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by Otis CARPAY

The performance of a deep neural network (DNN) is dependent on its ability to gen-
eralize. This ability is often expressed in the difference in accuracy on a training and
test set, or the generalization gap. Recent research has seen the use of topological
data analysis to estimate this performance gap without the use of a test set. Here,
persistent homology measures are derived from a weighted graph of neuron activa-
tion correlations (functional network graph). The resulting persistence diagram is
vectorized by a number of statistical summaries and correlated with the generaliza-
tion gap. However, the computational complexity of persistent homology calcula-
tions hinders the application to DNNs with a larger number of activations. Methods
are needed to sample these activations without losing predictive power. This work
assesses the effect of different sampling strategies on the resulting persistence dia-
grams and their summaries. These include (non-)stratified random sampling, three
methods based on notions of neuron importance similar to those used in pruning,
and one using k-means++. In line with previous research some of these strategies
provide models for predicting the generalization gap with high accuracy. The inves-
tigations provide insight and open up new lines of research into the structure of the
functional network activation graph.
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Chapter 1

Introduction

One of the main topics in the theory behind deep neural networks is the mystery of
generalization. Traditional frameworks fall apart in light of the performance overpa-
rameterized networks. Furthermore, models tend to find structures that generalize
outside their training set even when they can easily fit randomly labeled datasets
(Zhang et al., 2017). Previous work has found various approaches to explaining this
mystery in terms of the training process and the role of stochastic gradient descent
(Zhang et al., 2017; Frankle and Carbin, 2019; Liu et al., 2020). Theoretically, this only
tells half the story, as the structure of the network itself is not explicitly considered.
Practically, information about the training process might not be available. Here, we
are interested in the structure of the trained network itself or, more precisely, of its
activation patterns, and how it varies with the generalization capabilities of a net-
work.

Topological Data Analysis (TDA) employs topologically motivated methods to
characterize the structure or shape of data. It has proven to be a powerful tool to
aid in deciphering the mysteries of deep neural networks. Research in this area has
focused both on the data and the network itself. In the former category falls research
that studies the evolution of the topology of the data as it passes through the layers
of a neural network (Goldfarb, 2018; Naitzat, Zhitnikov, and Lim, 2020). Research in
the latter category variously characterizes the topological structure of a neural net in
terms of its weights (Gabrielsson and Carlsson, 2019; Watanabe and Yamana, 2022;
Rieck et al., 2019) and its activation patterns (Gebhart, Schrater, and Hylton, 2019).

This project continues methods introduced by Corneanu et al., 2019 and ex-
panded on by Corneanu et al., 2020 and Ballester et al., 2022 which, counter to
approaches that keep the inherent structure of the network, construct a fully con-
nected graph from all nodes in the network. By interpreting the activation values
as a random variable dependent on the input data, the correlation between these
variables endows the graph with weights that allow one to compute its structure in
terms of persistent homology. This weighted graph is termed the functional graph
of a neural network. Its structure varies with the extent to which the network gen-
eralizes to unseen data. In addition to opening up avenues towards untangling the
mysteries of deep learning, it sees practical applications in detecting adversarial at-
tacks (Corneanu et al., 2019), regularization, and predicting how well the network
generalizes (Corneanu et al., 2020; Ballester et al., 2022).

Ballester et al., 2022 apply this technique to a dataset of trained neural networks
from a NeurIPS competition (Jiang et al., 2020) to predict the generalization gap,
the difference between the training and test accuracy, from the trained networks
alone. All networks are trained on computer vision tasks. As the size of the func-
tional graphs of these networks prohibits the direct calculation of persistent homol-
ogy due to computational limitations, they select a small set of neurons and analyze
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this sample. This sample is vectorized through a combination of statistical and non-
statistical descriptors (persistence summaries) and related to the generalization gap
through linear regression analysis. The present project is a continuation of this re-
search and extends the analysis to different sampling methods and a larger portion
of the dataset of trained networks. The central questions in this effort are the follow-
ing:

• What is the influence of the various sampling methods on the persistence of
the resulting graph?

• To what extent do the persistence summaries predict the generalization gap?

• How do the persistence summaries and their predictive power change with
the sampling strategy?

The structure of this report is as follows. Chapter 2 defines the functional graph
and provides a brief summary of the topological background. Chapter 3 lays out
the persistence summaries, the computational complexity of the methods, and the
strategies to avoid them. Chapter 4 discusses the experimental setup and chapter
5 the results. Finally, chapter 6 summarizes the findings and their implications and
provides directions for feature research.
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Chapter 2

Neural Network Topology

This chapter constitutes a brief overview of the concepts underlying the methods of
this paper. A more comprehensive introduction into topological data analysis may
be found in (Edelsbrunner and Harer, 2010; Chazal and Michel, 2021).

2.1 Simplicial homology

A k-simplex σ is a subset of RN consisting of the convex hull of its k + 1 vertices, a
set of affinely independent points, where k ≤ n. A 0-simplex is a point, a 1-simplex a
line, a 2-simplex a triangle, a 3-simplex a tetrahedron, and so on (see figure 2.1). The
simplex τ is a face of σ if its vertices are a subset of those of σ. A simplicial complex
K is a finite set of simplices such that if σ ∈ K, then its faces are also in K, and if
σ, σ0 ∈ K, then either σ ∩ σ0 = ∅ or σ ∩ σ0 ∈ K. In other words, it is a collection
of simplices and their faces that are either ’glued’ together by their faces, meaning
they share it, or completely separate. A simplicial complex K may be understood in
terms of its underlying space |K|, the union of all its simplices. It is generally easier,
however, to forgo the geometric realization of a simplicial complex altogether and
define them abstractly. An abstract simplicial complex is a finite collection of sets S
such that α ∈ S and β ⊆ α implies β ∈ S. The members of these sets correspond to
the vertices of the ordinary simplices. As a consequence, the second requirement of
the ordinary simplicial complex is automatically fulfilled.

The structure of a simplicial complex K, in particular the number of p-dimensional
holes, is described by its homology groups Hp(K). These comprise the incontractible
p-dimensional cycles that circumscribe the p-dimensional holes. More formally, for
an abstract simplicial complex S, let

Hp(K) = Zp(K)/Bp(K) (2.1)

Here, Zp(K) = ker ∂p refers to the group of p-cycles, and Bp(k) = ∂(Cp+1(K)) to the
group of p-boundaries (see figure 2.2). Finally,

βp = rank(Hp(K)), (2.2)

FIGURE 2.1: Simplices of dimension 0 to 3 from left to right.
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FIGURE 2.2: Four examples of a 2-cycle in a simplicial complex K.
The left two examples are 2-boundaries.

the p-th Betti number of K, which one may geometrically interpret as the number
of p-dimensional holes in K. The Betti number β0 is equal to the number of con-
nected components in K, β1 to the number of ‘circular’ holes, and β2 to the number
of ‘voids’. The complex from figure 2.2, for example, has β0 = 1 and β1 = 1.

2.2 Persistent homology

Consider the set S with the associated metric δ, which together form a metric space.
The diameter of a subset A of this space is the supremum over the distances be-
tween its points, or diam(A) = supx,y∈A δ(x, y). A Vietoris-Rips complex of S at ϵ

is an abstract simplicial complex generated on the space S by a maximum distance
parameter ϵ ≥ 0 so that

VRϵ(S) = {α ⊆ S | diam(α) ≤ ϵ}. (2.3)

In other words, it is an abstract simplicial complex generated from a collection of
points, where each collection of k+ 1 points at a distance of at most ϵ from each other
forms a k-simplex. Subsequently, the homology of the resulting complex may be
inspected. Of course, the complex and its homology are dependent on the parameter
ϵ and it is unclear which, if any, is the correct choice. Moreover, perturbations in the
data may well throw a wrench in the works. Instead, the key insight of persistent
homology is to consider all complexes as the parameter ϵ varies. The features that
persist through the variation of ϵ are considered representative of the data. Let the
increasing sequence ϵ0, . . . , ϵn yield a series of Vietoris-Rips complexes such that

∅ ⊂ VRϵ0 ⊂ VRϵ1 ⊂ . . . ⊂ VRϵn ,

called a filtration. Consider the filtration K0 ⊂ . . . ⊂ Kn where 0 ≤ i ≤ j ≤ n and
the inclusion map ι : Ki ↪→ Ks that sends a simplex α ∈ Ki to the same simplex as a
member of Kj. The map ι induces a homomorphism f i,j

p : Hp(Ki) → Hp(Kj) on the
simplicial homology groups for each dimension p. The p-th persistent homology
groups are the images of these groups, and may alternatively be expressed as

Hi,j
p = Zp(Ki)/(Bp(Kj) ∩ Zp(Kj)), (2.4)

and has as its rank the p-th persistent Betti number β
i,j
p . A class γ of Hp(Ki) is said

to be born at Ki if γ /∈ Hi−1,i
p and is said to die entering Kj if it merges with an older
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H0
H1

ϵ

FIGURE 2.3: A Vietoris-Rips filtration (top) visualized in a barcode
(bottom). The intervals indicate the life of a persistent homology class
and the color the dimension. The dotted lines indicate the parameter

value ϵ for the complex above them.

class going from Kj−1 to Kj. This process may be visualized as a barcode, where all
persistent homology classes are indicated as intervals along the number line (see
figure 2.3), or encoded as a collection of persistence diagrams, which each contain the
classes of a dimension of birth a and death b as points (a, b). Since classes cannot die
before or exactly at the time of birth, all points are above the diagonal.

A Vietoris-Rips filtration {VRϵ}ϵ≥0 yields for each dimension p > 0 such a per-
sistence diagram, a collection of points (r, s) where r < s, for each class that is born
at VRr and dies at VRs. As may be observed in 2.3, all 0-dimensional classes are born
at ϵ = 0 and one never dies. This is because at ϵ = 0 all points are isolated and at
ϵ = ∞ all points are fully connected.

2.3 Functional graph

For a trained neural network N, name D the set of observations x on which it is
trained (the input) and V the set of nodes in N with elements v. Let Nv(x) denote
the activation of a node v ∈ V for some input x. We define a vector of activations on
a series of inputs D as

Av(D) = (Nv(x))x∈D. (2.5)

The outputs of each layer in the neural network, final and intermediate, are con-
tained in the set AN(D = {Av(D) | v ∈ V}. Define the function d : V × V 7→ R

given by
d(vi, vj) = 1 −

∣∣∣corr
(

Avi(D), Avj(D)
)∣∣∣, (2.6)

where corr is the Pearson correlation coefficient.
The object of study is the functional graph of N, the complete weighted graph with

nodes V and weight d(vi, vj) on the edge between vi and vj. Nodes with constant ac-
tivation have zero variance and therefore undefined correlation to any other nodes,
but may be assumed not to have an effect on the behavior of the model and are
therefore excluded. The functional graph captures the behavior of N in a way sim-
ilar to the neuroscientific adage “neurons that fire together wire together”. Nodes
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with similar activation patterns are interpreted as being “close”, regardless of their
separation in the actual network.

The function d does not satisfy the triangle inequality and is consequently not a
distance. Although it may be adapted to comply with this axiom (Solo, 2019), this
is not required to yield stable Vietoris-Rips filtrations (Ballester et al., 2022) and thus
works for the present case as is.
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Chapter 3

Methodology

3.1 Persistence summaries

In order to correlate the persistence diagrams of a network with its generalization
gap, we summarize them into a fixed-length set of features. Corneanu et al., 2020
defines a pair of statistical summaries that is extended by Ballester et al., 2022. The
latter also defines a set of non-statistical summaries, based on theory of persistent
homology.

Statistical summaries. Let a persistence diagram for a specific dimension consist
of the points (b, d) that describe a hole that is born at b and dies at d. The life of a
point is defined as d − b, or the distance from birth to death, and its midlife as d+b

2 .
We record the mean life and midlife, and the square of both quantities. Further,
we record the mean birth and death, as well as its squares, and the transformation
1/x + ln x. Lastly, we include the standard deviation of the births and the deaths

Non-statistical summaries. Ballester et al., 2022 includes a number of non-statistical
summaries used in the literature for vectorizing persistence diagrams: persistent en-
tropy (Atienza, Gonzalez-Díaz, and Soriano-Trigueros, 2020), complex polynomial
coefficients (Di Fabio and Ferri, 2015), and persistence pooling vectors (Bonis et al.,
2016). Since experiments by Ballester et al., 2022 show no benefits to their inclusion,
these are left out of the main experiments in this thesis. Of course, it is of interest
to verify these results, and demonstrate that they remain consistent with the use of
other sampling methods. For this reason, some experiments are done to assess their
performance in this context.

3.2 Computational complexity

The methods described above apply easily to networks with a limited number of
neurons and small training datasets, but see some issues scaling up to less contained
scenarios. Consider a dataset D and a neural network N with nodes V. Then, the set
of activation vectors has cardinality |AN(D)| = |V| with elements in R|D|. In order
to obtain the functional activation graph, one has to determine its weights, which
are calculated from the full set of activation vectors. The full set of weights is of
cardinality |V|2. Its production depends on the calculation of the Pearson correlation
coefficient for every element, which amounts to a complexity of O(n2m), where n is
the number of nodes, or |V|, and m the number of data points, or |D|. Since the
dataset analyzed in the present project features networks of 900,000 neurons with a
training set of 600,000 points, this issue alone calls for a mitigation strategy.
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Much less favorable, however, is the complexity of the computation of the persis-
tence diagrams. The number of k-simplices generated during a Vietoris-Rips filtra-
tion on the weighted graph with nodes V is the binomial coefficient (|V|+1

k+1 ). Hence, if
k is bounded only by |V|, the number of simplices correlates exponentially with |V|.
As in (Ballester et al., 2022), however, we limit the persistent homology dimensions
0 and 1, requiring the generation of simplices up to dimension 2. The algorithm for
the calculation of the persistence diagrams depends on Gaussian elimination to find
the rank of the boundary matrices, which in practice is of complexity O(n3), where
n is the number of simplices.

Following Ballester et al., 2022, we reduce the data for the computation at two
points: the input space and the nodes of the functional graph for which to compute
the persistent homology. This project specifically focuses on strategies for the latter.

3.2.1 Sampling the input space

Instead of calculating the activation of the nodes and subsequent correlations for the
full dataset D, we consider subsample D′ ⊆ D. We may suppose, by the law of
large numbers, that the corr

(
Avi(D′), Avj(D′)

)
converges to corr

(
Avi(D), Avj(D)

)
(where corr is the Pearson correlation coefficient) for an increasing sample size. To
keep in line with Ballester et al., 2022, we select a sample size of 2,000.

3.2.2 Sampling the functional graph

The strongest limiting factor in computing the persistence diagrams from the neural
networks is the computational complexity of the persistent homology calculation on
the Vietoris-Rips filtration of the functional graph. This necessitates a strategy to
reduce the number of nodes by more than 99% in the case of many modern neu-
ral networks. This potentially dramatically restricts how representative the sample
is. The focus of this thesis is the performance of and the differences between such
strategies. This allows us to shed a light both on possible avenues for further devel-
opment, and the characteristics of the functional graph and the resulting persistence
diagrams. In line with Ballester et al., 2022, we select a sample size of 3,000 neurons
for persistent homology calculation. A point of divergence is that the original pa-
per sees a repeated sampling of the nodes V according to a probability distribution
(further explained under maximum activation importance sampling). The result-
ing persistence summaries are bootstrapped. Instead of this repeated sampling, this
thesis opts for a one-off implementation. This saves computational resources and
facilitates the comparison with deterministic methods. On the other hand, it poten-
tially limits the predictive power of the single sample and introduces variability in
the case of non-deterministic methods. Some sampling methods have been applied
multiple times to assess this latter effect.

Many of the methods below are akin to, or immediately inspired by, methods
used in neural network pruning. Indeed, the goal of excluding neurons from the full
set with minimal loss of predictive power is the same. A significant difference is that
pruned networks are generally retrained to recuperate such losses, whereas in the
present case, networks are treated as is. Furthermore, methods in network pruning
generally do not pursue such a dramatic reduction in the number of neurons. These
two factors may hinder the applicability of these methods to the sampling of the
functional graph.
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Random sampling

Most straightforwardly, the random sampling strategy considers all neurons and se-
lects a random subsample according to a uniform distribution. To find out whether
the information on generalization is well distributed among the layers, we also in-
clude a stratified version. Here, the number of neurons taken for sampling is divided
equally over the included layers. The last layers will have fewer neurons than this
quotient. Any remainder is distributed over the other layers.

Filter correlation

Based on the previously observed information sharing between filters in a convolu-
tional neural networks (Han, Mao, and Dally, 2016), this strategy seeks to maximize
the information about the network encoded in the random sample by limiting the
choice of filters. Inspired by Kumar et al., 2022, we organize the filters by correlat-
ing the feature maps within each layer, computing the function d( fi, f j) (see eq. 2.6
where fi is a flattened representation of the feature map over the input sample D′.
Then, we select the n maps that are the most dispersed according to the value of d
(White, 1991). This is combined with the stratified random sampler so that the num-
ber of samples to be selected in a layer is drawn from these n least correlated feature
maps. In this project, a value n = 10 is chosen.

Importance sampling

Let D′ be an input sample selected from the entire training dataset D and V the
collection of nodes. The following sampling methods assign each neuron an impor-
tance score Iv(D′) based on their activation. Then, we let the sample V ′ ⊆ V be the
neurons with the highest score Iv(D′) for an input sample D′. These are selected for
the calculation of the persistent homology.

Maximum activation. This strategy is similar to the strategy used in (Ballester et
al., 2022), adapted from (Nezhadarya et al., 2020), with one important difference that
will be expanded on after its explanation.

Let D′ be an input sample selected from the entire training dataset D and V the
collection of nodes. The maximum activation score of a node v is defined as

IM
v

(
D′) = ∣∣{x ∈ D′ | Nv(x) = max {Nvi(x) | vi ∈ V}

}∣∣.
In other words, it denotes the number of inputs from D′ for which v has the highest
activation. The number of nodes with an importance score IM

v (D′) > 0 may be
tiny. Inclusion of only this set excludes the vast majority of the network, the effect
of which is unknown, and potentially constrains the samples to severely limit its
predictive power. To overcome this obstacle, Ballester et al., 2022 instead specify
a probability distribution according to the importance score, where nodes with a
nonzero importance score are have weights equal to their importance score, and the
weights of the other nodes sum to 1. The 3,000 nodes are sampled without repetition
according to this distribution. To better approximate the persistence summary of the
entire graph, the researchers employ bootstrapping over the n summaries resulting
from n different samples from this distribution.

The one-off version employed in this thesis simply selects all nodes with IM
v (D′) >

0 and supplements these with nodes selected from the remaining nodes according
to a uniform distribution up to 3,000. This ensures that all nodes that are important
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under the assumed notion of importance underlying the method are included to
maximize the power of the sampler. The maximum number of nodes of importance
IM
v (D′) > 0 is the input sample size |D′|, since every instance from D′ adds 1 to the

importance score of the node in V with the highest activation for that sample. Con-
sequently, a neuron sample size of 3,000 and input data sample size of 2,000 allows
all nodes with a nonzero importance score to be included.

Mean activation. This score is based on a similar notion of importance and finds
its origin as a criterion for pruning neurons in convolutional networks (Molchanov
et al., 2017). The mean activation score is defined as

Iµ
v
(
D′) = µ

(∣∣Nv(D′)
∣∣) ,

or simply the mean of the activations in node v for input sample D′. In contrast with
the maximum activation score, more than |D′| nodes will have a score Iµ

v (D′) > 0.
Consequently, the sample can be determined simply by these scores and is deter-
ministic up to the input sample.

Zero activation. The final notion of importance is similarly used in pruning (Hu
et al., 2016) and is based on the percentage of zeros in a neuron. We turn the termi-
nology around, however, and let

I0
v =

|D′|

∑
i=1

[vi ̸= 0] ,

or simply the number of non-zero values in the activation pattern of the neuron. The
underlying assumption is that a zero value has no influence in the subsequent layer,
and consequently the neurons with the least zero values are the most representative
of the network.

Cluster methods

Ideally, a sampling strategy would anticipate the structure of the activation graph
and select the neurons that yield a similar persistence diagram to the full graph.
The aforementioned strategies use no such information. A solution is to employ
clustering methods. There are a few complications, however.

First, clustering algorithms carry their own issues with respect to resources. The
high dimensionality of the points to be clustered (input sample size |D′|) often has
a strong negative influence on the efficiency of many clustering algorithms. Fur-
thermore, many algorithms require a distance matrix, especially when the distance
is non-standard such as one using the Pearson correlation coefficient. A network
of 1M neurons implies a matrix of 1012 entries, which either requires an excessive
amount of RAM, or a large amount of I/O operations on slower data storage. These
issues are not necessarily prohibitive, but a large computational and/or memory
overhead for the computation of each persistence diagram may be undesirable.

Second, it is not obvious how the formation of clusters should determine the
sample choice. As shown in 5.1, the analysis of the persistence diagrams depends
on the presence and nature of clusters in the sampled graphs. It is unclear whether
this structure should be maintained, or the analysis should change.

As an initial trial, I used k-means++ algorithm (Arthur and Vassilvitskii, 2007),
typically used to obtain a good set of seed centroids for the k-means algorithm, to
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select a sample of neurons. The method starts from a point randomly selected from
the data according to a uniform distribution. Then, it iteratively selects a new point
from the remaining points according to a distribution weighted by the distance to
the points already chosen.

To mitigate computation costs, the sampler is stratified according to the method
described in 3.2.2. Further, the neurons in each layer are partitioned into sequences
of a maximum size of 20,000. From each partition, a subsample of corresponding
size is then drawn according to the k-means++ algorithm.

There are some theoretical limitations to this approach. For example, the algo-
rithm uses Euclidean distance, which cannot be expected to behave similarly to Pear-
son correlation, certainly not for non-standardized data. However, it may be able to
provide some initial insights into the influence of clustering methods.
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Chapter 4

Experiments

4.1 Datasets

I investigated the performance of the sampling strategies using the neural networks
provided by the NeurIPS competition Predicting Generalization in Deep Learning
(Jiang et al., 2020). The entire dataset comprises eight tasks with a set of trained
neural networks. Two of these tasks were available to the competitors for the de-
velopment of their methods, two served to evaluate the contestants for the public
leaderboard and four for the private leaderboard. In the original dataset, the tasks
are numbered 1 to 9, with no task 3. Here, the same numbering will be used. The per-
formance of the methods will be investigated in depth on the first two tasks. Tasks 4
and 5 will be used to check whether these findings extrapolate to other datasets.

The networks for the first task are VGG-like (Simonyan and Zisserman, 2015)
neural networks with 2 or 6 convolutional layers followed by 1 or 2 dense layers.
The networks are trained on the CIFAR-10 dataset (Krizhevsky, 2009), which con-
sists of 60,000 32x32 color images in 10 classes. The number of neurons ranges from
262K to 1.3M, in which case the first two layers account for 500K each, owing to the
convolutional architecture.

The models in the second task employ a network in network architecture (Lin,
Chen, and Yan, 2014), with 6, 9, or 12 convolutional layers. They are trained on the
SVHN dataset (Netzer et al., 2011), which consists of 600,000 32x32 color images in
10 classes. All networks have between 842K and 872K neurons, where the first six
layers account for 115K neurons each.

The networks in both sets vary in number of convolutional layers, dropout prob-
ability, weight decay, and batch size. Additionally, the first dataset sees a variation
in the number of filters in the last convolutional layer.

Task 4 and 5 both consist of the same set of fully convolutional neural networks
trained on a random subset of size 108,000 of the CINIC-10 dataset (Darlow et al.,
2018), an extension of the CIFAR-10 dataset with the same input dimensions and
the same number of classes. The models in task 4 have been trained with batch
normalization and the models in task 5 without. This is the only difference. When
batch normalization is applied, it is applied before the ReLU activation function. The
last two layers are a convolutional layer without ReLU and a global average pooling
layer. Among the networks in each task, the number of layers varies from 7 to 121,
with the total number of neurons varying between 800K and 1.4M. The networks
differ in whether layers contain the most filters close or far from the input. Hence,
the distribution of neurons over the layers strongly varies between the networks.
The networks further vary in number of parameters, weight decay, learning rate,
and batch size.

1In tasks 1 and 2, the ReLU functions are applied within a Keras layer. In tasks 4 and 5, they are
encoded as separate layers. In this project, the separate activation function layers are treated as if
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4.2 Experimental procedure

After the generation of the persistence diagrams for these neural networks, they are
summarized into a vector by the descriptors discussed in 3.1. We train a simple
linear model for all 255 combinations of the eight summaries, each for 1,000 random
train/test splits of 70%/30%. The splits are the same for each combination. This
yields a distribution of R2-scores (the coefficient of determination) to investigate.
We particularly focus on the performance of the models including all features, and
the models for the combination with the highest mean R2-score, termed the best
selection.

4.2.1 Coefficient of determination

Let yi be the true value and ŷi the predicted value of the i-th sample. The R2 score is
defined as

R2(y, ŷ) = 1 − ∑i(yi − ŷi)
2

∑i(yi − ȳ)2 (4.1)

where ȳ is the mean value of y. Note that the dividend in the quotient is the residual
sum of squares and the divisor the total sum of squares. As the quotient is between
two positive numbers, the upper bound of R2 is 1. For the lower bound, consider
the example y = (a, a + 2) and ŷ = (0, 0). The equation reduces to

R2(y, ŷ) = 1 − a2 + (a + 2)2

2
. (4.2)

As a tends to infinity, so does the quotient. Hence, there is no lower bound to R2.

they form part of the previous layer. Consequently, the preceding layers are also excluded from the
functional graph.
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Chapter 5

Results

5.1 Model performance

5.1.1 Task 1

Table 5.1 shows the mean and median of the distribution of R2 for the used samplers.
The distributions are visualized in figure 5.1. The k-means++ sampler shows the best
performance for both measures and both selections (complete and best), save for the
highest median for the random sampler on all summaries. Still, its difference with
the random sampler for the best selection is small and possibly insignificant. Strat-
ification seems to impair the performance of the random sampler slightly. This is
surprising, since the distribution of neurons over the layers is highly disproportion-
ate, as mentioned in 4.1. In absence of stratification, the vast majority of the neurons
are sampled from the early layers. The last layers contribute none to very few. This
suggests that the extent of correlation across the whole network is not necessarily
indicative of the ability to generalize, or that this information is not encoded in the
persistence diagram of the sample.

It can be observed that some medians diverge strongly from the mean, signal-
ing a skewed distribution or outliers with a low R2. Most likely, this is due to the
presence of uninformative features in the full selection, the absence of regulariza-
tion in the linear regression, and the fact that there is an upper but no lower bound
to R2. For some partitions of the data into test and training sets, unfortunate subsets
of the data may cause an inaccurate fit that extrapolates to an anti-correlated test
set. Indeed, the distributions for the best selection show no such issue. In principle,
these only contain the features that correlate with the generalization gap. Moreover,
the higher-scoring samplers yield much narrower distributions. This hints at better
cooperation between the features and less variability.

TABLE 5.1: Mean R2 for task 1 for all features and the best selection.

All features Best selection
Sampler Mean Median Mean Median

Random 0.771 0.809 0.816 0.825
Random (s) 0.747 0.773 0.797 0.808
Importance (mean) 0.607 0.636 0.719 0.726
Importance (max) 0.724 0.758 0.789 0.799
Importance (zero) 0.360 0.387 0.463 0.472
K-means++ 0.781 0.796 0.825 0.830
Filter correlation 0.757 0.768 0.794 0.804
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FIGURE 5.1: Violin plots of the distribution of R2 for the first task
(for 1000 train/test splits), ordered by the median score for the best

selection

TABLE 5.2: Mean and median R2 for different repetitions of the ran-
dom sampler in task 1 for all features and the best selection.

All features Best selection
Repetition Mean Median Mean Median

1 0.771 0.809 0.816 0.825
2 0.821 0.842 0.848 0.865
3 0.757 0.789 0.814 0.825
4 0.716 0.738 0.796 0.808

0.0 0.2 0.4 0.6 0.8 1.0
R2

4

3

2

1

All features

0.0 0.2 0.4 0.6 0.8 1.0
R2
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FIGURE 5.2: Violin plot of the distribution R2 for different repetitions
of the random sampler in task 1
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TABLE 5.3: Mean R2 for task 2 for all features and the best selection.

All features Best selection
Sampler Mean Median Mean Median

Random 0.305 0.735 0.793 0.804
Random (s) 0.678 0.760 0.802 0.833
Importance (mean) 0.805 0.883 0.929 0.934
Importance (max) 0.856 0.893 0.906 0.921
Importance (zero) 0.397 0.501 0.567 0.633
K-means++ 0.762 0.824 0.851 0.861
Filter correlation 0.674 0.737 0.844 0.852
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R2
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Random
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FIGURE 5.3: Violin plot of the distribution of R2 for the second task.

One question that may arise is the amount of variation between different runs of
the same sampler. After all, there are multiple points of non-determinism: the input
space is randomly sampled, and some of the neuron samplers are nondeterminis-
tic too. Ballester et al., 2022 leverage this fact to introduce a bootstrapping step, as
discussed in 3.2.2. Table 5.2 and figure 5.2 show the results of various runs of the
random sampler, each with a different input data sample. While there is some vari-
ation, each shows good performance. We may conclude, perhaps surprisingly, that
a completely random selection of neurons from the full network consistently yields
a representative persistence diagram (for this specific problem). At the same time, it
places into context the scores for the other samplers. Combined with the variation
of the random sampler results, we cannot make conclusive statements on whether
any sampler performs the best.

5.1.2 Task 2

The results for task 2, listed in table 5.3 and visualized in figure 5.3, show a reversal
of the ranking of the samplers with respect to task 1. The two importance samplers
based on the quantitative activation of the neurons have a distinct advantage over
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TABLE 5.4: Mean and median R2 for different repetitions of the mean
importance sampler in task 1 for all features and the best selection.

All features Best selection
Repetition Mean Median Mean Median

1 0.805 0.883 0.929 0.934
2 0.769 0.893 0.926 0.941
3 0.849 0.935 0.941 0.944

0.0 0.2 0.4 0.6 0.8 1.0
R2

3
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1

All features

0.0 0.2 0.4 0.6 0.8 1.0
R2
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FIGURE 5.4: Violin plot of the distribution of R2 for different repeti-
tions of the mean importance sampler in task1

the other samplers and yield a high accuracy on the best feature selection. The vari-
ance of the mean importance sampler in the latter case is especially low. In contrast
with task 1, stratification does seem to have a positive effect on the predictive power
of the random sampler. The strategy based on the number of zeros continues to yield
mediocre scores. All samplers except the random sampler perform better on task 2
than on task 1. We may also observe that the max importance strategy is particularly
insensitive to extraneous dimensions compared to the others.

Table 5.4 and figure 5.4 show the results of repeated evaluation of the mean im-
portance sampler, the best-performing sampler for the second task. In contrast to
the random sampler, the only source of non-determinism is in the sampling of the
input data. The linear regression over the various repetitions exhibits little variabil-
ity. These results corroborate that 2,000 is a representative sample size. Of course,
this may vary across network architecture and input datasets. For example, a larger
number of classes may necessitate a larger input sample size |D′|.

5.1.3 Selected features

Of course, we are interested in knowing which features are included in the best se-
lection. Table 5.5 shows these data for both tasks. However, before interpreting
the table, the data should be placed in context. As explained in 4.2, the best selec-
tion is the combination of features (out of all 255 combinations), with the highest
mean R2 over 1,000 experiments with different data partitions. The differences in
performance between these combinations may be so small that the nondeterministic
factors in the experiments have a large influence on their inclusion.
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TABLE 5.5: Table showing which features are included in the best
selection for each sampler and each task. The entries in the table des-
ignate for which task the specific feature is included for the specific

model.

Feature R R (s) I (µ) I (max) I (0) K++ F

Mean birth and death 1 1
Mean birth and death (squared) 1 1 2 2 1 2 1 1
Mean birth and death (log) 1 1 2 1 2 1 2 1 1 2
Std birth and death 1 2 1 2 1 1 2 1 2 1 2 1 2
Mean life 1 1 2 1 2 1 2 1
Mean life (squared) 2 2 1 2 2
Mean midlife 2 2 1 2 2 2
Mean midlife (squared) 1 1 2 1 1 1

TABLE 5.6: Mean R2 for task 4 for random and mean activation im-
portance samplers.

All features Best selection
Sampler Mean Median Mean Median

Random 0.779 0.801 0.826 0.840
Random (s) 0.678 0.731 0.737 0.764
Importance (mean) 0.486 0.537 0.524 0.570
Importance (max) 0.576 0.656 0.722 0.745
Importance (zero) -15.308 -0.692 0.094 0.132
K-means++ -0.111 0.193 0.294 0.317
Filter correlation 0.563 0.684 0.720 0.752

That said, a general idea about the role of various features may be formed from
the table. The standard deviation of the mean of the births and deaths is included
in every model except for the mean activation importance strategy on task 2. Mean
birth and death, on the other hand, see the least inclusion. More light is shed on
these points in the next section.

5.2 Task 4 & 5

It is of interest to know to which extent these results generalize to other networks.
Although the tasks share architectures and only differ in the application of batch
normalization, the results are quite different. The results for task 4 are shown in
table 5.6 and figure 5.11. One may immediately notice a greater variance in the per-
formance of the different sampling strategies than first two tasks. While the random
sampler yields a similar distribution, all other samplers have lower R2 scores (that
is, the distribution is concentrated lower on the number line). Especially the mean
and zero importance and k-means strategies see a strong drop in comparison with
the first two tasks.

Table 5.7 and figure 5.6 show that the results for task 5 deviate even more. This
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TABLE 5.7: Mean R2 for task 5 for random and mean activation im-
portance samplers.

All features Best selection
Sampler Mean Median Mean Median

Random -4.161 -0.278 -0.254 -0.040
Random (s) -0.988 -0.057 0.125 0.503
Importance (mean) 0.033 0.388 0.673 0.829
Importance (max) -1.867 -0.757 -0.250 0.334
Importance (zero) -17.923 -1.001 -0.163 -0.055
K-means++ -2.250 -0.082 -0.307 0.406
Filter correlation -0.706 0.456 0.194 0.664
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FIGURE 5.5: Violin plots of the distribution of R2 for task 4, ordered
by the median score for the best selection
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FIGURE 5.6: Violin plots of the distribution of R2 for task 5, ordered
by the median score for the best selection
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behavior finds a practical cause in the distribution of the generalization gaps how-
ever. As shown in figure 5.10, the gaps are densely distributed around a value of 0.4
but have four outliers from 0.52 up to 0.74. Consequently, the R2 scores are largely
determined by these points, and specifically their division over the training and the
validation set. Fortunate splits may associate with high R2 because the model fits
the outliers well. Conversely, unfortunate splits may yield large negative values.
Therefore, these scores should be taken with a grain of salt. In case of the low nega-
tive mean R2 values in task 4 and 5, one should keep in mind that R2 has an upper
bound of 1 but no lower bound (see 4.2.1.

A closer look into the generation of the persistence diagrams shows that the use
of batch normalization in task 5 has a specific influence on the average importance
sampling strategy. Batch normalization is only applied before the ReLU activation
function. The last convolutional layer (preceding the final global average pooling
layer), then, is not normalized. I found that this layer sees the highest neuron ac-
tivation among all layers in the model. The consequence is that in practice, every
single neuron in the sample is drawn from this layer. Mitigation of this behavior, for
example by a stratified sampling strategy, could yield higher scores.

The sampling strategies with the highest average (over the four tasks) median R2

for the best selection are the filter correlation (0.77) and the mean importance (0.76)
strategies.

5.3 Single feature performance

Some summaries correlate strongly with the generalization gap, whereas others show
little to no correlation. Moreover, this effect differs across samplers. Figure 5.7
demonstrates the effect of excluding summaries from the full selection and the per-
formance of single summaries for task 1 and task 2.

In task 1, the mean R2 scores for single features show a relatively high variance
across samplers. Some features with strong scores in one sampler may have low or
even negative scores in others. One pattern that stands out is the influence of the
standard deviation of births and deaths. Its inclusion both in the full selection and
as a sole summary tends to have a strong positive influence on R2. At the same
time, it shows the lowest correlation as a single feature for the k-means++ sampler.
This strategy, in contrast, yields high scores for the other single features. This is
slightly different from the random sampler, which scores similarly in general. Here,
the summaries have less predictive power individually.

The scores for task 2 paint a different picture. Here, models based on individ-
ual summaries show high performance, in some cases even close to that of the best
selection, except for the standard deviation of births and deaths. Even so, table 5.5
shows that often these are included in the best selection. This is probably because
they correlate well in conjunction, and tend to encode information not found in other
summaries. This latter point implies that they don’t tend to add noise when com-
bined and consequently have a positive influence on R2 in most situations.

The average positions of points in the persistence diagram demonstrate high
predictive power in task 2. Particularly the scores of the top-scoring regressions,
those drawn from the mean activation importance strategy, are approximated by
single features. At the same, their omission from the full selection carries few conse-
quences. The reason for this is that they are strongly related and practically mutually
replaceable, as shown in 5.4.
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FIGURE 5.7: Heat map of the R2 scores relative to the various features
for tasks 1 and 2. Feature omission impact refers to the impact on the
mean R2 of exclusion of the feature from the full selection. All scores

are for both dimensions.
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FIGURE 5.8: Heat map of the R2 scores relative to the various features
for tasks 4 and 5. Feature omission impact refers to the impact on the
mean R2 of exclusion of the feature from the full selection. All scores

are for both dimensions.
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FIGURE 5.9: Scatter plot showing the correlation in tasks 1 and 2 of
mean birth and death, std birth and death, and mean life values with
the generalization gap for the random, k-means++, and two impor-
tance samplers. Homology groups of dimension 0 are always born at

the smallest distance parameter ϵ.

5.4 Correlations

Further insight into the nature of the correlation of these summaries with the gener-
alization gap is given by figure 5.9. These findings corroborate those from Ballester
et al., 2022. Single-dimensional summaries, depending on the sampling strategy
used, may strongly correlate with the generalization gap. The nature of this cor-
relation is not consistent across architectures, however. In task 1, diagrams with
high mean births and deaths imply a model that generalizes better, whereas this
relationship is reversed in task 2. These relationships seem to be consistent across
dimensions. For task 2, however, the correlation is highest in dimension 1 and is
responsible for the high performance of the k-means++ sampling strategy. These
relationships are, if they are present, consistent across sampling strategies. The stan-
dard deviations of the births and deaths show a less pronounced relationship. There
is a slight correlation, however, opposite to that of the mean values for both tasks.
This could be a result of the behavior of the function d (see 2.6 in this context, where
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FIGURE 5.10: Scatter plot showing the correlation in tasks 4 and 5 of
mean birth and death, std birth and death, and mean life values with
the generalization gap for the best performing samplers. Homology
groups of dimension 0 are always born at the smallest distance pa-

rameter ϵ.

larger values see more variance.
The interpretation of 0-dimensional homology is fairly straightforward. In this

dimension, the number of homology groups signifies the number of connected com-
ponents. Consequently, a high death corresponds to isolated points, or neurons with
low correlation to the others. In task 1, then, high correlation between neurons im-
plies high generalization. In task 2, in contrast, high correlation implies low gener-
alization.

The interpretation of 1-dimensional homology is not as simple. Homology groups
of this dimension correspond to holes that can be circumscribed by non-contractible
rings. This might be translated to the context of functional graphs as closed chains
of neurons where neurons correlate well with some but not other neurons.

Figure 5.10 shows that task 4 exhibits patterns similar to but stronger than task
1. In particular, the standard deviation of the births and deaths in dimension 1 are
strongly positively correlated with the generalization gap. The mean values are sim-
ilarly correlated to task 1.
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FIGURE 5.11: Scatter plot showing the correlation in tasks 4 of mean
birth and death, std birth and death, and mean life values with the
generalization gap for the random and stratified random samplers.
The color denotes whether layers closer (standard) or farther (re-

versed) from the input have more filters.

Task 5, on the other hand, shows correlations of the same sign as those in task 2.
However, this relationship is mostly determined by the outliers and does not seem
to be reflected in the models excluding the outliers. In fact, for standard deviation
of births and deaths, the cluster of outliers has an opposite correlation to that of the
dataset as a whole. It is possible that, as is observed by Ballester et al., 2022 for task
2, the patterns are organized into clusters. Of course, a sample size of four is too
small to draw any conclusions.

Task 4 has another point of interest. Given the generalization gap, the stratified
random sampling strategy turns out to be able to separate the networks by whether
the number of filters increases or decreases throughout the layers. See 5.11. More-
over, the intercept of the correlation with the standard deviation of births and deaths
differs between the two sets. If the two different types of networks would evaluated
be separately, the R2 for this strategy would be higher. This kind of separability is
seen less with non-stratified random sampling.
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TABLE 5.8: Median R2 for the various non-statistical summaries. PE
is the persistence entropy, CP the complex polynomial coefficients,
and PP the persistence pooling vectors. All summaries are in both

dimensions 0 and 1.

Task 1 Task 2
Sampler PE CP PP PE CP PP

Random < 0 0.227 < 0 0.305 0.746 < 0
Random (s) < 0 0.430 < 0 0.237 0.781 < 0
Importance (mean) 0.497 0.309 < 0 0.165 0.468 < 0
Importance (max) < 0 0.098 < 0 0.372 0.765 0.023
Importance (zero) 0.419 0.001 < 0 0.146 0.323 0.240
K-means++ 0.378 0.597 < 0 0.216 0.801 0.507
Filter correlation 0.052 0.394 < 0 0.669 0.786 < 0

Task 4 Task 5
Sampler PE CP PP PE CP PP

Random 0.306 0.519 0.519 < 0 < 0 < 0
Random (s) < 0 < 0 0.195 < 0 0.677 < 0
Importance (mean) < 0 < 0 < 0 < 0 < 0 < 0
Importance (max) < 0 0.047 0.649 0.062 < 0 < 0
Importance (zero) < 0 < 0 < 0 < 0 < 0 < 0
K-means++ < 0 0.163 < 0 < 0 < 0 < 0
Filter correlation < 0 < 0 0.069 < 0 0.298 < 0

5.5 Other summaries

Finally, we take a short look at the performance of the non-statistical summaries. As
discussed in 3.1, these summaries showed the lowest R2 scores overall in (Ballester
et al., 2022) and for this reason have been excluded from the more rigorous analy-
ses above. Table 5.8 paints a different picture, however. All three summaries have
relatively high R2 for at least some tasks and sampling strategies. In particular, the
complex polynomial coefficients yield scores close to the best selection of the statis-
tical summaries for all strategies but those based on zero importance score and k-
means++. Moreover, the complex polynomial coefficients for the stratified random
strategy in task 5 scores higher than any combination of statistical summaries.

The patterns are difficult to explain. At the very least, this is an indication that
these summaries should be revisited.
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Chapter 6

Conclusion

6.1 Summary

The findings of this project corroborate and extend those reported by Ballester et al.,
2022 that the persistence summaries of a sampled functional graph can predict its
generalization capabilities. Statistical descriptors of average position and dispersion
have all been shown to correlate with the generalization gap. Whether they correlate
and the extent varies strongly for each descriptor, however, by the type of sampling
strategy used and the network architecture. No strategy shows consistent results
across architectures without being considerably outperformed by another strategy
for some tasks.

6.2 Limitations

The need for sampling remains a limitation in predicting the generalization gap from
the persistent homology of the functional graph. While this project has done the
preliminary work in separating the wheat from the chaff, none of the strategies have
shown consistent ability to yield persistence summaries that strongly correlate with
the test performance. On the other hand, in conjunction they have shown that for all
investigated architectures, such a correlation can be obtained.

Second, the research is exploratory. R2 scores are obtained via cross-validation
and not from a test set. Moreover, these scores are drawn from the full selection,
which contains redundant summaries and summaries with a negative impact on the
correlation, and the best selection, which is a selection made a posteriori to obtain
the highest R2. In this light, the results from the study have little rigorous basis and
should be taken with a grain of salt.

Last, the models to predict the test performance are based only on neural net-
works of the the same architecture and trained on the same data. As shown in 5.4,
the established correlations do not carry over as-is across architectures and may even
differ in sign. It is unclear exactly what the influence of the specific architecture on
the nature of the correlations is and how they it be predicted. By the methods of
this project, one can not pick an arbitrary trained neural network and predict its
generalization gap.

6.3 Future work

As discussed above, more work needs to be done to find a sampling strategy that
consistently selects the neurons that bring forth summaries that correlate well with
the generalization gap. As discussed in 3.2.2, one possibility is the use of sampling
methods. While the number of activations imposes the strategic use of methods to
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limit the computational complexity, the clustering of a graph is well-researched and
many fast approximate methods exist. This may be combined with the methods
of Mapper (Singh, Memoli, and Carlsson, 2007), which clusters the data based on
its image (through a user-defined filter function) in a lower-dimensional space, and
has previously been used on the activations of neural networks (Gabrielsson and
Carlsson, 2019).

Finally, the specific influence of the sampling strategies could be explored by
comparing them with neural networks where the persistence of the full functional
graph is available.
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Appendix A

Software packages

Analysis of the neural networks was done with Tensorflow. (Martín Abadi et al.,
2015). The persistence diagrams were computed using giotto-ph (Pérez et al., 2021).
The non-statistical persistence summaries were computed using giotto-tda (Tauzin
et al., 2021). Experiments were done using scikit-learn (Pedregosa et al., 2011), and
plots made using Matplotlib (Hunter, 2007). The code used to produce the results
reported in this paper can be found at https://github.com/carpelli/tfm.

https://github.com/carpelli/tfm
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