated. That being said, economics will play a crucial role in this 

transition. In particular, the study of innovation economics will be at the forefront. While their paper 

principally addresses the effect of intellectual property protection in technological implementation and 

adoption, Hall and Helmers (2010) claim that “global climate change mitigation will require the 

development and diffusion of a large number and variety of new technologies” (p. 2), including green 

technologies (GT). Aghion et al (2009) argue that the existence of technologies to combat climate change 

are being treated as “given” and that targeted innovation in green technology is crucial to global movements 

towards sustainability. 

Despite the displayed relevance of GT in combating climate change, why is it important that its 

determinants be studied? An important characteristic of GT, as previously mentioned, is that its 

development requires a specific set of capabilities, which appear to be far different from traditional 

knowledge bases of industries (Orsatti et al., 2020; Perruchas et al., 2020). Furthermore, GT are more 
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complex, novel, pervasive and impactful than the non-green ones (Barbieri et al., 2020), and require high 

diversity of competences (Zeppini and van der Bergh, 2011). While it has been shown that individual teams’ 

creative recombination of capabilities boosts GT (Orsatti et al., 2020), it has also been found that high 

density of related regional technologies boost GT as well. (Montresor & Quatraro, 2020). Considering the 

complicated nature of these technologies and their apparent relevance, it is crucial that the processes are 

understood which contribute to their production, specifically in areas which might supply this high density 

of related regional technologies such as MSAs. 

Immigration has long been a central topic in the study of certain economic outcomes and the study of 

innovation is no exception. There exists significant evidence that immigration is strongly connected with 

innovation and even provokes it since foreigners may be attracted to universities and may increase 

collaboration between academic and non-academic groups (Hunt and Gauthier-Loiselle, 2010; Chellaraj et 

al., 2008; Stephan and Levin, 2001). Such studies have also motivated the investigation of the mechanisms 

through which this interaction occurs. Lissoni (2018), for example, finds that immigrants boost local 

innovation through the dissemination of immigrants’ technical and scientific knowledge into their host 

societies. Additionally, many researchers have studied this effect using historical examples such as the 

migration of Soviet scientists in Ganguli (2015), the Huguenots in Hornung (2014), and the migration of 

German Jews in Moser, et al. (2014). Recalling that GT requires a specific and diverse set of skills, does 

immigration affect this as well? A number of authors have investigated the effect of immigration on local 

skill composition and diversity (Alesina et al., 2016; Kemeny, 2017; Ozgen, et al., 2012). The general 

finding of this literature is that migration increases the diversity of both culture and knowledge of the cities 

in which they accept employment.  

Another body of literature then takes the initiative to explore the effects of this diversification. Authors 

such as Bathelt et al. (2004) and Morrison et al. (2013) have shown that skilled immigration can create 

channels to access new and nonredundant knowledge (which could manifest as GT). Similarly, other papers 

have shown that skilled immigration can cause technological diversification, specifically relating to those 
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technologies of the home countries of the immigrants (Miguelez & Morrison, 2022).  Bahar, Rapoport, 

Turati (2019), for example, find that birthplace diversity is positively associated with economic complexity 

because immigrants expand the set of skills to which a country has access. The review of this literature thus 

reveals an interesting link: if immigrants in general may be a driver of innovation and environmental 

technologies may require a more diverse set of competencies which may be supplied by non-native workers, 

does immigration drive innovation in GT in particular? 

 

3   Data and Descriptives 

3.1   Data and Variables 

The data for this paper originate from a number of different sources including the  USPTO, PCT, IPUMS 

USA, the United States Census Bureau’s Metropolitan and Micropolitan Statistical Areas Population Totals 

and Cartographic Boundary Files databases, and the National Center for Education Statistics university 

location files. Via the PatentsView website, the USPTO offers several disaggregated patent level datasets. 

These include datasets containing inventor characteristics, firm characteristics, locations of the patent and 

corresponding patent classifications. The IPUMS USA is a database providing microdata on residents 

within the U.S. gathered from previous U.S. censuses. Relevant variables include individual levels of 

education, age, gender, labor force, nativity and geographic indicators which can be used to aggregate the 

data at the MSA level in the U.S. Since the IPUMS USA draws samples from larger census data, the number 

of available years is restricted to five-year intervals. For that reason, the present study will exploit data from 

IPUMS USA from the year 2006. Previous analysis using other U.S. microdata bases such as the IPUMS 

CPS which contains observations at the individual level on a year (and more recently, monthly basis) 

yielded variable counts which were relatively volatile and were not considered to be statistically adequate 

for this type of analysis.           
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The two principal variables of my study are GT innovation and skilled immigration. While all of the 

necessary information is contained in the various USPTO PatentsView datasets, a methodology must be 

adopted in order to merge them. A common key between these datasets is the patent ID numbers. These 

identification numbers can be used to combine a number of the datasets; however, further work is required 

to match the patent data based on the ambiguated location identifier. Therefore, a combination of both of 

the patent ID numbers and the ambiguous location data can be used to combine the numerous datasets into 

one master patent data set which contains variables for the patent ID, the inventor names, numerous 

variables relating to the patent location, including the latitude and longitude of the assignee, the assignee 

name and type, and both the IPC and CPC classification codes.  

The next challenge is to identify the patents within the datasets which are considered GT. According to 

Favot et al. (2023) referencing Kraus et al. (2020) “Green innovation (GI) refers to the innovation in 

technology applied to minimize wastage, global warming, use of water, air pollution, use of coal, oil, 

electricity, and conserving energy” (p. 1). While recent literature relating to GT innovation has developed 

and applied a number of different methodologies in order to identify GT patents, Favot et al. (2023) 

recommend using a combination of CPC and IPC classification codes which they claim identifies the largest 

number of green technology patents in their samples. This combination of CPC and IPC codes has been 

developed by the OECD and named the ENV-TECH classification method which is regularly updated to 

reflect current development in the identification methodologies (Haščič & Migotto, 2015). Through the 

ENV-TECH methodology, a list of corresponding codes can be obtained and matched with the 

corresponding CPC and IPC codes in my master patent dataset. Accordingly, any patent which has been 

granted and lists a code which is also contained in the ENV-TECH identification methodology as developed 

by the OECD and described in Favot, et al. (2023) is considered GT. This subsequently allows for the 

 
 According to a summary provided by the Queen’s University Library (Queen’s), the Cooperative Patent Classification (CPC) is a patent 

classification system developed by the EPO and USPTO that contains approximately 200,000 subgroups and the International Patent 

Classification (IPC) is a hierarchical classification system consisting of about 70,000 subgroups. Generally, they are used to identify which type 
of specific technological category a patent belongs to. These classifications in turn have been used to identify which technologies may be 

considered environmentally related. 
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creation of a dichotomous variable, GT, which takes the value of one for those patents that have a matching 

CPC or IPC code. Hereafter, the dataset can be reduced to those patents which are located within the U.S. 

and were granted between, during or after 2006. 

A concern regarding this newly created master patent dataset is that it does not contain the MSA location 

of each of the patents. Recall that the patents are, however, geo-localized. Therefore, using MSA shapefiles 

for the U.S. patent locations can be identified and assigned. Once the patents have been successfully 

assigned, total patent counts can be created which reflect the total count of patents in a given MSA in a 

given year in addition to the counts of GT patents. While these variables alone may capture some of the 

concentration of non-GT and GT patents, there exists great diversity within the GT innovation itself. 

Therefore, I also create variables which correspond to the counts of those patents identified by the Y02 

tagging scheme in addition to each of the 8 subcategories of this identification method. 

Y02 Technology Categories (OECD ENV-TECH) 

Y02A Climate change adaptation technologies 

Y02B Climate change mitigation technologies related to buildings 

Y02C Capture, storage, sequestration or disposal of greenhouse gases  

Y02D Climate change mitigation in information and communication technologies  

Y02E Climate change mitigation technologies related to energy generation, transmission or 

distribution 

Y02P Climate change mitigation technologies in the production or processing of goods 

Y02T Climate change mitigation technologies related to transportation 

Y02W Climate change mitigation technologies related to wastewater treatment or waste 

management 

 
 Full list available at https://stats.oecd.org/OECDStat_Metadata/ShowMetadata.ashx?DataSet=PAT_IND  

https://stats.oecd.org/OECDStat_Metadata/ShowMetadata.ashx?DataSet=PAT_IND
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The next principal dataset for this research is the IPUMS USA microdata. As previously noted, the census 

data is only available for a number of years in the U.S. Therefore, the year 2006 will be included in the 

present study. The IPUMS USA contains variables which locate its respondents, assign them workforce 

status, and identify their level of education and nativity. From these variables, individuals can be located 

and coded as workers possessing various levels of education and nativity. Workers are identified as those 

individuals who have a positive workforce participation status. For the purpose of this study, two levels of 

education are defined: skilled workers, or those individuals who possess a four-year college degree or 

higher, and high skilled workers, or those individuals who possess at least a doctorate degree. As will 

become apparent in the subsequent analysis, only highly skilled workers will be considered. Next, workers 

can be identified as foreign or native based on their nativity. Foreign workers are identified as those 

individuals who reported birth places outside of the U.S. Conversely, native workers are those individuals 

who reported a birthplace in the U.S. The identification of these individual characteristics allows for the 

calculation of the share of the ranging levels of education that are foreign or native born by the U.S. MSA. 

For example, the variable of the share of skilled workers that are foreign is calculated as the number of 

foreigners with at least a four-year college degree in a given MSA divided by the total number of workers 

in the same MSA that have at least a four-year college degree. The same methodology is also applied to the 

other skill levels.  

While data alone may yield interesting results to identify certain clusters of innovation or GT innovation, 

some controls must be included in the data. The primary control for the present study is the shares of highly 

skilled human capital by MSA. Data from IPUMS USA also allows for all workers with a doctorate degree 

or above to be identified and used to calculate these shares. Another control which I propose is population. 

The U.S. Census Bureau publishes yearly datasets which contain population estimates by varying 

geographical denominations. For the purpose of this study, population estimates for the year 2006 at the 

MSA level are extracted and applied to the data. In addition to population, I also propose controlling for 

the presence of universities in MSAs. The Institute of Education Sciences National Center for Education 
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Statistics has been publishing yearly since 2015 the location of all postsecondary educational institutions 

in the U.S. From this data, the total count of universities can be calculated at the MSA level. Similar to 

IPUMS USA, the postsecondary institution data contains CBSA codes which can be used to match the 

counts of universities with the master data. Some research has suggested that universities are responsible 

for a portion of overall innovative activity (National Research Council, 2012). Therefore, I considered it 

relevant to control for the potential impact the universities may be having on local innovative activity. An 

important consideration is that this variable is from 2015 and not the year of study 2006. Since 2006, 

however, only a handful of new universities have been established in the U.S. and these observations can 

be removed from the data to accurately reflect the counts in 2006. 

The aim of the introduction of the share of foreigners in the worker force is intended to capture the impact 

that such individuals may have on local innovative activity. The main limitation with the aforementioned 

variable is that it captures the proportion of all skilled foreign individuals but does not necessarily accurately 

reflect the proportion of skilled workers implicated in the innovation process, that is to say, inventors 

themselves. Therefore, this thesis also exploits data from the World Intellectual Property Organization 

(WIPO) IPSTATS database and looks at inventors residing in one U.S. MSA with patents applied through 

the Patent Cooperation Treaty (PCT), administered by WIPO. Under the PCT, data for inventor residence 

and nationality can be obtained, which allows for the creation of another variable which captures the share 

of foreign inventors at the MSA level. This data spans the years of 2004 to 2006 in order to capture the 

lagged effects that the presence of certain types of inventors may have on innovation. These values can be 

added to the master dataset, merging them with the corresponding MSA codes. 

While patent counts alone, when controlling for population, can be indicative of higher levels of innovation 

in given MSAs, we also want to analyze to what extent the presence of skilled foreigners and foreign 

 
 The availability of patent data which contains corresponding inventor nationality is quite unique. It is only available through the PCT for those 

patents which filed for protection in the U.S. between the years 1990 and 2010. Certain patent application procedures in the U.S. during this 
period apparently required that inventors be listed as applicants as well, and that their nationality and residence be recorded (Miguelez & Fink, 

2013).  
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workers may be related to the specialization pattern of MSAs. To this end, I propose the use of a measure 

of revealed technological advantage (RTA). In the case of GT patents, I create a variable which captures if 

a given MSA has a revealed technological advantage in such a group of technologies. The same for all Y02 

tagged technologies and the same for each of the 8 individual classifications of Y02 technologies. The 

purpose of this variable is to measure to what extent the shares of skilled workers and inventors of different 

origins may be related to technological differentiation and diversity in a given MSA. As mentioned, some 

of the previous literature (Bathelt et al., 2004; Morrison et al., 2013; Miguelez & Morrison, 2022) has found 

that the presence of foreign inventors may promote diversification into new areas of technology and the 

creation of new technology overall.  

In addition to the individual measures of RTA for separate types of GT, I propose another variable which 

measures the extent to which this effect takes place. Therefore, I create a variable which is a count of the 

sum of the previously described RTA indicators. That is the variable could take a value between 0 and 8 

depending on the number of different RTAs that a given MSA has in 2007. While certain MSA 

characteristics may explain whether they have an RTA in a specific type of technologies, this variable aims 

to capture the extent to which technological diversification takes place based on Y02 patents.  

3.2   Descriptive Statistics 

Table 1 displays the descriptive statistics for the main variables of interest including patent counts and the 

control variables. As the table indicates, patent data is used for a total of 373 U.S. MSAs in the year of 

2007. The average number of patents per year per MSA is around 255 whereas the average count of patents 

classified as GT is about 29. Surprisingly, the number of those GT patents which are also classified as Y02 

technologies is around 28, which is quite similar to the average of all GT patents. This would indicate that 

the vast majority of all patents classified as GT patents are identified by the Y02 tagging scheme, which is 

much different from the findings of Favot et al. (2023) who found that this percentage was much lower. 

Accordingly, the counts of patents belonging to the various subcategories of Y02 patents are much lower, 

averaging around 8 at the most and less than 1 at the lowest. All of the patent categories show a large 
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amount of variation across MSAs. This is shown in part by the standard deviations, but also by the 

maximum and minimum values. While in 2007 some MSAs produce only a single patent, others have nearly 

10,000. The same variation is true for GT patents which are not even present in certain MSAs and account 

for thousands of the patents in others. As will become clear, some of this variation is likely caused by scale 

effects and will likely have to be accounted for in the regressions by controlling for population. Another 

method to address the issue of high variation would be to drop observations identified as outliers. However, 

count data is somewhat unique as it may present a non-normal distribution and the task of dropping outliers 

may not be appropriate due to the large number of true zeros in the dataset. 

Table 1: Patent Counts and Controls 

 Variable  Obs  Mean  Std. Dev.  Min  Max 

 Total Patents 373 254.98 819.78 1 9787 
 GT 373 29.48 84.97 0 1000 
 Y02 373 28.09 80.82 0 829 
 Y02A 373 4.11 14.31 0 119 
 Y02B 373 2.6 7.95 0 65 
 Y02C 373 .36 1.64 0 18 
 Y02D 373 3.49 15.53 0 213 
 Y02E 373 6.94 19.59 0 144 
 Y02P 373 7.05 22.79 0 211 
 Y02T 373 5.92 36.18 0 642 
 Y02W 373 .97 3.13 0 36 
 Universities 373 17.18 36.32 1 418 
 Population 373 260459.18 661218.35 105 9700359 

 

Table 2 shows the descriptive statistics for the main explanatory variables of interest. An important figure 

from the table is the number of observations. In contrast to the patent data, shares of foreign workers and 

inventors are only available for the subset of the MSAs for which patent data is available. Nevertheless, the 

entire sample will still examine a total of 239 MSAs. On average, according to the IPUMS USA data, in 

U.S. MSAs skilled foreigners represent around 10% of all skilled workers. The ratio for highly skilled 

foreign workers of all highly skilled workers in a given MSA is 12%. This entails that highly skilled 

foreigners make up a slightly large proportion of all highly skilled workers in the same MSA than for just 

skilled workers. The variables for the shares of foreign inventors displays a similar ratio, where foreigners 

account for around 11% of all inventors.  

 
 
 



13 

 

Table 2: Shares of Skilled Foreigners and Human Capital  

Variable  Obs  Mean  Std. Dev.  Min  Max 

Share of Skilled Foreigners 239 .1 .07 0 .46 
Share of High Skilled Foreigners 239 .12 .08 0 .52 
Share of Foreign Inventors 239 .11 .08 0 .58 
Share of High Skilled Human Capital 239 .1 .04 .03 .26 

 
Table 3: Revealed Technological Advantage (RTA) of Patent Types  

 Variable  Obs  Mean  Std. Dev.  Min  Max 

 RTA Y02 373 .24 .43 0 1 
 RTA GT 373 .25 .43 0 1 
 RTA Y02A 373 .2 .4 0 1 
 RTA Y02B 373 .18 .38 0 1 
 RTA Y02C 373 .06 .24 0 1 
 RTA Y02D 373 .09 .28 0 1 
 RTA Y02E 373 .21 .41 0 1 
 RTA Y02P 373 .2 .4 0 1 
 RTA Y02T 373 .13 .34 0 1 
 RTA Y02W 373 .17 .38 0 1 
 Cum. RTA 373 1.24 1.26 0 6 

 

Table 3 provides descriptive statistics on the set of previously described RTA variables. They are present 

for the entire sample of patents and take values according to their description. A mean value of 0.24 would 

indicate that 24% of the MSAs have a RTA in this type of technology. We can therefore discern that a 

greater number of MSAs have an RTA in technologies like GT overall, Y02 patents, and Y02P (climate 

change mitigation technologies in the production or processing of goods). The final variable in the table, 

Cumulative RTA, is the variable which captures the sum of different RTAs. The mean of this variable is 

just above 1, suggesting that, on average, MSAs have an RTA in at least one of the 8 categories of Y02 

technology, but none displays patents in all 8 in 2007.  

The raw correlations of all of the variables are presented in Table A1 in the appendix for the year 2007 

using the lags of the shares of foreign workers and inventors. Of primary interest are the correlations 

between the share of skilled and highly skilled foreign workers and inventors with the set of patent counts. 

In all cases relating to the shares of foreign workers of all skill levels and foreign inventors, the correlation 

coefficient is positive and of a reasonable magnitude. In particular, the correlation coefficient on the share 

of skilled foreigners with total patents is 0.55 and that of highly skilled foreigners is 0.53. Alternatively, 

the coefficient on the share of highly skilled human capital of the entire skilled workforce is 0.46. As 

previously mentioned, while the share of skilled workers in the labor force may be correlated with levels 
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of innovation, we should also consider the particular impact that inventors in particular have on this. 

Looking at the correlation coefficient on the share of foreign inventors we observe a similar trend. That is, 

the correlation on the share of foreign inventors is 0.38. Lastly, the correlation coefficients on the university 

counts and population are 0.63 and 0.38, respectively.  

Below, Figure 1 contains graphs of the distributions of total and GT patent counts for the year 2007 and 

shares of skilled foreigners and foreign inventors for the year 2006. While the variables for the shares of 

skilled foreigners and foreign inventors follow slightly right-skewed distributions, the counts of Total and 

GT patents are extremely right-skewed, likely as a result of a number of low-count MSAs in the case of 

total patents and a number of MSAs with zero GT patents. As expected with count data, they 

 

Maps 1-4 present choropleth maps of the counts of patents and share of foreign workers and inventors by 

MSA. Clearly, there is much spatial heterogeneity in the case of the central U.S. On the other hand, the 

coastal U.S. shows some strong heterogeneity, especially in the case of patent counts. These trends appear 

to coincide with locations in which there are a large number of universities such as eastern Massachusetts, 

southern Maine, and Connecticut, or larger tech industries such as in southern California. While a spatial 

visualization of the data is useful to understand its dispersion, the study does not employ spatial econometric 
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methods and requires other methodologies to uncover the determinants of GT at the U.S. MSA level. 
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4   Methodology 

The primary empirical approaches of this paper include negative binomial and logistic regressions. Count 

data in general do not follow a normal distribution and are not appropriately estimated by ordinary least 

squares (OLS). Typically, Poisson estimations are performed in this case, however, they may become 

inappropriate as dispersion increases in the dependent variable. Therefore, in order to justify the use of the 
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negative binomial estimation method in place of OLS, this thesis performs series of regressions and tests 

on adaptations of the following set of regressions:  

(1)   

(2)  

(3)  

where Pati,t is the total count of patents in MSA i in year t, ShareSkilli,t is the proportion of the skilled or 

highly skilled workforce that is foreign, ShareInvi,t is the proportion of inventors in a given MSA in a given 

year that are foreign, X is a vector of control variables including population, the count of universities and 

the stock of highly skilled human capital, and Ɛ is the error term. The base year, t, of the regression is 2007. 

Therefore, as previously indicated, the lagged shares of foreign workers and inventors are used.  

According to variable inflation factors (VIF) in Table A4 in the appendix, we can conclude that 

multicollinearity is not of concern in our case. Additionally, the residuals displayed heteroskedasticity as 

displayed in Figures A1 and A2 in the appendix. Even though constant variance of the residuals is not an 

assumption of the models used in this paper, the following estimations are conducted correcting for 

heteroskedasticity using clustered standard errors at the MSA level.  

Due to the high dispersion of the total and GT patent counts, there is some concern that a Poisson estimation 

may not be entirely appropriate. One measure of overdispersion in the data can be constructed using the 

dispersion index which is calculated as the variance over the mean. Any value of this index which is above 

one indicates that the data are overdispersed and consequently violates the assumption of the Poisson model 

of a constant mean-variance relationship. In the case of GT patents, this index is well over 200, indicating 

that the data are overdispersed and would be better modeled by a negative binomial regression. 

Additionally, the performance of a chi-squared goodness of fit tests on all of the negative binomial 

estimations from Tables A5 and A6 in the appendix result in a highly statistically significant test statistic 

which confirms that the count data is not well fit by the Poisson model and that we should prefer a negative 

binomial estimation.  
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5    Results 

Tables 4 and 5 present the estimations of equations (1) and (2) from the Methodology section which stagger 

the inclusion of the shares of highly skilled foreign workers and the share of foreign inventors, and the set 

of controls. In the case of total patent counts in Table 4, results in column (1) indicates that the share of 

highly skilled foreigners is responsible over the share of skilled foreigners for explaining changes in total 

patent counts, the inclusion of controls and the share of foreign inventors in columns (4) and (5) begin to 

explain this variance. Lastly, column (6) is estimated using robust standard errors clustered at the MSA 

level and shows that the significance of the regressors is preserved even with slightly larger standard errors. 

From now on, as commented before, we use robust standard errors.  

Table 4: Negative Binomial Regressions - Total Patents 
 (1) (2) (3) (4) (5) (6) 

VARIABLES Total Total Total Total Total Total (Robust) 

       

Skilled Foreign = L, -3.344 0.659     

 (5.126) (3.441)     

High Skilled Foreign = L, 16.85*** 0.721 1.291 1.291 -0.0639 -0.0639 

 (4.754) (3.169) (1.090) (1.090) (1.122) (1.225) 

High Skilled HC = L,  21.40*** 21.38*** 21.38*** 18.28*** 18.28*** 

  (2.548) (2.548) (2.548) (2.599) (2.984) 

Universities  0.0245*** 0.0244*** 0.0244*** 0.0239*** 0.0239*** 

  (0.00339) (0.00336) (0.00336) (0.00325) (0.00526) 

Population  1.34e-08 2.15e-08 2.15e-08 -2.81e-09 -2.81e-09 

  (1.56e-07) (1.50e-07) (1.50e-07) (1.48e-07) (2.06e-07) 

Foreign Inventors = L,     4.282*** 4.282** 

     (1.177) (1.756) 

Constant 3.671*** 2.001*** 2.000*** 2.000*** 1.999*** 1.999*** 

 (0.194) (0.225) (0.225) (0.225) (0.217) (0.240) 

       

Observations 238 238 238 238 238 238 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 5: Negative Binomial Regressions - GT Patents 
 (1) (2) (3) (4) (5) (6) 

VARIABLES GT GT GT GT GT GT (Robust) 

       

Non-GT 0.000738*** 0.000213** 0.000219* 0.000219* 0.000201* 0.000201* 

 (0.000121) (0.000106) (0.000112) (0.000112) (0.000103) (0.000114) 

Skilled Foreign = L, -11.12** -8.956**     

 (4.649) (4.126)     

High Skilled Foreign = L, 13.63*** 7.748** 0.271 0.271 -2.050 -2.050 

 (4.567) (3.888) (1.746) (1.746) (1.903) (1.557) 

High Skilled HC = L,  18.65*** 19.16*** 19.16*** 15.04*** 15.04*** 

  (3.464) (3.456) (3.456) (3.659) (3.489) 

Universities  0.0227*** 0.0234*** 0.0234*** 0.0243*** 0.0243*** 

  (0.00515) (0.00535) (0.00535) (0.00508) (0.00691) 

Population  -9.70e-08 -2.18e-07 -2.18e-07 -2.15e-07 -2.15e-07 

  (1.95e-07) (1.83e-07) (1.83e-07) (1.84e-07) (2.07e-07) 

Foreign Inventors = L,     4.673*** 4.673** 

     (1.767) (1.856) 

Constant 1.985*** 0.240 0.228 0.228 0.377 0.377 

 (0.231) (0.363) (0.366) (0.366) (0.360) (0.344) 

       

Observations 238 238 238 238 238 238 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Table 5 displays the same set of regressions on equation (2). While the shares of skilled and highly skilled 

foreign workers are significant in columns (1) and (2), the inclusion of the share of foreign inventors 

eliminates their relevance. Similarly, column (6) shows that the statistical significance of the regressors is 

preserved when estimating with corrected standard errors. One key observation across the regressions in 

Tables 4 and 5 is that shares of highly skilled human capital and the number of universities always seem to 

capture some explanatory power. Another is that the share of foreign inventors appears to be more relevant 

for explaining differences in both total and GT patents than the share of highly skilled foreigners alone.  

Table 6 presents the estimation of a combination of equations (1), (2) and (3) both with and without the 

share of foreign inventors. In the case of total patents in equation (2), the share of foreign inventors is 

statistically significant and has a coefficient of 4.28. This indicates that for a one unit increase in the share 

of foreign inventors, the expected log count of the number of total patents increases by 4.28. Referring to 
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Table A7 in the appendix which lists the corresponding incident rate ratios shows that for every unit increase 

in the share of foreign inventors, the percent change of the incident rate of total patent count increases by 

72.38%. For GT patents in column (4), a one unit increase in the share of foreign inventors, the expected 

log count of the number of GT patents increases by 4.67. Additionally, the number of universities are 

statistically significant and positive in all cases save the Y02 patents. While this makes intuitive sense, it is 

also an important result since the share of foreign inventors retains its statistical significance. This shows 

that, in the case of patents counts, the shares of foreign inventors are relevant even when controlling for 

overall highly skilled human capital.  

Table A7 indicates that a one unit increase in the share of foreign inventors corresponds to a 107.1% 

increase in the percent change of the incident rate of GT patents. A relationship of similar magnitude is 

observed in the case of Y02 patent counts for which the magnitude of the coefficient is 4.08 and the incident 

rate ratio is about half that of GT patents. The predicted margins at the mean of the regressions of Table 6 

are included in Table A9 in the appendix. Holding all other variables constant, the predicted number of GT 

patents by the share of foreign inventors is 183.6. In the case of high skilled capital, the predicted number 

of GT patents at its mean is 343.  

Table 6: Negative Binomial Regressions by Patents Type with Inventors 
 (1) (2) (3) (4) (5) (6) 

VARIABLES Total Total GT GT Y02 Y02 

       

High Skilled Foreign = L, 1.291 -0.0639 0.271 -2.050 0.530 -1.208 

 (1.196) (1.225) (1.461) (1.557) (1.265) (1.275) 

Foreign Inventors = L,  4.282**  4.673**  4.080*** 

  (1.756)  (1.856)  (1.410) 

High Skilled HC = L, 21.38*** 18.28*** 19.16*** 15.04*** 15.41*** 12.74*** 

 (2.729) (2.984) (3.171) (3.489) (2.615) (2.620) 

Universities 0.0244*** 0.0239*** 0.0234*** 0.0243*** 0.0101* 0.0101** 

 (0.00525) (0.00526) (0.00739) (0.00691) (0.00517) (0.00510) 

Population 2.15e-08 -2.81e-09 -2.18e-07 -2.15e-07 1.03e-07 1.08e-07 

 (2.00e-07) (2.06e-07) (2.01e-07) (2.07e-07) (2.37e-07) (2.42e-07) 

Non-GT   0.000219 0.000201* -0.000260 -0.000268 

   (0.000140) (0.000114) (0.000178) (0.000164) 

GT     0.0150*** 0.0147*** 

     (0.00508) (0.00509) 

Constant 2.000*** 1.999*** 0.228 0.377 0.145 0.169 

 (0.248) (0.240) (0.347) (0.344) (0.276) (0.257) 

       

Observations 238 238 238 238 238 238 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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While there appears to exist a clear relationship between the shares of foreign inventors and most of the 

control variables with total and GT patent counts, does this relationship exist for specific types of GT 

patents? Table 7 presents an adaptation of equation (3) in which the dependent variable is represented by a 

different Y02 technology patent count in each of the 8 regressions. Shares of highly skilled human capital 

are significant across 6 of 8 specifications and shares of foreign inventors are significant across 4. It would 

appear that the climate change mitigation technologies related to transportation (Y02T) and technologies 

related to wastewater treatment or waste management (Y02W) patent counts are not well explained by the 

regressors included in the model. According to the results climate change adaptation technologies (Y02A),  

technologies related to energy generation, transmission or distribution (Y02E), and technologies in the 

production or processing of goods (Y02P) patent counts vary positively with both the share of highly skilled 

human capital and the share of foreign inventors. The corresponding IRRs and margins are available in 

Tables A8 and A10 of the appendix, respectively. With regard to each Y02 subclass, the magnitudes of the 

predicted margins at the means are of much smaller magnitude compared to GT patents overall. For Y02A, 

Y02E and Y02P patents, holding all else constant, the predicted counts are less than 60. Interestingly, in 

the case of Y02P patents, the share of highly skilled foreign workers is negative and statistically significant, 

indicating that increased shares may decrease patent counts of these technologies. Negative relationships 

between the share of foreign inventors are not observed in any of the regressions.  

 

Table 7: Negative Binomial Regressions by Y02 Type 
 (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES Y02A Y02B Y02C Y02D Y02E Y02P Y02T Y02W 

         

GT 0.00172** 0.0117 0.0217** 0.00205 0.0190** 0.0131** 0.0253*** 0.00437 

 (0.000876) (0.00857) (0.00943) (0.00416) (0.00793) (0.00570) (0.00584) (0.00641) 

Non-GT -2.06e-05 -0.000200 -0.000667** 0.000383 -0.000520** -0.000138 -0.000531*** -4.53e-05 

 (7.19e-05) (0.000268) (0.000306) (0.000300) (0.000251) (0.000200) (0.000203) (0.000242) 

High Skilled Foreign = L, 0.871 -4.442 -1.535 3.931 1.004 -4.010** -3.462 3.133 

 (1.578) (2.986) (4.453) (3.091) (2.008) (1.878) (2.271) (3.035) 

Foreign Inventors = L, 4.432** 4.070 -1.111 3.472 4.337*** 4.950** 1.573 3.161 

 (1.767) (2.586) (3.752) (3.486) (1.653) (1.987) (1.622) (2.610) 

High Skilled HC = L, 13.96*** 15.46*** 16.02*** 28.17*** 15.75*** 11.04*** 6.199* 1.055 

 (2.877) (4.991) (5.989) (7.100) (4.093) (3.504) (3.323) (3.570) 

Universities 0.0226*** 0.0156*** 0.00510 0.000392 0.00529 0.00974 0.00451 0.0141 

 (0.00620) (0.00585) (0.00381) (0.00722) (0.00583) (0.00622) (0.00600) (0.00983) 

Population -6.95e-08 -2.75e-07 2.86e-07 4.12e-07 3.06e-07 6.42e-08 3.38e-07 -1.45e-07 

 (2.87e-07) (2.29e-07) (7.14e-07) (3.05e-07) (3.33e-07) (2.36e-07) (4.10e-07) (2.83e-07) 

Constant -2.070*** -1.818*** -3.599*** -4.155*** -1.810*** -0.805** -0.649* -1.483*** 

 (0.311) (0.521) (0.581) (0.825) (0.401) (0.347) (0.341) (0.379) 

         

Observations 238 238 238 238 238 238 238 238 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Despite the apparent relationship between patent counts and the share of foreign inventors, Table A11 in 

the appendix shows that no relationship is present between inventors and the RTAs of certain Y02 

subclasses. However, another question arises which is if the shares of these individuals affect the number 

of separate RTAs by U.S. MSA. Table 8 displays another adaptation of equation (3) in which a negative 

binomial regression is performed where the dependent variable is a variable of the sum of unique RTAs by 

MSA. In contrast to the insignificant findings from Table A11 in the appendix, both the shares of highly 

skilled human capital and foreign inventors are positive and statistically significant. Therefore, holding all 

other variables constant, the predicted margins from column (2) show that the average predicted number of 

unique RTAs is about 2.6 for the mean of the share of foreign inventors. Even though neither the shares of 

foreign inventors nor the share of highly skilled human capital can explain the RTAs in Y02 of MSAs in 

2006, they do seem to be positively associated with the number of unique RTAs. This indicates that these 

shares may help MSAs to specialize in a wider variety of technologies than those with lower shares.  

 

Table 8: Negative Binomial Regression for Cumulative RTA 
 (1) (2) 

VARIABLES Cum. RTA Margins 

   

GT 0.00166** 0.00238** 
 (0.000725) (0.00106) 

Non-GT -0.000153*** -0.000219*** 

 (5.78e-05) (8.40e-05) 
High Skilled Foreign = L, -0.431 -0.616 

 (0.874) (1.255) 

Foreign Inventors = L, 1.809** 2.585* 
 (0.914) (1.328) 

High Skilled HC = L, 5.023*** 7.178*** 

 (1.308) (1.872) 
Universities 0.000804 0.00115 

 (0.00160) (0.00228) 
Population 1.07e-07** 1.54e-07** 

 (4.45e-08) (6.43e-08) 

Constant -0.375**  
 (0.149)  

   

Observations 238 238 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

5.1   Robustness Checks 

A crucial robustness check to this analysis is the consideration of the impact of shares of highly skilled 

natives and share of native inventors. Were the reproduction of the regressions with shares of natives to 
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result in significant coefficients and similar signs and magnitudes, then no conclusions could be drawn 

regarding the particular impact of shares of foreigners. Tables 9-11 serve to this end, reproducing the 

estimations from Tables 6-8 but using the share of highly skilled natives and the share of native inventors. 

Consistent with the results from the said tables, the share of highly skilled human capital continues to 

maintain its relevance and the significance and magnitudes of the other controls do not vary greatly. The 

shares of natives, however, generally display the opposite results as with foreigners, suggesting that in the 

cases in which the parameters are significant, increased shares of highly skilled natives and inventors may 

be negatively associated with patents. This robustness check may also lend its explanation to the theory that 

foreign skilled workers and inventors bring new, non-redundant into the host societies which may help with 

the development of green technology as it is more complex and requires a more diversified knowledge base. 

Table 9: Negative Binomial Regressions by Patents Type with Native Inventors 
 (1) (2) (3) (4) (5) (6) 

VARIABLES Total Total GT GT Y02 Y02 

       

High Skilled Native = L, -1.291 0.0639 -0.271 2.050 -0.530 1.208 

 (1.196) (1.225) (1.461) (1.557) (1.265) (1.275) 

Native Inventors = L,  -4.282**  -4.673**  -4.080*** 

  (1.756)  (1.856)  (1.410) 

High Skilled HC = L, 21.38*** 18.28*** 19.16*** 15.04*** 15.41*** 12.74*** 

 (2.729) (2.984) (3.171) (3.489) (2.615) (2.620) 

Universities 0.0244*** 0.0239*** 0.0234*** 0.0243*** 0.0101* 0.0101** 

 (0.00525) (0.00526) (0.00739) (0.00691) (0.00517) (0.00510) 

Population 2.15e-08 -2.81e-09 -2.18e-07 -2.15e-07 1.03e-07 1.08e-07 

 (2.00e-07) (2.06e-07) (2.01e-07) (2.07e-07) (2.37e-07) (2.42e-07) 

Non-GT   0.000219 0.000201* -0.000260 -0.000268 

   (0.000140) (0.000114) (0.000178) (0.000164) 

GT     0.0150*** 0.0147*** 

     (0.00508) (0.00509) 

Constant 3.291*** 6.217*** 0.499 3.000 0.675 3.041** 

 (1.165) (1.620) (1.396) (1.942) (1.193) (1.486) 

       

Observations 238 238 238 238 238 238 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 10: Negative Binomial Regressions by Y02 Type with Native Inventors 
 (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES Y02A Y02B Y02C Y02D Y02E Y02P Y02T Y02W 

         

GT 0.00172** 0.0117 0.0217** 0.00205 0.0190** 0.0131** 0.0253*** 0.00437 

 (0.000876) (0.00857) (0.00943) (0.00416) (0.00793) (0.00570) (0.00584) (0.00641) 

Non-GT -2.06e-05 -0.000200 -0.000667** 0.000383 -0.000520** -0.000138 -0.000531*** -4.53e-05 

 (7.19e-05) (0.000268) (0.000306) (0.000300) (0.000251) (0.000200) (0.000203) (0.000242) 

High Skilled Native = L, -0.871 4.442 1.535 -3.931 -1.004 4.010** 3.462 -3.133 

 (1.578) (2.986) (4.453) (3.091) (2.008) (1.878) (2.271) (3.035) 

Native Inventors = L, -4.432** -4.070 1.111 -3.472 -4.337*** -4.950** -1.573 -3.161 

 (1.767) (2.586) (3.752) (3.486) (1.653) (1.987) (1.622) (2.610) 

High Skilled HC = L, 13.96*** 15.46*** 16.02*** 28.17*** 15.75*** 11.04*** 6.199* 1.055 

 (2.877) (4.991) (5.989) (7.100) (4.093) (3.504) (3.323) (3.570) 

Universities 0.0226*** 0.0156*** 0.00510 0.000392 0.00529 0.00974 0.00451 0.0141 

 (0.00620) (0.00585) (0.00381) (0.00722) (0.00583) (0.00622) (0.00600) (0.00983) 

Population -6.95e-08 -2.75e-07 2.86e-07 4.12e-07 3.06e-07 6.42e-08 3.38e-07 -1.45e-07 

 (2.87e-07) (2.29e-07) (7.14e-07) (3.05e-07) (3.33e-07) (2.36e-07) (4.10e-07) (2.83e-07) 

Constant 3.232 -2.189 -6.246 3.248 3.531* 0.135 -2.537 4.810* 

 (2.045) (2.348) (3.989) (3.186) (1.978) (1.970) (2.218) (2.465) 

         

Observations 238 238 238 238 238 238 238 238 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Table 11: Negative Binomial Regression for 

Cumulative RTA with Native Inventors 
 (1) 
VARIABLES Cum. RTA 

  

GT 0.00166** 
 (0.000725) 

Non-GT -0.000153*** 

 (5.78e-05) 
High Skilled Native = L, 0.431 

 (0.874) 

Native Inventors = L, -1.809** 
 (0.914) 

High Skilled HC = L, 5.023*** 

 (1.308) 
Universities 0.000804 

 (0.00160) 

Population 1.07e-07** 
 (4.45e-08) 

Constant 1.003 

 (0.958) 
  

Observations 238 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

As a final robustness check, this section also considers the possibility of a small numbers problem regarding 

the shares of foreign inventors and outliers. In certain cases, foreign inventors may be overrepresented in 

MSAs for which the overall number of inventors is relatively small. For example, an MSA which only has 
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2 inventors, one which is native and another which is foreign, would have a share of foreign inventors of 

0.5. Even when controlling for population, a figure such as this may bias the results in favor of the shares 

of foreign inventors. To account for this fact, the main estimations from Table 6 are repeated controlling 

for it. Table 12 presents negative binomial regressions excluding MSAs for which the number of total 

inventors was in the 10th percentile. The results in columns (2), (4) and (6) display virtually no change in 

the statistical significance of the foreign inventors parameter and the overall magnitudes drop by less than 

1.  

 

Table 12: Negative Binomial Regressions by Patents Type Controlling for Inventor Outliers 
 (1) (2) (3) (4) (5) (6) 

VARIABLES Total Total GT GT Y02 Y02 

       

High Skilled Foreign = L, 1.226 -0.0213 -0.166 -2.288 0.282 -1.299 

 (1.167) (1.227) (1.395) (1.554) (1.200) (1.237) 

Foreign Inventors = L,  4.099**  4.447***  3.879*** 

  (1.658)  (1.687)  (1.227) 

High Skilled HC = L, 20.59*** 17.62*** 17.61*** 13.76*** 14.15*** 11.65*** 

 (2.713) (2.870) (3.079) (3.300) (2.503) (2.412) 

Universities 0.0228*** 0.0224*** 0.0215*** 0.0224*** 0.00888* 0.00900* 

 (0.00508) (0.00510) (0.00708) (0.00664) (0.00485) (0.00479) 

Population 3.91e-09 -2.20e-08 -2.16e-07 -2.19e-07 8.35e-08 8.14e-08 

 (1.91e-07) (1.95e-07) (1.90e-07) (1.94e-07) (2.22e-07) (2.25e-07) 

Non-GT   0.000233* 0.000215* -0.000228 -0.000235 

   (0.000136) (0.000111) (0.000170) (0.000160) 

GT     0.0142*** 0.0139*** 

     (0.00488) (0.00491) 

Constant 2.202*** 2.189*** 0.548 0.672* 0.425 0.432* 

 (0.251) (0.240) (0.347) (0.344) (0.263) (0.247) 

       

Observations 220 220 220 220 220 220 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Alongside the concern of a small numbers problem, this section also considers outliers. There is some 

debate as to whether outliers in count data should be removed and there appears to be little to no consensus 

on how to do so. As shown in Figure 1, the total and GT patent count data are right skewed likely as a result 

of a large number of lower values and zeros in addition to a few unusually high counts. For the purpose of 

this exercise, z-scores are used to identify those data points which may be considered outlier in lieu of a 
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more concrete method to identify them. Tables 13 and 14 present the repetition of the regressions from 

Tables 6 and 7 however excluding the MSAs which had GT patent counts outside of three standard 

deviations from the mean and those which had total counts of inventors in the 10th percentile. Equations 

(2), (4) and (6) of Table 13 reveal that the significance of the share of foreign inventors remains largely 

unchanged. However, the magnitudes have dropped a significant amount in comparison to the regressions 

from Table 6. This is unsurprising considering that some MSA counts of GT patents were close to 1,000 

while the mean was around 29. Hence the significantly reduced magnitudes likely reflect the impact these 

high counts had on the data.  

Table 13: Negative Binomial Regressions by Patents Type Controlling for GT Outliers 
 (1) (2) (3) (4) (5) (6) 

VARIABLES Total Total GT GT Y02 Y02 

       

High Skilled Foreign = L, -0.523 -1.901 -0.138 -2.130 0.982 -0.375 

 (1.474) (1.446) (1.363) (1.511) (1.097) (1.217) 

Foreign Inventors = L,  3.941**  3.849**  3.039** 

  (1.542)  (1.700)  (1.185) 

High Skilled HC = L, 18.88*** 16.04*** 16.46*** 13.34*** 11.22*** 9.508*** 

 (2.501) (2.731) (2.947) (3.173) (1.980) (2.014) 

Universities 0.0282*** 0.0276*** 0.0202*** 0.0212*** 0.00916** 0.00978*** 

 (0.00435) (0.00434) (0.00523) (0.00516) (0.00359) (0.00348) 

Population 2.11e-07 1.95e-07 -8.74e-08 -6.06e-08 6.81e-08 9.07e-08 

 (1.88e-07) (1.91e-07) (1.89e-07) (1.95e-07) (1.96e-07) (2.02e-07) 

Non-GT   0.000424*** 0.000383*** -0.000237 -0.000283** 

   (0.000122) (0.000113) (0.000174) (0.000137) 

GT     0.0206*** 0.0204*** 

     (0.00321) (0.00307) 

Constant 2.376*** 2.383*** 0.531 0.630* 0.414* 0.409* 

 (0.285) (0.268) (0.334) (0.334) (0.237) (0.228) 

       

Observations 214 214 214 214 214 214 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 14: Negative Binomial Regressions by Y02 Type Controlling for GT Outliers 
 (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES Y02A Y02B Y02C Y02D Y02E Y02P Y02T Y02W 

         

GT 0.00149 0.0232*** 0.0412*** 0.00957 0.0279*** 0.0180*** 0.0324*** 0.00991 

 (0.00309) (0.00699) (0.0104) (0.00868) (0.00558) (0.00464) (0.00467) (0.00604) 

Non-GT 2.37e-05 -0.000577** -0.00180*** 0.000567 -0.000779*** -6.75e-05 -0.000622*** -6.68e-05 

 (0.000149) (0.000262) (0.000472) (0.000400) (0.000225) (0.000261) (0.000205) (0.000217) 

High Skilled Foreign = L, 1.395 -3.210 -0.107 4.871* 1.528 -2.800 -2.265 4.145 

 (1.738) (3.047) (4.880) (2.856) (1.811) (1.858) (2.398) (3.037) 

Foreign Inventors = L, 4.106** 2.297 -1.838 0.792 4.291*** 3.791* 0.543 3.207 

 (1.600) (2.494) (4.237) (3.412) (1.499) (1.949) (1.672) (2.494) 

High Skilled HC = L, 11.88*** 11.11*** 12.87** 23.52*** 11.90*** 7.850** 3.485 -1.581 

 (2.656) (3.904) (5.862) (6.665) (3.083) (3.069) (3.224) (3.638) 

Universities 0.0265*** 0.0186*** 0.00756 -0.00484 0.00573 0.00797* 0.00409 0.0120 

 (0.00611) (0.00502) (0.00894) (0.00690) (0.00468) (0.00471) (0.00506) (0.00761) 

Population -2.98e-08 -3.92e-07* 8.54e-07 5.01e-07 3.85e-07 8.77e-08 2.57e-07 -3.10e-07 

 (2.98e-07) (2.25e-07) (7.23e-07) (3.85e-07) (2.89e-07) (2.27e-07) (3.88e-07) (3.59e-07) 

Constant -1.932*** -1.531*** -3.953*** -3.717*** -1.640*** -0.623* -0.493 -1.366*** 

 (0.309) (0.462) (0.622) (0.788) (0.366) (0.327) (0.339) (0.379) 

         

Observations 214 214 214 214 214 214 214 214 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Table 14 also appears to mostly preserve the results reported in Table 7, however, the share of foreign 

inventors is no longer significant for Y02P patents. This suggests that the observations which were excluded 

in this exercise contained a large number of Y02P patents. Intuitively, those MSAs with higher counts of 

GT patents would be expected to also have higher counts of Y02 patents since the two variables share 

similar means and standard deviations. Despite the practice of excluding outliers from other forms of 

estimation, in the case of patent counts it may be dangerous. Among the observations excluded for unusually 

high GT patent counts are MSAs which encompass key innovation hubs such as Chicago, IL, Silicon 

Valley, Boston, MA and Detroit, MI. While they may be outliers, statistically speaking, they also represent 

innovation/patenting hubs. Removing them from the analysis may have some justification in statistical 

terms, however, intuitively, it may not make sense to remove them since they may be the areas responsible 

for a considerable share of U.S. innovation.  
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6   Conclusion 

Climate change continues to threaten the health of the planet and its inhabitants. The development and 

implementation of a wide variety of new technologies which aim to mitigate climate change and its 

associated causes will be essential for reducing the damage. Green technology will therefore play a central 

role in this fight. Understanding which sort of innovation currently constitutes the base of such technologies 

and understanding how they differ is crucial for determining which factors influence their development. 

Previous literature has suggested that migration and the presence of foreign inventors is responsible for 

augmenting shares of crucial types of technology and the development of new and more complex ones. 

According to the previous literature green technologies are often more novel and more complex as they 

combine a greater variety of existing knowledge. Therefore, understanding these challenges in the context 

of GT is particularly important.  

The foregoing analysis demonstrates that in the context of U.S. MSAs, there are certain characteristics 

which are associated with the development of green technologies. It has been clearly shown that the shares 

of skilled and highly skilled foreign workers and the share of foreign inventors is among these factors. In 

nearly all cases, the share of foreign inventors is associated with increased counts of GT patents in posterior 

periods. Additionally, there is evidence that this effect is specific to certain types of GT and may even 

promote further diversification into more forms of GT. 

Despite these important findings, this study presents certain limitations. Firstly, the unavailability of data 

to construct a panel dataset presents a number of concerns. One is that more recent years may be more 

suitable for this analysis. Another is the utility of panel data to apply fixed effects to control for unobserved 

MSA heterogeneity. A second limitation is the issue of the potential endogeneity of the shares of foreign 

inventors and human capital. Migration may be a decision and certain locations may be more likely to 

attract certain types of individuals based on a number of factors. In turn, this may lead to correlation between 

residuals and the error term which bias results. Ideally, an instrumental variable approach would be used to 
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correct for this endogeneity. However, given the scope of this thesis and the availability of data, none was 

able to be successfully applied. 

While this thesis provides proximate evidence for the influence of the diverse knowledge sets that foreign 

and migrant inventors import on their local innovator setting, a better understanding of the mechanisms 

which drive this change is left unstudied. Future research must therefore be conducted which not only 

investigates the relationships of these variables, but also seeks to explain the mechanisms behind them. For 

example, is there a certain place of origin of foreign inventors or a certain knowledge base from their home 

country which is promoting diversification into specific types of green technologies? An understanding of 

these complex pathways may lead to the development of more targeted immigration policy to attract experts 

in certain fields crucial to the development of technologies which are most crucial to the fight against 

climate change.  
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Appendix 

 
Table A1: Matrix of correlations  

  Variables   (1)   (2)   (3)   (4)   (5)   (6)   (7)   (8)   (9)   
(10) 

  
(11) 

  
(12) 

  
(13) 

  
(14) 

  
(15) 

  
(16) 

  
(17) 

 (1) Total Patents 1.00 

 (2) GT 0.78 1.00 

 (3) Y02 0.84 0.99 1.00 

 (4) Y02A 0.71 0.66 0.75 1.00 

 (5) Y02B 0.84 0.69 0.75 0.67 1.00 

 (6) Y02C 0.34 0.41 0.41 0.31 0.39 1.00 

 (7) Y02D 0.88 0.60 0.66 0.47 0.72 0.17 1.00 

 (8) Y02E 0.75 0.87 0.88 0.66 0.76 0.42 0.53 1.00 

 (9) Y02P 0.85 0.77 0.82 0.67 0.70 0.42 0.67 0.73 1.00 

 (10) Y02T 0.25 0.75 0.67 0.28 0.19 0.19 0.12 0.50 0.22 1.00 

 (11) Y02W 0.40 0.49 0.50 0.46 0.38 0.23 0.24 0.44 0.47 0.23 1.00 

 (12) Lagged Share of 
Skilled Foreigners 

0.54 0.41 0.45 0.42 0.43 0.16 0.49 0.41 0.45 0.11 0.28 1.00 

 (13) Lagged Share of High 
Skilled Foreigners 

0.53 0.42 0.46 0.39 0.42 0.17 0.49 0.41 0.45 0.13 0.29 0.93 1.00 

 (14) Lagged Share of 
Foreign Inventors 

0.35 0.31 0.34 0.29 0.31 0.14 0.33 0.35 0.32 0.11 0.17 0.50 0.57 1.00 

 (15) Lagged Share of High 
Skilled Human Capital 

0.46 0.40 0.44 0.42 0.42 0.26 0.39 0.45 0.40 0.14 0.18 0.35 0.40 0.47 1.00 

 (16) Universities 0.63 0.63 0.66 0.71 0.68 0.44 0.41 0.60 0.62 0.25 0.57 0.43 0.40 0.24 0.31 1.00 

 (17) Population 0.38 0.39 0.42 0.51 0.43 0.17 0.28 0.42 0.34 0.14 0.65 0.42 0.35 0.19 0.13 0.62 1.00 
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Table A2: OLS Regressions – Total Patents 
 (1) (2) (3) (4) (5) 

VARIABLES Total Total Total Total Total 

      

Skilled Foreign = L, 5,549*** 3,456*    

 (2,132) (1,836)    

High Skilled Foreign = L, 2,298 746.0 3,605*** 3,605*** 3,767*** 

 (1,966) (1,673) (707.0) (707.0) (797.9) 

High Skilled HC = L,  5,567*** 5,368*** 5,368*** 5,562*** 

  (1,314) (1,317) (1,317) (1,390) 

Universities  10.83*** 11.01*** 11.01*** 10.99*** 

  (1.401) (1.406) (1.406) (1.409) 

Population  -8.10e-05 -5.42e-05 -5.42e-05 -5.41e-05 

  (7.44e-05) (7.34e-05) (7.34e-05) (7.35e-05) 

Foreign Inventors = L,     -313.7 

     (710.6) 

Constant -465.7*** -856.6*** -847.9*** -847.9*** -852.4*** 

 (104.4) (131.6) (132.2) (132.2) (132.8) 

      

Observations 238 238 238 238 238 

R-squared 0.299 0.529 0.522 0.522 0.522 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Table A3: OLS Regressions – GT Patents 
 (1) (2) (3) (4) (5) 

VARIABLES Total Total Total Total Total 

      

Non-GT 0.0418*** 0.0337*** 0.0330*** 0.0330*** 0.0331*** 

 (0.00267) (0.00314) (0.00313) (0.00313) (0.00314) 

Skilled Foreign = L, -210.0 -314.9*    

 (168.5) (167.4)    

High Skilled Foreign = L, 220.0 246.5 -9.630 -9.630 -41.31 

 (153.9) (151.7) (67.22) (67.22) (75.28) 

High Skilled HC = L,  142.6 166.9 166.9 128.9 

  (122.9) (122.9) (122.9) (129.4) 

Universities  0.505*** 0.504*** 0.504*** 0.506*** 

  (0.144) (0.145) (0.145) (0.145) 

Population  5.89e-06 3.34e-06 3.34e-06 3.35e-06 

  (6.77e-06) (6.67e-06) (6.67e-06) (6.67e-06) 

Foreign Inventors = L,     60.19 

     (64.33) 

Constant 9.646 -6.060 -7.861 -7.861 -6.875 

 (8.474) (12.87) (12.91) (12.91) (12.95) 

      

Observations 238 238 238 238 238 

R-squared 0.599 0.637 0.632 0.632 0.633 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table A2 and A3 list the sequential OLS regression of equations (1) and (2), first implementing the share 

of skilled foreign workers, then including the share of highly skilled foreign workers and eventually the 

share of foreign inventors. The interpretation of the results of this regression are largely irrelevant as an 

OLS estimator in not appropriate in this context. However, the significance of some of the variables 

indicates which should be included in the other estimations and this regression may be used as well to 

address any concerns of multicollinearity which may bias the results. Table A4 lists the variable inflation 

factors (VIF) for each of the primary regressors. Notably, none of the variables present a VIF which are of 

concern (greater than five) so we can conclude that multicollinearity is not of concern in this case.  

Table A4: Variable Inflation Factor (VIF) 

VARIABLES                 VIF    1/VIF 

Non-GT                         2.070     0.484 
High Skilled Foreign       1.820     0.548 
Universities                     1.800     0.556 
Foreign Inventors           1.760     0.569 
High Skilled HC             1.570     0.638 
Population                      1.260     0.793 
Mean VIF                      1.710  

 

Another potential concern in the following regressions is that of heteroskedasticity of the residuals. Certain 

MSA observable characteristics may be responsible for variations in patent counts. Even though these 

unobserved characteristics cannot be controlled for in the case of this cross-section, the potential effect that 

the resulting heteroskedasticity has on the calculation of the standard errors in the regressions should be 

accounted for. Figure A1 displays the graph of the predicted residuals from estimation of equation (1) in 

equation (4) from Table A2. While the residuals do not follow a particular trend, they are clearly not evenly 

distributed and therefore display some level of heteroskedasticity. 
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Accordingly, the distribution of the residuals from a generalized linear model (GLM) should be checked to 

see how they compare as this type of estimation is more similar to the Poisson and negative binomial 

estimation methods. Figure A2 presents the plots of these residuals using both the actual and predicted 

values of GT patent counts. The graphs display similar distributions to the residuals from the OLS 

estimation and again indicate the presence of heteroskedasticity. Even though count data usually does not 

follow a normal distribution and constant variance is not an assumption of the Poisson or negative binomial 

models, its potential influence on the calculation of the standard errors should be taken into account. 

Therefore, the subsequent estimations in this paper will be conducted correcting for this heteroskedasticity 

using clustered standard errors at the MSA level. 

This thesis made a case based on various statistics and tests to estimate the focal equations by a negative 

binomial regression instead of a Poisson regression. The overdispersion of the dependent variables 

indicated that we should favor a negative binomial estimation. Tables A5 and A6 serve as a justification 

for the methodology and a robustness check for the results. Comparing the reported coefficients, the 

statistical significance of the explanatory regressors and their corresponding magnitudes do not vary 

greatly. In fact, some statistical significance of the share of foreign inventors parameter may have been lost 

in favor of a model which more appropriately estimates the equations. Notably, the share of foreign 

inventors is no longer statistically significant in column (2) of Table A5 where the dependent variable is 

the total patent count. Differences in the statistical significance of the parameters are also observed in Table 
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A6 with regard to the counts of different Y02 technologies. Despite some slightly different results, the 

Poisson regressions serve to show that the findings under the negative binomial estimations still hold. 

Table A5: Poisson Regressions by Patents Type with Inventors 
 (1) (2) (3) (4) (5) (6) 

VARIABLES Total Total GT GT Y02 Y02 

       

High Skilled Foreign = L, 5.351*** 4.294*** -0.872 -3.185* -1.795 -4.415*** 

 (0.785) (1.027) (1.655) (1.843) (1.418) (1.625) 

Foreign Inventors = L,  2.556*  4.245***  4.913*** 

  (1.353)  (1.022)  (1.031) 

High Skilled HC = L, 12.67*** 11.76*** 9.870*** 7.932*** 12.00*** 9.714*** 

 (2.118) (2.151) (2.344) (2.251) (1.435) (1.419) 

Universities 0.00518*** 0.00535*** 0.00348** 0.00349** 0.00223** 0.00227** 

 (0.000987) (0.00102) (0.00153) (0.00152) (0.00108) (0.00107) 

Population 5.90e-08 6.04e-08 1.24e-07* 1.32e-07* 1.16e-07** 1.27e-07*** 

 (4.67e-08) (4.54e-08) (6.94e-08) (6.85e-08) (4.66e-08) (4.47e-08) 

Non-GT   0.000142*** 0.000160*** 5.21e-05* 7.41e-05** 

   (3.42e-05) (3.47e-05) (3.01e-05) (3.17e-05) 

GT     0.00372*** 0.00368*** 

     (0.000261) (0.000245) 

Constant 3.204*** 3.099*** 2.239*** 2.180*** 1.774*** 1.691*** 

 (0.230) (0.232) (0.278) (0.285) (0.191) (0.201) 

       

Observations 238 238 238 238 238 238 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table A6: Poisson Regressions by Y02 Type 
 (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES Y02A Y02B Y02C Y02D Y02E Y02P Y02T Y02W 

         

GT 0.00258*** 0.00196*** 0.00304*** 0.00121** 0.00348*** 0.00285*** 0.00561*** 0.00226*** 

 (0.000261) (0.000628) (0.000589) (0.000606) (0.000360) (0.000658) (0.000228) (0.000737) 

Non-GT 6.07e-05 0.000164*** -4.06e-05 0.000225*** 5.96e-05 0.000121 -1.75e-05 -1.47e-05 

 (5.06e-05) (4.25e-05) (9.29e-05) (6.53e-05) (3.88e-05) (7.83e-05) (8.22e-05) (8.44e-05) 

High Skilled Foreign = L, -4.723** -6.431*** -4.265 -5.702* -5.147** -4.196 -7.214*** 0.788 

 (2.220) (1.931) (4.741) (3.153) (2.123) (4.202) (1.689) (2.448) 

Foreign Inventors = L, 5.177** 5.255*** 1.374 7.335*** 5.682*** 5.142*** 2.826** 1.166 

 (2.580) (1.632) (2.602) (1.933) (1.980) (1.640) (1.438) (1.366) 

High Skilled HC = L, 15.14*** 9.911*** 15.06*** 8.425*** 11.76*** 7.537*** 12.22*** 3.214 

 (3.073) (2.397) (3.454) (2.065) (2.145) (2.625) (2.974) (2.467) 

Universities 0.00415** 0.00286*** 0.00638*** 0.00127 0.00195* 0.00283** 0.00107 0.00337 

 (0.00164) (0.000983) (0.00161) (0.00121) (0.00103) (0.00140) (0.00221) (0.00266) 

Population 1.81e-07*** 1.60e-07*** 2.61e-08 1.88e-07*** 1.55e-07*** 8.88e-08 1.99e-07*** 1.72e-07** 

 (5.40e-08) (4.84e-08) (9.45e-08) (6.77e-08) (3.95e-08) (9.14e-08) (6.59e-08) (8.65e-08) 

Constant -0.982** -0.462* -2.544*** -0.481 0.107 0.524** 0.359 -0.764** 

 (0.396) (0.274) (0.479) (0.382) (0.321) (0.263) (0.458) (0.358) 

         

Observations 238 238 238 238 238 238 238 238 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table A7: Negative Binomial Regressions IRR by Patent Type 
 (1) (2) (3) (4) (5) (6) 

VARIABLES Total Total GT GT Y02 Y02 

       

High Skilled Foreign = L, 3.637 0.938 1.311 0.129 1.699 0.299 

 (4.350) (1.149) (1.915) (0.200) (2.149) (0.381) 

Foreign Inventors = L,  72.38**  107.1**  59.15*** 

  (127.1)  (198.7)  (83.41) 

High Skilled HC = L, 1.924e+09*** 8.690e+07*** 2.096e+08*** 3.391e+06*** 4.947e+06*** 340,639*** 

 (5.250e+09) (2.593e+08) (6.647e+08) (1.183e+07) (1.294e+07) (892,476) 

Universities 1.025*** 1.024*** 1.024*** 1.025*** 1.010* 1.010** 

 (0.00538) (0.00539) (0.00757) (0.00708) (0.00522) (0.00515) 

Population 1.000 1.000 1.000 1.000 1.000 1.000 

 (2.00e-07) (2.06e-07) (2.01e-07) (2.07e-07) (2.37e-07) (2.42e-07) 

GT     1.015*** 1.015*** 

     (0.00515) (0.00517) 

Non-GT   1.000 1.000* 1.000 1.000 

   (0.000140) (0.000114) (0.000178) (0.000164) 

Constant 7.388*** 7.380*** 1.256 1.458 1.156 1.184 

 (1.833) (1.769) (0.436) (0.502) (0.319) (0.304) 

       

Observations 238 238 238 238 238 238 

Robust seeform in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table A8: Negative Binomial Regression IRR by Y02 Patent Type 
 (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES Y02A Y02B Y02C Y02D Y02E Y02P Y02T Y02W 

         

GT 1.002** 1.012 1.022** 1.002 1.019** 1.013** 1.026*** 1.004 

 (0.000877) (0.00867) (0.00964) (0.00417) (0.00809) (0.00578) (0.00599) (0.00644) 

Non-GT 1.000 1.000 0.999** 1.000 0.999** 1.000 0.999*** 1.000 

 (7.19e-05) (0.000268) (0.000306) (0.000300) (0.000251) (0.000200) (0.000203) (0.000242) 

High Skilled Foreign = L, 2.388 0.0118 0.215 50.97 2.729 0.0181** 0.0314 22.94 

 (3.770) (0.0352) (0.959) (157.6) (5.481) (0.0341) (0.0712) (69.62) 

Foreign Inventors = L, 84.08** 58.58 0.329 32.21 76.51*** 141.2** 4.821 23.59 

 (148.6) (151.5) (1.235) (112.3) (126.5) (280.6) (7.819) (61.55) 

High Skilled HC = L, 1.160e+06*** 5.184e+06*** 9.070e+06*** 1.722e+12*** 6.907e+06*** 62,255*** 492.1* 2.873 

 (3.338e+06) (2.588e+07) (5.432e+07) (1.223e+13) (2.827e+07) (218,126) (1,635) (10.26) 

Universities 1.023*** 1.016*** 1.005 1.000 1.005 1.010 1.005 1.014 

 (0.00634) (0.00594) (0.00383) (0.00722) (0.00586) (0.00628) (0.00602) (0.00997) 

Population 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 (2.87e-07) (2.29e-07) (7.14e-07) (3.05e-07) (3.33e-07) (2.36e-07) (4.10e-07) (2.83e-07) 

Constant 0.126*** 0.162*** 0.0273*** 0.0157*** 0.164*** 0.447** 0.523* 0.227*** 

 (0.0393) (0.0846) (0.0159) (0.0129) (0.0655) (0.155) (0.178) (0.0860) 

         

Observations 238 238 238 238 238 238 238 238 

Robust seeform in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Table A9: Negative Binomial Regressions Margins by Patent Type 
 (1) (2) (3) (4) (5) (6) 

VARIABLES Total Total GT GT Y02 Y02 

       

High Skilled Foreign = L, 2,006*** 1,610*** -37.70 -137.7* -73.54 -180.8*** 

 (344.4) (414.0) (69.27) (72.55) (57.29) (65.23) 

Foreign Inventors = L,  958.2*  183.6***  201.2*** 

  (522.5)  (46.56)  (43.13) 

High Skilled HC = L, 4,749*** 4,408*** 426.9*** 343.0*** 491.5*** 397.9*** 

 (1,027) (1,007) (85.39) (80.25) (59.22) (55.49) 

Universities 1.941*** 2.006*** 0.151* 0.151** 0.0916** 0.0929** 

 (0.451) (0.464) (0.0771) (0.0769) (0.0464) (0.0463) 

Population 2.21e-05 2.26e-05 5.37e-06** 5.71e-06** 4.74e-06** 5.18e-06*** 

 (1.75e-05) (1.69e-05) (2.57e-06) (2.47e-06) (1.85e-06) (1.72e-06) 

Non-GT   0.00614*** 0.00691*** 0.00213* 0.00304** 

   (0.00142) (0.00143) (0.00122) (0.00129) 

GT     0.152*** 0.151*** 

     (0.0154) (0.0140) 

       

Observations 238 238 238 238 238 238 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table A10: Negative Binomial Regressions Margins by Y02 Type 
 (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES Y02A Y02B Y02C Y02D Y02E Y02P Y02T Y02W 

         

GT 0.0146*** 0.00733*** 0.00166*** 0.00644* 0.0346*** 0.0292*** 0.0499*** 0.00314*** 

 (0.00189) (0.00248) (0.000474) (0.00342) (0.00529) (0.00863) (0.00485) (0.00113) 

Non-GT 0.000344 0.000613*** -2.22e-05 0.00120*** 0.000593 0.00124* -0.000156 -2.04e-05 

 (0.000303) (0.000158) (5.20e-05) (0.000384) (0.000391) (0.000741) (0.000729) (0.000117) 

High Skilled Foreign = L, -26.81* -24.05*** -2.330 -30.48* -51.23** -43.02 -64.17*** 1.093 

 (14.07) (7.711) (2.745) (17.64) (23.06) (40.53) (16.74) (3.417) 

Foreign Inventors = L, 29.38* 19.65*** 0.750 39.20*** 56.55*** 52.72*** 25.14** 1.617 

 (16.13) (6.787) (1.481) (12.17) (21.49) (15.08) (11.97) (1.850) 

High Skilled HC = L, 85.95*** 37.06*** 8.227*** 45.03*** 117.0*** 77.27*** 108.7*** 4.457 

 (21.27) (9.434) (2.535) (9.672) (25.38) (22.66) (27.84) (3.226) 

Universities 0.0236** 0.0107*** 0.00349*** 0.00677 0.0194* 0.0291* 0.00954 0.00467 

 (0.0104) (0.00405) (0.00123) (0.00646) (0.0104) (0.0161) (0.0196) (0.00377) 

Population 1.03e-06*** 6.00e-07*** 1.42e-08 1.00e-06*** 1.55e-06*** 9.10e-07 1.77e-06*** 2.39e-07** 

 (3.07e-07) (1.76e-07) (5.18e-08) (3.62e-07) (4.05e-07) (8.79e-07) (5.97e-07) (1.13e-07) 

         

Observations 238 238 238 238 238 238 238 238 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

Table A11 extends the scope of the negative binomial regressions by estimating a logistic regression of a 

modified version of equation (3) which takes the revealed technological advantage (RTA) of each of the 

Y02 patent categories as dependent variables. Overall, the results are largely insignificant. Only in the case 

of the RTA in Y02C technologies is the share of highly skilled human capital positive and statistically 

significant, indicating that higher shares increase the likelihood that a given MSA develops a RTA in Y02C 

technologies. This finding may indicate that, while there is some evidence that overall and specific Y02 

patent counts increase with the share of foreign inventors and the share of highly skilled human capital, this 

relationship is not strong enough to provoke strong specialization in these categories.  
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 Table A11: Logistic Regressions by Y02 RTA 
 (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES RTA 

Y02A 

RTA 

Y02B 

RTA 

Y02C 

RTA 

Y02D 

RTA 

Y02E 

RTA 

Y02P 

RTA 

Y02T 

RTA 

Y02W 

         

GT -0.0107* 0.00221 0.00328 -0.00179 0.0157** 0.00505 0.0407*** 0.00126 

 (0.00621) (0.00229) (0.00228) (0.00247) (0.00735) (0.00723) (0.0131) (0.00191) 

Non-GT -0.000250 -0.000306 -0.000486 0.000279 -0.00118* -0.000386 -0.00124 -0.000241 

 (0.000412

) 

(0.000233

) 

(0.000346

) 

(0.000307

) 

(0.000648

) 

(0.000339

) 

(0.000924

) 

(0.000227

) 
High Skilled Foreign = L, 2.414 -7.985** -5.277 6.194 1.853 -4.350 -4.313 0.243 

 (3.293) (3.282) (6.134) (4.072) (2.939) (3.557) (4.118) (2.607) 

Foreign Inventors = L, 3.824 3.685 -3.975 -0.435 2.497 3.779* 0.290 3.495 

 (2.765) (2.489) (4.574) (2.735) (2.508) (2.157) (3.262) (2.306) 

High Skilled HC = L, 7.817* 9.322* 24.11*** 9.676* 7.793 5.723 -3.227 1.754 

 (4.721) (4.850) (7.002) (4.996) (5.445) (4.995) (6.687) (4.819) 

Universities 0.0121 0.00941 0.0154 -0.00828 -0.00271 -0.00154 -0.0595** 0.00409 

 (0.0108) (0.00662) (0.00960) (0.00904) (0.0105) (0.00782) (0.0233) (0.00611) 

Population 4.04e-07 2.54e-07 -5.81e-08 2.29e-07 1.74e-07 2.54e-07 7.10e-07 3.11e-07 

 (2.66e-07) (2.33e-07) (2.16e-07) (2.70e-07) (3.06e-07) (2.75e-07) (5.59e-07) (2.17e-07) 

Constant -2.750*** -1.994*** -4.157*** -3.890*** -2.601*** -2.013*** -0.991 -2.016*** 

 (0.513) (0.437) (0.640) (0.535) (0.577) (0.503) (0.662) (0.479) 

         

Observations 238 238 238 238 238 238 238 238 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

 


