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Introduction: There is evidence that sample treatment of blood-based biosamples
may affect integral signals in nuclear magnetic resonance-based metabolomics. The
presence of macromolecules in plasma/serum samples makes investigating low-
molecular-weight metabolites challenging. It is particularly relevant in the targeted
approach, in which absolute concentrations of selected metabolites are often
quantified based on the area of integral signals. Since there are a few treatments
of plasma/serum samples for quantitative analysis without a universally accepted
method, this topic remains of interest for future research.

Methods: In this work, targeted metabolomic profiling of 43 metabolites was
performed on pooled plasma to compare four methodologies consisting of Carr-
Purcell-Meiboom-Gill (CPMG) editing, ultrafiltration, protein precipitation with
methanol, and glycerophospholipid solid-phase extraction (g-SPE) for
phospholipid removal; prior to NMR metabolomics analysis. The effect of the
sample treatments on the metabolite concentrations was evaluated using a
permutation test of multiclass and pairwise Fisher scores.

Results: Results showed that methanol precipitation and ultrafiltration had a higher
number ofmetaboliteswith coefficient of variation (CV) values above 20%. G-SPE and
CPMG editing demonstrated better precision for most of the metabolites analyzed.
However, differential quantification performance between procedures were
metabolite-dependent. For example, pairwise comparisons showed that methanol
precipitation and CPMG editing were suitable for quantifying citrate, while g-SPE
showed better results for 2-hydroxybutyrate and tryptophan.

Discussion: There are alterations in the absolute concentration of various
metabolites that are dependent on the procedure. Considering these
alterations is essential before proceeding with the quantification of treatment-
sensitive metabolites in biological samples for improving biomarker discovery and
biological interpretations. The study demonstrated that g-SPE and CPMG editing
are effective methods for removing proteins and phospholipids from plasma
samples for quantitative NMR analysis of metabolites. However, careful
consideration should be given to the specific metabolites of interest and their
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susceptibility to the sample treatment procedures. These findings contribute to the
development of optimized sample preparation protocols for metabolomics studies
using NMR spectroscopy.
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sample treatment

1 Introduction

Metabolomics refers to the investigation of low-molecular-
weight compounds present in biological samples (Wishart, 2019).
Liquid chromatography-tandem mass spectrometry (LC-MS) and
nuclear magnetic resonance (NMR) are popular techniques to
explore alterations in the metabolome (Guijas et al., 2018).
Metabolomic studies applied to human research generally employ
biological samples such as urine, blood, saliva, and feces, among
others. Often, extraction of metabolites from different matrices, such
as blood, is necessary (Vignoli et al., 2019).

Blood-based samples—plasma and serum—are key in human
metabolomics investigations (Zhang et al., 2012). Blood is the
primary carrier of small compounds in the human body. This
matrix carries nutrients, hormones, dissolved gases, and
breakdown products, and it is involved in regulating body
temperature, pressure, pH stabilization, and defense system,
among other functions (Martini and Ober, 2006). Plasma/serum
components are dysregulated by the presence of dysfunctions in the
organism and/or pathological conditions (Psychogios et al., 2011).
This makes these biofluids appropriate samples for the study of
mechanisms of action, disease characterization, and the discovery of
biomarkers of a specific condition through comprehensive
fingerprinting (Scalbert et al., 2014; Yan and Xu, 2018; Attard
et al., 2019; Aderemi et al., 2021).

Plasma/serum samples are also rich in other nonpolar molecules
such as cholesterol and triglycerides, that need to be transported in
the biofluid associated with various lipoprotein particles.
Lipoproteins have, in general, heavier molecular weight than
polar metabolites. They are divided based on size, density, and
their relative content of triglycerides, cholesterol, and protein into
high-density lipoproteins (HDL), low-density lipoproteins (LDL),
intermediate-density lipoproteins (IDL), very-low-density
lipoproteins (VLDL), and chylomicrons (Cox and García-
Palmieri, 1990). The plasma/serum lipid fraction is a subject of
systematic study in another omics technology, lipidomics. The
lipoprotein profile can be measured when lipids and lipid
composition change as a result of pathological states or disorders
(Li et al., 2017). One of the most recent and applicable examples is
the COVID-19 disease (Bruzzone et al., 2020; Kimhofer et al., 2020;
Meoni et al., 2021). However, the presence of these macromolecules
implies a great challenge to exploring low-molecular-weight
metabolites (Ulaszewska et al., 2019; Ulmer et al., 2021). For this
latter purpose, prior extraction of the low-molecular-weight
metabolites from this matrix is necessary to be able to detect
and, if necessary, quantify such metabolites.

The International Organization for Standardization (ISO) has
already published specifications for pre-examination processes for
metabolomics in urine, venous blood serum, and plasma (ISO

23118, ISO, 2021); however, these recommendations are yet to be
universally adopted. In a multicenter study performed by Ghini et al.
(2022), they examined how different operating procedures, such as
different collection tubes, processing time, and storage conditions,
affected the level of metabolites in serum and plasma samples
(Ghini et al., 2022). In addition to these differences in the stage of
sample pre-processing, sample treatment also affects the final
metabolite levels. The reliability of the sample treatment utilized for
the extraction requires that the chemical nature and relative
concentration of metabolites found in the plasma/serum samples
stay unaltered by the technique. However, in NMR-based
metabolomics, the consistent quantification of plasma/serum
metabolites remains a difficult concern (Ghini et al., 2019; Gowda
et al., 2021), finding differences among sample treatments (Nagana
Gowda and Raftery, 2014). Proteins and phospholipids show a large
number of mostly broad NMR peaks, which overlap with the
resonances of low-molecular-weight metabolites. They introduce an
unstable spectral baseline, which makes identification and
quantification of these metabolites difficult, and in addition, proteins
may interact with the peak intensity of specific metabolites (Tiziani
et al., 2008; Nagana Gowda and Raftery, 2014).

One of the approaches addressed in NMR may be partially
overcome by a spin-spin relaxation edition, using the Carr-Purcell-
Meiboom-Gill (CPMG) pulse sequence (Wang et al., 2003).
Nevertheless, this approach has important drawbacks, such as the
intensity loss of peak signals, the waste of relevant information
about the chemical nature of phenolic conjugates, and the
introduction of artifacts. Several metabolites such as tyrosine,
histidine, and lactate, may bind to plasma/serum proteins, and
consequently, the absolute concentration of several metabolites is
undervalued and unreliable without cleaving the bonds to proteins
(Bell et al., 1988; Nicholson and Gartland, 1989; Chatham and Forder,
1999). Similarly, trimethylsilylpropanoic acid (TSP), the quantification
standard commonly utilized in aqueous solutions such as plasma/
serum, displays the tendency to bind to protein (Wallmeier et al.,
2017). Hence, the utilization of TSP as quantification standard in
plasma/serum samples acquired by the CPMG sequence presents
several challenges. Firstly, chemical shift variations can occur in TSP
when using CPMG sequences due to pulse imperfections and relaxation
differences during refocusing periods. These variations may deviate
from the expected chemical shift of TSP at around 0 ppm, potentially
introducing errors in quantification. Moreover, elimination of
macromolecules that are bound to TSP clearly causes changes in
TSP intensity and peak shape. Such interference compromises the
accuracy and reliability of quantification using TSP as an internal
standard (Gowda et al., 2021). Suitable experimental designs and
appropriate data processing techniques may be required to
overcome these challenges and improve the reliability in CPMG
sequences. Exploring alternative internal standards may enhance the
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accuracy of quantification. An option mostly preferred for quantitative
NMR are maleic, fumaric and formic acids, but to date has been poorly
utilized in metabolic studies (Bliziotis et al., 2020; Gowda et al., 2021).
On the other hand diffusion-weighted NMR pulse sequence has been
also used to detect signals from only the macromolecular components,
e.g., lipoproteins (Liu et al., 1996), and along with computational
algorithms, it may be useful in quantitative metabolomics (de Graaf
and Behar, 2003). Nevertheless, diffusion sensitization easily erases
signals from fast-diffusing metabolites and slow-diffusing lipoproteins,
requiring distinct diffusion coefficients for each chemical structure (de
Graaf et al., 2015) and has not yet been tested for metabolites at
concentrations below 10 μM. Several sample treatments have emerged
to remove proteins and phospholipids from serum/plasma.

A more comprehensive range of metabolites can be quantified
by ultrafiltration compared to CPMG by removing macromolecules
with filters (Psychogios et al., 2011). However, due to its time-
consuming filtration step that requires expensive filters, this gold
standard has several limitations, including laboriousness and cost
(Wallmeier et al., 2017). Moreover, likewise as for CPMG editing,
the application of ultrafiltration may underestimate certain
metabolites bound to macromolecules. Alternatively, precipitation
with organic solvents have been primarily applied for quantifying
plasma/serum metabolites before NMR analysis (Nagana Gowda
and Raftery, 2014; Nagana Gowda and Raftery, 2017). A less popular
technique is the addition of electrically charged silica nanoparticles,
which can be utilized combined with ultrafiltration and solvent
precipitation for the aggregation and co-precipitation of proteins
(Zhang et al., 2016). Although this treatment exhibited spectral
improvements at the qualitative level, the technique performance
does not allow quantitative analysis by itself.

In MS, glycerophospholipid-SPE (g-SPE) has been described, and
compared to ultrafiltration and solvent extraction with different
gradients, finding that SPE-mediated phospholipid removal was the
treatment with the best coverage of non-lipid metabolites, extraction
reproducibility, and minimization of matrix effects (Tulipani et al.,
2013; González-Domínguez et al., 2020). Although the SPEmethod has
led to considerable improvements in MS-based metabolomics (Liu
et al., 2019), this methodology has not yet been described for treating
plasma/serum before quantitative NMR analysis. Considering that
sample treatments in quantitative NMR plasma analysis may involve
metabolite-dependent particularities, this topic remains of interest,
especially for targeting a particular set of metabolites (Nagana
Gowda and Raftery, 2017). This work aimed to evaluate the
performance of four procedures to remove plasma proteins and
phospholipids, CPMG, ultrafiltration, protein precipitation, and
g-SPE in pooled human plasma. To this end, each sample treatment
combined with 1H-NMR analysis enabled the quantitation of up to
40metabolites, including amino acids, carboxylic acids, and short-chain
fatty acids, among other compounds.

2 Materials and methods

2.1 Subjects

Venous blood samples from five non-smoking fasting healthy
volunteers with 37.9 ± 10.3 years of age (mean ± SD) were collected
into heparin-containing vials at the Hospital Clinic of Barcelona

(Spain). Exclusion criteria included serious illness, supplement
intake, medication, and pregnancy. Plasma samples were acquired
after the removal of cells by centrifugation at 1,600 g for 15 min at
room temperature. Pooled plasma aliquots were used to avoid biological
variability in the comparative analysis among sample preparation
procedures, isolating variability derived from the techniques.
Aliquots were stored at −80°C for analysis and processing.

The Bioethical Committee of the University of Barcelona
approved the research protocol, and all the participants provided
written informed consent. The study was inscribed as
ISRCTN17200423 in the International Standard Randomized
Controlled Trial Number registry.

2.2 Sample treatment

The different sample treatments of plasma samples were
conducted independently.

Protein precipitation with methanol. Four 200 μL of pooled plasma
were thawed, vortexed, mixed with methanol in a 2:1 solvent-to-plasma
ratio (v/v), and incubated at −20°C for 20 min. The samples were
centrifuged at 13,400 g for 30 min to pellet macromolecules and
proteins. Supernatants were decanted into new vials and dried under
a nitrogen stream. Dried samples were mixed with 100 μL of phosphate
buffer in D2O, which contained 2.32 mM of 3-(trimethylsilyl)-
proprionate-2,2,3,3-d4 (TSP), and the pH was adjusted to 7.0.

Glycerophospholipid SPE. SPE procedure using Ostro® 96 plate
(Ostro plates, Waters) for protein precipitation and phospholipid
removal plates was adapted to NMR-based metabolomics
spectroscopy based on a previously published procedure for LC-
MS (Tulipani et al., 2013). Four 200 μL aliquots of pooled plasma
were thawed, vortexed, and mixed with acidic solvent, followed by
g-SPE with pressure valves. Samples were pipetted into the plate
wells, followed by the forceful addition of 1% formic acid in
acetonitrile 3:1 solvent-to-plasma ratio (v/v). After drying,
samples were mixed with 100 μL of the phosphate buffer in D2O
(pH 7.0) containing 2.32 mM of TSP.

Ultrafiltration. Ultrafiltration was applied based on a published
methodology with modifications (Nagana Gowda and Raftery, 2014).
Centrifugal filters (3 kDa cutoff; Amicon Microcon, YM-3; Sigma-
Aldrich) were initially washed with distilled water. Additionally,
filter tubes were centrifuged three times with 500 μL of distilled
water, each time at 13,400 g for 20 min, to remove residual glycerol
from filters. Four 200 μL of pooled plasmawere then transferred to filter
tubes and centrifuged as previously described. The filtrates were mixed
with 100 μL of the phosphate buffer.

Untreated. Four 200 μL of pooled plasma were then transferred
to filter tubes and centrifuged as previously described. The filtrates
were mixed with 100 μL of the phosphate buffer, utilizing 0.3 μM of
formic acid as internal standard.

All the solutions were individually made up to 600 μL with D2O
and transferred to 5 mm NMR tubes.

2.3 NMR spectra acquisition

All NMR experiments were performed at 298 K on a Bruker
Avance Neo 400 MHz spectrometer equipped with a cryoprobe.
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One-dimensional proton spectra were acquired using a pulse
sequence (1D NOESY) with presaturation of the water resonance.
Additionally, untreated plasma samples were acquired using a
CPMG pulse sequence. For both sequences, an exponential
window function was applied to the free induction decay (FID)
with a line-broadening factor of 0.3 Hz prior to the Fourier
transformation. For each spectrum, FIDs were collected into 32 K
data points (128 scans) with a spectral width of 14 ppm, an
acquisition time of 3 s, a relaxation delay of 5 s, and a mixing
time of 10 ms. Parameters were adjusted to allow metabolite
quantification by Chenomx NMR Suite 10 profiler (Chenomx
Edmonton, Canada). All the NMR spectra were phased, baseline
corrected, and calibrated (TSP, 0.0 ppm) using TopSpin software
(version 3.6, Bruker, BioSpin, Germany).

2.4 NMR metabolic profiling and
quantitation

Identification and quantitation of detected metabolites were
performed using Chenomx NMR Suite 10 profiler. Chenomx is a
robust, reliable, and widely spread software for NMR-based metabolite
quantification (Jung et al., 2016; Crook and Powers, 2020). This
software enables metabolite deconvolution in complex samples and
can determine concentrations in overlapped spectral regions. The
software fits the peaks with a set of model spectra characterizing
the chemical environments of each metabolite. Finally, the software
calculates the concentrations of each metabolite using the peak areas
and the calibration curves generated from the model spectra.

The fit of spectral signals was performed with a standard
metabolite library for 400 MHz 1H NMR spectra. For treated
plasma samples, peak fitting with reference to the internal TSP
signal allowed quantification of absolute concentrations for all
identified metabolites. For untreated samples variations in previous
formic acid were standardized (blank) and the formic acid signal
(δ8.44, 35.05 Hz) was utilized for untreated plasma samples. Further
contributions to the proton peak assignment were provided by
comparing the chemical shifts with those available in the Human
Metabolome Database (http://www.hmdb.ca).

2.5 Data analysis

The dataset was imported to R software version 4.2 for statistical
analyses. The coefficient of variation (CV) was calculated to
determine the replicability for each metabolite and those with a
CV > 20% in more than one group were subsequently removed from
the multiclass analysis. The differences in metabolite concentration
associated with the different treatments were evaluated using the
Fisher Score (Tang et al., 2014). In order to provide stable estimates
of the statistical properties, permutation tests with random sampling
with replacement. This method is often used when the sample size is
compromised to increase the effective sample power (Dwivedi et al.,
2017; Anderson and Verbeeck, 2023). We performed
5,000 multiclass permutations on Fisher Scores to distinguish
their sensitivity to sample treatment. Original Fisher Scores were
compared with Fisher Scores randomly distributed, and 95%
interval confidence and p-values were determined from

permutations. Pairwise assessments of significant metabolites
were applied to test binary permutation test (5,000 binary
permutations) of Fisher Scores. The Benjamini–Hochberg
procedure was carried out on all analyses to control the false
discovery rate (FDR) (Benjamini and Hochberg, 1995). An FDR-
corrected p-value < 0.05 was considered statistically significant.

3 Result and discussion

This study focused on investigating the influence of different
sample treatments on the concentrations of a panel of 43 metabolites
found in human plasma (Supplemental Figure S1). Compounds,
concentrations (mg/dL), and CV (%) are detailed in Table 1 and
Figure 1. Based on the present results, methanol precipitation
exhibited a number of six compounds with a CV > 20%, while
ultrafiltration presented eight compounds with a CV above this
threshold. The metabolites meeting this criteria in at least three of
the methodologies corresponded with acetate, isobutyrate and N,N-
dimethylglycine, and therefore, did not meet the benchmark for
acceptable precision in analytical methods (Bioanalytical Method
Validation Guidance for Industry FDA, 2023; European Medicine
Agency, 2011; ICHH Guideline, 2019). Although acetate is a volatile
short-chain fatty acid, it is generally considered stable for
quantification under standard storage and handling conditions
(Psychogios et al., 2011). However, acetate can be subject to
degradation or changes in concentration over time if not
properly handled or stored (Bernini et al., 2011). Factors such as
temperature, pH, exposure to air or light, and the presence of
enzymes or microorganisms can affect the stability of acetate
(Brunius et al., 2017). As with acetate, isobutyrate, methanol, and
compounds with low-molecular weight (<90 g/mol) such as 2-
hydroxybutyrate and ethanol, and might be affected by the
evaporation process of the sample. Remarkably, the average
concentration of 2-hydroxybutyrate after ultrafiltration and
CPMG was three times lower compared to g-SPE. The measure
of this metabolite was uniquely precise in the g-SPE (0.240 ±
0.019 mg/dL, CV of 8.1%) and CPMG (0.090 ± 0.017 mg/dL, CV
of 19.3) methodologies. On the other hand, N,N-dimethylglycine
did not show a clear and distinguishable spectral signal after
ultrafiltration, while in methanol precipitation, the presence of a
baseline made its quantification difficult, and therefore, an increased
error was expected. Similarly, 3-methyl-2-oxovalerate, isobutyrate
and methionine neither showed a clear spectral signal in CPMG
sequence, finding lipoprotein signals destabilizing the baseline.
Citrate, an important tricarboxylic acid cycle intermediate, also
displayed a high CV after g-SPE and ultrafiltration. This may be
due to the long sample processing time, especially when applying
ultrafiltration. Differential sample processing times can impact the
enzymatic reactions occurring within the samples. In particular,
plasma citrate, lactate and acetoacetate levels are known to decrease
over time after sample collection, likely due to enzymatic
degradation (Ghini et al., 2019). On the other hand, prolonged
processing times can result in increased red blood cells lysis, thereby
promoting the release of citrate synthase and subsequent conversion
of glucose to citrate (Larsen et al., 2012). Brunius et al., also reported
citrate as one of the features related to kinetic drift of NMR plasma
metabolomics (Brunius et al., 2017). Citrate displayed a CV of 10.6%

Frontiers in Molecular Biosciences frontiersin.org04

Madrid-Gambin et al. 10.3389/fmolb.2023.1125582

http://www.hmdb.ca
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1125582


TABLE 1 Compounds, absolute concentrations (mg/dL) and coefficient of variation (CV, %) in plasma pools (mean ± SD) using 1H-NMR spectroscopy. Metabolites
are sorted alphabetically.

Metabolite PR SPE UF CPMG Pa FDR

2-Aminoisobutyrateb 1.950 ± 0.300 (15.4) 2.175 ± 0.150 (6.9) 2.400 ± 0.346 (14.4) 1.650 ± 0.173 (10.5) 0.005* 0.017*

2-Hydroxybutyrate 0.151 ± 0.040 (26.5)* 0.240 ± 0.019 (8.1) 0.082 ± 0.034 (41.9)* 0.090 ± 0.017 (19.3) — —

3-Hydroxybutyrate 1.071 ± 0.146 (13.7) 0.882 ± 0.064 (7.3) 1.086 ± 0.061 (5.6) 0.941 ± 0.148 (15.8) 0.072 0.143

3-Hydroxyisobutyrate 0.056 ± 0.005 (9.0) 0.061 ± 0.004 (5.9) 0.061 ± 0.006 (9.1) 0.049 ± 0.011 (22.2) 0.079 0.153

3-M-2-oxovalerate 0.178 ± 0.039 (22.1)* 0.181 ± 0.018 (9.8) 0.214 ± 0.020 (9.2) 0.058 ± 0.022 (37.6)* <0.001* <0.001*

Acetate 1.234 ± 0.524 (42.4)* 0.518 ± 0.353 (68.1)* 1.129 ± 0.835 (74.0)* 0.625 ± 0.325 (51.9)* — —

Acetoacetate 0.194 ± 0.045 (23.4)* 0.109 ± 0.017 (15.2) 0.361 ± 0.063 (17.5) 0.221 ± 0.014 (6.3) <0.001* <0.001*

Acetone 0.049 ± 0.005 (9.5) 0.066 ± 0.009 (13.1) 0.069 ± 0.017 (24.5)* 0.081 ± 0.004 (4.3) 0.009* 0.031*

Alanine 1.260 ± 0.074 (5.9) 1.335 ± 0.150 (11.2) 1.559 ± 0.029 (1.8) 1.107 ± 0.083 (7.5) <0.001* 0.002*

Asparagine 0.590 ± 0.046 (7.9) 0.504 ± 0.094 (18.6) 0.486 ± 0.077 (15.8) 0.516 ± 0.100 (19.5) 0.320 0.411

Betaine 0.082 ± 0.002 (2.5) 0.092 ± 0.016 (17.6) 0.088 ± 0.014 (16.4) 0.064 ± 0.003 (4.8) 0.020* 0.055

Carnitine 0.303 ± 0.012 (3.9) 0.378 ± 0.076 (20.2)* 0.276 ± 0.072 (26.0)* 0.301 ± 0.032 (10.8) — —

Choline 0.064 ± 0.007 (11.3) 0.063 ± 0.008 (13.1) 0.063 ± 0.010 (15.8) 0.052 ± 0.008 (14.5) 0.195 0.294

Citrate 0.415 ± 0.050 (12.1) 0.024 ± 0.047 (200.0)* 0.948 ± 0.399 (42.0)* 0.564 ± 0.045 (8.0) — —

Creatine 0.214 ± 0.024 (11.1) 0.199 ± 0.011 (5.5) 0.224 ± 0.006 (2.6) 0.209 ± 0.024 (11.7) 0.316 0.409

Creatinine 0.487 ± 0.015 (3.1) 0.562 ± 0.058 (10.3) 0.566 ± 0.103 (18.2) 0.317 ± 0.036 (11.5) <0.001* <0.001*

Ethanol 0.318 ± 0.026 (8.2) 0.040 ± 0.005 (12.2) 0.229 ± 0.155 (67.7)* 0.046 ± 0.030 (64.6)* — —

Formate 1.279 ± 0.233 (18.2) 35.552 ± 26.926 (75.7)* 1.769 ± 2.186 (123.6)* 1.381 ± 0.000 (0) — —

Glucose 54.085 ± 2.088 (3.9) 60.719 ± 6.837 (11.3) 60.525 ± 2.416 (4) 59.999 ± 4.182 (7.0) 0.151 0.238

Glutamine 5.370 ± 0.222 (4.1) 4.745 ± 0.492 (10.4) 5.735 ± 0.362 (6.3) 4.368 ± 0.403 (9.2) 0.002* 0.008*

Glycerol 0.513 ± 0.080 (15.5) 0.695 ± 0.070 (10.1) 31.254 ± 10.223 (32.7)* 0.407 ± 0.028 (6.9) — —

Glycine 1.041 ± 0.148 (14.2) 0.828 ± 0.040 (4.9) 1.078 ± 0.104 (9.6) 1.194 ± 0.06 (5.0) 0.003* 0.013*

Histidine 0.750 ± 0.076 (10.2) 0.000 ± 0.000 (0) 0.855 ± 0.097 (11.3) 0.805 ± 0.127 (15.8) 0.001* 0.004*

Isobutyrate 0.050 ± 0.008 (16.4) 0.022 ± 0.006 (27.7)* 0.038 ± 0.012 (31.1)* 0.024 ± 0.006 (24.3)* — —

Isoleucine 0.444 ± 0.029 (6.6) 0.483 ± 0.041 (8.5) 0.491 ± 0.051 (10.5) 0.420 ± 0.025 (5.9) 0.072 0.143

Lactate 6.098 ± 0.521 (8.5) 3.598 ± 0.618 (17.2) 7.110 ± 0.804 (11.3) 4.728 ± 0.58 (12.3) <0.001* <0.001*

Leucine 0.905 ± 0.114 (12.6) 0.985 ± 0.051 (5.1) 0.988 ± 0.052 (5.3) 0.840 ± 0.043 (5.1) 0.035* 0.087

Lysine 1.319 ± 0.096 (7.3) 1.295 ± 0.050 (3.9) 1.482 ± 0.054 (3.7) 0.703 ± 0.025 (3.6) <0.001* <0.001*

Mannose 0.246 ± 0.053 (21.6)* 0.209 ± 0.040 (19.2) 0.247 ± 0.008 (3.3) 0.312 ± 0.056 (17.9) 0.031* 0.081

Methanol 8.530 ± 3.538 (41.5)* 0.369 ± 0.029 (7.9) 0.516 ± 0.180 (34.8)* 0.551 ± 0.443 (80.4)* — —

Methionine 0.224 ± 0.018 (7.8) 0.189 ± 0.033 (17.4) 0.205 ± 0.008 (4.1) 0.225 ± 0.050 (22.2)* 0.341 0.434

myo-Inositol 0.490 ± 0.066 (13.4) 0.414 ± 0.084 (20.3)* 0.286 ± 0.035 (12.2) 0.346 ± 0.044 (12.6) 0.003* 0.012*

N,N-Dimethylglycine 0.0082 ± 0.0056 (68.6)* 0.0051 ± 0.0028 (55.6)* 0.0046 ± 0.0040 (87.3)* 0.010 ± 0.001 (13.2) — —

O-Acetylcarnitine 0.129 ± 0.016 (12.3) 0.134 ± 0.025 (18.5) 0.126 ± 0.017 (13.6) 0.127 ± 0.015 (11.8) 0.928 0.949

Ornithine 0.360 ± 0.023 (6.3) 0.310 ± 0.022 (7.2) 0.364 ± 0.016 (4.3) 0.174 ± 0.007 (4.3) <0.001* <0.001*

Phenylalanine 0.465 ± 0.013 (2.7) 0.600 ± 0.054 (9) 0.531 ± 0.039 (7.3) 0.414 ± 0.072 (17.4) 0.001* 0.004*

Proline 0.888 ± 0.066 (7.4) 0.962 ± 0.040 (4.1) 0.973 ± 0.108 (11.1) 0.909 ± 0.053 (5.9) 0.312 0.408

Serine 0.758 ± 0.022 (2.9) 0.551 ± 0.024 (4.4) 0.662 ± 0.115 (17.4) 0.576 ± 0.111 (19.3) 0.016* 0.046*

(Continued on following page)
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and 8.0% after the methanol precipitation and CPMG
methodologies, respectively, which should be the techniques of
choice for the quantification of this plasma metabolite. Despite
g-SPE being a fast procedure, citrate was not generally detected. In
line with these findings, Tiziani and co-workers found a lower
concentration of citrate when a mix of methanol and chloroform
was used for precipitating the plasmatic proteins (Tiziani et al.,
2008), and Gowda et al. showed that citrate was also at higher
concentration after ultrafiltration, compared with methanol
precipitation (Nagana Gowda and Raftery, 2014).

Fisher scores of measured metabolites are presented in Figure 2.
The permutation test of multiclass Fisher scores showed that the
concentrations of 18 metabolites were modified among the sample
treatments with an FDR-corrected p-value < 0.05, shown in Table 1.
Significant metabolites were then tested on a pairwise basis, shown in
Table 2. The results showed that the efficiency of analyte extraction
depended on the metabolite and the methodology utilized. Pairwise
analysis denoted that concentrations of tryptophan, ornithine and
acetoacetate were different among nearly all the procedures. While
compared to CPMG, the techniques of SPE and ultrafiltration appeared
to display the greatest differences, methanol precipitation and
ultrafiltration seemed to exhibit more similar results.

Overall, branched-chain amino acid related valine, 3-methyl-2-
oxovalerate and 2-aminoisobutyrate, aromatic amino acids such as
phenylalanine, and tyrosine, and other amino acids such as alanine,
glutamine, lysine, threonine and ornithine, along with creatinine, were
found at lower concentrations in CPMG compared with the other
sample treatments. On the other hand, acetone and glycine were found
at higher concentration in untreated samples followed by CPMG
experiments compared to the three pre-analytical treatments. One
possible explanation for the lower concentrations in CPMG
experiments is the lack of additional steps for concentrating and
isolating metabolites with weak or overlapping signals (Weljie et al.,
2006). Ultrafiltration, for example, employs a selective membrane to
remove high molecular weight proteins and retain smaller metabolites.
This process effectively concentrates the target analytes, resulting in
higher concentrations. Similarly, SPE utilizes specific sorbents to extract
metabolites, enabling their enrichment and subsequent elution for
analysis (Tulipani et al., 2015). Methanol precipitation involves the
addition of methanol to the plasma samples, causing protein
precipitation and facilitating the recovery of the supernatant
containing metabolites. These concentration steps can contribute to
higher metabolite levels compared to CPMG experiments, where no

such concentration steps are involved (Weljie et al., 2006). Another
issue in the use of CPMGpulse sequences involves a series of refocusing
pulses to counteract the signal decay caused by transverse relaxation
(T2) processes. This approach can be affected by metabolite-
macromolecule interactions, leading to reduced signal intensities and
consequently lower observed concentrations. Metabolites in plasma
samples have the potential to interact with macromolecules such as
proteins, lipoproteins, and other biomolecules (Barrilero et al., 2017). It
is worth noting that the binding of metabolites to macromolecules can
vary depending on factors such as metabolite structure, pH, ionic
strength, and the composition of the sample matrix (Kirwan et al.,
2018). Different metabolites exhibit varying affinities for
macromolecules, leading to differential effects on their signal
intensities and concentrations in untreated samples using CPMG
experiments and treated with ultrafiltration. This binding can occur
through electrostatic interactions, hydrogen bonding, or hydrophobic
interactions. As a result, the signals originating from bound metabolites
decaymore rapidly during the relaxation period compared to the signals
from freely mobile metabolites (Bliziotis et al., 2020). The reduction of
signal intensities for bound metabolites during the time relaxation
period can result in underestimation of their concentrations in CPMG
experiments (Nagana Gowda et al., 2018). Since the concentration
determination is based on the signal intensities, the reduced signals of
bound metabolites contribute to the overall lower concentrations
observed in plasma samples prepared using CPMG compared to
methods that involve additional processing steps like SPE or
methanol precipitation (Nagana Gowda and Raftery, 2014). This
was particularly observed for certain aromatic amino acids such as
tryptophan (0.039 ± 0.046 mg/dL) and phenylalanine (0.414 ±
0.072 mg/dL) in CPMG experiments. Likewise, a total absence of
tryptophan signals was found after ultrafiltration while in methanol
precipitation, tryptophan concentration was 0.551 ± 0.066 mg/dL and
even higher after g-SPE (0.780 ± 0.011 mg/dL). Since most of the
plasma tryptophan is bound to albumin in the blood (McMenamy and
Oncley, 1958), other metabolites bound to protein, such as creatinine
(Varshney et al., 2011; Wallmeier et al., 2017), lactate (Bell et al., 1988;
Chatham and Forder, 1999), tyrosine and histidine (Nicholson and
Gartland, 1989), may require a protein degradation, such as methanol
precipitation or SPE, to be correctly quantified in NMR metabolomics
analysis. Nevertheless, in our results, the high levels of lactate in both
ultrafiltration and methanol precipitation compared to those of g-SPE
and CPMG are remarkable whereas histidine was not detected after
g-SPE but was found to be at regular concentration in CPMG.

TABLE 1 (Continued) Compounds, absolute concentrations (mg/dL) and coefficient of variation (CV, %) in plasma pools (mean ± SD) using 1H-NMR spectroscopy.
Metabolites are sorted alphabetically.

Metabolite PR SPE UF CPMG Pa FDR

Succinate 0.057 ± 0.006 (10.7) 0.051 ± 0.012 (22.7)* 0.056 ± 0.007 (12.7) 0.041 ± 0.005 (12.3) 0.052 0.114

Threonine 1.025 ± 0.045 (4.4) 1.037 ± 0.048 (4.7) 0.914 ± 0.038 (4.2) 0.817 ± 0.058 (7.1) <0.001* 0.002*

*Tryptophan 0.551 ± 0.066 (12) 0.780 ± 0.011 (1.4) 0.000 ± 0.000 (0) 0.039 ± 0.046 (118.8)* <0.001* <0.001*

Tyrosine 0.559 ± 0.048 (8.6) 0.624 ± 0.040 (6.4) 0.621 ± 0.047 (7.6) 0.420 ± 0.064 (15.2) <0.001* 0.002*

Valine 1.483 ± 0.132 (8.9) 1.358 ± 0.128 (9.4) 1.694 ± 0.072 (4.2) 1.337 ± 0.096 (7.2) 0.003* 0.012*

*Metabolites with a coefficient of variation > 20% in more than one group were removed from further analysis.
ap-values from empirical distribution of permutation test with 5,000 iterations on multiclass Fisher scores.
bUnits for 2-aminoisobutyrate are in mM. 3-M-2-oxovalerate; 3-methyl-2-oxovalerate. FDR, Post-hoc based on false discovery rate; PR, methanol precipitation; SPE, glycerophospholipid-solid

phase extraction; UF, ultrafiltration.
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Creatinine (0.317 ± 0.036 mg/dL) and tyrosine (0.420 ± 0.064 mg/dL)
were found at lower concentrations uniquely in untreated samples
processed using CPMG sequence. A study by Gowda and colleagues
exhibited higher concentration of citrate after the ultrafiltration of
300 µL of serum compared to methanol precipitation. In contrast
with the present study, the authors were able to quantify tryptophan
after the ultrafiltration (0.474 ± 0.004 mg/dL). These results might be
due to the free fraction of the metabolite in a larger amount of serum
utilized. Nevertheless, the authors also reported that tryptophan
concentration was much lower in ultrafiltration compared to
methanol precipitation (1.291 ± 0.049 mg/dL) (Nagana Gowda and
Raftery, 2014). Compared to ultrafiltration, the ketones acetoacetate and

3-hydroxybutyrate decreased after g-SPE, while levels of phenylalanine,
tryptophan, and threonine were higher in ultrafiltration. Considering
that ultrafiltration is the longest methodology, lipolytic action through
microbial degradation could explain the lower levels of ketone bodies in
ultrafiltration at the expense of increased lactate. In a study on sample
stability, Bernini et al. reported increased lactate, while glucose
decreased within 2 h at room temperature after blood collection
(Bernini et al., 2011). However, despite the methanol precipitation
may deactivate bacterial degradation rapidly, levels of lactate after
ultrafiltration and methanol precipitation were similar. In this
regard, Pinto and colleagues observed the occurrence of enzymatic
lipolytic action without microbial growth (Pinto et al., 2014). In our

FIGURE 1
Concentrations of metabolites with a top-10 fisher score in any of the comparisons (extension in Supplemental Figure S1). PR, methanol
precipitation; SPE, glycerophospholipid-solid phase extraction; UF, ultrafiltration.

Frontiers in Molecular Biosciences frontiersin.org07

Madrid-Gambin et al. 10.3389/fmolb.2023.1125582

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1125582


study, all samples were collected and immediately stored at −80°C, and
the only time discrepancy occurred during sample treatment.

Plasma treatments specifically alter the concentrations of certain
metabolites. For instance, the concentration of methanol, formate and
glycerol was influenced by the sample treatments, which have modified
concentrations of these metabolites inherent to the used procedures
(Wishart, 2008; Ghini et al., 2019). A high concentration of methanol is
related to a residue of the methanol used for the protein precipitation

instead of a higher extraction of the endogenousmetabolome. Although
the mix with chloroform should improve the extraction of lipoproteins
and lipids, the final ratio of methanol-plasma was set to 2:1 (v/v)
(Nagana Gowda et al., 2015). Protein precipitation by using a 1:
1 methanol-to-sample ratio retains a high level of residual proteins
that complicates the identification/quantification (Snytnikova et al.,
2019). Higher methanol-sample ratios may increase the spectral quality
but also evaporation time and solvent residue, affecting sample stability

FIGURE 2
Fisher scores for multiclass and pairwise comparisons. Metabolites were sorted according to their median fisher criterion across the four
comparisons. CPMG, Carr-Purcell-Meiboom-Gill; PR, methanol precipitation; SPE, glycerophospholipid-solid phase extraction; UF, ultrafiltration.
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TABLE 2 Pairwise Fisher scores comparisons between sample treatments.

Metabolite PR:SPE FDR PR:UF FDR PR:CPMG FDR SPE:UF FDR SPE:CPMG FDR UF:CPMG FDR

2-Aminoisobutyrate (uM) 0.251 0.353 0.102 0.180 0.161 0.249 0.271 0.370 <0.001* 0.003* 0.003* 0.012*

Acetoacetate 0.012* 0.037* 0.004* 0.014* 0.277 0.373 <0.001* <0.001* <0.001* <0.001* 0.003* 0.012*

Alanine 0.399 0.496 <0.001* 0.003* 0.041* 0.096 0.039* 0.095 0.046* 0.106 <0.001* <0.001*

Creatinine 0.063 0.131 0.181 0.275 <0.001* 0.002* 0.946 0.956 0.001* 0.005* 0.005* 0.018*

Glutamine 0.070 0.142 0.131 0.216 0.008* 0.026* 0.023* 0.062 0.271 0.370 0.002* 0.010*

Glycine 0.040* 0.095 0.693 0.786 0.097 0.176 0.013* 0.040* <0.001* 0.002* 0.105 0.184

Histidine <0.001* 0.002* 0.139 0.223 0.495 0.600 <0.001* <0.001* 0.001* 0.004* 0.582 0.696

Lactate 0.001* 0.004* 0.084 0.159 0.022* 0.059 <0.001* 0.002* 0.041* 0.096 0.005* 0.018*

Lysine 0.674 0.773 0.020* 0.055 <0.001* 0.002* 0.001* 0.004* <0.001* 0.002* <0.001* <0.001*

myo-Inositol 0.200 0.300 0.002* 0.011* 0.016* 0.045* 0.036* 0.088 0.195 0.294 0.078 0.152

Ornithine 0.012* 0.039* 0.764 0.849 <0.001* 0.002* 0.006* 0.020* <0.001* <0.001* <0.001* <0.001*

Phenylalanine 0.001* 0.005* 0.017* 0.048* 0.208 0.309 0.082 0.158 0.004* 0.017* 0.031* 0.080

Serine 0.001* 0.004* 0.137 0.223 0.024* 0.063 0.105 0.184 0.638 0.744 0.301 0.395

Threonine 0.724 0.814 0.014* 0.042* 0.001* 0.004* 0.012* 0.038* 0.002* 0.008* 0.042* 0.098

Tryptophan 0.009* 0.030* 0.001* 0.006* 0.001* 0.006* <0.001* <0.001* <0.001* 0.002* 0.209 0.309

Tyrosine 0.081 0.156 0.112 0.191 0.013* 0.040* 0.929 0.949 <0.001* 0.003* 0.001* 0.006*

Valine 0.216 0.313 0.033* 0.083 0.119 0.199 0.008* 0.027* 0.800 0.875 0.003* 0.012*

*Statistically significant.
ap-values from empirical distribution of permutation test with 5,000 iterations on pairwise Fisher scores. CPMG, Carr-Purcell Meiboom-Gill experiment; FDR, Post-hoc based on false discovery rate; PR, methanol precipitation; g-SPE, glycerophospholipid-solid phase

extraction; UF, ultrafiltration.
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(Crook and Powers, 2020). Likewise, a prominent singlet at
δ8.49 corresponding to formate was present in the aromatic region
of the spectra and it is related to a residue of the formate used during
g-SPE treatment (Tulipani et al., 2013; González-Domínguez et al.,
2020). Glycerol concentration was very elevated after ultrafiltration due
to insufficient washing of filters (Ghini et al., 2019). These metabolites
were then excluded from further analyses.

In the present study, the use of methanol precipitation retained
ethanol and serine concentrations more effectively compared to g-SPE,
while myo-inositol extraction was higher in the methanol precipitation
and g-SPE groups. Other authors found a better recovery of most
metabolites when g-SPE was compared to precipitation with methanol
or ultrafiltration (Tulipani et al., 2013). The authors showed that the
combination of solvent extraction and SPE-mediated removal of
phospholipids, prior analysis by MS, was the most suitable sample
preparation for detecting subtle quantitative changes for the majority of
the remaining metabolites. The extraction of polar compounds such as
acetylcholine, acetyl-l-carnitine, leucine, isoleucine, and phenylalanine
was higher compared to ultrafiltration and solvent precipitation. With
the exception of phenylalanine, none of these metabolites were
statistically different across the methodologies used in the present
study. Further optimization of the procedure may enhance the
global extraction efficiency of this sample treatment. Interestingly,
ethanol levels after ultrafiltration and CPMG were extremely
unstable, and levels of this metabolite should be interpreted with
caution when using these procedures. Many NMR-based
metabolomics studies have used ultrafiltration due to its efficiency
for protein removal with optimal metabolite extraction (Bathe et al.,
2011; Psychogios et al., 2011; Farshidfar et al., 2012; NaganaGowda and
Raftery, 2014). Tiziani and colleagues reported that relative to the
protein precipitation methods, ultrafiltration performs better in
retaining metabolite concentrations (Tiziani et al., 2008).
Nevertheless, this statement was discussed in other studies (Nagana
Gowda et al., 2015). In the present study, several considerations have
been encountered. After ultrafiltration, glycerol concentration was
around 1.5 orders of magnitude higher than in methanol
precipitation and g-SPE, despite that centrifugal filters were washed
as published elsewhere (Nagana Gowda and Raftery, 2014). Further
filter washing would critically increase sample handling and time
preparation, and this may affect the stability of plasma/serum
metabolites (Brunius et al., 2017).

In the present NMR metabolomics study, four methodologies for
removing macromolecules in plasma samples, CPMG, ultrafiltration,
methanol precipitation, and adapted g-SPE were evaluated. The results
indicate that this step may be critical for the reliable quantitation of
many metabolites, while the claimed reproducibility of NMR is also
investigated. There are improvements in quantification performance
between treatments that are specific to certain metabolites, finding
differences that are metabolite-dependent. Each methodology also
presents several considerations. For instance, the cost, the need to
wash centrifugal filters several times critically increases the time
procedure, and the loss of signal of protein-associated metabolites in
plasma/serum samples are some of the limitations of ultrafiltration. On
the other hand, in light of the present results, untreated plasma samples
followed by CPMG experiments offer an attractive alternative in terms
of processing time, cost and reliability of results, provided that
limitations in the replicability of some metabolites and
underestimation in the concentrations of several metabolites are

considered. To mitigate the impact of metabolite-macromolecule
binding, additional sample processing steps such as ultrafiltration,
SPE, or methanol precipitation can be employed. These techniques
aim to separate metabolites from macromolecules, thereby minimizing
their interactions and allowing for more accurate quantification of
metabolite concentrations. Although methanol precipitation is a
popular sample treatment in plasma/serum samples, the extraction
efficiency of methanol precipitation can depend on the solvent-to-
sample ratio, and in our case, we have observed a baseline that made
quantification difficult, whereas g-SPE provides spectra without
macromolecule residues, and in terms of repeatability, it was the
technique of choice. Yet, this treatment is also costly and presented
various metabolites with higher concentrations while underestimating
others. To conclude, this work highlights that the different
methodologies affect extraction performance in a metabolite-
dependent manner in quantitative metabolomics, and this allows the
selection of the most appropriate sample treatment for each case.
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