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SMALL HANKEL OPERATORS ON GENERALIZED WEIGHTED

FOCK SPACES

CARME CASCANTE, JOAN FÀBREGA, AND DANIEL PASCUAS

Abstract. In this work we characterize the boundedness, compactness and

membership in the Schatten class of small Hankel operators on generalized

weighted Fock spaces F p,`α (ω) associated to an A`p weight ω, for 1 < p < ∞,

` ≥ 1, and α > 0.

1. Introduction

The goal of this work is to characterize the boundedness, compactness and mem-
bership in the Schatten class of small Hankel operators on generalized weighted Fock
spaces.

Let ω be a weight, that is, a positive locally integrable function on C. For 1 ≤
`, p < ∞ and α ≥ 0, we define the space Lp,`α (ω) := Lp(C, e−

αp
2 |z|

2`

ω dA) and the
generalized weighted Fock space F p,`α (ω) := H(C)∩Lp,`α (ω), where H(C) denotes the
space of entire functions and dA(z) = 1

π dxdy. For the weight ωρ,p(z) = (1 + |z|)ρp,
ρ ∈ R, the spaces Lp,`α (ωρ,p) and F p,`α (ωρ,p) are simply denoted by Lp,`α,ρ and F p,`α,ρ.

As usual, L∞,`α,ρ consists of all measurable functions f on C such that

‖f‖L∞,`α,ρ
:= ess sup

z∈C
|f(z)|(1 + |z|)ρe−α2 |z|

2`

<∞.

Moreover, F∞,`α,ρ := L∞,`α,ρ ∩H(C), and f∞,`α,ρ is the closure of the space of holomorphic

polynomials in F∞,`α,ρ . The spaces F p,`α,ρ and F p,`α := F p,`α,0 are called generalized Fock-
Sobolev spaces and generalized Fock spaces, respectively. It is worth to mention
that the generalized Fock-Sobolev spaces appear naturally when considering the
derivatives of functions in generalized Fock spaces. Namely, f ∈ F p,`α if and only
if f (k) ∈ F p,`α ((1 + |z|)kp(1−2`)) (see [5, Theorem 1.4]). This is true even in some
weighted setting (see [7, Theorem 1.1]).
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As we will show later, these Fock-Sobolev spaces also appear when we study
the membership to the Schatten class for small Hankel operators on generalized
weighted Fock spaces (see Theorem 1.2 below).

It is clear that L2,`
α is a Hilbert space with the inner product

〈f, g〉α :=

∫
C
f(z) g(z) e−α|z|

2`

dA(z),

and it is well known that F 2,`
α is a closed subspace of L2,`

α . The Bergman projection
for F 2,`

α is the orthogonal projection P `α from L2,`
α onto F 2,`

α , which is given by

(P `αψ)(z) =

∫
C
K`
α(z, w)ψ(w) e−α|w|

2`

dA(w) (z ∈ C, ψ ∈ L2,`
α ),

where K`
α is the Bergman kernel for F 2,`

α . The boundedness properties of this
projection on the spaces Lp,`α have been thoroughly studied in [3, 4].

As it is well known, the weights for which the Bergman projection is bounded
in the classical weighted Bergman spaces on the unit ball of Cn are characterized
by a Muckenhoupt type condition. They are the so called Békollé-Bonami weights
(see [2] and [1]), which have become a key tool in the study of weighted norm
inequalities for the Bergman projection in different settings of complex analysis
(see, for instance, [12], [10], [11], and the references therein).

In the Fock setting, the weights ω for which P `α is bounded from Lp,`α (ω) onto
F p,`α (ω) are those in the class A`p. This result was proved for ` = 1 in [8], and

extended to ` > 1 in [6]. The class A`p is defined as follows.

For 1 < p <∞, A`p is the set of all weights ω such that

(1.1) sup
z∈C

ω(D`
z)
(
ω′(D`

z)
)p/p′

|D`
z|p

<∞,

where D`
z = {w ∈ C : |w − z| < (1 + |z|)1−`}, p′ is the conjugate exponent of p,

ω′ = ω−p
′/p, |D`

z| :=
∫
D`z
dA = (1+ |z|)2(1−`), ω(D`

z) :=
∫
D`z
dω, and dω := ω dA. It

is worth to mention that if we replaceD`
z byD`

z,% = {w ∈ C : |w−z| < %(1+|z|)1−`},
for some ρ, in (1.1), we obtain the same class of weights.

One advantage of considering the case ` > 1 is that it covers a wider range of
weights, for instance, exponential polynomial weights i.e. ω(z) = eq(|z|), where q is
a real polynomial. Indeed, it is proved in [6] that for such weights the boundedness
of P `α on Lp,`α (ω) is equivalent to the condition deg q ≤ `.

Our first result gives a complete description of the boundedness and compactness
of the small Hankel operators on our weighted Fock spaces F p,`α (ω), ω ∈ A`p. We
consider the small Hankel operators defined on the space

E := {f ∈ H(C) : |f(z)| = O(eτ |z|
`

), for some τ > 0}
of entire functions of order ` and finite type, which is a dense subspace of F p,`α (ω)
(see [6, Proposition 5.6] and Proposition 2.5 below).

Theorem 1.1. Let 1 < p <∞, α > 0, and ω ∈ A`p. For β ∈ (0, 3
2α) and b ∈ F∞,`β ,

let h`b,α be the small Hankel operator defined by h`b,αf := P `α(f b), f ∈ E. Then

h`b,α extends to a bounded (compact) operator from F p,`α (ω) to F p,`α (ω) if and only

if b ∈ F∞,`α
2

(respectively, b ∈ f∞,`α
2

). Moreover, ‖h`b,α‖Fp,`α (ω) ' ‖b‖F∞,`α
2

.
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The hypothesis β ∈ (0, 3
2α) assures that the small Hankel operator h`b,α is well

defined, as we will see at the beginning of the proof of the above theorem.
Finally, we characterize the membership to the Schatten class of our small Hankel

operators.

Theorem 1.2. Let 1 < p < ∞, α > 0, ω ∈ A`p, and b ∈ F∞,`β , for some β ∈
(0, 3

2α). Then h`b,α belongs to the Schatten class Sp(F
2,`
α (ω), F 2,`

α (ω)) if and only if

b ∈ F p,`
α
2 ,

2(`−1)
p

. Moreover, ‖h`b,α‖Sp(F 2,`
α (ω),F 2,`

α (ω))
' ‖b‖Fp,`

α
2
,
2(`−1)
p

.

Our theorems extent the characterization of boundedness, compactness and
membership to the Schatten class of the small Hankel operators on the general-
ized Fock spaces to the setting of the generalized weighted Fock spaces F p,`α (ω),
where ω is an A`p weight (see [9, 16, 5] for the known unweighted cases). The main
tools to prove these results are a weak decomposition for the Bergman kernel asso-
ciated to the projection P `α (see (2.8) below) with precise weighted estimates of its
terms (see (2.13) below) and the main properties of the A`p weights. The fact that
both the weak decomposition (2.8) and the upper bound in (2.13) do not depend
on the weight ω explains somehow that the characterizations obtained in Theorems
1.1 and 1.2 are independent of ω.

The paper is organized as follows. In Section 2 we collect some necessary results
on Fock spaces associated to A`p weights that we need to prove our results. Finally,
Sections 3 and 4 are devoted to the proofs of Theorems 1.1 and 1.2.

Notations
Along the paper, unless otherwise stated, α, `, and p are real numbers such that

α > 0, ` ≥ 1, and p > 1. As usual, the notation Φ . Ψ (Ψ & Φ) means that there
exists a constant C > 0, which does not depend on the involved variables, such
that Φ ≤ C Ψ. We write Φ ' Ψ if Φ . Ψ and Ψ . Φ.

2. Fock spaces associated to A`p weights

In this section we collect some results on A`p-weighted Fock spaces that we will
use in the proofs of our results.

Lemma 2.1. For any ω ∈ A`p, the dual (Lp,`α (ω))∗ of Lp,`α (ω), with respect to the

pairing 〈 · , · 〉α, is Lp
′,`
α (ω′). Namely, the mapping

g ∈ Lp
′,`
α (ω′) 7−→ 〈 · , g〉α ∈ (Lp,`α (ω))∗

is an isometric antilinear isomorphism.

Proof. It is an immediate consequence of the classical Lp(C)− Lp′(C) duality and
the fact that, for any weight ω and 1 < q <∞, the operator Φ : Lq,`α (ω)→ Lq(C),
defined by

(Φg)(z) = g(z)e−
α
2 |z|

2`

ω(z)1/q (g ∈ Lq,`α (ω), z ∈ C).

is an isometric linear isomorphism. �

Lemma 2.2 ([5, Lemma 2.15], [6, Theorem 1.1 and Proposition 5.7]).

a) P `α is a bounded projection from Lp,`α (ω) onto F p,`α (ω), for any 1 ≤ p <∞ and
ω ∈ A`p.
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b) P `αf = f , for every f ∈ F 1,`
β and 0 < β < 2α.

c) If 1 < p < ∞ and 0 < γ < α < β, we have the embedding L∞,`α ↪→ Lp,`α (ω) ↪→
L1,`
β , for any ω ∈ A`p.

As it is usual, the duality Lp,`α (ω)-Lp
′,`
α (ω′) (see Lemma 2.1) together with the

boundedness of P `α on Lp,`α (ω), for ω ∈ A`p, gives the duality F p,`α (ω)-F p
′,`

α (ω′):

Lemma 2.3. Let ω ∈ A`p. Then the dual (F p,`α (ω))∗ of F p,`α (ω), with respect to the

pairing 〈 · , · 〉α, is F p
′,`

α (ω′), i.e. the mapping

g ∈ F p
′,`

α (ω′) 7−→ 〈 · , g〉α ∈ (F p,`α (ω))∗

is a topological antilinear isomorphism.

The Bergman kernel K`
α is given in terms of the classical two parametric Mittag-

Leffler functions

Ea,b(λ) :=

∞∑
k=0

λk

Γ(ak + b)
(λ ∈ C, a, b > 0)

by the formula

(2.1) K`
α(w, z) = K`

α,z(w) = `α1/`E1/`,1/`(α
1/`wz) (w, z ∈ C).

Precise pointwise estimates of K`
α can be given in terms of the functions ψ`α,β :=

e−
α
2 φ

`
β , for 0 < β < π

2` , where

φ`β(z, w) :=

{
|z|2` + |w|2` − 2 Re((wz)`), if z ∈ C \ {0} and w ∈ Sz,β ,

|z|2` + |w|2` − 2|z|`|w|` cos(`β), otherwise.

Here

Sz,β := {w ∈ C \ {0} : | arg(zw)| ≤ β} ∪ {0} (z ∈ C \ {0}),
where arg λ denotes the principal branch of the argument of λ ∈ C \ {0}, i.e −π <
arg λ ≤ π. We will need the following technical estimate.

Proposition 2.4 ([6, Proposition 4.2]). Let s ∈ R and ω ∈ A`p,%. Then

(2.2)

∫
C

(1 + |w|)s ψ`α,β(z, w) dω(w) ' (1 + |z|)s ω(D`
z,%).

We recall the precise estimates of the Bergman kernel that we will use:

(2.3) |K`
α(w, z)| . (1 + |w|)`−1(1 + |z|)`−1 ψ`α,β(w, z) (z, w ∈ C),

for every 0 < β < π
2` , where

(2.4) K`
α(w, z) := e−

α
2 |w|

2`

K`
α(w, z) e−

α
2 |z|

2`

is the socalled twisted Bergman kernel (see [6, (6.22)]). In particular, we have the
following rough estimate:

(2.5) |K`
α(w, z)| . (1 + |z|)`−1(1 + |w|)`−1eα|z|

`|w|` (z, w ∈ C).

Proposition 2.5. Let ω ∈ A`p, for some 1 < p < ∞ and ` ≥ 1. Then E is dense

in F p,`α (ω), for every α > 0.
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Proof. Let f ∈ F p,`α (ω). Then fR = fχD(0,R) ∈ Lp,`α (ω), for any R > 0, and

(2.6) ‖f − fR‖Lp,`α (ω) → 0, as R→∞.

Now consider the entire function hR = P `αfR. Taking into account the esti-
mate (2.5), it is clear that

|hR(z)| . (1 + |z|)`−1eαR
`|z|` . eτ |z|

`

(z ∈ C),

for every τ > αR`, and, in particular, hR ∈ E. Moreover, since ω ∈ A`p, [6,

Theorem 1.1] and Lemma 2.2 show that P `α is a bounded projection from Lp,`α (ω)
onto F p,`α (ω), and so

(2.7) ‖f − hR‖Fp,`α (ω) = ‖P `α(f − fR)‖Fp,`α (ω) . ‖f − fR‖Lp,`α (ω) (R > 0).

Finally, (2.6) and (2.7) give that hR → f in F p,`α (ω), as R→∞, and that ends the
proof. �

Besides the pointwise estimates of the Bergman kernel, a key tool to prove our
results is a decomposition formula for K`

α obtained in [5, Theorem 1.3]:

(2.8) K`
α(w, z) = G0(w, z)2 +G1(w, z),

where

G0(w, z) =
√

2
(α

2

)1/(2`)

E 1
` ,
`+1
2`

((α
2

)1/`

wz
)

and G1(w, z) = R`(α
1/`wz).

The functions G′js satisfy the pointwise estimates satisfy

(2.9) |Gj(w, z)| . (1 + |w|)
`−1
2 (1 + |z|)

`−1
2 ψ`α,β(w, z

21/` ) (z, w ∈ C),

for every 0 < β < π
2` , where as above the Gj ’s are the twisted functions

(2.10) Gj(w, z) := e−
α
2 |w|

2`

Gj(w, z) e
−α2

∣∣∣ z

21/`

∣∣∣2`
= e−

α
2 |w|

2`

Gj(w, z) e
−α8 |z|

2`

for j = 0, 1.

Lemma 2.6. Let ω ∈ A`p. Then we have that

‖K`
α( · , z)‖p

Fp,`α (ω)
. e

αp
2 |z|

2`

(1 + |z|)2p(`−1)ω(D`
z) (z ∈ C).(2.11)

‖Gj(· z)‖p
Fp,`α (ω)

. e
αp
8 |z|

2`

(1 + |z|)p(`−1)ω(D`
z

21/`
) (z ∈ C, j = 0, 1).(2.12)

‖G0(· z)‖Fp,`α (ω)‖G0(· z)‖
Fp
′,`

α (ω′)
+ ‖G1(· z)‖Fp,`α (ω)‖1‖Fp′,`α (ω′)

. e
α
4 |z|

2`

(2.13)

Proof. Estimate (2.11) follows from (2.4), (2.3) and (2.2). Estimate (2.12) follows
from (2.10), (2.9) and (2.2):

‖Gj(· z)‖p
Fp,`α (ω)

= e
αp
8 |z|

2`

∫
C
|Gj(w, z)|p dω(w)

. e
αp
8 |z|

2`

(1 + |z|)
p(`−1)

2

∫
C
(1 + |w|)

p(`−1)
2 ψ`α,β(w, z

21/` ) dω(w)

. e
αp
8 |z|

2`

(1 + |z|)p(`−1)ω(D`
z

21/`
).
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Finally, we are going to prove (2.13). By (2.12) we have that

‖G0(· z)‖Fp,`α (ω)‖G0(· z)‖
Fp
′,`

α (ω′)
. e

α
4 |z|

2`

(1 + |z|)2(`−1) ω(D`
z

21/`
)1/p ω′(D`

z

21/`
)1/p′

. e
α
4 |z|

2`

(1 + |z|)2(`−1) |D`
z

21/`
| ' eα4 |z|

2`

.

Moreover, (2.12) also gives that

‖G1(· z)‖Fp,`α (ω) . e
α
8 |z|

2`

(1 + |z|)`−1ω(D`
z

21/`
)1/p.

Since we know that there is a constant C > 1 such that

ω(D`
z) ≤ Cφ

`
β(z,w)1/2 ω(D`

w) (z, w ∈ C)

(see [6, Theorem 1.3]), we deduce that

‖G1(· z)‖Fp,`α (ω) . e
α
8 |z|

2`

(1 + |z|)`−1C
1
pφ

`
β

(
z

21/`
,0
)1/2

ω(D`
0)1/p

. e
α
8 |z|

2`

(1 + |z|)`−1ec|z|
`

. e
α
4 |z|

2`

.

Hence, since ‖1‖
Fp
′,`

α (ω′)
<∞, we conclude that estimate (2.13) holds. �

3. Proof of Theorem 1.1

We start by proving the characterization of the boundedness stated in Theorem
1.1. By duality (see Lemma 2.3), we have to show that the norm of the bilinear
form

Λb(f, g) := 〈g, h`b,αf 〉α (f, g ∈ E)

on F p,`α (ω)× F p′,`α (ω′) satisfies that

(3.1) ‖Λb‖ ' ‖b‖F∞,`α
2

.

Observe that, for any f, g ∈ E, we have

(3.2) Λb(f, g) = 〈g, P `α(fb)〉α
(∗)
= 〈P `αg, fb〉α = 〈g, fb〉α = 〈fg, b〉α,

where equality (∗) follows from Fubini’s theorem and the fact that

Ψf,g,b(z, w) := K`
α(w, z)f(w) b(w) e−α|w|

2`

g(z) e−α|z|
2`

is in L1(C×C). This is a consequence of the rough pointwise estimate (2.5). Indeed,
if λ > 0 we have that

|Ψf,g,b(w, z)| . ‖b‖F∞,`β
(1 + |w|)`−1(1 + |z|)`−1eτ |w|

`

eτ |z|
`

eα|z|
`|w|`−(α− β2 )|w|2`−α|z|2`

. ‖b‖F∞,`β

(
(1 + |w|)(1 + |z|)

)`−1
eτ(|w|`+|z|`)e

α
2 (λ−2+ β

α )|w|2`+α( 1
2λ−1)|z|2` ,

for some τ > 0. Therefore, by choosing 1
2 < λ < 2 − β

α (which is possible since

β < 3α
2 ), we see that Ψf,g,ϕ ∈ L1(C× C).

So we are left to prove (3.1). By Lemma 2.2 b), (2.8), and (2.13) show that

|b(z)| = |〈Kα(·, z), b〉α| ≤ |Λb(G0(·, z), G0(·, z))|+ |Λb(G1(·, z), 1)| . ‖Λb‖e
α
4 |z|

2`

.

Therefore b ∈ F∞,`α
2

and ‖b‖F∞,`α
2

. ‖Λ‖.

Now we prove the opposite estimate. Assume that b ∈ F∞,`α
2

. Then [5, Proposi-

tion 2.8] shows that there exists ϕ ∈ L∞ such that Pα(ϕ) = b and ‖ϕ‖L∞ ' ‖b‖F∞,`α
2

.

Therefore Λb(f, g) = 〈fg, b〉α = 〈fg, ϕ〉α.
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It follows that the bilinear form Λ̃b : Lpα(ω)×Lp′α (ω′)→ C defined by Λ̃b(f, g) =

〈fg, ϕ〉α extends Λb. Moreover, ‖Λ̃b‖ ≤ ‖ϕ‖L∞ , because, by Hölder’s inequality,

|Λ̃b(f, g)| ≤ ‖ϕ‖L∞‖fg‖L1,`
α
≤ ‖ϕ‖L∞‖f‖Fpα(ω)‖g‖Fp′α (ω′)

.

Hence ‖ϕ‖L∞ ' ‖b‖F∞α
2

. ‖Λb‖ ≤ ‖Λ̃b‖ ≤ ‖ϕ‖L∞ . And that ends the proof of the

boundedness.
Next we prove the compactness part. Assume that b ∈ f∞,`α

2
. Then there is

a sequence of polynomials {qk}k∈N such that ‖qk − b‖F∞,`α
2

→ 0, and so ‖h`qk −

hb‖Fp,`α (ω) → 0, because ‖h`qk − h`b‖Fp,`α (ω) = ‖h`qk−b‖Fp,`α (ω) . ‖qk − b‖F∞,`α
2

.

Consequently, since {h`qk}k∈N is a sequence of finite rank operators, it follows that

h`b : F p,`α (ω)→ F p,`α (ω) is compact.

Now assume that h`b : F p,`α (ω) → F p,`α (ω) is compact. In particular, it is a
bounded operator, or equivalently, the bilinear form Λb is bounded on F p,`α (ω) ×
F p
′,`

α (ω′). Moreover, b ∈ F∞,`α
2

and b(z) = 〈K(·, z), b〉α (by Lemmas 2.2 and 2.2).

Hence, (2.8) gives that

b(z) = 〈G0(·, z)2, b〉α + 〈G1(·, z), b〉α = Λb(G0(·, z), G0(·, z)) + Λb(G1(·, z), 1).

Since E × E is dense in F p,`α (ω) × F p′,`α (ω′), identity (3.2) also holds for any f ∈
F p,`α (ω) and g ∈ F p′,`α (ω′). So we may apply twice (3.2) (to f = g = G0(·, z) and
f = G1(·, z), g = 1) and obtain that

(3.3) b(z) = 〈G0(·, z), h`b(G0(·, z))〉+ 〈1, h`b(G1(·, z))〉.

If we consider the normalized functions

G̃k,z := Gk(·, z)/‖Gk(·, z)‖Fp,`α (ω) (k = 0, 1)

Ĝ0,z := G0(·, z)/‖G0(·, z)‖
Fp
′,`

α (ω′)
,

we may write (3.3) as

b(z) = ‖G0(·, z)‖Fp,`α (ω)‖G0(·, z)‖
Fp
′,`

α (ω′)
〈Ĝ0,z, h`b(G̃0,z)〉

+ ‖G1(·, z)‖Fp,`α (ω)〈1, h
`
b(G̃1,z)〉.

By (2.13) we have

|b(z)| . eα4 |z|
2`
(∥∥h`b(G̃0,z)

∥∥
Fp,`α (ω)

+
∥∥h`b(G̃1,z)

∥∥
Fp,`α (ω)

)
.

Consequently, in order to show that b ∈ f∞,`α
2

, it is enough to prove that

‖hb(G̃k,z)‖Fp,`α (ω) → 0 as |z| → ∞, for k = 0, 1.

Since hb is compact, we only have to check that G̃k,z → 0 weakly in F p,`α (ω) as

|z| → ∞, for k = 0, 1. Indeed, that follows from the fact that ‖G̃k,z‖Fp,`α (ω) = 1

and G̃k,z → 0 uniformly on compact sets as |z| → ∞, for k = 0, 1. The uniform
convergence on compacta is a direct consequence of estimates (2.12) and |Gk(wz)| .
eα(R`+1)|z|` , for |w| ≤ R.
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4. Proof of Theorem 1.2

For 0 < p <∞ and separable complex Hilbert spaces H0 and H1, we recall that
the Schatten class Sp(H0, H1) consists of all compact linear operators T from H0

to H1 such that

‖T‖pSp(H0,H1) :=

∞∑
k=1

sk(T )p <∞,

where {sk(T )}k∈N is the sequence of singular values of T Moreover, S∞(H0, H1) is
the space of all the bounded linear operators from H0 to H1. (See, for instance,
[13, Chapter 7] and [5, §6.2], for more details)

Note that (Sp(H0, H1), ‖ · ‖Sp(H0,H1)) is a Banach space for p ≥ 1 and a quasi-
Banach space for p < 1. Moreover, since ‖T‖Sq(H0,H1) ≤ ‖T‖Sp(H0,H1) for p < q
and T ∈ Sp(H0, H1), we have the embedding

Sp(H0, H1) ↪→ Sq(H0, H1), (0 < p < q ≤ ∞).

The polar decomposition of T gives the existence of two orthonormal systems
{uk}k∈N and {vk}k∈N of H0 and H1, respectively, such that

T (f) =

∞∑
k=1

sk(T )〈f, uk〉H0
vk.

Note that if Tk(f) := sk(T )〈f, uk〉H0
vk, then ‖Tk‖Sp(H0,H1) = sk(T ). So if

T ∈ S1(H0, H1), then the rank one operators Tk satisfy

(4.1)

n∑
k=1

Tk → T in S1(H0, H1) and
∥∥∥ n∑
k=1

Tk

∥∥∥
S1(H0,H1)

=

n∑
k=1

‖Tk‖S1(H0,H1).

Moreover, recall the following complex interpolation identity [15, Theorem 2.6]:

(4.2) (S1(H0, H1), S∞(H0, H1))[θ] = S1/(1−θ)(H0, H1) (0 < θ < 1).

In order to prove our results, we need the following lemma on rank one operators

from F 2,`
α (ω) to F 2,`

α (ω). We omit its proof since it can be easily deduced from
Lemma 2.3.

Lemma 4.1. Let ω ∈ A`2. Then T : F 2,`
α (ω) → F 2,`

α (ω) is a bounded linear
operator of rank one if and only if there are non zero functions g ∈ F 2,`

α (ω′) and
h ∈ F 2,`

α (ω) such that Tf = 〈f, g〉α h, for any f ∈ F 2,`
α (ω). Moreover, in this case,

‖T‖Sp(F 2,`
α (ω)) ' ‖g‖F 2,`

α (ω′)‖h‖F 2,`
α (ω), for any 0 < p <∞.

4.0.1. Proof of the sufficient condition.
The sufficient condition is a direct consequence of the following result.

Proposition 4.2. For 1 ≤ p ≤ ∞, the operator b 7→ hb is bounded from F p,`
α
2 ,

2(`−1)
p

to Sp(F
2,`
α (ω)).

In order to prove Proposition 4.2, we will need the following interpolation Lemma.

Lemma 4.3 ([5, Lemma 6.4]). Let 1 < p <∞. Then

(L1,`
α/2,2(`−1), L

∞,`
α/2)[1/p′] = Lp,`α/2,2(`−1)/p, and(4.3)

(F 1,`
α/2,2(`−1), F

∞,`
α/2 )[1/p′] = F p,`α/2,2(`−1)/p,(4.4)
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Proof of Proposition 4.2. By the interpolation identities (4.4) and (4.2) it is
enough to prove the result for p = 1 and p =∞. Since the last case has been done
in the previous section, we only have to deal with the case p = 1.

Assume b ∈ F 1,`
α
2 ,2(`−1). By the pointwise estimate [5, Corollary 2.9] and Lemma 2.2,

b ∈ F∞,`α
2

and b = Pα
2
b. Therefore, for f ∈ E we have

(h`bf) (z) =

∫
C
f(u) b(u)K`

α(u, z) e−α|u|
2`

dA(u)

=

∫
C
f(u)

(∫
C
b(w)K`

α
2

(w, u) e−
α
2 |w|

2`

dA(w)

)
K`
α(u, z) e−α|u|

2`

dA(u),

and Fubini’s theorem gives

(4.5) (h`bf) (z) =

∫
C
b(w) (h`K`

α
2

(·,w)f)(z) e−
α
2 |w|

2`

dA(w).

This allows us to consider the following Bochner integral

(4.6)

∫
C
b(w) h`K`

α/2
(·,w) e

−α2 |w|
2`

dA(w).

By Bochner’s integrability theorem (see, for instance, [14, p. 133]), the S1(F 2,`
α (ω))-

convergence of the Bochner’s integral (4.6) means that the integrand S(w) :=

b(w) hK`
α/2

(·,w) is an S1(F 2,`
α (ω))-valued strongly measurable function on C which

satisfies

(4.7)

∫
C
‖S(w)‖S1(F 2,`

α (ω)) e
−α2 |w|

2`

dA(w) <∞.

We are going to show that S(w) is an operator of rank at most one, for every
w ∈ C, and next we estimate its S1(F 2,`

α (ω))-norm.
For any w ∈ C and f ∈ E, we have

(4.8)
(
hK`

α/2
(·,w)f

)
(z) = 2−1/`〈f,K`

α(·, 2−1/`w)〉αK`
α(2−1/`w, z).

Indeed, by (2.1), K`
α/2( · , w) = 2−1/`K`

α( · , 2−1/`w). Therefore(
hK`

α/2
(·,w)f

)
(z) = 2−1/`〈fK`

α( · , z), K`
α( · , 2−1/`w)〉α

= 2−1/`f(2−1/`w)K`
α(2−1/`w, z)

= 2−1/`〈f,K`
α(·, 2−1/`w)〉αK`

α(2−1/`w, z).

So hK`
α/2

(·,w) is an operator of rank one and, by Lemma 4.1 and estimate (2.11),

we obtain

‖hK`
α/2

(·,w)‖S1(F 2
α(ω)) ' ‖K`

α(·, 2−1/`w)‖F 2
α(ω′)‖K`

α(·, 2−1/`w)‖F 2
α(ω)(4.9)

. (1 + | w
21/` |)4(`−1) e

α
4 |w|

2`

ω(D`
w

21/`

)
1
2ω′(D`

w
21/`

)
1
2

. (1 + |w|)2(`−1) e
α
4 |w|

2`

.

Observe that (4.8) shows that S is an S1(F 2,`
α (ω))-valued function on C. More-

over, it is S1(F 2,`
α (ω))-strongly measurable because

w ∈ C 7−→ hK`
α/2

(·,w) ∈ S1(F 2,`
α (ω))
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is continuous. That follows because hK`
α/2

(·,w) − hK`
α/2

(·,v) has rank at most 2 and
so

‖hK`
α/2

(·,w) − hK`
α/2

(·,v)‖S1(F 2,`
α (ω)) ≤ 2 ‖h{K`

α/2
(·,w)−K`

α/2
(·,v)}‖S∞(F 2,`

α (ω))

(1)

. ‖K`
α/2(·, w)−K`

α/2(·, v)‖F∞,`
α/2

(2)

. ‖K`
α/2(·, w)−K`

α/2(·, v)‖F 1,`
α
2
,2(`−1)

(3)−→ 0,

as w → v, where (1), (2) and (3) are consequences of Theorem 1.1, the pointwise
estimate [5, Corollary 2.9] and the dominated convergence theorem, respectively.

Now (4.9) gives (4.7):∫
C
‖S(w)‖S1(F 2,`

α (ω)) e
−α2 |w|

2`

dA(w) .
∫
C
|b(w)| (1 + |w|)2(`−1)e−

α
4 |w|

2`

dA(w).

Therefore, by (4.5), hb ∈ S1(F 2,`
α (ω)) and ‖hb‖S1(F 2,`

α (ω)) . ‖b‖F 1,`
α/2,2(`−1)

. �

4.0.2. Proof of necessary condition.
The necessity will follow the ideas from the case ω ≡ 1 and ` > 1 (see [5]), which

ultimately are inspired by the classical case ` = 1 (see [9]). The following definition
is suggested by (3.3).

Definition 4.4. For T ∈ S∞(F 2,`
α (ω)), let

ΦT (z) := 〈G0(·, z), T (G0(·, z))〉α + 〈1, T (G1(·, z))〉α (z ∈ C).

Since Φhb = b, the necessary part in Theorem 1.2 is a direct consequence of the
following result.

Proposition 4.5. For 1 ≤ p ≤ ∞, the linear operator T 7→ ΦT is bounded from

Sp(F
2,`
α (ω)) to Lp,`α/2,2(`−1)/p.

Proof. It is easy to check that ΦT is a continuous function on C. Indeed, if zj →
z in C, [6, Proposition 5.6] and the dominated convergence theorem imply that
Gk(· zj)→ Gk(· z) in both spaces F 2,`

α (ω′) and F 2,`
α (ω).

So, taking into account the interpolation identities (4.2) and (4.3), it is enough
to prove the proposition for p = 1 and p =∞.

The case p = ∞ follows from Schwarz inequality, the boundedness of T and
(2.13):

|ΦT (z)| . ‖T‖S∞(F 2,`
α (ω))

(
‖G0(·, z)‖F 2,`

α (ω)‖G0(·, z)‖F 2,`
α (ω′) + ‖G1(·, z)‖F 2,`

α (ω)

)
. ‖T‖S∞(F 2,`

α (ω)) e
α
4 |z|

2`

.

Now we prove the case p = 1, that is,

(4.10) ‖ΦT ‖L1,`
α/2,2(`−1)

. ‖T‖S1(F 2,`
α (ω)) (T ∈ S1(F 2,`

α (ω))).

Taking into account (4.1), the case p = ∞, and Fatou’s lemma, it is easy to show
that we only have to prove (4.10) for operators of rank one. So, by Lemma 4.1, we
may assume that T satisfies

Tf = 〈f, g〉α h (f ∈ F 2,`
α (ω)),

for some functions g ∈ F 2,`
α (ω′) and h ∈ F 2,`

α (ω).
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In this case,

ΦT (z) = 〈G0(·, z), g〉α 〈G0(·, z), h〉α + 〈G1(·, z), g〉α 〈1, h〉α,

and Schwarz inequality using that

ω(D`
z

21/`
)ω′(D`

z

21/`
) ' (1 + |z|)4(1−`)

gives

‖ΦT ‖L1,`
α
2
,2(`−1)

. I0 J0 + I1 J1,

where

I2
k :=

∫
C
|〈Gk(·z), g〉α|2 (1 + |z|)4(`−1)e−

α
4 |z|

2`

ω′(D`
z

21/`
) dA(z)

J2
0 :=

∫
C
|〈G0(·z), h〉α|2 (1 + |z|)4(`−1)e−

α
4 |z|

2`

ω(D`
z

21/`
) dA(z)

J2
1 :=

∫
C
|〈1, h〉α|2 (1 + |z|)8(`−1)e−

α
4 |z|

2`

ω(D`
z

21/`
) dA(z).

Next we prove that Ik . ‖g‖F 2,`
α (ω′) and Jk . ‖h‖F 2,`

α (ω), which, by Lemma 4.1,

give

‖ΦT ‖L1
1
2
,2n(`−1)

. ‖g‖F 2,`
α (ω′) ‖h‖F 2,`

α (ω) ' ‖T‖S1(F 2,`
α (ω)).

In order to prove the estimate Ik . ‖g‖F 2,`
α (ω′), first note that Schwarz’s inequal-

ity gives

|〈Gk(·, z), g〉α|2 .
(∫

C
|g|2 |Gk(·, z)|ω′ dA3α

)(∫
C
|Gk(·, z)|ω dAα

)
,

where dAβ(w) = e−
β
2 |w|

2`

dA(w), for any β > 0. Then, by (2.12), we obtain

|〈Gk(·, z), g〉α|2 . (1 + |z|)`−1e
α
8 |z|

2`

ω(D`
z

21/`
)

∫
C
|g(w)|2|Gk(w, z)|ω′(w)dA3α(w)

Therefore

I2
k .

∫
C

(1 + |z|)5(`−1) ω(D`
z

21/`
)ω′(D`

z

21/`
)

(∫
C
|g|2 |Gk(·, z)|ω′dA3α

)
dAα

4
(z)

.
∫
C

(∫
C
|Gk(w, z)| (1 + |z|)`−1 dAα

4
(z)

)
|g(w)|2ω′(w) dA3α(w)

.
∫
C
‖Gk(·, w)‖F 1,`

α
4
,`−1

|g(w)|2ω′(w) dA3α(w)

and Proposition 4.3 in [5] with γ = 1, α = 1
4 and θ = 1

2 gives

‖Gk(·, w)‖F 1,`
α
4
,`−1

. e
α
2 |w|

2`

so we have that

I2
k .

∫
C
|g(w)|2e−α|w|

2`

ω′(w)dA(w) = ‖g‖2
F 2,`
α (ω′)

.

Similarly, we obtain J0 . ‖h‖F 2,`
α (ω).
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Finally, we estimate J1:

J2
1 = cα,` |h(0)|2

∫
C
(1 + |z|)8(`−1)e−

α
4 |z|

2`

ω(D`
z

21/`
) dA(z)

. |h(0)|2
∫
C
(1 + |z|)8(`−1)e−

α
4 |z|

2`+M |z|` dA(z) . ‖h‖2
F 2,`
α (ω)

,

since ω(D`
z

21/`
) . eM |z|

`

and |h(0)|2 . ‖h‖2
F 2,`
α (ω)

, by [6, Theorem 1.3] and [6,

Lemma 5.5], respectively. �
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Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via

585, 08071 Barcelona, Spain
Email address: joan fabrega@ub.edu
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