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1 INTRODUCTION 

1.1 CHARACTERISTICS OF GLIOMAS 

1.1.1 Definition and classification of gliomas 

In 2019, the National Cancer Institute estimates that 23,820 adults were diagnosed 

with brain and other nervous system malignancies and that 17,760 of these diagnoses 

resulted in death (Bethesda, 2019). Although their incidence is not as high as with 

other tumours, their anatomical localization and aggressiveness makes these 

malignancies into a huge burden on society. 

Gliomas are defined as tumours that phenotypically resemble glial cells, such as 

astrocytes, oligodendrocytes or ependymal cells. Accordingly, gliomas are divided 

into astrocytomas, oligodendrogliomas, ependymomas and mixed gliomas (oligo-

astrocytomas) (Louis et al., 2016). 

Astrocytomas are the most common type of gliomas in both adults and children. The 

World Health Organization (WHO) grades astrocytomas based on histological 

features according to their degree of malignancy into low-grades, including grade I 

(or pilocytic astrocytoma) and grade II (or diffuse astrocytoma), and high-grades, 

including grade III (or anaplastic astrocytoma) and grade IV (or glioblastoma 

multiforme, GBM) (P.Sulman, Guerrero, & Aldape, 2009) (Figure 1.1). Additionally, 

astrocytomas, of all histological grades, can be subdivided according to their genetic 

features: the deletional status of chromosomal arms 1p and 19q and the mutational 

status of Alpha-Thalassemia/mental Retardation syndrome X-linked (ATRX), 

Tumour Protein p53 (TP53) and Isocitrate Dehydrogenase 1 or 2 (IDH1 or IDH2) 

(Pisapia, 2017) (Figure 1.1) 



Introduction           

8 
 

 

Figure 1.1: A simplified algorithm for the classification of the diffuse gliomas based on histological 

and genetic features. Histologically gliomas are classified into astrocytomas, oligoastrocytomas, 

oligodendrogliomas and glioblastoma. Regarding to their genetic features, all gliomas might be 

classifiedaccording to the status of IDH (mutant or wild-type), 1p/19q (codeletion or not), ATRX (lost 

by mutation or wild-type) and TP53 (mutatant or wild-type). NOS (not otherwise specified). (Reprinted 

from Louis et al., 2016) 

 

This thesis is focused in glioblastoma (GBM), which is the most malignant and 

frequent primary brain tumour in adults. It accounts for 54% of all gliomas and 16% 

of all primary brain tumours (Ostrom et al., 2013). 
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1.2 GLIOBLASTOMA 

1.2.1 GBM epidemiology and pathological features 

Glioblastoma is the most frequent and aggressive primary brain tumour in the central 

nervous system due to its fast clinical course and uniform lethality. Despite the 

variety of modern therapies against GBM, it is still a deadly disease with extremely 

poor prognosis. Patients with GBM usually have a median of survival of 

approximately 15 months from diagnosis (Ohka, Natsume, & Wakabayashi, 2012; 

Thakkar et al., 2014). 

In the 2016, Central Nervous System (CNS) WHO divided GBMs into (1) 

glioblastoma, IDH-wild type (IDH-wt) (about 90% of cases) (2) glioblastoma, IDH-

mutant (about 10% of cases), and (3) glioblastoma NOS, tumours for which full IDH 

evaluation cannot be performed. The first group, the IDH-wt, corresponds most 

frequently with the clinically defined primary or de novo glioblastoma. On the other 

hand, the patients classified in the second group, IDH-mut, are closely to secondary 

glioblastoma (Louis et al., 2016; Tamimi & Juweid, 2017). 

The terms “primary GBM” and “secondary GBM” were first used by the German 

neuropathologist Hans Joachim Scherer in Antwerp in 1940 (Scherer, 1940). Primary 

or de novo GBM accounts for more than 80% of GBM that occurs in older patients 

(mean age 64 years old), and typically shows Epidermal Growth Factor Receptor 

(EGFR) over expression, Pleiotrophin (PTN) mutation, Cyclin Dependent Kinase 

Inhibitor 2A (CDKN2A) deletion, and less frequently Murine Doble Minute 2 

(MDM2) amplification. Secondary GBM develops from lower grade astrocytoma or 

oligodendrogliomas and usually occurs in younger patients (mean age 45 years old). 

The secondary GBM often contains TP53 mutations (Ohgaki et al., 2004) (Figure 

1.2). 
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Figure 1.2: World Health Organization classification of infiltrating gliomas. The diagram depicts 

the three major categories of adult diffusely infiltrating gliomas based on IDH1/2 mutational status 

and 1p/19q codeletional status and histologic images stained with hematoxylin-eosin. The category of 

“astrocytoma, IDH-wildtype” includes glioblastoma, IDH–wild type, also known as primary 

glioblastoma. The category of “astrocytoma, IDH-mutant” includes glioblastoma, IDH-mutant, also 

known as secondary glioblastoma. (Reprinted from David et al., 2017) 

 

Mutations in IDH1 and IDH2 are present in 70–80% of low-grade glioma and 

secondary GBM, and only in 5–10% of primary GBM (Appin et al., 2013; Dillman 

et al., 2004; Hartmann et al., 2010; H. Yan et al., 2009). IDH1 mutation is associated 

with a better outcome and increased overall survival (Ohgaki & Kleihues, 2013). 

Thus, the IDH1 mutation is a reliable molecular marker for secondary GBM over 

clinical and pathological criteria (Table 1.1). 
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Table 1.1: Key characteristics of IDH-wildtype and IDH-mutant GBMs. In the table are the 

synonyms of IDH-wt GBM and IDH-mut GBM, the precursor lesion, the proportion of GBM, the 

median age at diagnosis, the necrosis and the main genetic features. (Modified from Louis et al., 2016) 

 
IDH-wild type 
glioblastoma 

IDH-mutant 
glioblastoma 

Synonym 
Primary glioblastoma, 

IDH-wt 

Secondary glioblastoma, 

IDH-mut 

Precursor lesion 
Not identifiable, 

develops de novo 

Diffuse astrocytoma, 

Anaplastic astrocytoma 

Proportion of glioblastoma ~90% ~10% 

Median age at diagnosis 62 years 44 years 

Necrosis Extensive Limited 

TERT promoter mutations 72% 26% 

TP53 mutations  27% 81% 

ATRX mutations Exceptional 71% 

EGFR amplification 35% Exceptional 

PTEN mutations 24% Exceptional 

 

Macroscopically, GBM is quite heterogeneous featuring multifocal haemorrhage, 

necrosis, and cystic and gelatinous areas (Agnihotri et al., 2013; Smith & Ironside, 

2007). A characteristic feature of GBM is the variation in gross appearance of the 

tumour from one region to the other. The gold standard imaging technique used to 

detect glioblastoma is magnetic resonance (MR) scans (Figure 1.3A-B). According 

to CNS WHO classification, histologic criteria for GBM diagnosis includes nuclear 

atypical, cellular pleomorphism, mitotic activity, vascular thrombosis, microvascular 
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proliferation and the distinctive necrotic area typically specified as pseudopalisading 

necrosis (Louis et al., 2007) (Figure 1.3C-D). 

 

Figure 1.3: Macroscopic and microscopic features of GBM. (A-B) Axial (A) and coronal (B) 

magnetic resonance images showing a heterogeneously enhancing mass with central necrosis. (C-D) 

Histologic appearance of GBM in hematoxylin and eosin stain. (C) Picture with recognizable nuclear 

pleomorphism, dense cellularity and pseudopalisading necrosis (asterisk). (D) Panel showing 

vascular-endothelial proliferation (asterisk) and mitotic figures (arrows). (A and B modified from 

Altman et al. 2007; C and D modified from Wen & Kesari, 2008)  
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1.2.2 GBM heterogeneity 

1.2.2.1 Inter-tumoural heterogeneity: Molecular classification 

Despite all GBM have similar anatomopathologic characteristics; these tumours are 

very different at the molecular level from one patient to another. 

Adult GBMs can be classified according to their gene expression and epigenetic 

profiles into four different subtypes as follows: glioma-CpG island methylator 

phenotype (G-CIMP+), associated with IDH 1 and 2 mutation (Figure 1.4: ), and three 

non-G-CIMP (G-CIMP-) subtypes, termed proneural (PN), classical (CL), and 

mesenchymal (MES) (Brennan et al., 2013; Noushmehr et al., 2010; Verhaak et al., 

2010; Q. Wang, Hu, Hu, Kim, et al., 2017) (Figure 1.4 and Figure 1.5). 

Verhaak et al. classified GBMs in four subtypes based on transcriptional profile 

(classical, mesenchymal, neural and proneural). However, the transcriptional 

footprint left by the tumour microenvironment, which may constitute 10-80% of cells 

in a tumour biopsy, can obscure the true activity of the signalling network. Wang et 

al. performed more in silico analysis from glioma samples and glioma cell culture 

models to provide insights into glioma-intrinsic pathway activities and classification, 

and to deconvolute the glioma associated stroma into its immunological cellular 

components. The transcriptional glioma subtypes defined through clustering based 

on tumour-intrinsic genes strongly overlapped with the PN, CL, and MES subtypes, 

but identified the neural subtype as normal neural lineage contamination. Thus, 

currently, the molecular GBM subtypes are PN, CL and MES (Figure 1.5). 
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Figure 1.4: Clustering of TCGA GBM tumours and control samples identifies a CPG island 

methylator phenotype. DNA methylation clusters are distinguished with a colour code at the top of 

the panel: red, consensus cluster 1 (n = 12 tumours); blue, consensus cluster 2 (n = 31 tumours); and 

green, consensus cluster 3 (n = 48 samples). Each sample within each DNA Methylation cluster are 

colour labelled as described in the key for its gene expression cluster membership (proneural, neural, 

classical, and mesenchymal from Verhaak et al., 2010 classification). The somatic mutation status of 

EGFR, IDH1, NF1, PTEN, and TP53) are indicated by the black squares, the grey squares indicate 

the absence of mutations in the sample, and the white squares indicate that the gene was not screened 

in the specific sample. G-CIMP-positive samples are labelled at the bottom of the matrix. (Figure 

reproduced from Noushmehr et al., 2010) 
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Figure 1.5: Molecular classification of non-G-CIMP GBMs. Clustering identified three subtypes: 

PN, CL and MES with different signatures overexpressed. Representative genes are shown for each 

subtype. (Reprinted from Wang et al., 2017) 

 

Several studies correlated the genetic alterations with molecular subtypes (PN, MES 

and CL) and observed that each subtype have different features associated. The 

Cancer Genome Atlas (TCGA) pilot project identified genetic changes of primary 

DNA sequence and copy number, DNA methylation, gene expression, and patient 

clinical information for a set of GBM tumours  (The Cancer Genome Atlas Program 

- National Cancer Institute, 2008). 

TCGA reaffirmed genetic alterations in TP53, PTEN, EGFR, Retinoblastoma (RB1), 

neurofibromatosis type 1 (NF1), Erb-b2 receptor tyrosine kinase 2 (ERBB2), 

Phosphatidylinositol 3-kinase regulatory (PIK3R1), and a phosphatidylinositol 3-

kinase catalytic alpha polypeptide (PIK3CA) mutation in GBM patients (The Cancer 

Genome Atlas Program - National Cancer Institute, 2008). Loss of chromosomal 10 

is frequently observed in CL subtype as well as chromosome 7 amplification, EGFR 

amplification or mutation, mutations in TP53 and IHD1 and RB alterations. The PN 
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subtype is enriched in genes expressed in oligodendrocytes, platelet-derived growth 

factor receptor alpha polypeptide (PDGFRA), NK2 Homeobox 2 (NKX2-2) and 

Oligodendrocyte transcription factor (OLIG) and characterized by alterations in 

platelet-derived growth receptor (PDGFR) gene, IDH1/2 mutation and TP53 and 

CDKN2A loss (Kumabe, Sohma, Kayama, & Yoshimoto, 1992; Verhaak et al., 

2010). The MES subtype is enriched in the gene expression pattern of astrocytes, 

such as Cluster of Differentiation 44 (CD44) and c-Mer proto-oncogene Tyrosine 

Kinase (MERTK), as well as microglial marker and MES markers, such as Chitinase-

3-Like protein 1 (CHI3L1) and Mesenchymal-Epithelial Transition Factor (MET) 

(Phillips et al., 2006). Additionally, MES subtype is characterized by NF1 and PTEN 

alterations and hyperactivation of Nuclear Factor-κB (NF-κB) and Tumour Necrosis 

Factor-alpha (TNFα) signalling pathways (Bhat et al., 2013; Verhaak et al., 2010) 

(Table 1.2) (Figure 1.6: ). 

 

Table 1.2: Features of GBM subtypes. Mutations and gene alterations characteristics of GBM and 

GBM subtypes.  

Subtypes Features 

General 
Mutations of: TP53, PTEN, EGFR, RB1, NF1, ERBB2, PIK3R1 

and PIK3CA 

CL subtype 

Loss of chromosome 10 

Amplification of chromosome 7 and EGFR gene 

Mutation of: EGFR, TP53 and IHD1 

Alterations of RB 

PN subtype 

Gene enrichment of oligodendrocytes genes, PDGFRA, NKX2-2 

and OLIG 

Alterations of PDGFR 

Mutations of IDH1/2 and TP53 

Loss of CDKN2A 
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MES subtype 

Gene enrichment of CD44, MERTK, CHI3L1 and MET 

Alterations of NF1 and PTEN 

Hyperactivation of NF-κB and TNFα 

 

 

Figure 1.6: Integrated view of gene expression and genomic alterations across glioblastoma 

subtypes. Mutation and copy number data from 116 GBM samples. Mutations (mut) are indicated by 

a red cell, a white pipe indicates loss of heterozygosity, and a yellow cell indicates the presence of an 

EGFRvIII mutation. Copy number events (cn) are illustrated by bright green for homozygous 

deletions, green for hemizygous deletions, black for copy number neutral, red for low-level 

amplification, and bright red for high-level amplifications. A black cell indicates no detected 

alteration. (Figure reproduced from Verhaak et al., 2010) 

 

G-CIMP+ GBMs show more favourable prognosis, whereas non-G-CIMP GBM 

patients have the poorest prognosis (Noushmehr et al., 2010) (Figure 1.7:A). Within 

non-G-CIMP GBMs, alterations related to PN GBM such as IDH1 mutations have 

been associated with an increase in the overall survival of GBM patients (Parsons et 

al., 2008; H. Yan et al., 2009), whereas elevated expression of MES genes, such as 
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CD44 or TGFβ is associated with poorer patient prognosis (Figure 1.7:B) (Bruna et 

al., 2007; Pietras et al., 2014). 

 

 

Figure 1.7: Kaplan-Meier survival curves of GBM patients. (A) Kaplan-Meier survival curves among 

PN G-CIMP+- (red), PN non-G-CIMP-(blue), and all non-PN GBM tumours (black). PN G-CIMP+ 

had better prognosis than non-G-CIMP- and non PN GBM patients. (B) Kaplan Meier curves show 

survival of newly diagnosed patients based on PN/MES metagene scores. Patients with a higher MES 

metagene showed reduced survival respect to patients with a lower MES metagene. Log rank test was 

used to assess statistical significance. (Figure reproduced from (A) Noushmehr et al., 2010 and (B) 

Bhat et al., 2013) 

 

1.2.2.2 Intra-tumoural heterogeneity: Glioma Initiating Cells 

In addition to the intertumoural heterogeneity, different subpopulations of cells in the 

tumour bulk have been described in GBM, increasing the heterogeneity that 

characterize GBMs. Two different hypothesis have been postulated to explain this 

intratumoural heterogeneity (1) the stochastic model or clonal evolution model and 

(2) the hierarchical model or cancer stem cell (CSC) model (Figure 1.8) (Campbell 

& Polyak, 2007; Plaks, Kong, & Werb, 2015; Reya, Morrison, Clarke, & Weissman, 

2001; Rich, 2016). Although these models are dissimilar, they are not mutually 

exclusive (Cabrera, 2015; Meacham & Morrison, 2013). 

In the clonal evolution model, tumours are proposed to arise from normal cells that 

undergo somatic mutations which make them tumourigenic. These tumour cells 

generate offspring that can accumulate further mutations, due to their genetic 

A B 
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instability, creating a tumour with phenotypically different cancer cells (Figure 1.8). 

Through time, these changes may increase tumour aggressiveness, invasiveness, 

treatment resistance and increases tumour heterogeneity (Gerdes et al., 2014; Michor 

& Polyak, 2010; Piccirillo et al., 2009; Reya et al., 2001). On the other hand, the 

cancer stem cell model hypothesizes that tumour initiation and propagation are driven 

by a small subpopulation of cells with stem-like properties, also known as cancer 

initiating cells (CIC) (Gerdes et al., 2014; Meacham & Morrison, 2013; Michor & 

Polyak, 2010; Plaks et al., 2015; Reya et al., 2001). In analogy to normal stem cells, 

these stem-like cells are able to self-renew and differentiate into a variety of cell 

types, generating phenotypically diverse non-tumourigenic and tumourigenic cancer 

cells (Figure 1.8). These CSCs are, therefore, the source of tumour initiation and 

heterogeneity (Michor & Polyak, 2010).  

The clonal evolution and CSC models are not mutually exclusive. The plasticity 

model defends that cancer cells can turn between stem cell and differentiated states 

(Plaks et al., 2015). According to the plasticity model, intrinsic tumour cell processes 

and/or stimuli within the tumour microenvironment could influence differentiated 

tumour cells to reacquire stem cell characteristics (Andriani et al., 2016; Cabrera, 

2015; Michor & Polyak, 2010; Rich, 2016). Conversely, these processes could also 

drive CSCs toward differentiation into non stem cancer cells (Cabrera, 2015) (Figure 

1.8). 
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Figure 1.8: Clonal evolution vs. Cancer Stem Cells (CSC) vs. plasticity models. The clonal evolution 

model (A) proposes that heterogeneity is achieved by random mutations in cells giving rise to different 

tumourigenic clones. Mutations can be accumulated through time and any cell may have tumourigenic 

potential. In the CSC model, only a small subpopulation of stem cells can proliferate extensively and 

sustain the growth and progression of a neoplastic clone. Thus, only the CSC possess tumourigenic 

potential while differentiated cells have little or none. According to the plasticity model, differentiation 

can be bidirectional so that differentiated non-tumourigenic cancer cells may revert back to CSCs. 

CSC = cancer stem cell. (Reprinted from Jeremy et al., 2016) 

 

In GBM, several groups have described the presence of stem-like cells known as 

glioma-initiating cells (GIC) or glioma stem-cells (GSCs). GIC are considered to be 

tumour drivers, responsible for tumour initiation and resistance to therapeutic agents 

(Fomchenko & Holland, 2005; Natsume et al., 2011; Piccirillo et al., 2009; Reya et 

al., 2001; Sanai, Alvarez-Buylla, & Berger, 2005; Sulman, Aldape, & Colman, 2008). 

Analogously to whole tumours, isolated tumour cell cultures, that are also enriched 

in GICs, display the GBM-subtype-specific phenotypes, retaining the phenotypic and 

molecular profile of primary tumour (Bhat et al., 2013; Patel et al., 2014; Segerman 

et al., 2016). Bhat et al. isolated GICs from different patients and characterized them 

by gene expression. GICs were classified according to gene expression in two 
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different groups that correlated with genes expressed in PN subtype and MES 

subtype, respectively (Figure 1.9). 

 

 

Figure 1.9: Patient-derived GSCs bear resemblance to PN and MES Signatures. (A) Unsupervised 

hierarchical analysis of the top 500 highest median absolute deviation genes from expression 

microarray of 17 GSC get two different clusters. Relatively lower expression is shown in blue and 

higher expression is shown in red. The vertical black line identifies the first dendrogram splitting of 

the GSCs. Primary (P) or recurrent (R) status of the GSCs is indicated. (B) GSEA enrichment plots of 

GSC cluster 1 high and cluster 2 high gene lists versus queried gene lists using TCGA. Cluster 1 

obtained in the heatmap correlated with MES signature, whereas Cluster 2 was enriched in PN 

signature. The normalized enrichment scores (NES) and the p values are shown for each plot. (Figure 

modified from Bhat et al., 2013) 

 

Recent studies show that tumour heterogeneity is a dynamic process that changes 

with time. GBM contains multiple cellular states with the transcriptional genes of the 

different molecular subtypes (Patel et al., 2014) (Figure 1.10A). Within the same 

tumour, cells with PN features coexist with MES-like cells that express different 

stem-like markers (Figure 1.10B). In addition, GICs are highly plastic and undergo 

transitions from one subtype to another, as has been observed in GBM patients, 

A 
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especially in response to inflammation or after therapy. After treatment, GICs suffer 

a transition to MES subtype, conferring resistance to therapy (Bhat et al., 2013; Mao 

et al., 2013; Moreno, Pedrosa, Paré, Pineda, Bejarano, Martínez, Balasubramaniyan, 

Ezhilarasan, Kallarackal, Kim, Wang, Audia, Marín, et al., 2017; Segerman et al., 

2016). On the other hand, Patel et al., found that increased heterogeneity in the 

tumour was associated with decreased survival (Figure 1.10C-D). This suggests that 

the clinical outcome of a PN glioblastoma is influenced by the proportion of tumour 

cells of alternate subtypes, and emphasizes the clinical importance of intratumoural 

heterogeneity. 

 

 

Figure 1.10: Individual tumours contain a spectrum of glioblastoma subtypes and hybrid cellular 

states (A) Heatmap depicts average expression of classifier genes for each subtype (rows) across all 

classifiable cells grouped by tumour (columns). PN: proneural, CL: classical, MES: mesenchymal, N: 

neural. Each tumour contains a dominant subtype, but also has cells classified as other subtype. (B) 

Hexagonal plots depict bootstrapped classifier scores for all cells in each tumour. Each data point 

corresponds to a single cell and is positioned along three axes according to its relative scores for the 

indicated subtypes. Cells corresponding to each subtype are indicated by solid colour, while hybrid 

cells are depicted by two colours. (C) Kaplan-Meier survival curves are shown for PN tumours from 

the Cancer Genome Atlas. Intratumoural heterogeneity was estimated based on detected signal for 

alternative subtypes, and used to partition the tumours into a pure PN group and three groups with 
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the indicated additional subtype. Tumours with MES signal had significantly worse outcome than pure 

PN (p<0.05). (D) Kaplan-Meier survival curves shown for PN tumours partitioned based on the 

relative strength of alternative subtype signatures in aggregate. Tumours with high signal for 

alternative subtypes had significantly worse outcome than pure PN (p<0.05). (Figure reprinted from 

Patel et al., 2014) 

 

1.2.3 GBM therapy 

GBM is a highly heterogenous tumour, either at the cytophatological or at the 

genomic levels. These malignant features make GBM one of the most difficult 

cancers to understand and treat. 

The current standard therapy for newly diagnosed patients is surgical resection 

followed by radiotherapy with adjuvant or maintenance chemotherapy  (Stupp 

regimen) (Stupp et al., 2005). Temozolamide (TMZ) is the oral alkylating agent, 

developed by Malcolm Stevens et al., wider used in GBM chemotherapy due to its 

effectiveness in crossing the blood-brain barrier as the first-line treatment. However, 

a considerable percentage of GBMs have inherent or acquired resistance to TMZ- 

based chemotherapy, which critically impedes the clinical outcome (Goellner et al., 

2011) (Figure 1.11). 

 

 

Figure 1.11: Clinical course of a 65-year-old patient with glioblastoma. (A) presurgical MRI scan. 

(B) Postsurgical MRI scan. (C) MRI scan performed one month after combined temozolomide plus 

radiotherapy (TMZ/RDT). Treatment with adjuvant TMZ was continued. (E) MRI scan eight months 

later during administration of maintenance TMZ. (Figure reproduced from Stupp et al., 2008) 
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Various studies have been carried out to explore how GBM cells acquire resistance 

to TMZ; however, the underlying mechanisms remain unknown. Thus, a deeper 

understanding of the molecular characteristics underlying this resistance and the 

identification of novel therapeutic target is imperative. 

A Food Drug Administration (FDA)-approved anti-Vascular Endothelial Growth 

Factor (VEGF) humanized monoclonal antibody that interacts with VEGF receptor 

of tumour endothelial cells (Bevacizumab) has improved progression-free survival 

but not the overall survival. It is typical for patients to have an initial benefit lasting 

3 to 4 months but, unfortunately, these tumours continue to progress (Friedman et al., 

2009). Clinical observations and retrospective studies indicate that glioblastoma 

becomes more aggressive and treatment-resistant at the time of bevacizumab failure 

(Norden et al., 2008; Quant et al., 2009; Scott et al., 2010). 

Despite treatment, tumour recurrence appears in almost all patients. Consequently, 

several new-targeted agents and novel approaches are being developed. Targeted 

therapies such as EGFR tyrosine kinase inhibitors (erlotinib and gefitinib), 

mammalian target of rapamycin (mTOR) antagonists (temsirolimus and everomilus), 

PDGFR inhibitors (imatinib) or inhibitors of avb3 and avb5 integrin (cilengitide) 

have shown minimal benefit until now (Tanaka, Louis, Curry, Batchelor, & Dietrich, 

2013). On the other hand, vaccines targeting tumour-specific epitope (like 

EGFRvIII), radiotherapy with intraoperative injection of herpes simplex virus-

thymidine kinase gene vectors (Cerepro) or radiolabeled monoclonal antibodies 

against tumour-specific antigens (like EGFR, tenascin or integrins) have shown some 

efficacy in clinical and preclinical trials (Daga, Bottino, Castriconi, Gangemi, & 

Ferrini, 2011; Sampson et al., 2009; Veeravagu et al., 2008) (Figure 1.12). 

 



  Introduction 

25 
 

 

Figure 1.12: Summary of different strategies of therapy to glioblastoma based on 

chemical/immunological mechanism. There are different approaches to treat glioblastoma: anti-

angiogenic therapies, molecular targeting, active immunotherapy, passive immunotherapy, 

nanotherapy, GBM stem cell inhibition, virus, miRNA inhibition, gene therapy and kinase inhibitors. 

(Alphandéry Edouard 2018) 
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1.2.4 GBM tumour progression 

Therapeutic resistance reflects active tumour evolution, and environmental resistance 

shows the dynamic interplay between tumour cells and their surroundings when the 

selective pressure of a drug is applied. Thus, tumour cell plasticity in response to 

microenvironment changes has become the main hallmark for success in tumour 

progression. Several studies show that elevated cell plasticity is inherent in tumour 

cells, suggesting that cellular programs that promote cell conversion are playing a 

major role in tumourigenesis. One of these transitions is the PN-to-MES 

differentiation, which is associated with tumour recurrence (Phillips et al., 2006) and 

acquired resistance therapy (Moreno, Pedrosa, Paré, Pineda, Bejarano, Martínez, 

Balasubramaniyan, Ezhilarasan, Kallarackal, Kim, Wang, Audia, Marín, et al., 2017; 

Y. Piao et al., 2013). 

The recurrent tumour shows a more aggressive behaviour due to a phenotypic shift 

toward the MES subtype (Bhat et al., 2013; Fedele, Cerchia, Pegoraro, Sgarra, & 

Manfioletti, 2019; Moreno, Pedrosa, Paré, Pineda, Bejarano, Martínez, 

Balasubramaniyan, Ezhilarasan, Kallarackal, Kim, Wang, Audia, Marín, et al., 2017). 

MES differentiation may represent for GBM the equivalent of epithelial–

mesenchymal differentiation associated with other aggressive cancers (Alison, Lim, 

& Nicholson, 2011; Steinbichler et al., 2018; Thiery, Acloque, Huang, & Nieto, 

2009). Patients with a MES signature belong to the poorest prognosis subclass and 

are resistant to standard treatments. PN tumours tend to shift to the MES phenotype 

upon recurrence or in response to radiation therapy. Therefore, the tumour plasticity 

may render GBM cells more invasive or resistant to current therapies at different 

stages in their development. Another explanation of the recurrence and resistance to 

therapy is presence of pre-existing resistant subpopulations of GICs upon treatment, 

due to their intra-tumoural heterogeneity. 

 

1.2.4.1 Mesenchymal Differentiation 

Some cancer cells can reversibly transition between epithelial and mesenchymal 

states, and some evidences show that cancer cells in the mesenchymal state are more 

competent at tumour formation than those in the epithelial state (Balic et al., 2006). 



  Introduction 

27 
 

The transitions between these cells stages are called epithelial to mesenchymal 

transition (EMT) and, its reverse, mesenchymal to epithelial transition (MET) (Thiery 

et al., 2009). Both transitions are a common process in embryonic development, 

during tissue remodelling, cancer progression and metastasis (Guarino, Rubino, & 

Ballabio, 2007). A similar process has been described in GBMs and GICs, called 

mesenchymal differentiation (Bhat et al., 2013; Mikheeva et al., 2010; Moreno, 

Pedrosa, Paré, Pineda, Bejarano, Martínez, Balasubramaniyan, Ezhilarasan, 

Kallarackal, Kim, Wang, Audia, Marín, et al., 2017; Myung, Choi, Kim, Wang, & 

Park, 2014). However, mesenchymal differentiation in GBMs/GICs is somewhat 

different from the classical EMT in epithelial tumours, although they share some 

molecular mediators such as Transforming Growth Factor-beta 1 (TGF-β) or Signal 

Transducer and Activator of Transcription 3 (STAT3). 

As previously mentioned, non-G-CIMP GBMs display elevated transcriptional 

plasticity and have an intrinsic ability to transition from one subtype to another. The 

best characterized of these transitions is the above-mentioned MES differentiation, 

which is associated with a gain of MES markers, such as CD44, and the loss of PN 

markers, such as Oligodendrocyte Transcription Factor 2 (OLIG2) (Bhat et al., 2013), 

tumour recurrence (Phillips et al., 2006) and acquired resistance to anti-angiogenic 

therapy (Y. Piao et al., 2013). 

The acquisition of a MES phenotype in GBM has been linked to the activation of 

master Transcription Factors (TF) and co-factors that control an EMT, such as 

STAT3, CCAAT Enhancer Binding Protein Beta (C/EBPβ), and Tafazzin (TAZ) 

(Bhat et al., 2011; Carro et al., 2010) (Figure 1.13). 
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Figure 1.13: Summary of mesenchymal differentiation in GBM. MES differentiation, induced in 

PN/CIMP− GSCs, is characterised by the CD44 enrichment and radioresistance by activation of NF-

κB and downstream master TFs (STAT3, C/EBPβ, and TAZ). In contrast, MES GSCs are G-CIMP−, 

predominantly express CD44, are radioresistant, and exhibit constitutive activation of NF-κB and 

downstream master TFs. (Figure reproduced from Bhat et al., 2013) 

 

MES differentiation can be initiated by different extracellular signals from the tumour 

microenvironment. Infiltrated immune cells secrete cytokines, chemokines and 

Growth Factors (GF) such as TGFβ, TNFα, Interleukin 6 (IL6), Fibroblast Growth 

Factor (FGF), Epidermal Growth Factor (EGF) and Hepatocyte Growth Factor 

(HGF) (Joyce & Pollard, 2009). TNFα activates the NFκB pathway of PN-GICs 

promoting their MES differentiation (Bhat et al., 2013). 

 

1.2.4.1.1 Cell adhesion 

During EMT, either in embryonic development or in tumourigenesis, epithelial cells 

lose polarity, reduce cellular adhesion, and increase cell migration (Thiery et al., 

2009). An essential step in tumour progression is the interaction of tumour cells with 
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ECM leading to its destruction and the tumour cells’ invasive behaviour (Shashidhar 

et al., 2005). Loss of cell adhesion is required to initiate EMT and it is thus considered 

a hallmark of this process. 

In a large number of systems, the loss of cell adhesion that is required to initiate EMT 

is achieved through the repression of the epithelial marker E-cadherin, which is 

responsible for cell-to-cell adhesion. However, limited expression of E-cadherin in 

normal brain tissue and GBMs suggests that other adhesion proteins might be playing 

a role in this process (Lewis-Tuffin et al., 2010). 

The functional relationship between G-protein-coupled receptors (GPCR) signalling 

and EMT has also been extensively described. In cancer, deregulation of GPCR 

signalling has been implicated in cell migration, invasion and metastasis (X. Tang et 

al., 2013). GPCR constitutes more than the 40% of the molecular targets of drugs 

being developed by pharmaceutical industries (X. L. Tang, Wang, Li, Luo, & Liu, 

2012). However, there are few GPCR that are cancer therapeutic targets. Therefore, 

studying GPCR function becomes of crucial interest to understand cancer progression 

and develop novel targeted therapies to treat GBM. 

 

1.2.4.1.1.1 GPR56 

GPCR, also known as seven-transmembrane receptors, are integral membrane 

proteins participating in the transmission of signals from the extracellular 

environment to the cytoplasm. GPR56 is an orphan GPCR, which is characterized by 

an extremely long extracellular domain with a typical GPCR proteolytic site (Ke et 

al., 2007) and belongs to the so-called Adhesion-GPCR family. 

GPCR, also known as seven-transmembrane receptors, are characterized for large, 

multi-domain N terminal and a highly conserved region that can be 

autoproteolytically cleaved (Andre Gerhard Wolff, 2020). These allow to GPCRs be 

activated by a high variety of external stimuli, such as neurotransmitters, hormones, 

phospholipids, growth factors and proteases (Schiöth & Lagerström, 2008). Upon 

ligand is attached to the receptor, this change its conformation that is transmitted to 

the Ga subunit of the heterotrimeric GTPase protein. Ga subunit exchanges GTP in 
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place of GDP triggering the dissociation of Gα subunit from the Gβγ dimer and 

allowing them to interact with other proteins to continue the signal transduction 

(Digby, Lober, Sethi, & Lambert, 2006). Additionally, this receptor family exhibit 

discrete distribution patterns in different tissues. 

Although GPCRs overall have well-established pharmacological tractability, 

currently no therapies that target any of the 33 members of the adhesion-GPCR 

family are either approved or in clinical trials. Despite, several studies have 

strengthened the links between adhesion-GPCRs and disease. In cancer, deregulation 

of GPCR signalling has been implicated in cell migration, invasion and metastasis 

(Sahai & Marshall, 2002; X. Tang et al., 2013; Vallon & Essler, 2006). 

GPR56 is widely expressed in several tissues and organs with the highest expression 

in brain, thyroid gland and peripheral tissues (M. Liu et al., 1999). Neural and 

hematopoietic progenitors express high levels of GPR56 (X. Piao et al., 2004; 

Terskikh et al., 2001). In the brain, GPR56 function is indispensable for normal 

cortical development (McLendon et al., 2008). In addition to the cortical 

development, GPR56 is also involved in oligodendrocyte development and CNS 

myelination. GPR56 expression was highest in the oligodendrocyte precursor cells 

(OPC), but declined gradually during oligodendrocyte maturation and was very low 

in mature myelinating oligodendrocytes. Importantly, disruption of the GPR56 gene 

reduced the proliferation ability of OPC leading to a defect of CNS myelination 

(Ackerman, Garcia, Piao, Gutmann, & Monk, 2015). Furthermore, GPR56 is up-

regulated in some types of cancers compared with their normal counterparts such as 

breast, ovarian and pancreatic cancers, suggesting that GPR56 might function as an 

oncogene (Ke et al., 2007; Shashidhar et al., 2005; Sud, Sharma, Ray, Chattopadhyay, 

& Ralhan, 2006). 

In cancer, deregulation of GPCR signalling has been implicated in cell migration, 

invasion and metastasis (Sahai & Marshall, 2002; X. Tang et al., 2013; T. Wang et 

al., 2005; M. P. Wu et al., 2013). Moreover, previous results obtained from TGCA 

dataset analysis revealed that MES subtype express lower levels of GPR56 compared 

with the other GBM subtypes (Figure 1.14A). Additionally, GPR56 is co-expressed 

with PN markers and negatively correlated with MES markers (Figure 1.14B) and, 

during the MES differentiation, GPR56 is downregulated (Moreno, Pedrosa, Paré, 
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Pineda, Bejarano, Martínez, Balasubramaniyan, Ezhilarasan, Kallarackal, Kim, 

Wang, Audia, Marín, et al., 2017). Altogether, GPR56 might have a functional role 

PN to MES differentiation. 

 

 

Figure 1.14: GPR56 is downregulated in MES-GBMs and inversely correlated with MES markers. 

(A) GPR56 mRNA expression comparison across the five different subtypes of GBM (TCGA dataset). 

Gene expression data were obtained from Brennan et al., 2013. Differences in GPR56 expression 

among subtypes were assessed by a Kruskal-Wallis rank-sum test (Dunn’s post hoc multiple 

comparison test: mesenchymal versus classical and proneural, p < 0.0001; MES versus G-CIMP, p < 

0.001; MES versus neural, p < 0.01). In the box-plots, the horizontal line indicates the median, 

boundaries of the box indicate the first and third quartiles, and whiskers indicate confidence intervals 

(95%). (B) Correlation plots between GPR56 mRNA levels and PN (upper panel) or MES (lower 

panel) signature scores in GBM patients from the TCGA dataset. Pearson’s correlation coefficients 

and p values are indicated in each plot. (Figure reproduced from Moreno, et al. 2017) 
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1.3 LONG NON-CODING RNAS 

Only 2% of human DNA sequences are protein-coding and the transcripts of the other 

98% human genome are named noncoding ribonucleic acids (ncRNAs). ncRNAs are 

divided into small/short non-coding RNAs (miRNA, piRNA, siRNA, etc.) and long 

non-coding RNAs (lncRNAs) (Birney et al., 2007; Jarroux, Morillon, & Pinskaya, 

2017). 

Long non-coding RNAs are RNA molecules over 200 nucleotides-long that lack a 

complete open reading frame (ORF). Similar to mRNAs, most lncRNAs are 

transcribed by RNA polymerase and generated by splicing and modification in the 

nucleus. They can be nuclear or cytoplasmic and are generally expressed at lower 

levels compared with protein-coding mRNAs (Lander et al., 2001). 

LncRNAs are versatile molecules that either can interact physically and functionally 

with DNA, other RNAs, and proteins, through nucleotide base pairing or via 

formation of structural domains generated by RNA folding. These properties endow 

lncRNAs with a versatile range of capabilities that are only beginning to be 

appreciated (Hu, Alvarez-Dominguez, & Lodish, 2012; Paralkar & Weiss, 2013) 

(Figure 1.15). 
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Figure 1.15: Mechanisms of LncRNA action. lncRNAs (indicated in green) have been shown to 

regulate gene expression at multiple levels: chromatin, transcription, mRNA, translation, and protein. 

(Illustration by Debra T. Dartez. From Paralkar & Weiss, 2013) 

 

Although more than 3,000 human lncRNAs have been identified, less than 1% of 

these have been characterized. In recent years, lncRNAs have been implicated in 

multiple processes related to the stem cell properties such as pluripotency and 

differentiation (Fanale, Castiglia, Bazan, & Russo, 2016; Khalil et al., 2009; 

Khanduja, Calvo, Joh, Hill, & Motamedi, 2016; J. Kim et al., 2018; Sarkar, Leung, 

Baguley, Finlay, & Askarian-Amiri, 2014; Sheng, Wu, Tang, & Liang, 2017; Su et 

al., 2017). 
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1.3.1 lncRNAs in cell differentiation  

Many of LncRNAs are expressed spatially and temporally, contributing to cell 

differentiation (Fatica & Bozzoni, 2014; Hong et al., 2020; Ju et al., 2019; Q. Yang 

et al., 2018). A subset of lncRNA loci show changes of chromatin state during lineage 

specification, such as in the glial-neuronal lineage specification of multipotent adult 

stem cells. Emerging studies suggest that lncRNAs play critical roles in central 

nervous system development. For instance, in embryonic stem cells (ESC), specific 

lncRNAs repress neuroectodermal differentiation (Guttman et al., 2011). 

Rizvi et al. applied a single-cell topological data analysis (scTDA), an algorithm for 

topology-based computational analyses, to study temporal transcriptional regulation 

during the differentiation of mouse embryonic stem cells (mESCs) into neurons. 

Rizvi et al. characterized the dynamic appearance of mRNAs encoding signalling 

proteins, transcription factors, RNA splicing factors, and lncRNAs. These transcripts 

were dynamically regulated during the transition from pluripotent cells to neural 

pre-cursors, progenitors, interneurons and motor neurons. This results suggest that 

lncRNAs are involved in differentiation processes (Rizvi et al., 2017). 

Another study identified two lncRNAs involved in neural differentiation by single-

cell topological RNA-seq analysis, the LncRNA C130071C03Riken variants Riken‐

201 (Riken‐201) and Riken‐203 (Riken‐203). Both lncRNAs are highly expressed in 

brain, and increase gradually during neural differentiation. Repression of Rik‐201 and 

Rik‐203 inhibited neural differentiation from mESC (Lei Zhang et al., 2019). 

Lin et al. found that Tcl1 Upstream Neuron-Associated lincRNA (TUNA-lncRNA) 

regulates neuronal gene expression forming a complex with three RNA-binding 

proteins, nucleolin (NCL), Polypyrimidine Tract Binding Protein 1 (PTBP1), and 

heterogeneous Nuclear Ribonucleoprotein K (hnRNP-K). This complex localizes to 

neural gene promoters in differentiating mouse ESCs. Knockdown of TUNA, or 

anyone of the three interacting RNA-binding proteins, is sufficient to inhibit neural 

differentiation (Lin et al., 2014). 

Chalei et al. showed that the DALI-lncRNA drives the expression of an essential 

neuronal differentiation gene expression program in neuroblastoma cells. Genomic 

target mapping by Capture Hybridization Analysis of RNA Targets (CHART) 
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revealed that this function is mediated through direct interactions with the 

transcription factor POU3F, the DNA methyltransferase DNA methyltransferase 1 

(DNMT1), and thousands of target loci across the genome (Chalei et al., 2014). 

Similarly, the PAX6 Upstream Antisense RNA (PAUPAR)-lncRNA interacts with 

the PAX6 transcription factor and localizes to specific promoter loci, including 

SOX2, to regulate a transcriptional program that influences the cell-cycle profile and 

differentiation of neuroblastoma cells (Keith W. Vance et al., 2014). 
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1.3.2 lncRNAs in cell proliferation  

Another important function of stem cell property where the lncRNAs are involved is 

the proliferation process, such as Linc-RoR that preserves hESC self-renewal by 

acting as a ceRNA (Na Xu, Papagiannakopoulos, Pan, Thomson, & Kosik, 2009) and 

GAS5-lncRNA that controls hESC self-renewal by maintaining NODAL signaling 

(C. Xu et al., 2016). LncKdm2b also positively regulates the self-renewal capacity of 

ESC self-renewal and early embryogenesis. LncKdm2b recruits Snf2-related 

CREBBP activator protein (SRCAP)-contained remodeling complex to 

the Zbtb3 promoter and activates Zbtb3 expression to induce Nanog expression (Ye 

et al., 2018). Zeqyuan et al. found that LincRAM-lncRNA may participates in 

proliferation process of human periodontal ligament stem cells (PDLSCs),  regulating 

FGF2 expression (X. Wu et al., 2020). 

In addition, several studies show that long non-coding RNAs impact tumour 

progression by affecting cancer stem cell self-renewal and differentiation capacity 

(Cai, Liu, & Xiao, 2018; Kim et al., 2018; Li et al., 2020; M, M, & S, 2016; Qiu, 

Zheng, & Huang, 2020; Xu et al., 2018; Z. Zhang et al., 2018). RHPN1-AS1-

lncRNA, which also regulate FGF2 and its implication in proliferation, was 

upregulated in cervical cancer. In vitro functional assays demonstrated that RHPN1-

AS1 overexpression promoted SiHa cell proliferation, invasion, and migration (Duan, 

Li, Chen, Wang, & Li, 2019). 

 

1.3.3 lncRNAs in cancer 

LncRNAs may regulate tumourigenesis by activating or suppressing oncogene or 

tumour-suppressor genes and regulating stem cell-like properties of CSC (Fu et al., 

2016; W. Liu et al., 2017; Lynch et al., 2004). Liu et al. found that AC105461.1-

lncRNA impair CSC properties. The knockdown of AC105461.1-lncRNA inhibit the 

proliferation, migration and self-renewal capacity of CSC (Figure 1.16) (W. Liu et 

al., 2017). 
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Figure 1.16: AC105461.1 overexpression impaired the CSC properties. (A) Cell proliferation assay 

showed that cell growth of SW620 cells in knockdown of- AC105461.1 (pcDNA- AC105461.1) was 

slower than the cell growth of control cells (pcDNA-NC) (*p<0.05). (B, C) The matrigel invasion 

assay showed that the cell invasion was inhibited in pcDNA-AC105461.1 compared with the control 

(*p<0.05) (D) Spheroid formation assay revealed that the spheroid formation rate in knockdown of- 

AC105461.1 (pcDNA-AC105461.1) was slower compared with control. (W. Liu et al., 2017) 

 

Chen et al. demonstrated that lncSOX4-RNA was able to promote the self-renewal 

property of liver tumour-initiating cells regulating Sox4 expression (Z. Z. Chen et al., 

2016). Moreover, Liu et al. observed that an increased lncSOX4 expression level was 

positively associated with larger tumour sizes, a decreases in apoptosis and more 

distant metastases, in epithelial ovarian carcinomas (Figure 1.17) (Y. Liu, Wang, 

Yao, & Cui, 2018). 
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Figure 1.17: Proliferation of epithelial ovarian carcinomas cell lines following LncSOX4 silencing. 

(A) SKOV-3 and (B) OVCAR-3 cell proliferation was inhibited by knockdown of LncSOX4 (si-

lncSOX4) compared with their controls. (**p<0.01, ***p<0.001) (Reprinted from Y. Liu, Wang, Yao, 

& Cui, 2018) 

 

Moreover, lncRNAs influences in the radiosensitivity by regulating various 

mechanisms, including DNA damage repair, cell cycle arrest, apoptosis, cancer stem 

cell regulation, epithelial-mesenchymal differentiation, and autophagy (Zhu et al., 

2019). 

Radiotherapy is an effective treatment for many cancers. However, radioresistance is 

a primary factor that leads to poor prognosis. During radiotherapy, ionizing radiation 

first induces water radiolysis to produce reactive oxygen species (ROS). Oxygen then 

provides unpaired electrons for free radicals in DNA molecules, thereby stabilizing 

infrared-induced DNA damage. Damaged DNA or excessive ROS activate apoptotic-

signalling pathways in cancer cells, leading to cell death (Redza-Dutordoir & Averill-

Bates, 2016). Radioresistance can be overcome by reducing DNA repair through the 

activation of intracellular pro-survival and antiapoptotic signalling pathways. DNA 

damage can be repaired either by homologous recombination or through non-

homologous end joining (NHEJ) (Cromie, Connelly, & Leach, 2001). The latter is a 

major pathway for the repair of damaged DNA and is a key determinant of infrared 

(IR) resistance in cancer cells (Goldstein & Kastan, 2015). Zhang et al. found that 

lncRNA in the NHEJ pathway 1 (LINP1) accelerated NHEJ repair and decreased the 

sensitivity of tumours to ionizing radiation (Y. Zhang et al., 2016). Following IR-

induced DNA damage, molecules at cell cycle checkpoints begin to regulate and 

arrest cell cycle progression, subsequently repairing damaged DNA or initiating 

apoptosis if this repair is unsuccessful. Cell cycle arrest is closely related to 
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radiosensitivity, and when cancer cells are arrested in the G2/M phase, their 

radiosensitivity increases (Y. Chen et al., 2017). Further researchers have found that 

lncRNAs regulate radiosensitivity by affecting DNA damage repair via cell cycle 

arrest (Jing, Yuan, Ruofan, Jinjin, & Haifeng, 2015; Z. Li et al., 2017; H. Lu et al., 

2016; M. Zhang et al., 2018). 

Several lncRNAs were identified as regulators of the cell cycle that might be impaired 

in the tumourogenesis. Zhang et al. found that the colorectal neoplasia differentially 

expressed (CRNDE) gene contributed to radioresistance in lung cancer cells by 

affecting the G1/S transition. CRNDE was initially identified as a lncRNA whose 

expression is highly elevated in colorectal cancer, but it is also upregulated in many 

other solid tumours and leukemias and it is associated with a “stemness” signature 

(M. Zhang et al., 2018). Jin et al. examined the radiosensitivity of neural progenitor 

cells (NPC) and observed that MALAT1 decreased the sensitivity of NPC cells to IR 

by modulating CSC activity (Jin, Yan, Lu, Lin, & Ma, 2016) .  

Another mechanism implicated in the gain of resistance to the therapy is the EMT, 

where lncRNA may be involved. LncRNA taurine upregulated gene 1 (TUG1) has 

been shown to induce radioresistance by promoting EMT (J. Tan, Qiu, Li, & Liang, 

2015). Yuan et al. examined hepatocellular carcinoma cell lines, and found the 

lncRNA-ATB upregulates the expression of ZEB1 and ZEB2 genes inducing the 

EMT, and promoting invasion and resistance to therapy (Yuan et al., 2014). Similarly, 

(BRAF)-activated noncoding RNA (BANCR) induces the EMT via the MEK 

pathway in colorectal cancer cell lines (Guo et al., 2014) and long non-coding RNA 

expressed on chromosome 2 (TALNEC2) promotes mesenchymal transformation of 

GSCs increasing their resistance to radiation (Brodie et al., 2017). 

Altogether, lncRNAs may play an important role in different stages in the 

development of cancer and during cancer progression and resistance to therapies 

(Figure 1.18). Thus, cancer-associated lncRNAs may provide new approaches to the 

diagnosis and treatment of cancer. 
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Figure 1.18: LncRNAs in cancer phenotypes. LncRNAs contribute to each of the six hallmarks of 

cancer (diagram adapted from Hanahan and Weinberg, 2000). Selected examples of lncRNAs and 

their molecular partners or genomic targets are shown for proliferation, growth suppression, motility, 

immortality, angiogenesis, and viability cancer phenotypes. (Figure reproduced from Schmitt & 

Chang, 2016) 

 

1.3.3.1 lncRNAs in GBM 

In gliomas, lncRNAs also serve an important role. Zhang et al. identified the ASB16-

AS1-lncRNA that was significantly associated with tumour staging and grading in 

GBM from TCGA database. Furthermore, the proliferation, invasion, and migration 

of U87MG and U251 glioblastoma stem-like cells (U87GS, U251GS) were 

significantly inhibited upon inhibition of ASB16-AS1, and the expression of key 

proteins in the EMT signalling pathway was affected by knocking down ASB16-AS1 
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(D. Zhang, Zhou, Liu, & Mao, 2019). Kiran et al. identified 584 lncRNAs correlated 

with a poor prognosis and 282 lncRNAs associated with better survival outcomes in 

GBM patients (Kiran, Chatrath, Tang, Keenan, & Dutta, 2018).  

Pastori et al. found that HOX transcript antisense RNA  (HOTAIR) promotes 

proliferation and decreases apoptosis in GBM cells in vitro and in vivo assays (Pastori 

et al., 2015). Additionally, HOTAIR expression may be utilized as a peripheral 

biomarker for GBM. Tan et al. measured HOTAIR expression in serum from 43 

GBM and 40 controls using quantitative real-time PCR (RT-qPCR). HOTAIR levels 

in serum samples from GBM patients were significantly higher than in the 

corresponding controls (S. K. Tan et al., 2018).  

TMZ and RDT therapy combination for GBM patients is considered the most 

effective therapy after surgical procedure. However, the overall clinical prognosis 

remains unsatisfactory due to intrinsic or developing resistance to TMZ. Recently, 

increasing evidence suggested that lncRNAs play a critical role in various biological 

processes of tumours, that they are implicated in the resistance to various drugs. 

However, the role of lncRNAs in TMZ resistance is poorly understood. Ningbo et al. 

found that the expression of lncRNA AC003092.1 was markedly decreased in TMZ 

resistance of GBM cells compared with their Parental cells (Ningbo Xu et al., 2018). 

Similarly, Cai et al. showed that MALAT1 was significantly upregulated in TMZ-

resistant GBM cells and, MALAT1 knockdown reduces TMZ resistance of GBM 

cells both in vitro and in vivo by inhibiting cell proliferation and promoting apoptosis  

(Cai et al., 2018). 

Brodie et al. found that TALNEC2-lncRNA is involved in resistance to therapy in 

GBMs. TALNEC2 was highly expressed in GBM with poor prognosis, in GBM 

specimens derived from short-term survivors and in glioma cells and glioma stem 

cells (GSCs). Silencing of TALNEC2 inhibited cell proliferation and arrested the 

cells in the G1\S phase of the cell cycle in various cancer cell lines (Brodie et al., 

2017). 

In conclusion, under the growing evidences that implicate lncRNAs in the pathology 

of GBM, they might be a potential new target to treat this disease. lncRNAs might be 

a potential new target to treat GBM, since several studies have found various 
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lncRNAs implicated in this pathology. However, further investigation about which 

lncRNAs are implicated in GBM, as well as their regulation mechanisms, is 

necessary.
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2 AIMS 

The main objective of this Ph.D. thesis is to identify molecular mechanisms involved 

in GBM pathogenesis, more specifically in resistance to therapy, in order to find 

actionable targets for a more effective anti-GBM therapy. 

 Aim 1: Identification and characterization of single lncRNAs or lncRNA 

signatures that have an impact on the pathogenesis, diagnosis and prognosis 

of glioblastoma patients 

o Identification of lncRNAs associated to each subtype of glioblastoma 

o Validation of the short-hairpin-RNA (shRNAs) technic to generate 

lncRNA knockdowns in GICs 

o Functional characterization of lncRNAs identified above: 

 Study their role in self-renewal property of GICs 

 Study their role in regulating gene expression, analysing their 

possible role in the transition between GBM subtypes  

 Aim 2: Corroboration of the role of GPR56 in glioblastoma, especially in the 

mesenchymal differentiation of GICs 

o Generation of GPR56 knockouts in GICs using CRISPR/Cas9 gene 

editing and knockdowns of GPR56 using shRNAs 

o Characterization of modified-GICs analysing the MES differentiation 

by western blotting, RT-qPCR, microarrays and flow cytometry 
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3 METHODOLOGY 

3.1 PATIENTS AND SAMPLES 

Our studies, related to lncRNA project, are part of a coordinated project funded by 

“La Marató de TV3” named “Gene expression profiling (GEP) of glioblastoma, 

including long intergenic non-coding RNA (lincRNA), in a homogeneous population: 

correlation with immunophenotype, radiology, clinical outcome and response to 

therapy.  

This study was approved by the Institutional Review Board of the Hospital Germans 

Trias I Pujol (PI-14-016) and by the Ethics Committees of all the participating 

institutions and conducted in accordance with the Declaration of Helsinki. Six tertiary 

hospitals in Catalonia are sharing GBM tissue specimens and clinical data of more 

than 200 GBM patients treated homogeneously with radiotherapy and temozolomide 

after surgery. RNA has been extracted from 236 formalin-fixed, paraffin-embedded 

(FFPE) GBM samples, which has been submitted to RNA-sequencing. RNA-

sequencing allow for identification of both mRNA and lncRNA expression in these 

samples. 

 

3.2 BIOINFORMATICS 

3.2.1 RNA library construction and sequencing  

Samples were sequenced at Centro Nacional de Análisis Genómico (CNAG-CRG, 

Barcelona, Spain). A modified TruSeq™ Stranded Total RNA kit protocol (Illumina 

Inc.) was used to prepare the RNA-Seq libraries from FFPE samples. Ribosomal 

RNA (rRNA) was depleted from 0.5–1.0 µg of total RNA using the RiboZero 

Magnetic Gold Kit (Human/Mouse/Rat, Epicentre). rRNA-depleted RNA samples 

were purified using Agencourt RNA Clean XP beads (Beckman Coulter Genomics) 

and RNA was eluted with the Elute, Prime, Fragment Mix from the TruSeq Stranded 

Total RNA kit. The RNA fragmentation time was shortened to 2.5 minutes due to the 

low quality of the initial total RNA (assessed by Eukaryote Total RNA Nano 

Bioanalyzer assay, Agilent). Following the fragmentation, first and second strand 
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synthesis, the Illumina barcoded adapters were ligated at 1/10 dilution of the 

recommended concentration. Libraries were enriched with 15 cycles of PCR. The 

size and quality of the libraries were assessed in a High Sensitivity DNA Bioanalyzer 

assay (Agilent).  

 

3.2.2 Alignment and quantification 

RNA-Seq reads were aligned to the human reference genome (GRCh38) using STAR 

(version 2.5.1b) with ENCODE parameters for long RNA. The Y chromosome was 

removed from the reference genome to map the female samples. Genes were 

quantified using RSEM (version 1.2.28) with default parameters. Human gene 

annotation file was downloaded from gencode release 24.  

 

3.2.3 Sample quality metrics 

PCR duplicates were calculated with sambamba. The number of detected genes was 

calculated taking into account genes with at least one paired- end read mapped. The 

number of genes consuming 25% of the reads was calculated by ranking the genes 

according to expression values (read counts) and then computing the cumulative sum 

until the number of reads was equal to 25% of the total sum. Mapping statistics were 

calculated with the tool ‘gtfcounts’ using GEMtools (http://gemtools.github.io/). 

Gene body coverage, GC content, paired-end inner distances, median transcript 

integrity number (TIN) across all the transcripts and distribution of mismatches 

across reads were computed with RSeQC. The percent spliced index (PSI) values 

were calculated with Spladder. 

 

3.2.4 Differential gene expression analysis 

RSEM read counts were used as input for DESeq2 (version 1.10.1). The cut-off for 

considering a gene significantly up-sampled or down-sampled in the FFPE-derived 

samples was FDR<5%. Gene ontology enrichment analysis of the down- sampled 

FFPE genes was performed with DAVID database beta version 6.8. 
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3.2.5 Prediction of GBM molecular subtype 

The glmnet R package was used to fit a multinomial logistic regression model with 

alpha = 1 lasso penalty. The cross-validation RNA-seq dataset was downloaded from 

the The Cancer Genome Atlas (TCGA) repository using the RTCGAToolbox R 

package (http://mksamur.github.io/RTCGAToolbox/). The core function 

‘getFirehoseData’ with ‘dataset = GBM’ and ‘runDate = 20151101” was used to 

access and download the data. The associated clinical annotation for each sample was 

downloaded using the cgdsr R package (https://github.com/cBioPortal/cgdsr). Read 

counts were transformed with the variance stabilizing transformation using DESeq2. 

Batch effect correction between the RNA-seq datasets was carried out with the sva R 

package. Genes with non-zero coefficient estimates were selected as best predictors. 

 

3.2.6 Weighted Gene Co-Expression Network Analysis (WGCNA) 

The WGCNA package was run on R to construct a gene co-expression network and 

identify modules. Briefly, a weighted correlation network was created by calculating 

the correlation coefficients. The weighted network was transformed into a network 

of topological overlap (TO), an advanced co-expression measurement that considers 

not only the correlation of two genes with each other but also the extent of their shared 

correlations across the weighted network. The TO matrix was then used to group 

highly co-expressed genes by hierarchical clustering. Finally, a dynamic tree cut 

algorithm was used to cut the hierarchical clustering tree, and modules were defined 

as the branches resulting from this tree cutting.  

 

3.2.7 Non-negative Matrix Factorization (NMF) 

We performed non-negative matrix factorization (NMF) clustering method to 

identify distinct subtypes among the 118 G-CIMP-negative GBMs based on lncRNA 

expression. NMF analysis was performed in R using ‘‘NMF’’ package (https://cran.r-

project.org/package=NMF). Genes were ranked k=2-7 according to their maximum 

absolute deviation (MAD) values from high to low in the expression matrix. When 
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the 118 GBMs were clustered into two subtypes according to expression of 400 

lncRNAs, we received the highest average clustering cophenetic scores.  

 

3.2.8 Statistical Analysis  

Experimental data were represented as mean ± SEM (Standard Error of the Mean). 

Data represented with the help of the statistics software GraphPad Prism (GraphPad 

Prism v5.0a – GraphPad Software). To compare two different groups, we used a 

Student’s T test (paired or unpaired) for parametric variables. To compare different 

groups of samples, we used One-Way ANOVA (ANalysis of VAriance) test coupled 

to a Bonferroni post-test. Statistical significance for each analysis is shown in the 

corresponding figure. Kaplan–Meier (KM) estimate was used for comparing survival 

differences between the low-risk group and the high-risk group. Hazard ratio (HR) 

with a 95% confidence interval (CI) was used in Cox regression analysis, and a p-

value<0.05 was considered significant. KM data were analysed by R program. 

 

3.2.9 Microarray data analysis  

Microarray data were extracted with Agilent Feature Extraction Software version 

10.7 and data analysis was carried out using GeneSpring GX version 11.5 (Agilent 

Technologies). In the hypoxic versus normoxic NSC study, normalized data was 

analysed using paired t-test Limma (Morrissey & N Diaz-Uriarte, 2009) to detect 

differentially expressed transcripts (multiple test correction: Benjamini & Hochberg). 

Microarray data was also examined by Gene Set Enrichment Analysis (GSEA) using 

the KEGG pathway gene sets (for pathway enrichment) or the TF gene sets (for TF 

binding site enrichment) (Subramanian et al., 2005). To correct for multiple 

hypothesis testing, GSEA uses FDR to focus on controlling the probability that each 

reported result is a false positive. Since the primary goal of GSEA is to generate 

hypothesis, an FDR <0.25 is considered significant.  
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3.3 CELL CULTURES 

3.3.1 Cell lines 

Glioma initiating cells (GIC) are glioblastoma patient-derived stem-like cells lines 

obtained from different collaborators (Table 3.1). GIC were cultured in laminin-

coated cell plates (0.75 mg/mL; Invitrogen) and maintained in Dulbecco’s Modified 

Eagle Medium: Nutrient Mixture F-12 (DMEM/F12; Invitrogen) supplemented with 

4.5% glucose (Sigma), 5 mM Hepes (Invitrogen), 100 U/mL penicillin, 100 mg/mL 

streptomycin (Invitrogen), 4 µg/mL heparin (Sigma Chemical), N-2 Supplement 

(Life Technologies), bFGF (20 ng/mL; Life Technologies) and EGF (20 ng/mL; Life 

Technologies). GIC were cultured at 37 °C, 5% CO2 and 5% oxygen. 

293T-HEK were cultured using Dulbecco’s Modified Eagle Medium (DMEM; Life 

Technologies) supplemented with 10% Fetal Bovine Serum (FBS, Invitrogen). Cells 

were kept at 37 °C in a humidified atmosphere containing 5% CO2 and 20% O2. 

The cells were passaged when they reached 70-80% confluence in a new 100 mm 

plate. Cells were washed once with phosphate-buffered saline (PBS) without calcium 

and magnesium (Life Technologies) and incubated at 37 °C/5% CO2 for 10 minutes 

with Trypsin-like Enzyme (TripLE; Life Technologies). Cells were recollected with 

PBS and centrifuged during 5 minutes at 900 rpm or 1500 rpm for GICs and 293T-

HEK respectively. The supernatant was aspirated and the cell pellet was re-suspended 

in 4 mL of complete fresh medium. Cell suspension was transferred to a new plate 

already containing 3-4 mL of complete fresh medium.   

 

Table 3.1: Cells used to experimental procedures  

Cell line Cell type Origin Medium 

GIC2 Human (glioblastoma, 

proneural subtype) 

Dr. Alonso (CIMA, Pamplona) DMEM/F12 

GIC7 Human (glioblastoma, 

proneural subtype) 

Dr. Gómez-Manzano/ Dr Juan Fueyo 

(MD Anderson Cancer Center, 

Houston) 

DMEM/F12 
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PG88 Human (glioblastoma, 

mesenchymal subtype) 

Dr. Tortosa I Moreno (IDIBELL) DMEM/F12 

PG90 Human (glioblastoma, 

mesenchymal subtype) 

Dr. Tortosa I Moreno (IDIBELL) DMEM/F12 

GSC268 Human (glioblastoma, 

classical subtype) 

Dr. Krishna P.L. Bhat (MD Anderson 

Cancer Center) 

DMEM/F12 

GSC6-27 Human (glioblastoma, 

classical subtype) 

Dr. Krishna P.L. Bhat (MD Anderson 

Cancer Center) 

DMEM/F12 

293T-HEK Human (Kidney) Clontech DMEM 

 

 

3.4 DNA TECHNIQUES 

3.4.1 Transformation into competent cells (DH5a) 

Plasmid DNA amplifications were carried out after their introduction in chemically 

competent E. coli cells. Transformation of competent E. coli cells was carried out 

following the manufacturer’s instructions (Subcloning Efficiency DH5 Competent 

Cells; Invitrogen). Briefly, cells were incubated with the DNA on ice for 30 minutes. 

Then, cells were placed at 45ºC for 90 seconds. 500 mL of XY Medium (2xYT 

Medium; Sigma) were added and incubated at 37ºC for 1 hour. After a briefly 

centrifugation, transformed cells were spread on pre-warmed selective plates during 

an overnight at 37ºC. For large-scale isolation of plasmid DNA, commercial 

maxipreparations were used following the manufacturer’s instructions (NucleoBond 

Xtra Maxi; Macherey-Nagel). DNA determinations were made using a 

spectrophotometer (Nanodrop; Thermo Scientific). 

 

3.5 CELL TRANSDUCTION 

3.5.1 DNA electroporation  

We used CRISPR/Cas 9 system to get GPR56 knock out in CD44low GIC7s. To do 

that, cells were washed once with PBS without calcium and magnesium and get off 
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plate with Trype. Then, the GICs were recollected with 5 mL of PBS and were 

counted by Countess® Automated Cell Counter/invitrogen (10·10-6 L of cells + 

10·10-6 L trypan blue). The volume necessary to obtain 3·106 of cells/well was 

calculated and put it in a new tube. Then, the tube was centrifuged during 5 min at 

900 rpm. After pour off the supernatant, the pellet was resuspended in 100·10-6 L of 

electroporation buffer. Next, 3·10-6 g of plasmids were added, homogenised and 

placed in a electroporation cuvette. Finally, the cells were electroporated using the 

Nucleofector II device (Lonza) at A-033 and seeded in 6MW plate with 2·10-3 L of 

complete NSC medium to the maintenance. 

To obtain GPR56 knockout GICs, we used a pool of three GPR56 KO plasmids (sc-

406370; Santa Cruz Biotechnology), each of which encode for a GPR56-specific 20 

nt guide RNA (gRNA) together with the Cas9 ribonuclease. These plasmids were co-

electroporated along with a GPR56-HDR plasmid, which enables the insertion of 

specific selection markers by homologous recombination where Cas9-induced DNA 

cleavage has occurred. We used an HDR plasmid that incorporates Red Fluorescent 

Protein (RFP) anda gene to puromycin resistance (sc-406370-HDR; Santa Cruz 

Biotechnology). 

 

3.5.2 Lentiviral and retroviral infection 

Lentiviral vectors were generated by co-transfection of the plasmids of interest plus 

viral packaging vectors. 293T-HEK were cultured in 100 mm cell plates (70% 

confluence). 293T-HEK were transfected with the three-lentiviral packaging 

plasmids (VSVG, RSV-REV and pMDL g/p RRE) using the GeneJet Plus DNA 

transfection Reagent (SignaGen Laboratories). At 24 and 48 hours post-transfection, 

culture supernatants were collected and purified by centrifugation at 18,000 g for 2 

hours at 4ºC. Pellets were resuspended in PBS and used it or stored at -80ºC until use. 

For infection, cells were treated with 100 µL of viral suspension for overnight (O/N). 

Cells were then washed and fresh medium was added. 48h later, infected cells were 

selected with the appropriate drug selection. 
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The sequences of plasmids used to lentiviral infection was a custom design of vector 

PLKO.1-PURO to target three different sequence of same gene: 

 ENST00000608502.1 (PROCAR.1): TCGGCTTTGGAAATAGAATTT 

 ENST00000608502.2 (PROCAR.2): ATCTCCTCGGCTTTGGAAATA 

 ENST00000608502.3 (PROCAR.3): TTCGCAGTTGTTCTAACTTAT 

 

 ENST00000547804.1 (LINC00941.1); ATGGACCAACTATGCTTATAA 

 ENST00000547804.2 (LINC00941.2); TGGGCTCTTGATTTGAATTGA 

 ENST00000547804.3 (LINC00941.3); TGGAGCATGTATCCATCTTAT 

 

 ENST00000630360.1 (PAUPAR.1): TGCCCTAGTGATTGTCGAATT 

 ENST00000630360.2 (PAUPAR.2): TCCAGGCTTACCTCTTCTTAA 

 ENST00000630360.3 (PAUPAR.3): TCTGCCCAATTCACCTATAGT 

 

3.6 SELF-RENEWAL ASSAY 

We performed neurosphere formation assays to analyze the self-renewal capacity of 

GICs. 50 cells/well were seeded in a 96MW plate. The total number of newly formed 

neurospheres was counted, under a microscope, after 7 days in culture. The secondary 

neurospheres formation assay was performed to validate GIC's capacity to form a 

new neurosphere and their self-renewal capacity. The neurospheres formed in each 

well were re-collected, separately, and 50cells/well were re-seeded, after 

disaggregate them. Then, the newly neurospheres were manually counted under 

microscopy on day 7. 

All experiments were done in sextuplicate. For primary neurosphere formation assay 

48 wells were seeded for each condition. For the secondary neurosphere formation 

assay 12 wells were used for each condition. 
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3.7 RNA MANIPULATION 

3.7.1 RNA extraction 

The RNA extraction of FFPE tumour specimens was performed on five 15μm-deep 

tissue cuts using the RNeasy Mini Kit (Qiagen), according to the manufacturer’s 

recommendations. RNA quantity and purity were measured with the NanoDrop ND-

1000 spectrophotometer (Thermo Scientific). RNA integrity, determined by the RNA 

integrity number (RIN), was deter- mined with the 2100 Bioanalyzer (Agilent). 

For RNA extraction of GICs, approximately, 106 cells were rinsed with PBS and lysed 

in RLT buffer (RNasy Mini Kit; Qiagen). Total RNA was immediately extracted 

according the manufacture’s instructions (RNasy Mini Kit; Qiagen). RNA 

concentration and quality was assessed with a Nanodrop (Thermo Scientific).  

 

3.7.2 RT-qPCR 

A reverse transcription was performed using 500ng of the total RNA by using the 

High Capacity cDNA Reverse Transcription Kit according to the manufacture’s 

recommendations (Applied Biosystems).  

mRNA Reverse Transcription Conditions: 

1. 25ºC for 10’ 

2. 37ºC for 2h 

3. 4ºC 

The real time quantitative PCR (RT-qPCR) was performed in the StepOnePlus Real-

time PCR Systems (Applied Biosystems) using TaqMan Fast Universal. For human 

samples the following TaqMan probes (Life Technoligies) were used:  

 CTGF. Ref:Hs01026927_g1 

 TGFb1. Ref: Hs00998133_m1 

 TGFbI. Ref: Hs00932747_m1 

 FN1. Ref: Hs00365052_m1 

 ZEB1. Ref: Hs00232783_m1 
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 CHI3L. Ref: Hs00609691_m1 

 MCAM. Ref: Hs00174838_m1 

 SNAI1. Ref: Hs00195591_m1 

 SNAI2. Ref: Hs00950344_m1 

 TAZ. Ref: Hs00794094_m1 

 TIMP1. Ref: Hs00171558_m1 

 CD44. Ref: Hs01075861_m1 

 PAX6. Ref: Hs0108814_m1 

 SERPINE1. Ref: Hs01126606_m1 

 OLIG2. Ref: Hs00377820_m1 

 SOX2. Ref: Hs01053049_s1  

 SOX9. Ref: Hs0000165814_m1 

 PAUPAR. Ref: Hs04405704_s1 

 LINC00941. Ref: Hs05002771_g1 

 PROCAR. Ref: Hs04231540_s1 

 GPR56. Ref: Hs00938469_m1 

 GAPDH. Ref: Hs99999905_m1 

 

mRNA qPCR conditions: 

1. 95ºC for 20’ 

2. 95ºC for 1’ 

3. 60ºC for 20’ 

4. Go to 2 x 39 cycles 

The DCT value was obtained by subtracting the CT value of housekeeping genes to 

the CT value of the targeted genes. The relative mRNA expression level of the target 

genes was obtained by the formula 2-DCT. 
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3.7.3 Microarray analysis 

Total RNA was extracted using the RNeasy Mini Kit (Qiagen). RNA quality control 

was performed in a 2100 Bioanalyzer (Agilent Technologies). In all samples, the 

RNA integrity number was >7. Complementary RNAs were prepared for 

hybridization in a G3 Human GE 8x60k array (Agilent Technologies), using the One-

Colour Low Input Quick Amp labelling protocol according to the manufacturer’s 

instructions (Agilent Technologies). Microarray data were extracted with Agilent 

Feature Extraction Software version 10.7 and data normalization was carried out 

using GeneSpring GX version 11.5 (Agilent Technologies). To identify genes 

differentially expressed across groups, normalized microarray data were analysed 

using a multiclass significance analysis of microarrays (SAM) with a false discovery 

rate (FDR) <5%. 

 

3.8 PROTEIN MANIPULATION 

3.8.1 Flow cytometry 

Approximately 106 cells per each condition were collected, rinsed with PBS and 

blocked with PBS-BSA 1% for 20 minutes at 4 °C. Then, cells were stained with a 

APC-conjugated anti-CD44 (1/50; BD Pharmingen. Ref: 559250) for 1 hour at 4 °C. 

After three washes, cells were resuspended with PBS-BSA 1% and immediately 

assessed by flow cytometry using FACSCanto (Becton Dickinson). Analysis was 

performed using FlowJo software (Miltenyi Biotec).  

 

3.8.2 Western blot 

Cells were lysed by lyses buffer (50% of Buffer NP40 2x, 29,8% H2O milliQ, 5% 

NaCl 5M, 5% NaF 1 M, 0,1% DTT 1M, 10% cocktail of proteases inhibitor, 0,1% 

Na3VO4 100·10- 3 M) at 4ºC for 20 minutes. Protein extract was quantified using 

Bradford due-binding method (Protein Assay; Bio-Rad Laboratories). The samples 

with the Bradford were incubate at room temperature for 5-15 minutes and the 

absorbance at 595 nm was analysed by SynergyTM HT (from BioTek).  
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The protein lysates were mixed up with LB 2x (Laemmli samle buffer from Bio-rad), 

previously diluted with DTT (4 part LB2x with 1 part DTT). Then, the lysates were 

boiled for 5 minutes at 95 ºC in Corning® LSETM digital dry bath.  

Cells extracts were separated on a 10% polyacrylamide gel, at 200V for 45 minutes, 

and transferred to Nitrocellulose membrane (from GE Healthcare Life Science), at 

100V for 1 hour. The membrane was incubated with a specific blocking buffer 

(Odyssey blocking Buffer; LI-COR Biosciences) for 1 hour at room temperature. 

Primary antibody (Table 3.2: Antibodies to Western blot) was incubated during an O/N 

at 4ºC in constant agitation. The primary antibody was washed 3 times for 5 minutes. 

Secondary fluorescent antibody was incubated for 1 hour at room temperature, as 

follows: donkey anti-goat and donkey anti-mouse IRDye 680CW or IRDye 800LT 

(LI-COR Biosciences). Membrane was washed again and target proteins were 

detected using the ODYSSEY Infrared Imaging System (LI-COR Biosciences) 

following the manufacturer’s instructions. Analysis was performed using Image 

Studio Software (LI-COR Biosciences). 

 

Table 3.2: Antibodies to Western blot 

Antigen Host Manufacturer Dilution 

GRP56 Goat R&D Systems 1/500 

GAPDH Mouse Ambion 1/40000 



  Results 

57 
 

4 RESULTS 

4.1 IDENTIFICATION OF LONG NON-CODING RNAS 

INVOLVED IN RESISTANCE TO THERAPY IN 

GBM 

Long non-coding RNAs (lncRNAs) have been implicated in the regulation of stem 

cell properties, such as self-renewal and differentiation (Feng et al., 2015; Pu et al., 

2015; Wei et al., 2017), as well as the control of gene expression (D. Li, Lu, Li, Qi, 

& Yu, 2019a; Rizvi et al., 2017; Lei Zhang et al., 2019; T. Zhang et al., 2019). 

Changes in gene expression are observed during transitions between glioblastoma 

(GBM) subtypes, such as MES differentiation, which confers resistance to therapy to 

glioblastoma (Bhat et al., 2013; Mao et al., 2013; Moreno, et al., 2017; Y. Piao et al., 

2013). Therefore, we hypothesized that lncRNAs might be regulating transitions 

between different GBM subtypes and, subsequently, be involved in resistance to 

therapy. 

On the other hand, the self-renewal capacity of cancer stem-cells (CSCs) also might 

be responsible for drug resistance and cancer relapse due in part to their ability to 

self-renew and differentiate into heterogeneous cancer cells (J. Chen et al., 2012; 

Dean, Fojo, & Bates, 2005; A. Singh & Settleman, 2010). Some lncRNAs regulate 

the self-renewal capacity of stem cells (W. Liu et al., 2017). Because of that, we also 

hypothesized that lncRNAs might be regulating the self-renewal property of GICs, 

which may be another mechanism of resistance to therapy and relapse of GBMs. 

To test our hypothesis, we selected several candidate lncRNAs after various in silico 

analyses of RNA-sequencing data from 36 of 124 GBM samples (GLIOCAT dataset). 

Then, we performed cellular assays to assess the function of the selected lncRNAs. 

To study the implication of candidate lncRNAs in the biology of GICs, a loss-of-

function approach was performed using shRNA-mediated knockdown of these 

lncRNAs. Next, we analysed the gene expression of different GBM subtype markers 

to study whether knockdown of candidate lncRNAs would promote GBM subtype 

transitions. Furthermore, we analysed the self-renewal capacity of lncRNA 
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knockdown-GICs, using the neurosphere formation assay, to study the implication of 

our candidate lncRNAs in self-renewal of GICs. 

 

4.1.1 Network analysis using weighted gene co-expression network 
analysis of RNAseq data from GBM specimens 

To identify candidate lncRNAs involved in GBM pathogenesis, we performed 

various in silico analyses of an unpublished RNAseq dataset of GBM specimens 

homogeneously treated by the Stupp Regimen (GLIOCAT dataset). First, 36 GBM 

specimens from our dataset were classified, according to their mRNA expression, 

into molecular subtypes (PN, CL and MES) by using the Support Vector Machines 

(SVM) algorithm. Next, we performed a network analysis to study the co-expression 

of genes (both protein-coding mRNAs and lncRNAs) in each subtype by using 

weighted gene co-expression network analysis (WGCNA). WGCNA allows the 

identification of different gene networks based on co-expression relationships 

between all expressed genes across all samples in the dataset (Langfelder & Horvath, 

2007, 2008; B. Zhang & Horvath, 2005). The co-expression network is based on 

topological overlap (TO) between genes, which simultaneously considers not only 

the correlation of two genes with each other but also the degree of their shared 

correlations within the network (Ravasz, Somera, Mongru, Oltvai, & Barabási, 2002; 

B. Zhang & Horvath, 2005), providing a more robust measure of relatedness than 

correlations alone (Yip & Horvath, 2007). 

WGNA constructed gene co-expression modules that assign the genes to different 

modules by cluster dendrogram trees (Figure 4.1, Figure 4.2 and Figure 4.3). Using 

this approach, we obtained different modules for each GBM subtype with each 

module corresponding to a group of co-expressed genes: 51 modules characteristic 

for the PN subtype, 51 modules characteristic for the CL subtype and 42 modules 

characteristic for the MES subtype (Figure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4) 

(Table 4.1). 
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Figure 4.1: Clustering dendrogram of genome-wide genes in PN GBM obtained by Weighted Gene 

Co-expression Network Analysis (WGCNA). Gene dendrogram obtained by clustering the 

dissimilarity based on consensus Topological Overlap with the corresponding module colours 

indicated by the colour row. Each coloured row represents a colour-coded module that contains a 

group of highly connected genes co-expressed in PN subtype. A total of 51 modules were identified. 
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Figure 4.2: Clustering dendrogram of genome-wide genes in CL GBM obtained by Weighted gene 

co-expression network analysis (WGCNA). Gene dendrogram obtained by clustering the dissimilarity 

based on consensus Topological Overlap with the corresponding module colours indicated by the 

colour row. Each coloured row represents a colour-coded module that contains a group of highly 

connected genes co-expressed in CL subtype. A total of 51 modules were identified. 
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Figure 4.3: Clustering dendrogram of genome-wide genes in MES GBM identified by Weighted 

gene co-expression network analysis (WGCNA). Gene dendrogram obtained by clustering the 

dissimilarity based on consensus Topological Overlap with the corresponding module colours 

indicated by the colour row. Each coloured row represents a colour-coded module that contains a 

group of highly connected genes co-expressed in MES subtype. A total of 42 modules were identified. 
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Figure 4.4: Visualization of yellow (top) and turquoise (bottom) modules in MES subtype. The green 

square nodes represent specific nodes and linkage in the module network of MES GBMs. For clarify, 

only the top-ranked genes were represented. Some lncRNAs are in the top-ranked genes in the network, 

such as LINC00941 in the yellow module network and MIR219A2 in the turquoise module network. 

 

Turquoise module 

Yellow module 
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4.1.2 Identification of candidate lncRNAs for functional studies 

To identify lncRNAs that might be involved in the regulation of the stem-like 

properties of GICs, we explored our WGCNA results and sought for candidate 

lncRNAs according to the following criteria: (1) their co-expression along with genes 

characterized to have a prominent role in GBM subtype pathogenesis, such as STAT3 

and C/EBPβ (Bhat et al., 2013) or PDGFRA (Rand et al., 2005) (2) their specific (or 

at least enriched) expression in one of the molecular subtypes, (3) the kin value within 

a given network, which indicates the predicted prominence of the gene in the network 

(kin value ranges from 0 to 1, with 1 indicating the most important) (Table 4.1), and 

(4) their level of gene expression with a preference for those with the greatest 

expression. Four different lncRNAs were selected from these analyses (Table 4.2). 

 

Table 4.1: Subtype modules from Weighted Gene Co-expression Network Analysis. Shown the 

modules with the selected candidate lncRNAs (green), with the name of the gene, in which module is 

present, the kind of transcript (protein-coding RNA (PC), long non-coding RNA (lncRNA), antisense 

RNA (antisense), sense intronic (sense_intronic) and transcribed pseudogene (Pseudogene), To be 

Experimentally Confirmed (TEC)), the mean expression (meanExpr) along with all samples and the 
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kin value. Only are represented the top 30 genes, according to their kin value, and the molecular 

subtype related genes (blue). 

 

 

  

30 Top Genes in Tan Module (CL) meanExpr kin
ENSG00000233858.4,AC026904.1,lncRNA 4,254 1,000
ENSG00000125347.13,IRF1,PC 8,889 0,893
ENSG00000182141.9,ZNF708,PC 11,148 0,787
ENSG00000281880.1,PAUPAR,lncRNA 5,730 0,758
ENSG00000237101.1,RP11-365O16.6,antisense 3,073 0,750
ENSG00000186532.11,SMYD4,PC 9,140 0,708
ENSG00000119638.12,NEK9,PC 10,937 0,707
ENSG00000259448.2,RP11-16E12.1,lncRNA 5,403 0,683
ENSG00000115507.9,OTX1,PC 7,267 0,674
ENSG00000234617.1,SNRK-AS1,antisense 4,401 0,662
ENSG00000198920.9,KIAA0753,PC 9,301 0,658
ENSG00000108786.10,HSD17B1,PC 6,975 0,651
ENSG00000280248.1,CTD-2047H16.3,TEC 6,103 0,641
ENSG00000248221.1,STX18-IT1,sense_intronic 2,307 0,637
ENSG00000272542.1,RP11-255P5.2,lncRNA 3,730 0,607
ENSG00000185946.15,RNPC3,PC 10,291 0,596
ENSG00000264176.1,MAGOH2P,Pseudogene 2,945 0,592
ENSG00000240038.6,AMY2B,PC 9,384 0,592
ENSG00000231609.5,AC009501.4,antisense 4,632 0,582
ENSG00000186399.10,GOLGA8R,PC 7,320 0,580
ENSG00000229495.1,RP11-173D14.3,lncRNA 3,513 0,578
ENSG00000239783.1,RP5-1050K3.3,Pseudogene 2,508 0,565
ENSG00000143315.6,PIGM,PC 8,743 0,563
ENSG00000128829.11,EIF2AK4,PC 9,848 0,561
ENSG00000272405.1,RP11-284F21.10,antisense 6,450 0,528
ENSG00000274797.1,RP11-407N8.5,antisense 2,766 0,528
ENSG00000085465.12,OVGP1,PC 6,764 0,527
ENSG00000278611.1,CTC-543D15.8,lncRNA 4,474 0,522

ENSG00000127511.9,SIN3B,PC 11,222 0,520

30 Top Genes in Yellow Module (MES) meanExpr kin
ENSG00000180801.12,ARSJ,PC 8,846 1,000
ENSG00000155760.2,FZD7,PC 9,353 0,956
ENSG00000012232.8,EXTL3,PC 11,126 0,940
ENSG00000150938.9,CRIM1,PC 10,572 0,929
ENSG00000170006.11,TMEM154,PC 8,244 0,921
ENSG00000244405.7,ETV5,PC 10,388 0,897
ENSG00000134531.9,EMP1,PC 12,045 0,882
ENSG00000080493.13,SLC4A4,PC 11,942 0,878
ENSG00000235884.3,LINC00941,lncRNA 6,073 0,843
ENSG00000104432.12,IL7,PC 4,408 0,838
ENSG00000276851.1,RP5-875H18.9,lncRNA 0,814 0,833
ENSG00000174791.10,RIN1,PC 8,190 0,819
ENSG00000101955.14,SRPX,PC 8,822 0,815
ENSG00000136158.10,SPRY2,PC 10,649 0,812
ENSG00000105355.8,PLIN3,PC 9,091 0,790
ENSG00000173156.6,RHOD,PC 3,661 0,789
ENSG00000160862.12,AZGP1,PC 6,577 0,783
ENSG00000156687.10,UNC5D,PC 8,146 0,777
ENSG00000145431.10,PDGFC,PC 9,501 0,773
ENSG00000182985.16,CADM1,PC 11,699 0,772
ENSG00000104611.11,SH2D4A,PC 7,338 0,754
ENSG00000170962.12,PDGFD,PC 7,702 0,743
ENSG00000257594.3,GALNT4,PC 8,274 0,735
ENSG00000092871.16,RFFL,PC 10,792 0,734
ENSG00000256235.1,SMIM3,PC 8,994 0,717
ENSG00000177707.10,PVRL3,PC 9,324 0,714
ENSG00000140575.12,IQGAP1,PC 12,197 0,709
ENSG00000061337.15,LZTS1,PC 10,723 0,706

ENSG00000139318.7,DUSP6,PC 11,026 0,702
ENSG00000168610.14,STAT3,protein_coding 11,907 0,271

30 Top Genes in Turquoise Module (MES) meanExpr kin
ENSG00000141431.9,ASXL3,PC 7,156 1,000
ENSG00000258081.3,RP11-384J4.2,lncRNA 1,421 0,993
ENSG00000207955.3,MIR219A2,lncRNA 3,904 0,982
ENSG00000152932.7,RAB3C,PC 5,769 0,959
ENSG00000159409.14,CELF3,PC 5,691 0,947
ENSG00000126861.4,OMG,PC 5,799 0,936
ENSG00000011347.9,SYT7,PC 6,880 0,930
ENSG00000232872.2,CTAGE3P,Pseudogene 2,121 0,917
ENSG00000119283.15,TRIM67,PC 4,033 0,917
ENSG00000140807.5,NKD1,PC 9,224 0,901
ENSG00000221946.7,FXYD7,PC 3,734 0,895
ENSG00000076826.9,CAMSAP3,PC 4,521 0,894
ENSG00000101204.15,CHRNA4,PC 3,691 0,892
ENSG00000261685.2,RP11-401P9.4,lncRNA 7,599 0,885
ENSG00000087495.16,PHACTR3,PC 6,176 0,882
ENSG00000003987.13,MTMR7,PC 4,177 0,876
ENSG00000205810.8,KLRC3,PC 2,739 0,876
ENSG00000148123.14,PLPPR1,PC 5,942 0,867
ENSG00000177182.10,CLVS1,PC 4,559 0,862
ENSG00000132702.12,HAPLN2,PC 5,071 0,857
ENSG00000101198.14,NKAIN4,PC 6,482 0,853
ENSG00000174672.15,BRSK2,PC 6,812 0,851
ENSG00000162728.4,KCNJ9,PC 5,579 0,847
ENSG00000262801.5,U91319.1,lncRNA 1,655 0,846
ENSG00000122584.12,NXPH1,PC 6,005 0,840
ENSG00000273214.1,RP5-1039K5.18,lncRNA 2,163 0,829
ENSG00000230327.1,MTCO1P42,Pseudogene 3,799 0,818
ENSG00000102934.9,PLLP,PC 6,672 0,815

ENSG00000260903.2,XKR7,PC 3,513 0,808
ENSG00000172216.5,CEBPB,protein_coding 8,826 0,368

30 Top Genes in Salmon Module (PN) meanExpr kin
ENSG00000226840.1,PAICSP3,Pseudogene 1,564 1,000
ENSG00000242061.1,CTD-2555K7.1,Pseudogene 0,293 0,980
ENSG00000279600.1,RP11-637C24.5,TEC 4,475 0,955
ENSG00000126970.15,ZC4H2,PC 8,089 0,935
ENSG00000247199.3,RP11-373N22.3,antisense 5,817 0,906
ENSG00000272769.1,RP11-725P16.2,lncRNA 3,793 0,899
ENSG00000257703.5,RP11-328J6.1,lncRNA 1,027 0,868
ENSG00000261478.1,RP11-429B14.4,lncRNA 7,767 0,864
ENSG00000176294.4,OR4N2,PC 3,421 0,858
ENSG00000228304.1,OR4K6P,Pseudogene 3,097 0,832
ENSG00000183891.5,TTC32,PC 6,915 0,823
ENSG00000256937.1,KRT17P8,Pseudogene 3,115 0,820
ENSG00000204956.5,PCDHGA1,PC 8,883 0,812
ENSG00000198153.8,ZNF849P,Pseudogene 1,816 0,807
ENSG00000259780.3,RP11-304L19.12,lncRNA 4,243 0,791
ENSG00000139971.15,C14orf37,PC 9,795 0,789
ENSG00000256463.8,SALL3,PC 10,807 0,774
ENSG00000213131.3,YWHAZP4,Pseudogene 3,513 0,768
ENSG00000240527.1,RP11-429G19.3,sense_intronic 3,178 0,767
ENSG00000263146.2,RP11-849I19.1,lncRNA 7,144 0,761
ENSG00000272070.1,AC005618.6,lncRNA 8,764 0,757
ENSG00000183513.8,COA5,PC 9,230 0,744
ENSG00000165762.2,OR4K2,PC 0,102 0,732
ENSG00000249413.2,RP11-25H12.1,lncRNA -0,417 0,730
ENSG00000163568.13,AIM2,PC 4,318 0,728
ENSG00000227518.3,XXyac-YRM2039.3,antisense 3,047 0,725
ENSG00000079482.12,OPHN1,PC 11,012 0,721
ENSG00000198028.3,ZNF560,PC 4,136 0,711

ENSG00000248546.3,ANP32C,Pseudogene 3,476 0,707
ENSG00000134853.11,PDGFRA,protein_coding 11,954 0,445
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Table 4.2: Summary of relevant information on candidate lncRNAs. This table shows the ID (ENSG, 

alternative name) of lncRNAs, the majority transcript (ENST), the lncRNA expression levels in each 

subtype, their kin value and the prominent genes co-expressed in the same module as per WGCNA. 

Differences in gene expression between subtypes were significant for all lncRNAs selected (p<0.05). 

ENSG ID 

(ALTERNATIVE 

NAME) 
ENST ID PN CL MES 

RELATED 

GENES 
KIN 

ENSG00000207955.3 

(MIR219A2, 

PROCAR) 

ENST00000608502.2  214.82 55.54 23.72 C/EBPβ 0.98 

ENSG00000261478.1  

(RP11-429B14.4, 

LNC-TICRR-2) 

ENST00000567484.1 376.27 151.60 78.78 PDGFRA 0.86 

ENSG00000281880.1 

(PAUPAR) 
ENST00000630360.1  19.40 80.57 51.45 PAX6 0.76 

ENSG00000235884.3 

(LINC00941) 
ENST00000547804.1 32.96 44.30 161.44 STAT3 0.84 

 

ENSG00000207955.3 (MIR219A2) and ENSG00000261478.1 (RP11-429B14.4) 

were lncRNAs enriched in the PN subtype. ENSG00000207955.3 was expressed in 

the network where C/EBPβ, a master transcription factor involved in MES-GBM 

differentiation, was present, whereas ENSG00000261478.1 was co-expressed in the 

same network as PDGFRA, a PN-signature gene, which is involved in neuron and 

oligodendrocyte differentiation (Jackson et al., 2006). 

ENSG00000207955.3, which we re-named as PROneural C/EBPβ-Associated 

lncRNA (PROCAR), might be correlated with microRNA 219. PROCAR and 

microRNA 219 are co-localized in chromosome 9 (Chromosome 9: 128,392,007-

128,393,510 and Chromosome 9: 128,392,618-128,392,714, respectively), 

suggesting their mutual regulation. MicroRNA-219-5p inhibits the proliferation, 

migration, and invasion of epithelial ovarian cancer cells by targeting the 

Twist/Wnt/β-catenin signalling pathway (Wei et al., 2017) and inhibits breast cancer 

cell migration and epithelial-mesenchymal transition (Zhuang et al., 2017). Thus, 
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PROCAR might be involved in proliferation or mesenchymal differentiation in GBM 

regulating microRNA219.   

Through the mutually targeted miRNA response elements (MREs) enrichment 

(MuTaME) method, described by Tay et al., ENSG00000261478.1 was predicted to 

be competing for endogenous RNA (ceRNA) of IL1R2 mRNA. MuTaME method is 

mainly based on the number of miRNAs with which ceRNAs and target transcripts 

shared, as well as the distribution of MREs in both ceRNAs and target transcripts 

(Tay et al., 2011). Changes in MREs of ceRNAs affect the capacity of a proper 

mRNA transcript to attach miRNAs (Salmena, Poliseno, Tay, Kats, & Pandolfi, 2011; 

Tay et al., 2011). Therefore, ENSG00000261478.1 might be regulating IL1R2 

mRNA, which has been involved in tumourogenesis, such as promoting breast cancer 

proliferation (Lixing Zhang et al., 2020). 

ENSG00000281880.1 or PAX6 Upstream Antisense RNA (PAUPAR) was enriched 

in the CL subtype and has been involved in the regulation of the transcription factor 

PAX6 (Singer et al., 2019; K. W. Vance et al., 2014). Since PAX6 is part of the 

metagene signature of the CL subtype (Q. Wang, Hu, Hu, Sulman, et al., 2017), we 

identified PAUPAR as an interesting candidate to validate functionally in GICs. 

PAUPAR has been found to regulate the expression of multiple genes related to cell 

cycle and maintains a dedifferentiated state in neuroblastoma (K. W. Vance et al., 

2014). Additionally, PAUPAR has been involved in tumourigenesis in uveal 

melanoma (Ding et al., 2016) and can interact with the chromatin regulatory protein 

Kinesin-ii-Associated Protein 1 (KAP1) that regulates a set of target genes involved 

in neural cell differentiation (Pavlaki et al., 2018). 

Finally, ENSG00000235884.3 (also known as LINC00941) is enriched in the MES 

subtype, compared with the CL and PN subtype, and is co-expressed in the same 

network module as STAT3. LINC00941 is enriched in hepatocellular carcinoma 

(HCC) patients (X. Yan et al., 2017) and it correlates with poor survival in HCC and 

LUAD patients (L. Wang et al., 2019). Using GO functional enrichment analysis, 

LINC00941 was found to be involved in cell adhesion (H. Liu et al., 2019). 

Additionally, LINC00941 has been correlated with cell migration, cell proliferation, 

as well as processes associated with the immune system (Luo et al., 2018). 

Interestingly, Yang et al. showed that knockdown of LINC00941 significantly 



  Results 

67 
 

inhibited the expression of MES-related genes, whereas LINC00941 overexpression 

had the opposite effect (X. Yan et al., 2017). 

Among all four lncRNAs, we selected one lncRNA for each subtype. We chose 

LINC00941 and PROCAR because they were in the same network as STAT3 and 

C/EBPβ, respectively, two transcription factors that are linked to the acquisition of a 

MES phenotype in GBM. Notably, both selected lncRNAs had a kin value close to 

1, even higher than STAT3 (kin value = 0.27) or C/EBPβ’s (kin value = 0.37). 

Although LINC00941 and PROCAR were related to genes associated to MES 

subtype, LINC00941 was enriched in the MES subtype, whereas PROCAR was 

enriched in the PN subtype, suggesting that these lncRNAs might be meaningful in 

the MES and the PN subtype, respectively. We also selected PAUPAR, based on its 

enrichment in the CL subtype and its high kin value within its network. Importantly, 

PAUPAR has been involved in PAX6 regulation (K. W. Vance et al., 2014), a 

transcription factor that is a core gene signature in the CL subtype and suppressor of 

growth in GBM (Mayes et al., 2006; Zhou et al., 2005). 

 

4.1.2.1 Expression of candidate lncRNAs in two independent datasets 

We studied the expression of our candidate lncRNAs among GBM subtypes using 

two different datasets (GLIOCAT and TCGA dataset).  The TCGA dataset was used 

as an independent dataset to corroborate the expression of our candidate lncRNAs 

observed in our GLIOCAT dataset. As we expected, the same distribution of 

lncRNAs was observed in the TCGA dataset as in the GLIOCAT dataset (Figure 4.5). 

In both datasets, ENSG00000207955 (PROCAR) lncRNA was enriched in PN and 

G-CIMP+ subtypes, whereas ENSG00000261478.1 (RP11-429B14.4) was enriched 

specifically in G-CIMP+ subtype. ENSG00000235884 (LINC00941) was enriched in 

MES subtype. In the GLIOCAT dataset, ENSG00000281880 (PAUPAR) was 

enriched in both CL and MES subtypes, although more prominently in the CL 

subtype.  In the TCGA dataset, ENSG00000281880 (PAUPAR) was specifically 

enriched in CL-GBMs (Figure 4.5). 

 



Results           

68 
 

 

Figure 4.5: Heatmap of expression of the four candidate lncRNAs in the GLIOCAT (top) and the 

TCGA dataset (bottom). “SamR” analysis was been performed (FDR<5%) by R Studio Software. 

Clustering 3.0 was used to perform the clusters and JavaTreeView was used to visualize the heatmap. 

We observed the same distribution of lncRNA expression in the TCGA dataset as in the GLIOCAT 

dataset. PROCAR (ENSG00000207955) was enriched in PN and G-CIMP subtypes, whereas 

ENSG00000261478.1 (RP11-429B14.4) was enriched especially in G-CIMP+. LINC00941 

(ENSG00000235884) and PAUPAR (ENSG00000281880) were enriched in the MES and in the CL 

subtype, respectively. 
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These results validate our identified candidate lncRNAs in a larger collection of 

samples corroborating that they are specifically enriched in a certain GBM molecular 

subtype. These evidences suggest that these lncRNAs might have a role in the 

regulation of gene expression of GBM subtypes and might thus be involved in the 

transitions between subtypes. 

To carry out the functional analyses in GICs (next section), we finally selected three 

of the four candidate lncRNAs. We did not pursue the functional characterization of 

ENSG00000261478.1 (RP11-429B14.4), which is enriched in GCIMP+ GBMs, 

because we did not have any GIC cell line belonging to this subtype. This G-CIMP+-

enriched lncRNA merits a full functional characterization in the future. 

 

4.1.3 Functional analyses of the candidate lncRNAs in GICs 

To test the role of the candidate lncRNAs in the biology of GICs, we performed loss-

of-function studies by inducing shRNA-mediated knockdown of our candidate 

lncRNAs in different GIC cell lines. Then, we performed cell-based assays to 

compare cell function and phenotypes between lncRNA knockdown-GICs versus 

control cells and thereby identify the function of the candidate lncRNAs. We focused 

our loss-of-function studies on two different cell-based assays: analysis of transitions 

between GBM subtypes and self-renewal assays, since both cellular processes are 

involved in resistance to therapy. 

One of the mechanisms that confers resistance to therapy in GBM is the transition 

between subtypes, specifically MES differentiation (Bhat et al., 2013; Mao et al., 

2013; Moreno et al., 2017; Y. Piao et al., 2013). Many lncRNAs control gene 

expression and some of them are involved in the differentiation process of stem cells 

(Rizvi et al., 2017; Lei Zhang et al., 2019) Therefore, we hypothesized that lncRNAs 

may have a role in the transition between GBM subtypes. Therefore, a possible 

transition between subtypes was studied by analysing the expression of subtype-

specific markers in lncRNA knockdown-GICs by RT-qPCR (OLIG2 and SOX2 as 

PN markers, SOX9 and PAX6 as CL markers, SERPINE and CTGF as MES 

markers). Expression of the MES marker CD44 was also analysed by flow cytometry. 
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Another mechanism of resistance to therapy in GBM is the self-renewal capacity of 

GICs (Bao et al., 2006; J. Chen et al., 2012; Dean et al., 2005; G. Liu et al., 2006; A. 

Singh & Settleman, 2010; S. K. Singh et al., 2003). Self-renewal signature is 

associated with resistance to chemoradiotherapy in glioblastoma (Murat et al., 2008). 

Even if most of the cells in a tumour are destroyed, GICs may survive and regenerate 

the tumour by their self-renewal capacity (Bao et al., 2006). GICs might be in 

quiescent status during therapy and then, activate the proliferation and self-renewal 

process allowing growth glioblastoma (Steinbichler et al., 2018). Recent studies have 

observed that lncRNAs regulate gene expression during the differentiation and self-

renewal process (Pu et al., 2015; Feng et al., 2015; Liu et al., 2017; Wang X et al., 

2016). Therefore, we hypothesized that the candidate lncRNAs might regulate the 

self-renewal capacity of GICs, which might be a mechanism that confers resistance 

to therapy or allows the progression of GBMs (J. Chen et al., 2012; Dean et al., 2005; 

S. K. Singh et al., 2003). To test whether the self-renewal capacity of GICs was 

regulated by some of the candidate lncRNA, we analysed the self-renewal capacity 

of the lncRNA knockdown-GICs using the neurosphere formation assay. 

 

4.1.3.1 Generation of lncRNA knockdown-GICs 

First of all, we generated knockdown-GICs for each candidate lncRNA using short-

hairpin RNA (shRNA)-encoding lentiviruses, which allow stable integration into the 

host genome and long-term knockdown of the targeted gene (Figure 4.6). We 

purchased lentiviral plasmids encoding shRNAs against our candidate shRNAs 

(Table 4.2) from Sigma. Sigma shRNA plasmids contain bacterial (ampicillin) and 

mammalian (puromycin) antibiotic resistance genes for selection in either bacterial 

or mammalian cell lines (Figure 4.7). Then, these shRNA plasmids plus packaging 

plasmids were transfected to 293 cell lines to generate the lentiviral particles. Finally, 

the GICs were infected with the lentiviral particles to down-regulate the expression 

of candidate lncRNAs. 
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Figure 4.6:  Mechanism of shRNA induced gene silencing. Lentiviruses infect the GICs integrating 

the plasmid into DNA. After expression viral RNA in the nucleus, shRNAs are processed by Drosha 

and then exported by Exportin-5 (Exp5) to the cytoplasm, where they associate with Dicer, which 

removes the loop sequence, resulting into small RNA duplexes (siRNAs). SiRNAs are loaded into the 

RNA-induced silencing complex (RISC), which facilitates binding between one of the siRNA strands 

and protein-coding mRNAs that have nucleotide sequence complementary to the siRNA. Once 

siRNA/mRNA binding has occurred, and thus the target mRNA has been recognized, a nuclease in 

RISC degrades the mRNA, reducing the amount of mRNA that is available for translation and protein 

production. (Lord CJ, et al., 2009) (Adapted from O’Keefe, 2013) 
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Figure 4.7: MISSION shRNA pLKO.1-puro construct. PLKO.1-puro construct contains the shRNA 

sequence and ampicillin (ampR) and puromycin (puroR) antibiotic resistance genes for selection of 

inserts in either bacterial or mammalian cell lines. 

 

The shRNAs used to mediate the knockdown of our candidate lncRNAs were 

designed to target the most abundant transcript for each gene (Table 4.2). 

Additionally, we used three different shRNA constructs for each transcript to rule out 

possible off-target effects. To obtain knockdown of each of the following lncRNAs: 

LINC00941 in MES-GICs, PROCAR in PN-GICs and PAUPAR in CL-GICs (Table 

4.3). We used three different plasmids with different shRNA sequences for each 

lncRNA, and two cell lines of each subtype, to avoid the off-target effects and to 

increase the specificity of the results. 

After lentiviral infection, GICs were selected by 2·10-6 g/mL of puromycin for 5 

days to select for GICs that had integrated the viral constructs. However, not all of 

the cells survived to lentivirus infection and puromycin selection. When shRNAs-

GICs died, a second infection was performed to get the cell line, but in some case, it 
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was not possible. ShPAUPAR- GSC268 did not survive to the second lentivirus 

infection, the same as shPROCAR.2-PN-GICs. In summary, we finally obtained two 

MES-GIC lines with three different shlncRNA plasmids, one CL-GIC line with three 

shlncRNA plasmids and two PN-GICs with two different shlncRNA plasmids (Table 

4.3). 
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Table 4.3: GICs and shRNAs used to generate the lncRNA knockdown-GICs. The first column of 

the table shows the infected GICs and the subtype to which they belong. The second column indicates 

the shRNA used. The third column shows the cells that survived (✔) or did not survive (✖) to the 

lentiviral infection and the name that was given (sh-lncRNA.version of plasmid used-GIC). 

GIC (Subtype) shRNA Modified GIC  ✔/ ✖ 

GIC2 (PN) shPROCAR 

shPROCAR.1-GIC2  ✔ 

shPROCAR.2-GIC2  ✖ 

shPROCAR.3-GIC2  ✔ 

GIC7 (PN) shPROCAR 

shPROCAR.1-GIC7  ✔ 

shPROCAR.2-GIC7  ✖ 

shPROCAR.3-GIC7  ✔ 

GSC6-27 (CL) shPAUPAR 

shPAUPAR.1-GSC6-27  ✔ 

shPAUPAR.2-GSC6-27  ✔ 

shPAUPAR.3-GSC6-27  ✔ 

GSC268 (CL) shPAUPAR 

shPAUPAR.1-GSC268  ✖ 

shPAUPAR.2-GSC268  ✖ 

shPAUPAR.3-GSC268  ✖ 

PG88 (MES) shLINC00941 

shLINC00941.1-PG88  ✔ 

shLINC00941.2-PG88  ✔ 

shLINC00941.3-PG88  ✔ 

PG90S (MES) shLINC00941 

shLINC00941.1-PG90S  ✔ 

shLINC00941.2-PG90S  ✔ 

shLINC00941.3-PG90S  ✔ 



  Results 

75 
 

To confirm knockdown of lncRNAs in GICs, RT-qPCR of the targeted lncRNA was 

performed after puromycin selection of infected GICs. 

The effective knockdown of LINC00941 was achieved by the three shRNA plasmids 

in PG88 (Figure 4.8A, left panel), with a significant expression decreased. In contrast, 

in the case of PG90S, we did not observe a statistically significant knockdown of 

LINC00941 with respect to control cells (Figure 4.8A, right panel). 

On the same way, the RNA levels of PAUPAR were significantly decreased in 

shPAUPAR-GSC6-27 (CL-GICs) obtained by the three shRNA plasmids compared 

with control GSC6-27 (Figure 4.8B). Unfortunately, the second CL-GIC cell line 

(GSC268) did not survive any of the lentiviral infections and we were not able to 

obtain PAUPAR knockdown-GICs for this cell line. 

Finally, we analysed the levels of PROCAR lncRNA in shPROCAR-PN-GICs. 

Surprisingly, even though the transduced GICs were resistant to puromycin, the 

expected decrease in PROCAR lncRNA expression was observed neither in GIC2 

nor in GIC7 (Figure 4.8C). We did not observe significant differences between the 

infected shPROCAR-PN-GICs compared to its controls. Therefore, we didn't proceed 

to perform the functional analyses with these cells. 



Results           

76 
 

 

Figure 4.8: lncRNA expression levels analysed by RT-qPCR. (A) LINC00941 lncRNA expression 

was analysed in PG88 (left panel) and in PG90S (right panel). Only PG88-MES-GICs infected with 

shLINC00941 had a significant expression of LINC00941 lncRNA decreased than the control. (B) 

PAUPAR lncRNA expression analysed in CL-GICs. Loss of PAUPAR RNA expression was observed 

in all shPAUPAR-GSC6-27 compared with the control. (C) PROCAR lncRNA expression was 

determined in PN-GICs, GIC2 and GIC7. Neither shPROCAR-GIC2 (left panel) nor shPROCAR-

GIC7 (right panel) had lower expression of PROCAR than its controls. Data are represented as mean 

± SEM of at least three independent experiments (ANOVA, *p<0.05, **p<0.01). 
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In summary, we succeeded at generating MES-GICs with knockdown of the MES 

candidate lncRNA and CL-GICs with knockdown of the CL candidate lncRNA. We 

had never before tried shRNA-mediated knockdown of lncRNAs in our hands. Our 

results indicate that it is possible to efficiently generate a knockdown of lncRNAs by 

short-hairpin RNAs in GICs. Some lncRNAs are difficult to knockdown due to their 

localization (nuclear or cytoplasmic or dual), lncRNA transcript (in)accessibility to 

enzymes and their transcriptional landscape, among others (Vickers & Crooke, 2015; 

Zeng & Cullen, 2002). This might have been the case with PROCAR. 

 

4.1.3.2 Role of LINC00941 in GICs 

LINC00941, which we found enriched in MES-GBMs, correlates with MES-related 

genes (X. Yan et al., 2017) and has been involved in cell adhesion (H. Liu et al., 

2019). Therefore, LINC00941 might be involved in maintaining a MES phenotype in 

GICs. To test this hypothesis, we studied the expression of different GBM subtype 

markers in LINC00941 knockdown-GICs by RT-qPCR (OLIG2 and SOX2 as PN 

markers, SOX9 and PAX6 as CL markers, SERPINE and CTGF as MES markers) or 

flow cytometry (CD44 as MES marker). 

The flow cytometry analysis showed that the percentage of CD44+ cells was not 

altered in shLINC00941-MES-GICs compared with control cells (Figure 4.9), neither 

in PG88 nor in PG90S GIC cell lines. These results suggest that knockdown of 

LINC00941 doesn't promote loss of a MES phenotype in these GICs. 
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Figure 4.9: Flow cytometry performed to study the possible transition between GBM subtypes losing 

LINC00941 lncRNA expression in MES-GICs. Histogram with the results of the CD44 protein 

expression analysed by flow cytometry in PG88 (left panel) and PG90S (right panel). No significant 

difference was observed between the percentage of CD44+cells in shLINC00941-MES-GICs versus 

control-MES-GICs. Data are represented as mean ± SEM of at least three independent experiments 

(ANOVA, *p<0.05, **p<0.01, ***p<0.001). 

 

Regarding the subtype marker analysis by RT-qPCR, we observed slightly different 

tendencies between shLINC00941.1-PG88 and shLINC00941.3-PG88. 

shLINC00941.1-PG88 displayed increased CTGF expression with respect to control 

cells. In contrast, shLINC00941.3-PG88 showed a significant increase in the mRNA 

expression of SOX2, whereas they displayed a significant decrease in the expression 

of PAX6 and SERPINE compared with control and shLINC00941.1-PG88. Overall, 

from these results, we cannot conclude that there is a significant change in any 

subtype marker expression upon knockdown of LINC00941 (Figure 4.10). Taken 

together, our results suggest that LINC00941 knockdown-MES-GICs maintain their 

MES phenotype and that there are no GBM subtype transitions upon knockdown of 

LINC00941. 
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Figure 4.10: RT-qPCR performed to study the possible transition between GBM subtypes upon 

knockdown of LINC00941. mRNA expression of different GBM subtype markers were analysed in 

shLINC00941.1-PG88 (shRNA1), shLINC00941.3-PG88 (shRNA3) and the control-GICs (CTRL). PN 

markers: OLIG2 and SOX2; CL markers: SOX9 and PAX6; MES markers: SERPINE and CTGF. 

Expression levels of LINC00941 lncRNA are also shown. Data are represented as mean ± SEM of at 

least three independent experiments (ANOVA, *p<0.05, **p<0.01, ***p<0.001). 

 

Next, to test whether the self-renewal capacity of GICs was regulated by LINC00941, 

we performed a neurosphere formation assay in LINC00941 knockdown-MES-GICs 

vs control cells. To do so, 50 cells/per well were seeded in a 96MW plate (48 

wells/per condition). The number of primary neurospheres for each well was obtained 

by counting under the microscope the total number of newly formed neurospheres 

after 7 days in culture (Figure 4.11). 
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Figure 4.11: Experimental design for the neurosphere formation assay. 50 cells were seed in each 

well, in a 96-multiwell plate, and incubated for 7 days. After 7 days, the newly formed neurospheres 

were counted under the microscope to obtain the number of primary neurospheres in each condition. 

 

We observed fewer neurospheres in LINC00941 knockdown-MES-GICs than in 

control-MES-GICs, in both MES-GIC cell lines (PG88 and PG90S). The number of 

primary neurospheres was significantly decreased in the three LINC00941 

knockdown-GICs in the PG90S GIC cell line compared to control cells (Figure 4.12, 

right panel). In the case of PG88, there was a significant reduction in the number of 

neurospheres in two of the LINC00941 knockdown-GICs, while shLINC00941.2-

PG88 showed a decreasing tendency albeit without statistical significance (Figure 

4.12, left panel). 
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 Figure 4.12: Self-renewal assay of LINC00941 knockdown-MES-GICs. The number of primary 

neurospheres (Nsph) in shLINC00941-PG88 (left panel) and shLINC00941-PG90S (right panel). 

Knockdown of LINC00941triggers a decrease in the number of primary neurospheres in both MES-

GICs. The neurospheres were counted and normalized to the number of cells seeded. Data are 

represented as mean ± SEM of four independent experiments (ANOVA, *p<0.05, **p<0.01). 

 

Taken together, our results show that LINC00941 knockdown in MES-GICs reduces 

their capacity to form neurospheres, without affecting their MES phenotype. 

Therefore, LINC00941 might promote the self-renewal capacity of MES-GICs. 

 

4.1.3.3 Role of PAUPAR lncRNA in GICs 

PAUPAR is a lncRNA that we found enriched in the CL-GBM subtype and that 

regulates the expression of the transcription factor PAX6 (Singer et al., 2019; K. W. 

Vance et al., 2014). PAX6 belongs to the core gene signature of the CL-GBM subtype 

(Q. Wang, Hu, Hu, Sulman, et al., 2017), and has been shown to suppress tumour 

growth in GBM (Mayes et al., 2006; Zhou et al., 2005). PAX6 has a pivotal role in 

forebrain development, where it is critical for the establishment of the pallial–

subpallial boundary and it controls brain progenitor proliferation. Furthermore, 

PAUPAR has been involved in the regulation of cell cycle-related genes (Pavlaki et 

al., 2018), suppression of tumourigenesis (Ding et al., 2016) and neural cell 

differentiation (Pavlaki et al., 2018). Therefore, we hypothesized that PAUPAR 

might be regulating the expression of classical-subtype genes and/or regulating the 
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self-renewal capacity of GICs. 

To study whether PAUPAR is involved in the establishment of the CL-subtype and 

whether its knockdown in GICs promotes any subtype shift, we analysed CD44 

protein expression by flow cytometry in shPAUPAR-CL-GICs (Figure 4.13A). CD44 

levels were not significantly altered upon PAUPAR knockdown. We also analysed 

by RT-qPCR the expression of several GBM subtype markers: OLIG2 and SOX2 as 

PN markers, SOX9 and PAX6 as CL markers and SERPINE and CTGF as MES 

markers (Figure 4.13B). The expression of OLIG2, SOX2 and PAX6 was increased 

by the three different PAUPAR shRNAs tested with respect to the control. However, 

only two shPAUPAR-GICs increased significantly the expression of OLIG2 and 

PAX6 mRNA. The rest of subtype markers analysed were not consistently altered. 

Taken together, these results show that knockdown of PAUPAR is not promoting any 

GBM subtype shift. 
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Figure 4.13: Study the expression of GBM subtype markers in shPAUPAR-GSC6-27. A) Percentage 

of the CD44 positive cells based on protein expression analysed by flow cytometry of GSC6-27 control 

and shPAUPAR-GSC6-27. There were no significant differences in the percentage of CD44+ cells 

between any shPAUPAR-GSC6-27 and the control-GSC6-27. B) RT-qPCR was performed to study the 

mRNA expression of different GBM subtype’s markers and PAUPAR. OLIG2 and SOX2 were the PN 

markers, SOX9 and PAX6 were the CL markers and SERPINE and CTGF were the MES markers used 

in the RT-qPCR. Data are represented as mean ± SEM of at least three independent experiments 

(ANOVA, *p<0.05, **p<0.01, ***p<0.001). 
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Next, we set out to test whether PAUPAR regulates the self-renewal capacity of CL-

GICs. To that end, we performed a neurosphere formation assay in shPAUPAR-

GSC6-27 versus CTRL-GSC6-27. Briefly, 50 cells/per well were seeded in a 96MW 

plate (12 wells/per condition) and the total number of primary neurospheres for each 

well was counted under the microscope after 7 days in culture. Additionally, 

secondary neurospheres were also analysed. The secondary neurospheres validate the 

capacity of GICs within a primary neurosphere to form a new neurosphere, which is 

an indirect measure of their self-renewal capacity. To do that, the primary 

neurospheres formed in each well were collected, disaggregated mechanically into 

single cells and 50 cells/per well were re-seeded into another plate. Then, secondary 

neurospheres were manually counted under the microscope after 7 more days in 

culture (Figure 4.14). 

 

 

Figure 4.14:  Experimental design for the neurosphere formation assay in shPAUPAR-CL-GICs. 

50 cells were seed in each well, in a 96-multiwell plate, and incubate for 7 days in the incubator. After 

7 days, the neurospheres (Npsh) were counted under the microscope to obtain the number of primary 
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neurospheres in each condition. Next, the GICs were collected, disaggregated and re-seed in a new 

96-multiwell plate (50 cells/per well). After 7 days in the incubator, the new neurospheres were 

counted to obtain the number of secondary neurospheres. 

 

A significant decrease in the number of primary and secondary neurospheres was 

observed with the three shRNA constructs against PAUPAR in GSC6-27 

(shPAUPAR.1-GSC6-27, shPAUPAR.2-GSC6-27 and shPAUPAR.3-GSC6-27) 

with respect to control cells (Figure 4.15). We initially observed a statistically 

significant decrease in the number of primary neurospheres formed in the three 

PAUPAR knockdown-CL-GICs with respect to the control. The secondary 

neurospheres were analysed to corroborate the difference in self-renewal capacity of 

PAUPAR knockdown-CL-GICs obtained. The effect of PAUPAR knockdown on 

secondary neurospheres was even more significant (p-values <0.01) in all three 

shPAUPAR-GSC6-27. Our results suggest that PAUPAR promotes the self-renewal 

capacity of CL-GICs. 

 

  

Figure 4.15: Self-renewal assay of shPAUPAR-GSC6-27. Neurosphere formation assay (primary 

neurospheres (Nsph) (left panel) and secondary neurospheres (Nsph) (right panel)). CL-GICs 

decrease the number of primary and secondary neurospheres upon knockdown of PAUPAR lncRNA. 

The neurospheres were counted and normalized to the number of cells seeded. Data are represented 

as mean ± SEM of five independent experiments (ANOVA, *p<0.05, **p<0.01, ***p<0.001). 
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Taken together, our results suggest that LINC00941 and PAUPAR lncRNA might be 

promoting the self-renewal capacity of GICs, but might not regulate the transition 

between GBM subtypes. The self-renewal capacity of GICs is prominent to initiate 

and propagate the tumour. Therefore, these lncRNAs might be involved in the relapse 

of GBM by maintaining the self-renewal capacity of GICs within tumour allowing 

the progression or the acquisition of resistance to therapy in GBMs. These lncRNAs 

may be a new target to develop new treatments to inhibit the self-renewal capacity of 

GICs and avoid the relapse and progression of GBM. More importantly, this 

inhibition would not promote any transition of GBM, avoiding the resistance to 

therapy acquired by mesenchymal differentiation. 

 

4.1.4 Clustering analysis of GBM specimens according to lncRNA 
expression  

Our WGCNA analyses of the RNAseq dataset gave us insights about novel regulators 

of self-renewal in different molecular subtype GICs. However, these analyses were 

based on the previous molecular classification according to protein-coding gene 

expression. Next, we set out to analyze in an unsupervised manner, whether lncRNA 

expression patterns would be able to sub-classify GBM tumour specimens into novel 

molecular subtypes, which might hopefully better correlate with clinical data, such 

as patient survival. 

To this end, we performed gene clustering of 118 G-CIMP-negative GBM specimens 

of the GLIOCAT dataset according to solely to the expression of lncRNAs instead of 

protein-coding genes. From the 124 specimens of the dataset for which we had good 

quality RNAseq data, we excluded the 6 G-CIMP+ samples, which are known to have 

a better prognosis and might introduce a bias in our survival correlation assays. To 

cluster the samples, we used non-negative matrix factorization (NMF) to cluster the 

samples (introduced by Paatero and Tapper in 1994 (Paatero & Tapper, 1994) , and 

popularized by Lee and Seung in 1999 (Daniel D. Lee & H. Sebastian Seung, 1999)). 

NMF allows the analysis of high dimensional data and automatically extracts sparse 

and meaningful features from a set of nonnegative data vectors. NMF has been 

successfully applied for clustering gene expression and DNA methylation data and 

finding the genes most representative of the clusters (Devarajan, 2008; Hyunsoo Kim, 
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2007; Taslaman & Nilsson, 2012). NMF techniques can identify sources of variation 

such as cell types, disease subtypes, population stratification, tissue composition, and 

tumour clonality (Stein-O’Brien et al., 2017). 

Brunet et al. showed that NMF classifies tumours (e.g. central nervous system (CNS) 

tumours) better than hierarchical clustering (HC) and self-organizing maps (SOM) 

method (Brunet, Tamayo, Golub, & Mesirov, 2004). Regarding results in CNS 

tumours clustering, HC does not give a clear four-class of the data 

(medulloblastomas, gliomas, rhabdoid, and normal), as it was expected. HC split 

samples into two or three classes, where the normal and gliomas samples are on the 

same branch in both rankings. NMF, together with consensus clustering, gave strong 

evidence for four classes in CNS tumours data. Thus, the NMF algorithm gives a 

more accurate clustering of this data set and appears to be more stable than the HC. 

Although NMF is not hierarchical per se, Brunet et al. showed that as the rank k 

increases the method uncovers substructures, whose robustness can be evaluated by 

a correlation coefficient. Thus, NMF can reveal hierarchical structure when it exists 

but does not force such structure on the data as HC does (Brunet et al., 2004). 

In order to know how many groups of GBM are found according to the expression of 

lncRNAs, we forced the algorithm to cluster the samples from 2 to 7 groups (rank=2, 

rank=3, rank=4, rank=5, rank=6, rank=7) (Figure 4.16 and Figure 4.17). Genes were 

ranked according to their maximum absolute deviation (MAD) values from high to 

low in the expression matrix and the cophenetic correlation was calculated. 

Cophenetic correlation is a measure of how faithfully a dendrogram preserves the 

pairwise distances between the original unmodeled data points (Sokal et al., 1962). 

When the GBMs were clustered into two subtypes, we received the highest average 

clustering cophenetic scores resulting in the identification of two distinct lncRNA-

based GBM subtypes amongst the 118 G-CIMP-negative specimens (Figure 4.16). 
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Figure 4.16: Cophenetic correlation coefficient for clusters k = 2 to k = 7. The matrix (top) indicates 

the cophenetic scores of genes ranked from 2 to 7 and MAD of 200, 400, 600, 800, 1000, 1200, 1400, 

1600, 1800 and 2000. The plot (bottom) demonstrates that maximum cophenetic correlation coefficient 

occurred for cluster k = 2 and MAD 400. 

 

In addition, the silhouette value was obtained to measure how similar an object is to 

its cluster (cohesion), compared to other clusters (separation). Silhouette values range 

from −1 to +1, where a high value indicates that the object is well matched to its 

cluster and poorly matched to neighboring clusters. The samples were ranked n times 

  K=2 K=3 K=4 K=5 K=6 K=7 
MAD200 0,983 0,970 0,912 0,979 0,925 0,938 
MAD400 0,996 0,972 0,943 0,895 0,937 0,943 
MAD600 0,986 0,964 0,971 0,950 0,908 0,887 
MAD800 0,993 0,956 0,954 0,940 0,927 0,849 
MAD1000 0,992 0,933 0,983 0,952 0,938 0,870 
MAD1200 0,981 0,883 0,958 0,955 0,931 0,916 
MAD1400 0,987 0,924 0,959 0,951 0,958 0,949 
MAD1600 0,994 0,928 0,939 0,940 0,947 0,943 
MAD1800 0,976 0,935 0,943 0,953 0,943 0,952 
MAD2000 0,982 0,905 0,881 0,932 0,955 0,940 
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to get the maximum number of groups without losing statistical value (silhouette 

value) (Figure 4.17). 

 

 

Figure 4.17: Clusters achieved by NMF clustering using lncRNA expression data from 118 G-

CIMP-negative GBM specimens (GLIOCAT dataset). Heatmaps obtained by NMF clustering of 

GBM samples, according to the expression of 400 most variable lncRNAs and ranked from 2 to 4. At 

the top of the heatmaps, the basis and consensus methods that were used to classify the patients into 

molecular subtypes and the silhouette values are shown. 

 

Among the 400 lncRNAs that separate the GBM patients into two subtypes, we found 

two of three candidate lncRNAs (PROCAR, aka MIR219A2, and LINC00941). This 

indicates that PROCAR and LINC00941 might be important for cluster 1 and cluster 

2, respectively (Figure 4.18), and might be involved in the regulation of gene 

expression of each cluster. Interestingly, PROCAR is present in the signature of 

cluster 1 that correlates with the PN subtype and LINC00941 is found in the signature 

of cluster 2 that is enriched in MES subtype (Figure 4.5). 
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Figure 4.18: Clusters of patients and lncRNA of the basis matrix obtained by NMF. GBM patients 

are separated into cluster 1 (light lilac) and cluster 2 (pink) according to the 400 lncRNAs expression. 

Each cluster has associated specifics lncRNAs, among them we found two of three candidate lncRNAs 

(LINC00941 and PROCAR (MIR219A2), indicated with *). 

 

According to the SVM classification, patients classified as PN subtype are mainly 

present in lncRNA-based cluster 1 (96,67%), whereas MES subtype is principally in 

cluster 2 (80.65%). CL subtype specimens are found interspersed between the two 
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clusters (35.09% in cluster 1 and 64.91% in cluster 2), although slightly enriched in 

cluster 2. This suggests that the lncRNA-based clustering is able to separate notably 

the PN subtype from the MES subtype, whereas CL subtype is in both clusters (Figure 

4.19). Taken together, our results show that lncRNA expression clearly discriminates 

between two different groups of GBMs and that this new classification might have 

some correlation with the PN and MES molecular subtypes. 

 

 

Figure 4.19: Heatmap of 118 G-CIMP-negative GBM according to the expression of 400 lncRNA 

by NMF clustering analysis. At the top of the heatmap, it is shown GBM specimen classification into 

PN, CL and MES subtypes using SVM algorithm. LncRNA-based Clusters 1 is enriched in PN GBMs, 

whereas LncRNA-based Cluster 2 is enriched in MES GBMs. CL GBMs are found in both clusters. 

Below the molecular subtype classification, it is shown the basis method that ranks the samples into 

the two clusters, as well as the silhouette value of each sample in this clustering analysis (rank=2) 
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Next, we studied if these two lncRNA-based signatures might be able to separate the 

patients according to survival. To this end, Kaplan-Meier survival curves were 

constructed to evaluate the differences in the overall survival time of lncRNA-based 

clusters 1 and 2. Unfortunately, we did not observe differences in the survival 

probability between cluster 1 versus cluster 2 (Figure 4.20). 

 

 

Figure 4.20: Kaplan-Meier estimates of the survival probability of GBM patients using the two-

lncRNA signature. The Kaplan-Meier plots were used to visualize the survival probabilities 

comparing cluster 1 versus cluster 2, obtained by lncRNA expression. There are no differences 

between cluster 1 and cluster 2 regarding survival probability. The differences between the two curves 

were determined by the two-side log-rank test. 
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In conclusion, GBM patients may be classified based on lncRNA expression into two 

groups, suggesting that there are other methods to classify GBMs apart from the 

mRNA-based classification into PN, CL and MES subtypes. New classifications 

might better correlate with clinical features, although our classification based on 

lncRNAs does not separate the patients regarding survival probability. However, we 

cannot discard that our lncRNAs signatures may not correlate with other clinical 

features. Further analysis should be done to study if the new classification by 

lncRNAs correlates with progression-free survival or resistance to therapy.   
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4.2 GPR56 IS INVOLVED IN THE MESENCHYMAL 

DIFFERENTIATION OF GICS 

Previous results obtained in our laboratory suggested that GPR56 regulates both MES 

differentiation and radioresistance of GICs. Loss-of-function studies using shRNA-

mediated knockdown of GPR56 showed that MES differentiation is stimulated upon 

downregulation of the receptor in PN-GICs. However, we only had obtained results 

from one single GPR56 shRNA, so we could not strictly rule out that the observed 

phenotype was not due to an off-target effect. To corroborate our hypothesis about 

the role of GPR56 in MES differentiation, we performed additional loss-of-function 

experiments using an alternative method to shRNA-mediated knockdown: 

CRISPR/Cas9-mediated knockout (KO). Furthermore, to broaden the role of GPR56 

in regulating MES differentiation to other molecular subtypes besides PN-GICs, we 

set out to study the role of GPR56 in CL subtype-GICs. 

 

4.2.1 GPR56 controls mesenchymal differentiation of PN-GICs 

4.2.1.1 Generation of GPR56-KO GICs 

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and 

CRISPR-associated protein (Cas9) system is an adaptive immune response defence 

mechanism used by archaea and bacteria for the degradation of foreign genetic 

material (Hsu, Lander, & Zhang, 2014; Van Der Oost, Westra, Jackson, & 

Wiedenheft, 2014). This mechanism can be repurposed for other functions, including 

genomic engineering for mammalian systems, such as gene knockout (KO) (Cong et 

al., 2013; Ran et al., 2013; Shalem et al., 2014). 

CRISPR/Cas9 KO Plasmid products enable the identification and cleavage of specific 

genes by utilizing guide RNA (gRNA) sequences. The RNA-guided CRISPR/Cas9 

consists of a small guide RNA (sgRNA) in complex with Cas9 nuclease and whose 

pairing with the target DNA induces a single Cas9-dependent double-strand breaks 

(DSBs) (Figure 4.21). 

DNA containing double-strand breaks (DSB) created by the CRISPR/Cas9 system 

can be repaired by either the non-homologous end-joining (NHEJ) or the homology-
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directed repair (HDR) pathway. The NHEJ repair pathway introduces non-specific 

insertions or deletions at the cleavage site, whereas the HDR pathway allows for 

precise gene editing at the DSB site, in the presence of a donor-corrected HDR 

template (Ran et al., 2013; Shalem et al., 2014). Target-specific HDR Plasmids 

provide a DNA repair template for a DSB and, when co-transfected with 

CRISPR/Cas9 KO Plasmids, enable the insertion of specific selection markers where 

Cas9-induced DNA cleavage has occurred (Figure 4.21). 

 

 

 

Figure 4.21: Gene editing mechanism of CRISPR/Cas9. Genome editing nucleases (Cas9 nuclease) 

induce double-strand breaks (DSBs) at targeted sites, guided by small guide RNA (sgRNA).  DSBs can 

be repaired by non-homologous end-joining NHEJ or, in the presence of a donor template, by 

homology-directed repair (HDR). In NHEJ, protein factors re-ligate the broken DNA strand either 

directly or by including nucleotide insertions or deletions (indels). This process occurs without a 

homologous DNA template, regularly leading to mutations and deletions in the repaired strand. In the 

presence of a donor-corrected HDR template, HDR gene correction or gene addition induces a DSB 

at the desired locus. (Adapted from H. Li et al., 2020) 
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To obtain GPR56 knockout in PN-GICs, we used CRISPR/Cas9-mediated gene 

editing in GIC7 (PN-GICs). GPR56 CRISPR/Cas9 KO Plasmid is designed to disrupt 

gene expression by causing a DSB in a 5' constitutive exon within the human GPR56 

gene. Briefly, a pool of three GPR56 KO plasmids (sc-406370; Santa Cruz 

Biotechnology) (Figure 4.22A), each of which encode for a GPR56-specific 20 nt 

gRNA together with the Cas9 ribonuclease, were co-electroporated along with a 

GPR56-HDR plasmid, which encodes for a puromycin resistance gene (Figure 

1.22B) for drug selection of cells containing a successful CRISPR/Cas9 double-

strand breaks followed by homologous recombination (sc-406370-HDR; Santa Cruz 

Biotechnology). The HDR plasmid also incorporates Red Fluorescent Protein (RFP) 

to visually confirm cells that have been efficiently recombined (Figure 4.22B). 
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Figure 4.22: Plasmids used in CRISPR/Cas9-mediated gene editing. (A) GPR56 CRISPR/Cas9 KO 

Plasmid human (human) designed to disrupt gene expression by causing a DSB in the GPR56 gene. 

(B) Target-specific HDR plasmid with Red Fluorescent Protein (RFP) sequence and puromycine 

resistance gene. 
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We co-electroporated the CRISPR/Cas9 KO plasmids together with the HDR plasmid 

to obtain cells with DSB in GPR56 gene and expression of puromycin resistance gene 

to a posterior selection of KO-GICs by puromycin (Figure 4.23). Different 

concentrations of plasmids were tested to find the best combination in terms of both 

efficiency and toxicity. After electroporation in cell suspension, GICs were seeded at 

low density to eventually isolate individual cells to generate cell lines from clones. 
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Figure 4.23: CRISPR/Cas9-mediated gene editing process by co-electroporation of CRISPR/Cas9 

and HDR plasmids. DNA containing double-strand breaks (DSB) created by the CRISPR/Cas9 system 

can be repaired by HDR pathway. HDR Plasmids provide a DNA repair template for a DSB enabling 

the insertion of specific puromycin selection gene where Cas9-induced DNA cleavage has occurred. 
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We tested three different combinations of plasmid DNA for the electroporations: 

4·10-6g (1·10-6g of HDR single plasmid + 3·10-6g CRISPR/Cas9 KO Plasmid), 6·10-

6g (3·10-6g of HDR pool-plasmid + 3·10-6g of CRISPR/Cas9 KO Plasmid) and 6·10-

6g total DNA(1,5·10-6g HDR single plasmid + 4,5·10-6g CRISPR/Cas9 KO Plasmid). 

We found that all of these combinations were within the correct range because all 

samples were successfully electroporated and the viability was very similar between 

all electroporated cells. 

We used electroporated GIC7 (PN-GICs) without any plasmid as a negative control. 

These cells suffered the same process than the CRISPR/Cas9-HDR-electroporated 

GIC7 with the difference that we did not add any plasmid in the electroporation 

process. We seeded two wells with control GIC7, one well was used as a control of 

electroporation (Parental-GICs) and the other one was used as a puromycin control, 

which was grown with puromycin in the medium during the selection process. 

The sequence of RFP in the HDR plasmid allowed us to visually confirm that 

electroporation was successful, by observing RFP+ cells under the fluorescence 

microscope. Next, cells were selected using 2·10-6 g/mL of puromycin for 5 days to 

select for drug-resistant GPR56-KO cells. 

After puromycin selection, individual cells were collected to generate cell lines of 

clones. We isolated and re-seeded 12 cells into 12 different wells and we continued 

the puromycin selection. Some GPR56-KO-GICs did not survive to puromycin 

selection, such as the KO1, KO2 and KO9 cells. Therefore, we continued the 

experiments with the other GPR56-KO-GIC cell lines (KO3, KO4, KO5, KO6, KO7, 

KO8, KO10, KO11 and KO12) (Figure 4.24). 
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Figure 4.24: Experimental design to generation of GPR56-KO GICs. GIC7s were electroporated 

with different concentration of plasmids and seeded in 12MW plate. "A" well was electroporated with 

4·10-6g (1·10-6g of HDR single plasmid + 3·10-6g CRISPR/Cas9 KO Plasmid) of DNA, "B" well was 

electroporated 6·10-6g (3·10-6g of HDR pool-plasmid + 3·10-6g of CRISPR/Cas9 KO Plasmid) of DNA 

and "C" well was electroporated 6·10-6g (1,5·10-6g HDR single plasmid + 4,5·10-6g CRISPR/Cas9 KO 

Plasmid) of DNA. The Red protein fluorescence expression was checked by fluorescence microscopy 

to confirm the successful electroporation. Next, cells were selected by puromycin and the alive cells 

were isolated and re-seeded to growth and generate cell lines from clones. The selection by puromycin 

was continued a few days more. Three of twelve GPR56-KO-GICs did not survive to the puromycin 

selection (KO1, KO2 and KO9). The control of electroporation was the GIC7 seeded after 

electroporation without plasmids and grew without puromycin (CTRL). The control of puromycin was 

the GIC7 electroporated without plasmids and grew with puromycin (Puro CTRL). 

 

After puromycin selection and expansion of the CRISPR/Cas9-edited cell clones, 

GPR56 mRNA levels were studied by RT-qPCR. Some GPR56-KO-GIC clones, 

specifically the KO5 and KO8 cell lines, had lower expression of GPR56 mRNA than 

Parental cells (control). In contrast, other GPR56-KO-GICs, such as KO4, did not 

have lower GPR56-mRNA levels (Figure 4.25). 
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Figure 4.25: RT-qPCR of Parental cells (control) and GPR56-KO GICs determining GPR56 mRNA 

levels. GPR56 mRNA expression was lower in GPR56-KO5-GICs (KO5) cells and in GPR56-KO8-

GICs (KO8). In contrast, GPR56-KO4-GICs (KO4) expressed similar levels of GPR56 than control.  

 

These results suggest that at least two cell lines with lower mRNA expression of 

GPR56 were obtained by CRISPR/Cas9 gene editing. However, a complete GPR56 

knockout was not obtained in any of the tested GICs, because we observed residual 

mRNA expression of GPR56 in all GICs. 

Next, GPR56 protein levels were determined by western blotting analysis to study 

whether the decrease in GPR56 mRNA expression in GPR56-KO-GICs (KO5 and 

KO8) would also translate into lower GPR56 protein levels. As expected, both KO5 

and KO8 expressed lower levels of GPR56 protein than control cells (Figure 1.26B). 

Additionally, GPR56 protein expression was also determined in the other GPR56-

KO cell lines. In almost all GPR56-KO-GICs, with the exception of KO11, we 

observed very low levels of GFPR56 protein, which were nearly undetectable in the 

case of KO5 and KO8 (Figure 4.26). 
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Figure 4.26: Western blot of Parental cells (control) and GPR56-KO-GICs determining GPR56 

expression. GPR56-KO-GICs (KO3, KO4, KO5, KO8, KO10 and KO12) had decreased GPR56 

protein expression. However, KO11 had similar protein expression of GPR56 than the Parental GICs. 

GAPDH was used as a loading control. (* unspecific band) 

 

We observed a residual signal in the immunoblot in the expected molecular weight 

of GPR56 in GPR56-KO-GICs (KO3, KO4, KO5, KO8, KO10 and KO12) (Figure 

1.26). This residual signal might be due to a GPR56 heterozygous deletion (deleted 

only one of the two GPR56 alleles). Nevertheless, the difference in GPR56 protein 

levels between GPR56-KO-GICs (KO3, KO4, KO5, KO8, KO10 and KO12) and 

Parental cells was highly significant (Figure 4.26). Therefore, even though we may 

not have obtained full GPR56 KO-cells, we proceeded to characterize the GPR56-

KO-PN-GICs to study the effect of loss of GPR56 expression in PN-GICs. 

* 

* 

* 
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On the other hand, GPR56-KO6-GIC (KO6) and GPR56-KO7-GIC (KO7) also 

expressed lower levels of GPR56 protein compared with the Parental GICs (data not 

shown). However, the residual signal in the GPR56’s weight was more evident. 

Therefore, we can conclude that we have been able to generate GPR56 KO-GICs 

using CRISPR/Cas9 gene editing, at least for one of the GPR56 alleles. Nevertheless, 

the system used was not 100% efficient, since one of the GPR56 KO-cell lines 

(KO11) had similar levels of GPR56 than control cells (Figure 4.26C) and a residual 

expression of GPR56 was observed in the majority of GPR56 KO-GICs, regarding 

both RT-qPCR and Western Blotting results. Although a full KO of GPR56 was not 

obtained, we kept naming these cell lines GPR56 KO-GICs, to differentiate them 

from the GPR56 knockdown-GICs. According to our results, we decided to further 

characterize KO5- and KO8-GICs, which had the lowest expression of GPR56, both 

at the mRNA and protein level. 

 

4.2.1.2 Loss of GPR56 expression promotes MES differentiation in GICs 

To study the role of GPR56 in mesenchymal differentiation, which is one of the 

molecular mechanism that confers resistance to therapy to glioblastoma (Mao et al., 

2013; Y. Piao et al., 2013), we used two GPR56-KO-GICs the KO5- and the KO8-

GICs. We analysed the mRNA expression of several GBM subtype markers by RT-

qPCR and by microarray analysis. Next, a flow cytometry assay was performed to 

study the expression of CD44 protein, which is a marker of mesenchymal 

differentiation in GBM (Bhat et al., 2013). 

 

4.2.1.2.1 Mesenchymal differentiation studied by RT-qPCR and microarray analysis 

We analysed the mRNA levels of several mesenchymal markers (CD44, TGFb1, 

FN1, CTGF, ZEB1, TIMP1, SERPINE1, MCAM, SNAI1, SNAI2, TAZ, TGFbI and 

CHI3L1) in GPR56-KO-GICs and Parental GICs by RT-qPCR (Figure 4.27). We 

observed a tendency to increase the expression of mesenchymal markers upon GPR56 

knockout, especially in KO5, although the differences between Parental and GPR56-

KO-GICs were not significant for the majority of genes. Therefore, our mesenchymal 
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marker analysis by RT-qPCR was not sufficient to confirm a molecular subtype 

transition. Next, we analysed mRNA expression profiles in Parental- versus GPR56-

KO-GICs by microarray analysis and performed a gene set enrichment analysis 

(GSEA) (Subramanian et al., 2005) using two previously published PN and MES 

signatures. 

 

 

Figure 4.27: The expression of MES markers in Parental- or GPR56 knockout-GICs (clones KO5 

and KO8) was assessed by RT-qPCR. CD44 was increased in KO5 and KO8 GICs, but without 

significant difference. FN1 and SERPINE were significantly increased in KO5-GICs, but decreased 

in KO-GICs, with and without significant difference respectively, when they were compared with the 

Parental-GICs.SNAI2 was significantly increased in KO8-GICs versus KO5- and Parental-GICs. 

TGFbI was significantly decreased in KO8 compared with KO5 and Parental GICs. The other genes 

had not significant differences. Data are represented as mean ± SEM of at least three independent 

experiments. (ANOVA test, *p < 0.05, **p < 0.01, ***p<0.00). 
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To further characterize the global MES transcriptional program induced by GPR56 

knockout, we performed a whole-genome microarray analysis of gene expression in 

GPR56 knockout-GICs (KO5) versus control GICs (Parental). By GSEA using two 

previously published PN and MES signatures (Noushmehr et al., 2010; Phillips et al., 

2006), we observed that GPR56 knockout-GICs were positively enriched for genes 

in the MES gene sets and, conversely, negatively enriched in PN genes (Figure 4.28). 

 

 

 

Figure 4.28: GSEA enrichment plots of MES and PN signatures (TCGA-Verhaak (left) and Phillips 

(right) signatures) in GPR56 knockout versus Parental GICs. GPR56-KO5-PN-GICs (KO5) were 

positively enriched for MES gene signature (top) (TGCA signature (left) and Phillips signature 

(right)), whereas Parental PN-GICs (Parental) were positively enriched for PN gene signature 

(bottom) (TGCA signature (left) and Phillips signature (right). The normalized enrichment scores 

(NES) and the FDR values are shown for each plot. 
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Taken together, our results suggest that GPR56 might be regulating the mesenchymal 

differentiation process, since we observed a gain of mesenchymal markers both by 

RT-qPCR analysis and GSEA. These results corroborate our previous analyses in the 

context of GPR56 knockdown-GICs. 

 

4.2.1.2.2 Analysis of the CD44+ population of GPR56-KO-GICS by Flow Cytometry 

CD44 is one of the most robust MES markers in GBM. By RT-qPCR, we had 

observed an increase in CD44 mRNA expression in KO-GICs, although this 

difference was not significant. To test if the tendency observed by RT-qPCR in the 

levels of CD44 mRNA, was also detected at the protein level, we performed a flow 

cytometry assay to study CD44 protein expression. 

Both GPR56-KO5-GIC and GPR56-KO8-GIC displayed an increase in the 

percentage of CD44+ cells compared with control cells (Figure 4.29). The difference 

was only significant when we compared the percentage of cells with high expression 

of CD44 (CD44high population), thereby suggesting that our GIC cell lines are highly 

heterogeneous and that Parental GICs express low levels of CD44 protein, even 

though they belong to the PN-subtype. In spite of that, the results obtained by flow 

cytometry suggest that loss of GPR56 expression promotes an increase in the 

CD44high population. These results suggest that GPR56 might be involved in the 

mesenchymal differentiation of GICs. 
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Figure 4.29: FACS analysis of the percentage of CD44high cells in GPR56 knockout or Parental 

GIC7. Loss of GPR56 promotes the upregulation of the CD44 expression, enriching significantly the 

percentage of CD44high cells population. Data are represented as means ± SEMs of three independent 

experiments (t test, *p < 0.05). 

 

Additionally, we studied CD44 expression in GPR56-KO-GICs versus control GICs 

with and without TNFα stimulus. TNFα activates the NF-κB pathway, which 

promotes mesenchymal differentiation (Bhat et al., 2011). As we expected, Parental 

GICs significantly increased CD44high population after TNFα stimulus, probably due 

to TNF-mediated mesenchymal differentiation. Regarding GPR56-KO-GICs, both 

KO5 and KO8 did not show a significant change in the levels of CD44high cells either 

with or without TNFα. In any case, we observed a tendency in GPR56-KO-GICs 

towards higher levels of CD44high cells after TNFα stimulus (Figure 4.30) which may 

be due to the heterogeneous population, also observed in the other approaches. The 

residual expression of GPR56, observed by RT-qPCR and Western Blotting analysis 

in GPR56-KO-GICs, might account for the increase in the percentage of CD44high 

population after TNFα treatment. 
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Figure 4.30: FACS analysis of CD44high cells in GPR56 knockout GIC treated with or without TNFα 

for 4 days. Parental GICs gained CD44high cells after TNFα stimulus, due to mesenchymal 

differentiation promoted by TNFα. KO5 and KO8, which had more percentage of CD44high population 

than control, also increased the percentage of CD44high population, but this increase was not 

significant. Data are represented as mean ± SEM of at least three independent experiments (ANOVA 

test, *p < 0.05). 

 

Taken together, our results suggest that GPR56 may be inhibiting the mesenchymal 

differentiation of GICs. Therefore, when the levels of GRP56 decrease in PN-GICs, 

this might trigger a transition into a mesenchymal phenotype. 

 

4.2.2 GPR56 is involved in the mesenchymal differentiation of CL-
GICs 

Next, we asked whether CL subtype GICs also undergo MES differentiation upon 

loss of GPR56 gene expression. To test this hypothesis, we used shRNA-mediated 

knockdown of GPR56 in CL-GICs (GSC6-27). 

The knockdown of GPR56 in GCS6-7 was confirmed by analysis of GPR56 mRNA 

expression by RT-qPCR (Figure 4.31). Then, the expression of mesenchymal marker 

genes, the same genes used in our analyses of GPR56-KO-GICs, was analysed by 

RT-qPCR. We observed an increase in the expression of mesenchymal genes, which 

was more robust than in GPR56-KO-GICs. The expression of CD44 and SERPINE1 
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mRNA was significantly increased in GPR56 knockdown-GSC6-27 (sh#5) with 

respect to the control (Figure 4.31). These results suggest that GPR56 may also be 

regulating the classical to mesenchymal differentiation. 
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Figure 4.31: MES signature in control- or GPR56 knockdown-classical-GICs was assessed by RT-

qPCR. Data are represented as mean ± SEM of at least three independent experiments (t-test, *p < 

0.05). 

 

Furthermore, a flow cytometry assay was performed to study the expression of CD44 

protein in GPR56 knockdown-GSC6-27. The percentage of CD44+ cells was 

significantly increased in GPR56 knockdown-GSC6-27 compared to control GICs 

(Figure 4.32), suggesting that classical GICs may differentiate into a mesenchymal 

subtype when GPR56 expression is downregulated. Taken together, these results 

suggest that GPR56 might also be regulating the classical to MES differentiation. 
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Figure 4.32: Percentage of CD44+ cells in control- or GPR56 knockdown-classical-GICs measured by FACS 

analysis. GSC6-27 sh#5 had significantly increased the percentage of CD44+ population versus the control. Data 

are represented as mean ± SEM of three independent experiments (t.test, *p < 0.05) 

 

Altogether, our results suggest that GPR56 may be involved in the regulation of MES 

differentiation of non-MES GICs, including PN- and CL-GICs. GPR56 may have an 

inhibitory role, which might trigger the mesenchymal differentiation of PN or CL-

GICs when GPR56 is downregulated. This mesenchymal differentiation may be 

linked to increased resistance to therapy. 
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5 DISCUSSION 

GBM remains one of the most challenging tumours to understand and treat. The 

median survival time of GBM patients is 15 months and despite huge efforts to 

improve the outcome of this deadly tumour, mostly all GBM patients relapse (Furnari 

et al., 2007). In spite of our efforts to comprehend the biology of GBM to improve 

the treatment in the patients, the findings have not yet been relevant to clinical 

practice. 

One of the characteristics of GBMs that makes this cancer very difficult to treat is its 

intra- and inter-tumoural heterogeneity. Despite all GBMs having similar 

anatomopathological characteristics, these tumours are very different at the molecular 

level from one patient to another. Adult GBM can be classified according to their 

gene expression and epigenetic profiles into four different subtypes: glioma-CpG 

island methylator phenotype (G-CIMP) and three non-G-CIMP subtypes termed 

proneural (PN), classical (CL), and mesenchymal (MES) (Brennan et al., 2013; 

Noushmehr et al., 2010; Verhaak et al., 2010; Q. Wang, Hu, Hu, Sulman, et al., 2017). 

Several studies have correlated the molecular subtypes with genetic alterations and 

different clinical features, such as the correlation of G-CIMP+ patients (Bhat et al., 

2013; Mao et al., 2013; Moreno, et al., 2017; Segerman et al., 2016). Furthermore, 

different subpopulations of cells within the tumour bulk and transitions from one 

GBM molecular subtype to another have been described in several studies, increasing 

the heterogeneity that characterizes these tumours (Campbell & Polyak, 2007; Plaks 

et al., 2015; Reya et al., 2001; Rich, 2016). 

In GBM only a small fraction of cells within the tumour bulk that possess stem-like 

properties, known as glioma initiating cells (GIC), is considered to be the tumour 

driver cells (Fomchenko & Holland, 2005; Piccirillo et al., 2009). GICs share a huge 

number of similar characteristics with neural stem cells, such as asymmetric cell 

division, self-renewal and pluripotency (Fomchenko & Holland, 2005). This cell 

population has the ability to initiate and propagate the tumour as well as to display 

resistance to conventional therapies. Besides, GICs might be classified into molecular 

subtypes, maintaining the patient phenotype, and undergo transitions from one 

subtype to another, especially in response to inflammation or after therapy. Therefore, 



Discussion           

114 
 

understanding the biology of this cell population will help us to develop specific 

therapies targeting GICs and decrease the probability of relapse after treatment. 

The main goal of this PhD thesis was to identify molecular mechanisms involved in 

resistance to therapy in GBM, in order to find actionable targets for a more effective 

anti-GBM therapy. This PhD thesis was divided into two separate projects. In the first 

project, using a candidate approach after an in silico analysis of RNA-sequencing 

data of GBM specimens, we identified novel lncRNAs that regulate the self-renewal 

capacity of GICs, which is one of the properties of GICs that confers to them the 

capacity to relapse the tumour in patients. In the second project, based on previous 

findings in our laboratory we have confirmed the role of GPR56 in the mesenchymal 

differentiation of GICs, which is another molecular mechanism of resistance to 

therapy in GBMs. 

 

5.1 LNCRNAS INVOLVED IN RESISTANCE TO THERAPY IN 

GBM 

In the first project, we analysed the expression patterns of lncRNAs using RNAseq 

data of GBM specimens to identify lncRNAs that might be involved in any molecular 

mechanism of resistance to therapy, such as the self-renewal capacity of GICs or their 

mesenchymal differentiation. After several bioinformatic analyses, we identified 

several candidate lncRNAs that we further functionally characterized in GICs in cell 

culture. 

In mammals, lncRNAs participate in regulating important physiological processes 

such as neural development (Andersen & Lim, 2018), cell cycle (Sun et al., 2018), 

cell protection (Ma et al., 2018), and tumour development and metastasis (Dhamija 

& Diederichs, 2016). Therefore, we hypothesized that lncRNAs might also be 

involved in resistance to therapy in GBM. 

First, we analysed the expression of total RNA of FFPE GBM specimens obtained 

from GBM patients treated homogeneously with radiotherapy and temozolomide 

after surgery (Stupp Regimen). After quality control (QC) of the RNAseq results, 

reliable data were obtained for 124 GBM samples of 236 FFPE GBM samples 
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submitted to RNA-sequencing. During QC the expression of mitochondrial RNA was 

taken into account. There is an extensive literature on the relationship between 

mtDNA, mitochondrially localized proteins, mitochondrial RNA, and cell death 

(Detmer & Chan, 2007; Galluzzi, Kepp, & Kroemer, 2012). When the cell membrane 

is broken, cytoplasmic RNA will be lost, but RNAs enclosed in the mitochondria will 

be retained. Thus, high levels of mitochondrial RNA might be characteristic for low-

quality samples (Ilicic et al., 2016; Osorio & Cai, 2020). That is why we excluded 

the samples with >5% mitochondrial counts during the QC process, in order to yield 

genuine, biologically meaningful results. In this PhD thesis, we present several 

bioinformatic analyses of this RNAseq dataset. Of note, the weighted gene co-

expression network analysis (WGCNA) to identify gene networks among molecular 

subtypes, was performed only on 36 out of 124 specimens, because at the time of 

analysis RNAseq data from these 36 samples was available. Therefore, the candidate 

lncRNAs were obtained from these 36 tumour specimens to posterior functional 

characterization. 

Next, the patients were classified according to the G-CIMP status into G-CIMP 

positive or negative and according to gene expression into PN, CL and MES 

molecular subtype using support vector machines (svm, also support vector 

networks) algorithm. Svm is highly suitable for a limited training set size compared 

with other algorithms (Blumenthal et al., 2017; Thanh Noi & Kappas, 2017). Once 

the samples in our dataset were classified into subtypes, we applied weighted gene 

co-expression network analysis (WGCNA) and we compared RNA expression 

between the different subtypes in order to identify the networks of genes, including 

lncRNAs, enriched in one subtype or the other. Interestingly, although the majority 

of lncRNAs are expressed at lower levels than mRNAs, our WGCNA showed that 

some lncRNAs with a very high kin value (Table 4.1 and Table 4.2), suggesting that 

lncRNAs have a main role in the module expressed. Kin value is equivalent to the k-

ME value that can be interpreted as a measure of module membership or intramodular 

connectivity (Dong & Horvath, 2007; Horvath & Dong, 2008). Genes with high 

connectivity are hubs or central genes, which are natural targets for testing hypotheses 

about modular function (Oldham et al., 2008). Thus, lncRNAs with a high kin value 

might be important in the module where they are expressed and might be regulating 

the expression of the other genes in the module. 
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Next, we selected different lncRNAs, from the bioinformatic analyses, with a high 

level of mRNA expression, with a high kin value, and co-expressed in modules with 

main genes for GBM subtypes, such as STAT3, PDGFRA, PAX6 and C/EBPβ. 

Furthermore, additional information about lncRNAs was searched in the 

bibliography. However, lncRNAs are still little studied and almost of pre-selected 

lncRNAs had no additional information. Among those pre-selected lncRNAs, 

PROCAR, PAUPAR and LINC00941 were correlated with some cancer and cellular 

processes that might be involved in resistance to therapy in cancer. PROCAR might 

be correlated with microRNA 219, which inhibits proliferation, migration, and 

invasion of epithelial ovarian cancer cells (Wei et al., 2017). PAUPAR might be 

involved in the tumourigenesis process, regulating the self-renewal capacity of 

neuroblastoma cells (Pavlaki et al., 2018) and LINC00941 is enriched in HCC 

patients and it was correlated with poor survival of HCC (X. Yan et al., 2017). 

 

5.1.1 Limitations of lncRNA knockdown generation 

To study if the candidate lncRNAs are involved in some molecular mechanism of 

resistance to therapy of GICs, we performed loss-of-function studies by inducing 

shRNA-mediated knockdown of our candidate lncRNAs in different GIC cell lines. 

Although we had successfully used shRNA to induce knockdown of protein-coding 

RNAs in our laboratory, it was the first time that we tested this strategy for lncRNAs. 

Some lncRNAs are difficult to suppress due to their localization (nuclear or 

cytoplasmic or dual) or their structure, among others. shRNAs are less effective 

against nuclear-localized lncRNA targets, which are more easily suppressed using 

RNase-H activate antisense oligonucleotides (ASOs) since RNase H is 

predominantly found in the nucleus  (Vickers & Crooke, 2015; Zeng & Cullen, 2002). 

However, some lncRNAs might be refractory to knockdown by both methods if the 

subcellular localization of the lncRNA is not accessible to either RNase H or the 

RNAi machinery (used in the shRNAs method). It could also occur if the lncRNA is 

highly structured or structurally blocked due to excessive protein binding or 

hybridizing to other nucleic acids. In these circumstances, using a technique such as 

CRISPR/Cas9 genome editing might be necessary (Goyal et al., 2016). Nevertheless, 

making a small indel in the targeted lncRNA most likely will not disrupt transcription 
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(S.-R. Kim et al., 2016). Besides, transcribed lncRNAs containing introduced indels 

may retain functional domains and/or binding sites. Therefore, depending on lncRNA 

localization, lncRNA transcript (in)accessibility to enzymes, and their transcriptional 

landscape, the knockdown of lncRNA will be successful or not. Additionally, many 

of the annotated lncRNAs have not been characterized and thus, we do not know 

many of the above-mentioned characteristics. All of these points might complicate 

knockdown of lncRNAs, compared to knockdown of protein-coding RNAs. 

In this study, we successfully generated shRNA-mediated knockdown of two 

different lncRNAs in GICs: PAUPAR and LINC00941, thereby demonstrating that 

shRNA-mediated knockdown of lncRNAs may be achieved in these cells (Figure 

4.8A-B). In addition, we obtained knockdown of LINC00941 in two MES-GIC cell 

lines, with three plasmids with different sequences against the lncRNA. However, we 

only obtained knockdown of PAUPAR in one of the two CL-GICs tested. The second 

CL-GICs infected with shRNA-encoding lentiviruses did not repeatedly survive any 

of the two infections that we performed. This might due to the important role of 

PAUPAR in the self-renewal capacity of CL-GICs. Similar results were observed in 

PN-GICs infected with shPROCAR-encoding lentiviruses, which had to be infected 

twice because in the first infection all cells died. At the second round of infection, 

only two out of three plasmid shRNA-infected GIC7 and GIC2 survived, which 

turned out to be cells that did not express lower levels of PROCAR (Figure 4.8C). 

Since no PROCAR knockdown cells were ever detected, this might be due to an 

important role of PROCAR in the survival of GICs. Another explanation might be 

that the localization of PROCAR or its transcriptional landscape might make it 

difficult for this lncRNA to be accessed by the RNAi machinery. In the subsequent 

functional characterization of lncRNA knockdown-GICs we only characterized the 

GICs with a successful knockdown of our candidate lncRNAs. 

 

5.1.2 Role of lncRNAs in the stem cell-like properties of GICs 

Cancer stem cells (CSCs), such as GICs, are suggested to be responsible for 

therapeutic resistance and cancer relapse due in part to their ability to self-renew and 

differentiate into heterogeneous lineages of cancer cells (J. Chen et al., 2012; Dean 

et al., 2005; A. Singh & Settleman, 2010; Thi et al., 2018). CSCs are able to undergo 
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cell cycle arrest and enter a quiescent state that would support their ability to become 

resistant to chemo- and radiotherapy (J. Chen et al., 2012; Cojoc, Mäbert, Muders, & 

Dubrovska, 2015; Shlush et al., 2017). Common chemotherapeutic agents target 

proliferating cells to lead to their apoptosis. Although a successful cancer therapy 

might abolish the bulk of proliferating tumour cells, a subset of remaining quiescent 

CSCs might survive and promote cancer relapse due to their ability to initiate and 

propagate the tumour again (Shlush et al., 2017; Z. J. Yang & Wechsler-Reya, 2007). 

It has been found that some lncRNAs regulate the self-renewal capacity of stem cells, 

such as Terra, AK028326 and AK141205 (Mohamed, Gaughwin, Lim, Robson, & 

Lipovich, 2010; X. Xu, Guo, Zhang, & Ye, 2018). Terra is regulated by the WNT/β-

catenin pathway and upon overexpression it promotes self-renewal (Xu, Guo, Zhang, 

& Ye, 2018). AK028326 (Oct4-activated) and AK141205 (Nanog-repressed) inhibit 

the differentiation of mESC, regulating the expression of TF involved in this process, 

such as Oct4 and Nanog, respectively (Mohamed, Gaughwin, Lim, Robson, & 

Lipovich, 2010). Because of that, we hypothesized that lncRNAs might be regulating 

the self-renewal property of GICs, which may be a molecular mechanism of 

resistance to therapy and relapse of GBMs. 

Our results in neurosphere formation assay suggest that both PAUPAR and 

LINC00941 promote the self-renewal capacity of GICs. The number of primary and 

secondary neurospheres, formed by a single cell, was decreased in knockdown-GICs 

with respect to control-GICs (Figure 4.15). In the case of PAUPAR, since knockdown 

was only obtained for one CL-GIC (GSC6-27), the number of secondary 

neurospheres was also analysed in order to corroborate the phenotype observed in 

primary neurospheres. Although only one CL-GIC line with knockdown of the 

PAUPAR lncRNA was obtained, for this cell line we obtained three independent 

PAUPAR knockdown-GSC6-27, suggesting that the results obtained in the 

neurosphere formation assay are specific for the decrease in PAUPAR expression. 

In agreement with our results, Vance et al. showed that PAUPAR maintains the self-

renewal property of neuroblastoma cells. Vance et al. suggested that PAUPAR might 

be involved in the tumourigenesis process, maintaining the dedifferentiated state of 

neuroblastoma cells and regulating their self-renewal capacity (Vance et al., 2018). 

In contrast, Ding et al. found that the expression of PAUPAR was significantly lower 
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in uveal melanoma tissues compared with normal tissues and that PAUPAR lncRNA 

inhibits the cell migration and suppresses tumour formation in vitro and in vivo uveal 

melanoma models (Ding et al., 2016). These results suggest that PAUPAR might 

have different roles depending on the tissue where it is expressed. 

On the other hand, as it has been mentioned before, lncRNAs regulate gene 

expression during the differentiation process (Fatica & Bozzoni, 2014; Hong et al., 

2020; Ju et al., 2019; Q. Yang et al., 2018). This is why we hypothesized that 

candidate lncRNAs might also be modulating gene expression of the molecular 

subtypes and hence, they might be regulating transitions between GBM subtypes. 

Vance et al. showed that knockdown of PAUPAR disrupts the normal cell cycle 

profile of neuroblastoma cells and induces neural differentiation (Keith W. Vance et 

al., 2014). In addition, the proximity of the PAUPAR gene to PAX6 suggests that it 

may be involved in the spatiotemporal control of PAX6 expression and, thus, that it 

may be important for nervous system development and neuronal cell subtype 

specification (Ding et al., 2016). Vance et al. showed that PAUPAR knockdown in 

neuroblastoma cells leads to an increase in PAX6 expression (Keith W. Vance et al., 

2014), as we observed in our three PAUPAR knockdown-GICs, although the 

decrease in PAX6 mRNA expression was statistically significant only in two cases 

(Figure 4.13B). Concerning to the other subtype markers studied by RT-qPCR, we 

observed an increase in OLIG2 mRNA expression in the three PAUPAR knockdown-

GICs, an increase in SOX2 mRNA in two of the three knockdown-CL-GICs and a 

reduction of SERPINE mRNA in two of the three shPAUPAR-GICs. However, the 

decrease in SERPINE mRNA and the increase of mRNA expression of SOX2 in 

shPAUPAR-CL-GICs were not statistically different compared to the control-GICs 

(Figure 4.13B). In addition, CD44 levels were not significantly altered upon 

PAUPAR knockdown (Figure 4.13A). Therefore, these results suggest that PAUPAR 

is not involved in transitions between GBM subtypes. 

Liu et al. suggested that LINC00941 might be an essential regulator of tumour 

metastasis and cancer cell proliferation because they showed that silencing 

of LINC00941 significantly inhibited proliferation ability of gastric cancer (H. Liu et 

al., 2019). Similarly, we found that LINC00941 knockdown-GICs had a lower 

number of primary neurospheres with respect to control-GICs (Figure 4.12), 
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suggesting that LINC00941 has an important role in maintaining the self-renewal 

capacity of GICs. 

On the other hand, Yan et al. showed that overexpression of LINC00941 in 

hepatocellular carcinoma promotes epithelial-to-mesenchymal transition (EMT) (X. 

Yan et al., 2017). However, LINC00941 knockdown-GICs changed neither the 

mRNA expression of subtype markers (Figure 4.10) nor CD44 protein analysed by 

flow cytometry (Figure 4.9), suggesting that there are not transition from MES 

subtype to another upon LINC00941 knockdown.  

Taken together, our results suggest that LINC00941 and PAUPAR might be 

promoting the self-renewal capacity of GICs, but might not regulate the transition 

between GBM subtypes. The self-renewal capacity of GICs is prominent to initiate 

and propagate the tumour. Therefore, these lncRNAs might be involved in the relapse 

of GBM by maintaining the self-renewal capacity of GICs within tumour, allowing 

the progression or the acquisition of resistance to therapy in GBMs. These lncRNAs 

may be good targets to develop novel GIC-specific treatments that inhibit their self-

renewal capacity, thereby avoiding the relapse and progression of GBM. More 

importantly, in the case of these two lncRNAs their inhibition would not promote any 

GBM-subtype transition, thus avoiding the resistance to therapy acquired by 

mesenchymal differentiation. 

lncRNAs can be targeted by multiple approaches: generate knockdowns by creating 

steric inhibition of RNA-protein interactions or by  using siRNAs or antisense 

oligonucleotides (ASOs) and modulate lncRNA genes by steric blockade of the 

promoter or by using genome-editing techniques (Arun, Diermeier, & Spector, 2018). 

Most of the toxic effects that could be observed with all oligonucleotide antisense 

technologies, maybe due to protein binding (Bennett & Swayze, 2010) and the 

activation of the immune system (Senn, Burel, & Henry, 2005). Oligonucleotides also 

have the potential to hybridize both on- or off-target, which can result in unwanted 

and unanticipated events. Off-target toxicity is difficult to control, although it is 

possible to predict some nonspecific hybridization events using bioinformatics tools 

(Wahlestedt, 2013). The field of regulatory lncRNAs is quite young and the modes 

of action of these molecules are still poorly understood. Therefore, a large amount of 

work is required to more fully assess their potential as therapeutic targets. 
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5.1.3 New lncRNA-based molecular classification of GBMs 

The molecular classification of tumours is of crucial interest for clinical diagnostic, 

as well as to predict response to treatments and eventually develop patient-tailored 

therapies. The Cancer Genome Atlas (TCGA) project identified four distinct 

molecular subgroups in GBM. However, there was not a significant correlation 

between patient survival and gene expression subtype (Noushmehr et al., 2010; 

Verhaak et al., 2010). The epigenetic G-CIMP phenotype was the only molecular 

classification predictive of survival (Noushmehr et al., 2010). Therefore, it was 

necessary to refine the molecular classification of GBM to find another classification 

that would better correlate molecular determinants with clinical features. 

In this Ph. D. thesis, we have been able to classify GBM specimens according to 

lncRNA expression into two different molecular subtypes by using NMF (Figure 

4.19). Comparing our new classification with PN, CL and MES classification, we 

found that cluster 1 is enriched in PN subtypes, whereas MES specimens are clustered 

in Cluster 2. CL subtype samples are present in both clusters. This suggests that 

lncRNAs found in cluster 1 or in cluster 2 might be regulating some main genes for 

the PN or MES subtypes. Interestingly, two of the lncRNA candidates that we 

identified by WGCNA in the previous section are part of the metagene signature of 

each of the two clusters: PROCAR (MIR219A2) and LINC00941. This points at them 

as hub genes with an important role in the pathogenesis of their corresponding 

subtype-GBM. 

Next, we asked if this new classification might be correlated with patient survival. 

Unfortunately, we found no difference in patient overall survival between the two 

lncRNA-based clusters (Figure 4.20). Further analysis should be done to study if the 

new classification by lncRNAs correlates with other clinical features, such as 

progression-free survival, response/resistance to therapy or even some radiological 

features.  
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5.2 GPR56 IS INVOLVED IN RESISTANCE TO THERAPY IN 

GBM 

In the second project of this PhD thesis, we have studied the role of GPR56 in MES 

differentiation of PN and CL GICs. In previous studies in our laboratory, we showed 

that inhibition of GPR56, which was enriched in the PN-subtype, promotes MES 

differentiation and radioresistance of PN-GICs, while its expression correlates with 

longer survival. 

As we mentioned before, GBMs are highly plastic and have an inherent tendency to 

transition from one subtype to another (Bhat et al., 2013; F. Lu et al., 2016; Mao et 

al., 2013). This transcriptional plasticity empowers GBMs with the capability to adapt 

to treatment and develop resistance to therapy. The identification of the molecular 

mechanisms that control transitions from one subtype to another is crucial to 

understand GBM natural evolution and acquired resistance to therapy. In this study, 

we corroborate the role of GPR56/ADGRG1 as an inhibitor of the MES 

differentiation in GICs. GPR56 is an adhesion GPCR with a prominent role in NSC 

and OPC proliferation and differentiation (Ackerman et al., 2015; Bae et al., 2014) 

and is highly expressed in PN and CL GBMs (Moreno, Pedrosa, Paré, Pineda, 

Bejarano, Martínez, Balasubramaniyan, Ezhilarasan, Kallarackal, Kim, Wang, 

Audia, Marín, et al., 2017).  

Alterations in several classes of adhesion molecules have been implicated in the 

progression of various forms of cancers (Colpaert, Vermeulen, Van Marck, & Dirix, 

2001; Reticker-Flynn et al., 2012). An essential step in tumour progression is the 

interaction of tumour cells with extracellular matrix (ECM) leading to its destruction 

and the tumour cells' invasive behaviour (Belkin, 2011). Cell adhesion receptors and 

their ligands provide traction, repulsion and stimulus for tumour cell migration. The 

modulation of therapeutic targets involved in tumour cell invasion and adhesion has 

great potential for the treatment of cancer (Haier, Goldmann, Hotz, Runkel, & 

Keilholz, 2002). GPR56 likely plays a role in cell adhesion and migration due to its 

co-localization with a-actin, which has a demonstrated role in this process 

(Shashidhar et al., 2005). Furthermore, GPR56 has been described up-regulated in 

some types of cancers such as breast, ovarian and pancreatic cancers, suggesting that 
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GPR56 might function as an oncogene (Ke et al., 2007; Shashidhar et al., 2005; Sud 

et al., 2006). 

The functional relationship between GPCR signalling and EMT has been extensively 

described. In cancer, deregulation of GPCR signalling has been implicated in cell 

migration, invasion and metastasis (Sahai & Marshall, 2002; X. Tang et al., 2013; T. 

Wang et al., 2005; M. P. Wu et al., 2013). Bing Ji et al. showed that GPR56 induces 

epithelial-mesenchymal transition phenotypes in colorectal cancer cells (Ji et al., 

2018). Moreover, previous results from our laboratory revealed that MES-GBMs 

express lower levels of GPR56 compared with other GBM subtypes. Additionally, 

GPR56 is co-expressed with PN markers and negatively correlated with MES 

markers and GPR56 is downregulated during the mesenchymal differentiation 

(Moreno, Pedrosa, Paré, Pineda, Bejarano, Martínez, Balasubramaniyan, 

Ezhilarasan, Kallarackal, Kim, Wang, Audia, Marín, et al., 2017). In functional 

assays, knockdown of GPR56 in PN-GICs triggers mesenchymal differentiation in 

these cells. Therefore, GPR56 may have an inhibitory role in the PN to MES 

differentiation of GICs.  

In this Ph. D. thesis, we corroborated the above results by inducing KO of GPR56 in 

PN-GICs and knockdown of GPR56 in CL-GICs. GPR56-KO-PN-GICs and 

shGPR56-CL-GICs display an increase in the expression of MES genes. We show 

that CD44 protein expression is increased upon knockdown and knockout of GPR56, 

in CL- and PN-GICs (Figure 4.32 and Figure 4.29), respectively, suggesting that 

GPR56 has a role in MES differentiation. However, during the analysis of mRNA 

expression of different MES markers, we observed high variance in mRNA levels 

and the results were not so clear (Figure 4.31 and Figure 4.27). It may be due to that 

the mRNA is not as stable as protein and it might be fluctuant during cells passages. 

Despite that, we observed a tendency to gain of MES markers, regarding RT-qPCR 

assay (Figure 4.31 and Figure 4.27). Additionally, a GSEA analysis of microarray 

data was performed to study the expression of MES and PN signatures in GPR56-

KO-PN-GICs with respect to control-PN-GICs. GSEA showed that GPR56-KO-

GICs were positively enriched for MES genes and negatively enriched for PN genes 

(Figure 4.28). Taken together, our results suggest that GPR56 is inhibiting the 

mesenchymal differentiation of GICs. Altogether, our results suggest that GPR56 is 
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involved in the MES differentiation of non-MES GICs including PN- and CL-GICs 

(Figure 5.1). Therefore, when PN or CL-GICs downregulate GPR56 expression, this 

might trigger their MES differentiation and gain of resistance to therapy.   

 

 

Figure 5.1: Features of mesenchymal differentiation in GICs. Upon NF-κB pathway activation, PN 

and CL GICs undergo mesenchymal differentiation. This process is characterized by upregulation of 

MES genes, such as CD44, and downregulation of PN and CL genes, such as GPR56, accompanied 

by gain of radioresistance. (Moreno et al., 2017) 
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5.3 CONCLUDING REMARKS 

In this Ph. D. thesis, we have identified several molecular mechanisms that may 

confer resistance to therapy and allow the progression of GBM. On the one hand, we 

have identified two lncRNAs that might regulate the self-renewal capacity of GICs 

present within the tumour bulk in GBMs. This property of GICs may allow them to 

propagate the tumour after treatment and promote the progression of glioblastoma. 

On the other hand, we have identified GPR56/ADGRG1 as an inhibitor of MES 

differentiation in GICs. GBMs are highly plastic and have an inherent tendency to 

transition from one subtype to another. This transcriptional plasticity empowers 

GBMs with the capability to adapt to treatment and develop resistance to therapy. 

More specifically, MES differentiation has been shown to confer resistance to chemo- 

and radiotherapy. 

For this reason, both lncRNAs identified in this study as well as GPR56 may be new 

therapeutic targets for the treatment of GBMs. In the case of PAUPAR or 

LINC00941, one therapeutic strategy might be to downregulate their expression 

using gene-editing therapies to inhibit the self-renewal capacity of GICs. Regarding 

GPR56, one might use an agonist of the receptor to prevent resistance to chemo- or 

radiotherapy associated to MES differentiation of GICs. 

Finally, GPR56 and our lcnRNAs might also be used as new prognostic biomarkers. 

The presence of high levels of PAUPAR or LINC00941 in a given GBM patient 

might be suggestive of a tumour with a high ratio of sel-renwal. This might be a 

marker of bad prognosis. Conversely, the absence/low levels of GPR56 in a tumour 

might indicate resistance to therapy. Therefore, understanding the biology of GICs is 

important to identify the molecular mechanisms that may be involved in resistance to 

therapy in glioblastoma and to develop new therapies and/or find new prognostic 

biomarkers for this devastating disease. 
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6 CONCLUSIONS 

 Identification of novel lncRNAs involved in the stem-like properties of GICs 

o Network analysis of RNAseq data from GBM specimens using 

WGCNA allowed us to identify several lncRNA candidates to 

regulate the stem-like properties of GICs. 

o We were able to obtain shRNA-mediated knockdown in GICs of two 

of the selected lncRNAs: PAUPAR and LINC00941. 

o Loss-of-function analyses show that PAUPAR and LINC00941 

promote the self-renewal capacity of GICs 

o Knockdown of PAUPAR and LINC00941 do not induce any 

transition between GBM subtypes. 

o Clustering analysis of RNAseq data using NMF shows that GBMs 

may be classified into two different molecular subtypes according to 

the expression of lncRNAs independent of the mRNA-based 

classification into PN, CL and MES. 

o There is no difference in patient overall survival between the two 

lncRNA-based clusters. 

 Role of GPR56 in mesenchymal differentiation of GICs 

o We generated PN- and CL-GICs with lowered expression of GPR56 

using CRISPR/Cas9 and shRNA techniques, respectively. The 

GPR56-KO-GICs obtained are not full knockouts and maintain basal 

expression of GPR56. 

o Downregulation of GPR56 promotes mesenchymal differentiation in 
proneural- and classical-GICs. 
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