
DISCRETE AND CONTINUOUS doi:10.3934/dcds.2020133
DYNAMICAL SYSTEMS

THE SECANT MAP APPLIED TO A REAL POLYNOMIAL

WITH MULTIPLE ROOTS

Antonio Garijo∗

Departament d’Enginyeria Informàtica i Matemàtiques
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Abstract. We investigate the plane dynamical system given by the secant
map applied to a polynomial p having at least one multiple root of multiplicity

d > 1. We prove that the local dynamics around the fixed points related to

the roots of p depend on the parity of d.

1. Introduction and statement of the results. The main goal of this paper
is to investigate the dynamical system generated by the so called secant map, or
secant method when considering it as a root finding algorithm, applied to the real
monic polynomial of degree k ≥ 2,

p(x) = akx
k + ak−1x

k−1 + · · ·+ a1x+ a0, ak = 1, aj ∈ R, j = 0, . . . k − 1,

under the presence of real multiple roots. The secant map writes as

S(x, y) =

(
y, y − p(y)

x− y
p(x)− p(y)

)
. (1)

We refer to [5] for a detailed discussion of the dynamics generated by S when all
real roots of p are simple. As in [5] we consider S : R2 → R2 as a rational map (with
poles). We note that S defines a rational map S : C2 → C2. See [1] for a discussion
on this context.

Let α be a root of p, and consider the set

A(α) = {(x, y) ∈ R2 |Sn(x, y)→ (α, α), as n→∞}. (2)

Because S is a root finding algorithm, it is natural to investigate the structure
and distribution of the sets A(α) for all roots of p. If α is a simple root, then S
is regular (analytic) at (α, α), and S(α, α) = (α, α). If α is a multiple root, then
the map S : R2 → R2 may (or may not) be continuous at (α, α), but it is not C∞

smooth there.

2010 Mathematics Subject Classification. Primary: 37G35, 37N30; Secondary: 37C70.
Key words and phrases. Root finding algorithms, rational iteration, secant method, multiple

root.
This work has been partially supported by MINECO-AEI grants MTM-2017-86795-C3-2-P

and MTM-2017-86795-C3-3-P, the Maria de Maeztu Excellence Grant MDM-2014-0445 of the

BGSMath and the AGAUR grant 2017 SGR 1374.
∗ Corresponding author: antonio.garijo@urv.cat.

1

http://dx.doi.org/10.3934/dcds.2020133


2 ANTONIO GARIJO AND XAVIER JARQUE

In the present work we assume that at least one real root of p, α ∈ R, has
multiplicity d ≥ 2, i.e. p(j)(α) = 0 for 0 ≤ j ≤ d − 1 and p(d)(α) 6= 0. This case is
interesting itself but it is also relevant when studying the bifurcation phenomena of
several simple roots colliding together.

Theorem A. Let p be a real, monic polynomial and let α be a real multiple root
of p of multiplicity d ≥ 2. Let S be the secant map defined in (1). The following
statements hold.

(a) If d is an odd number then the point (α, α) belongs to A(α). Indeed there is
an open neighbourhood U of (α, α) such that U ⊂ A(α).

(b) If d is an even number then (α, α) belongs to the boundary of A(α). In fact,
it belongs to the common boundary of all the basins of attraction associated to
simple real roots of p, i.e.,

(α, α) ∈
⋂

τ∈R, p(τ)=0, p′(τ)6=0

∂A(τ).

Theorem A has several implications when we use the secant method as a root
finding algorithm applied to a polynomial p with multiple roots. If the multiplicity
of the root α of p is odd, it inherits the local dynamics as it was a simple root,
i.e., all initial seeds in a small neighbourhood converge to (α, α) (see Theorem
A(a)). However if α is a multiple root of even multiplicity the local dynamics is
quite different. Although most of the initial seeds near (α, α) converge to it, there
are nearby initial conditions converging to all simple real roots of p (see Theorem
A(b)). It seems plausible, and numerical experiments support it, that in fact (α, α)
belongs to the boundary of all roots of p, not only the simple ones. As we said before,
Theorem A will be also useful for studying the bifurcation phenomena coming from
the collision of several roots.

In Figure 1 we illustrate Theorem A applied to pd(x) = (x + 2)x(x − 1)d, d =
2, 3, 4, 5. Colours red, blue and green, correspond to seeds converging to the roots
x = 1, x = 0, x = −2, respectively. According to Theorem A the dynamical plane of
Sp near the corresponding fixed point (1, 1) changes drastically for different values
of d. We notice that in Figures 1(b) and 1(d) there are also green points near (1, 1)
although it is difficult to see. White colour corresponds to initial conditions whose
trajectories converge to an unbounded critical cycle (for a discussion see [1, 5]).

The paper is organized as follows. In Section 2 we introduce terminology and
tools from a series of papers on rational iteration. In Sections 3 and 4 we compute
the Taylor’s polynomial associated to the secant map at some points, which is the
main tool to prove the Theorem A. Finally Section 5 is devoted to prove Theorem
A.

2. Plane rational iteration. For our purposes we follow the notation, and use
some results and ideas, introduced and developed in the series of papers [2, 3, 4].
Consider the plane rational map given by

T :

(
x
y

)
7→
(
F (x, y)
N(x, y)/D(x, y)

)
, (3)

where F , N and D are differentiable functions. Set

δT = {(x, y) ∈ R2 |D(x, y) = 0} and ET = R2 \
⋃
n≥0

T−n(δT ).
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(1, 1)

(0, 0)

(−2,−2)

(a) p(x) = (x+ 2)x(x− 1)2.

(1, 1)

(b) Zoom of (a) near (1, 1)

(1, 1)

(0, 0)

(−2,−2)

(c) p(x) = (x+ 2)x(x− 1)4.

(1, 1)

(d) Zoom of (c) near (1, 1).

(1, 1)

(0, 0)

(−2,−2)

(e) p(x) = (x+ 2)x(x− 1)3.

(1, 1)

(0, 0)

(−2,−2)

(f) p(x) = (x+ 2)x(x− 1)5.

Figure 1. Dynamical plane of the secant map applied to p(x) = (x +

2)x(x − 1)d for several values of d. We show in red (dark grey) the basin of
attraction of the multiple root of p corresponding to the fixed point of the secant
map located at (1, 1), in green (light grey) the basin of attraction of (−2,−2)
and in blue (black) the basin of attraction of (0, 0). The white regions that
appear in each of the pictures are in the basin of a critical point of p. The

range of the pictures (a),(c),(e) and (f) is [-3,3]x[-3,3].

Easily T = (T1, T2) : ET → ET defines a smooth dynamical system given by the
iterates of T ; that is {xn := Tn (x0)}n≥0, with x0 ∈ T . Clearly T sends points of δT
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to infinity unless N also vanishes. At those points where T2 takes the form 0/0, the
definition of T is uncertain in the sense that the value might depend on the path
we choose to approach the point. Although those uncertain points are outside ET ,
they play a crucial role to understand the local and global dynamics of T .

We say that a point Q ∈ δT ⊂ R2 is a focal point (of T ) if T2(Q) takes
the form 0/0 (i.e. N(Q) = D(Q) = 0), and there exists a smooth simple arc
γ := γ(t), t ∈ (−ε, ε), with γ(0) = Q, such that limt→0 T2(γ) exists and it is finite.
The line LQ = {(x, y) ∈ R2 | x = F (Q)} is called the prefocal line (over Q).

We consider γ passing through Q, not tangent to δT , with slope m at t = 0.
Then T (γ) will be a curve passing through some finite point (F (Q), y(m)) ∈ LQ at
t = 0 (see figure 2). More precisely the value of y(m) is given by

y(m) = lim
t→0

N(γ(t))

D(γ(t))
. (4)

A focal point Q is defined by the intersection of two (algebraic) curves: N(x, y) =
0 and D(x, y) = 0. If they intersect transversally (at Q) we say that Q is a simple
focal point; otherwise Q is called a non simple focal point. In other words Q is
simple if ∇N(Q) = (Nx(Q), Ny(Q)) and ∇D(Q) = (Dx(Q), Dy(Q)) are linearly
independent (i.e. Nx(Q)Dy(Q)−Ny(Q)Dx(Q) 6= 0), whileQ is non-simple if∇N(Q)
and ∇D(Q) are linearly dependent, i.e. Nx(Q)Dy(Q)−Ny(Q)Dx(Q) = 0.

In the series of papers [2, 3, 4] the authors prove, among other things, many
results to determine the sort of relationship between the slope m of the curve γ(t)
at t = 0 and the corresponding point (F (Q), y(m)) ∈ LQ depending on the type
of focal point. For instance if Q is simple (see [2] for details) there is a one-to-one
correspondence between the slope m and points in the prefocal line LQ = {(x, y) ∈
R2 | x = F (Q)}. We sketch the situation in Figure 2.

T

γ1

γ2

m2

m1

Q y(m1)

y(m2)

δT [D(x, y) = 0]

N(x, y) = 0

T (γ1)

T (γ2)

LQ [x = F (Q)]

Figure 2. Dynamics of T near a simple focal point Q.

If Q is a non simple focal point the situation is more delicate (see [4] for de-
tails). The authors studied the possible value(s) of the limit (4) depending on the
precise algebraic conditions implying Nx(Q)Dy(Q)−Ny(Q)Dx(Q) = 0. The major
argument they used is to compute the Taylor’s series of the functions N(x, y) and
D(x, y) at the focal point Q. This is also our main tool here, adapted to the case
of the secant map. Indeed when α is a multiple root of p then the point Q = (α, α)
is a non simple focal point.
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Remark 1. Focal points are also known as indeterminacy points in the general
theory of several complex variables.

3. Taylor’s polynomials of the secant map. In this section we will present
useful expressions of the secant map at the point (α, β) where both α and β are
roots of the polynomial p. Set m ≥ 1 and

qm(x, y) :=

m−1∑
`=0

xm−1−`y`, m = 1, . . . , k

q(x, y) :=

k∑
m=1

amqm(x, y).

(5)

Lemma 3.1 ([5, Lemma 2.1 and 2.2]). The following statements hold.

(a) For m = 1, . . . k we have

xm − ym = (x− y)qm(x, y).

(b) The (symmetric) polynomial q(x, y) defined above satisfies

p(x)− p(y) = (x− y)q(x, y).

In other words, the factor (x − y) divides the expression p(x) − p(y) and the
resultant quotient is a (symmetric) polynomial of degree k − 1.

(c) The secant map defined in (1) writes as

S(x, y) =

(
y,
yq(x, y)− p(y)

q(x, y)

)
:=

(
y,
N(x, y)

D(x, y)

)
(6)

for all (x, y) ∈ R2 \ δS.

Next lemma gives precise Taylor’s polynomials of N(x, y) and D(x, y) and hence
of the rational map S(x, y) at a point (α, α), where α is a root of p with multiplicity
d ≥ 2.

Lemma 3.2. Let p be a polynomial of degree k and let α be a root of p of multiplicity
d with 2 ≤ d ≤ k − 1. Then,

S(x, y) =

(
y,
N(x, y)

D(x, y)

)
=

(
y, α+

N1(x, y)

D(x, y)

)
where

D(x, y) =

k∑
m=d

p(m) (α)

m!

m−1∑
`=0

(x− α)m−1−`(y − α)`, (7)

N1(x, y) =(x− α)(y − α)

k∑
m=d

1

m!
p(m) (α)

m−1∑
`=1

(x− α)m−1−`(y − α)`−1 (8)

Proof. First we prove (7). We claim that

D(x, y) =

k∑
m=1

p(m)(x0)

m!

m−1∑
`=0

(x− x0)m−1−`(y − x0)`, x0 ∈ R.

Assuming that the claim is true, then (7) follows immediately by substituting x0 = α
where α satisfies p(j)(α) = 0 for 0 ≤ j ≤ d− 1 and p(d)(α) 6= 0.
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To see the claim observe that for any given x0 ∈ R we have

p(x) =

k∑
m=0

p(m)(x0)

m!
(x− x0)m and p(y) =

k∑
m=0

p(m)(x0)

m!
(y − x0)m.

Then

D(x, y) = q(x, y) =
p(y)− p(x)

y − x
=

k∑
m=1

p(m)(x0)

m!

[
(y − x0)m − (x− x0)m

(y − x0)− (x− x0)

]
.

Using Lemma 3.1(a) we have that

D(x, y) =

k∑
m=1

p(m)(x0)

m!
qm(x−x0, y−x0) =

k∑
m=1

p(m)(x0)

m!

m−1∑
`=0

(x−x0)m−1−`(y−x0)`,

proving the claim.
Now we prove (8) by computing the Taylor’s polynomial expression of N(x, y) =

yq(x, y)− p(y) at the point (α, α). Of course we have

N(x, y) =

k∑
m=1

1

m!

m∑
`=0

(
m
`

)
∂mN

∂xm−`∂y`
(α, α) (x− α)m−`(y − α)`. (9)

Since N(x, y) = yq(x, y)− p(y) we have that

∂`N
∂y`

(x, y) = y ∂
`q
∂y`

(x, y) + ` ∂
`−1q
∂y`−1 (x, y)− p(`)(y), ` > 0

∂mN
∂xm (x, y) = y ∂

mq
∂xm (x, y), m > 0

∂mN
∂xm−`∂y`

(x, y) = y ∂mq
∂xm−`∂y`

(x, y) + ` ∂m−1q
∂xm−`∂y`−1 (x, y), m− ` > 0, ` ≥ 0.

Now we want to evaluate the expressions above at the point (x, y) = (α, α). Since
by definition q(x, y) = D(x, y) we might use (7) to compute the desired derivates.
Let m and ` be two natural numbers with 0 ≤ ` ≤ m.

∂mN

∂xm−`∂y`
(α, α) =



0 for m < d− 1

α ∂mD
∂xm−`∂y`

(α, α) for m = d− 1

α ∂mD
∂ym

(α, α) +m ∂m−1D
∂ym−1 (α, α)− p(m)(α) for m > d− 1, m− ` = 0

α ∂mD
∂xm

(α, α) for m > d− 1, ` = 0

α ∂mD
∂xm−`∂y`

(α, α) + ` ∂m−1D
∂xm−`∂y`−1 (α, α) for m > d− 1, ` ≥ 1.

(10)

From (7) and (10) we can compute the partial derivatives of (9) depending on m
and ` to get N(x, y) = αD(x, y) +N1(x, y).

Next two lemmas deal with the partial derivatives of the polynomials N(x, y)
and D(x, y) at points of the form (α1, α2) where α1 and α2 are different real roots
of p of multiplicity d1 ≥ 1 and d2 ≥ 1, that is p(j)(αk) = 0 for 0 ≤ j ≤ dk − 1 and
p(dk)(αk) 6= 0, k = 1, 2. Notice that D(x, y) = q(x, y) and N(x, y) = yq(x, y)−p(y).

Lemma 3.3. Let p be a polynomial of degree k and let α1 and α2 be two different
real roots of p with multiplicity d1 and d2, respectively. Let m and ` be two natural



THE SECANT MAP WITH MULTIPLE ROOTS 7

numbers with 0 < ` < m. Then

∂mq

∂xm
(α1, α2) =

1

α1 − α2

(
p(m) (α1)−m∂m−1q

∂xm−1
(α1, α2)

)
,

∂mq

∂ym
(α1, α2) = − 1

α1 − α2

(
p(m) (α2) +m

∂m−1q

∂ym−1
(α1, α2)

)
,

∂mq

∂xm−`∂y`
(α1, α2) =

1

α1 − α2

(
`

∂m−1q

∂xm−`∂y`−1
(α1, α2)− (m− `) ∂m−1q

∂xm−`−1∂y`
(α1, α2)

)
.

(11)

Proof. From Lemma 3.1(b) we know that (x− y)q(x, y) = p(x)− p(y). On the one
hand we can write this expression in the following form

(x− α1)q(x, y)− (y − α2)q(x, y) + (α1 − α2)q(x, y) = p(x)− p(y), (12)

and on the other hand we have the Taylor’s polynomial of the relevant functions

p(x)− p(y) =

k∑
m=0

1

m!
p(m) (α) (x− α1)m −

k∑
m=0

1

m!
p(m) (α2) (y − α2)m,

q(x, y) =

k∑
m=1

1

m!

m∑
`=0

(
m
`

)
∂mq

∂xm−`∂y`
(α1, α2) (x− α1)m−`(y − α2)`.

(13)

From (13) we can solve (12) term by term: (x−α1)m, (y−α2)m and (x−α1)m−`(x−
α2)`, with m, ` ∈ N and 0 < ` < m. For instance from (13) the coefficient of
(x− α1)m in the left hand side of (12) is

1

(m− 1)!

(
m− 1

0

)
∂m−1q

∂xm−1
(α1, α2) + (α1 − α2)

1

m!

(
m
0

)
∂mq

∂xm
(α1, α2)

while the coefficient of (x− α1)m in the right hand side of (12) is

1

m!
p(m) (α) .

This gives the first equality in (11). We left the other computations to the reader.

Notice that D(x, y) = q(x, y), and so the previous lemma gives explicit recursive
expressions of the partial derivatives of D(x, y). Similarly we can prove explicit
recursive expressions of the partial derivatives of N(x, y)

Lemma 3.4. Let p be a polynomial of degree k and let α1 and α2 be two different
real roots of p with multiplicity d1 and d2, respectively. Let m and ` be two natural
numbers with 0 < ` < m. Then

∂mN

∂xm
(α1, α2) = α2

∂mq

∂xm
(α1, α2) ,

∂mN

∂ym
(α1, α2) = m

∂m−1q

∂ym−1
(α1, α2) + α2

∂mq

∂ym
(α1, α2)− pm (α2) ,

∂mN

∂xm−`∂y`
(α1, α2) = `

∂m−1q

∂xm−`∂y`−1
(α1, α2) + α2

∂mq

∂xm−`∂y`
(α1, α2) .

(14)
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Proof. The proof follows the same strategy of the previous lemma noticing that

N(x, y) = yq(x, y)− p(y) = (y − α2)q(x, y)− α2q(x, y)− p(y)

and resolving term by term.

4. Local behaviour of the secant map near focal points and multiple roots.
Our main goal in this section is to study, using the Taylor’s polynomials described
in the previous section, the local behaviour of the secant map at two different type
of points: (α, α) with α being a root of p of multiplicity d > 1, and (α1, α2) with
αj being a root of p with multiplicity dj , j = 1, 2.

Let Γm,κ,τ,σ(t) = (ξ(t), µm,κ,τ,σ(t)) be a curve passing through (0, 0) at t = 0
with

ξ(t) = t+
1

2
t2 +

1

6
t3 +

1

24
t4 +O

(
t5
)

= t ξ1(t)

µm,κ,τ,σ(t) = mt+
κ

2
t2 +

τ

6
t3 +

σ

24
t4 +O

(
t5
)

= t µ1(t),
(15)

where m (the slope), κ (the curvature), τ (the torsion) and σ are real parameters. If
no confusions arise we will not show the dependence of the curve on the parameters.

To simplify the exposition we introduce the following parameter

λk =
1

k!
p(k) (α) . (16)

Lemma 4.1. Let Γ(t) be a curve as in (15). Then,

S (ξ(t) + α, µ(t) + α) =

(
µ(t) + α,

A(t)

B(t)
+ α

)
.

where

A(t) = tdξ1(t)µ1(t)

k∑
m=d

λmt
m−d

m−1∑
`=1

[ξ1(t)]m−1−` [µ1(t)]`−1

B(t) = td−1
k∑

m=d

λmt
m−d

m−1∑
`=0

[ξ1(t)]m−1−` [µ1(t)]`.

(17)

Moreover,

A(t)

B(t)
=
t ξ1(t)µ1(t)

∑k
m=d λmt

m−d∑m−1
`=1 [ξ1(t)]m−1−` [µ1(t)]`−1∑k

m=d λmt
m−d∑m−1

`=0 [ξ1(t)]m−1−` [µ1(t)]`
. (18)

Proof. We focus on the second component of the secant map. From Lemma 3.2 we
have

N (ξ(t) + α, µ(t) + α)

D (ξ(t) + α, µ(t) + α)
= α+

N1 (ξ(t) + α, µ(t) + α)

D (ξ(t) + α, µ(t) + α)
=

α+
ξ(t)µ(t)

[∑k
m=d λm

∑m−1
`=1 [ξ(t)]m−1−`[µ(t)]`−1

]
∑k
m=d λm

∑m−1
`=0 [ξ(t)]m−1−`[µ(t)]`

.

Some computations show that since ξ(t) = tξ1(t) and µ(t) = tµ1(t) on the right
hand side of the above expression we get (17) and simplifying the factor td−1 in
A(t) and B(t) we obtain (18).
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Lemma 4.2. Let d ≥ 3 be an odd number and assume α is a multiple root of p of
multiplicity d. Then

lim
t→0

S (ξ(t) + α, µ(t) + α) = (α, α) .

Proof. Using the above lemma it is enough to show that

lim
t→0

A(t)

B(t)
= 0.

On the one hand the numerator of (18) tends to 0 as t→ 0. On the other hand the
denominator writes as

λd
[
1 +m+ . . .+md−1]+O(t). (19)

We claim that if d is an odd number then λd
(
1 +m+ . . .+md−1) is different from

zero. The claim follows from the fact that α is a root of p of multiplicity d, and this
imply that λd 6= 0, see (16), and

Gd(m) := 1 +m+ . . .+md−1 =

{
d if m=1
1−md
1−m otherwise.

(20)

Lemma 4.3. Let d ≥ 2 be an even number and assume α is a multiple root of p of
multiplicity d. The following statements hold.

(a) If m 6= −1 then

lim
t→0

S (ξ(t) + α, µ(t) + α) = (α, α) .

(b) If m = −1 then

lim
t→0

S (ξ(t) + α, µ−1,κ,τ,σ(t) + α) = (α, yκ) ,

and the map κ 7→ yκ is one-to-one. Moreover, fixing any value of κ 6= −1 and
given any pair of values M, s ∈ R there exists a unique pair τκ, σκ ∈ R such
that S(Γ−1,κ,τκ,σκ) is a curve passing through the point (α, yκ) with slope M
and curvature s.

Proof. The proof of statement (a), m 6= −1, follows similarly as in the previous
lemma. The equalities and expressions (16), (17), (18), (19) and (20) are exactly
the same. The polynomial Gd for d ≥ 2 even has a unique real zero at m = −1.
Hence for m 6= −1 the same arguments as before imply statement (a).

We turn our attention to the case when m = −1. Set

C(κ) =
dλd
4

(κ+ 1) + λd+1.

From Lemma 4.1, some computations show that

A(t) = −λdt+
dλd
4

(κ− 1)t2 +R1(κ, τ)t3 +O(t4),

B(t) = Ct+

(
R2(κ) +

dλd
12

(1 + τ)

)
t2 +

(
R3(κ, τ) +

dλd
24

(1 + σ)

)
t3 +O(t4),

A(t)

B(t)
= −λd

1

C
+

1

C2

(
R4(κ) +

d

4
λ2d(1 + τ)

)
t+

1

C3

(
R5(κ, τ) +

d

24
λd(1 + σ)

)
t2 +O(t3),
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where Rj(κ, τ), j = 1, . . . , 5 are polynomials whose coefficients depend on λd, λd+1

and λd+2. Consequently,

lim
t→0

S (ξ(t) + α, µ−1,κ,τ,σ(t) + α) =

(
α, α+ lim

t→0

A(t)

B(t)

)
=

(
α, α− λd

C(κ)

)
.

This proves that the map κ 7→ yκ := α−λd/C(κ) is one to one. Since the parameters
τ and σ appear linearly on the expression of A(t)/B(t) it is easy to see that for any
{M, s}.

5. Proof of Theorem A. We denote by D ((α, α) , ε) the disc centered at (α, α)
of radius ε > 0 and by dist the Euclidian distance. The proof of Theorem A splits
into two lemmas.

Lemma 5.1. Let p be a polynomial of degree k and let α be a real root of p of
multiplicity d ≥ 1. Set Q = {(x, y) ∈ R2 | x ≥ α and y ≥ α}. Let ε > 0 be a small
enough real number. The following statements hold.

(a) If d is an odd number then D ((α, α) , ε) ⊂ A(α).
(b) If d is an even number then D ((α, α) , ε) ∩ Q ⊂ A(α). Moreover (α, α) ∈

∂A(α).

Proof. If d = 1 this follows from [5, Theorem A(a)]. So we first assume d > 1 odd.
From Lemma 4.2 we might extend continuously the map S at the point (α, α) by
defining S(α, α) = (α, α). We claim that for sufficiently small values of ξ, µ ∈ R we
have

dist (S (α+ ξ, α+ µ) , (α, α)) ≤ dist ((α, α) , (α+ ξ, α+ µ)) . (21)

To see the claim we use Lemma 3.2 to show that

S (α+ ξ, α+ µ) =

(
α+ µ, α+

N1 (α+ ξ, α+ µ)

D (α+ ξ, α+ µ)

)
, (22)

where

N1 (α+ ξ, α+ µ) = ξµ

k−1∑
m=d

p(m) (α)

m!

m−1∑
`=1

ξm−1−`µ`−1 =

ξµ
p(d) (α)

d!

d−1∑
`=1

ξd−1−`µ`−1 +O (|ξ|+ |µ|)d+1 ,

D (α+ ξ, α+ µ) =

k∑
m=d

p(m) (α)

m!

m−1∑
`=0

ξm−1−`µ` =
p(d) (α)

d!

d−1∑
`=0

ξd−1−`µ` +O (|ξ|+ |µ|)d .

(23)

On the one hand observe that

S (α, α+ µ) = (α+ µ, α) and S (α+ ξ, α) = (α, α) ,

and so (21) is satisfied on those lines with equality. On the other hand if ξµ 6= 0

S (α+ ξ, α+ µ) ≈

(
α+ µ, α+ µξ

∑d−1
`=1 ξ

d−1−`µ`−1∑d−1
`=0 ξ

d−1−`µ`

)
. (24)

Hence (21) is satisfied if and only if

µ

∑d−1
`=1 ξ

d−1−`µ`−1∑d−1
`=0 ξ

d−1−`µ`
< 1. (25)
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Since d is odd we have from (20) that the denominator of (24) is bounded away from
zero and always positive. So a sufficient condition to satisfy the above inequality is

d−1∑
`=1

ξd−1−`µ` <

d−1∑
`=0

ξd−1−`µ`,

which is an immediate exercise.
Second suppose d > 1 is an even number. All inequalities above works as well

and the denominator of (24) is bounded away from zero and it is always positive as
long as ξ and µ are positive numbers. So the same conclusion as before is obtained
for points in D ((α, α) , ε)∩Q. Notice, however, that Lemma 4.3 implies that there
are curves (all with slope m = −1) passing through (α, α) whose images by S are
curves passing through any point of the form (α, y), y ∈ R. Hence we conclude that
(α, α) ∈ ∂A(α).

Statement (a) of the lemma above implies statement (a) of Theorem A. Moreover
from statement (b) of the lemma above, to finish the proof of Theorem A all we
need to do is to show that (α, α) ∈ ∂A(β), for all β 6= α a simple root of p.

Lemma 5.2. Let α be a root of p of even multiplicity dα, and let β 6= α be any
simple real root of p. Then (α, α) ∈ ∂A (β).

Proof. We claim that there exist curves passing through (α, α) whose second image
by S correspond to curves passing through points (β, y) for almost every y ∈ R.
Since points in this vertical line (except a finite number) belong to A (β) the lemma
follows. We see the claim into two steps.

First, observe that Lemma 4.3(b) implies that it is possible to choose parameters

for a curve Γ̂(t) passing through (α, α) with slope m = −1 such that its image

S
(

Γ̂(t)
)

is a curve through the point (α, β) with arbitrary slope and curvature.

Second, let us consider an arbitrary curve Γ(t) passing through the point (α, β)
with slope equal to 0 and curvature κ ∈ R. Our goal is to show that varying κ ∈ R
the image curve S (Γ(t)) is a curve passing through (β, yκ), yκ ∈ R, as desired.

To simplify the computations consider the curve in (15) of the form Γ0,κ,0,0

ignoring the higher order terms; that is,

ξ(t) = t+
1

2
t2, µ0,κ,0,0(t) =

κ

2
t2 . (26)

Then

lim
t→0

S (ξ(t) + α, µ(t) + β) =

(
β, lim

t→0

N (ξ(t) + α, µ(t) + β)

D (ξ(t) + α, µ(t) + β)

)
.

The Taylor’s polynomial of N and D at a point (α, β) (see Lemmas 3.3 and 3.4
for the expressions of the partial derivatives) we get

N

(
t+

1

2
t2 + α,

κ

2
t2 + β

)
=

1

2 (α− β)
(βp′′ (α)− αp′ (β)κ) t2 +O(t3)

D

(
t+

1

2
t2 + α,

κ

2
t2 + β

)
=

1

2 (α− β)
(p′′ (α)− p′ (β)κ) t2 +O(t3).

Thus

lim
t→0

S (ξ(t) + α, µ(t) + β) =

(
β,
βp′′ (α)− αp′ (β)κ

p′′ (α)− p′ (β)κ

)
,

and since p′(β) 6= 0 the result follows.
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Remark 2. We believe that Lemma 5.2 is also true if β is a multiple root; that is,
there are initial conditions near the point (α, α) whose trajectories under the secant
map converge to (β, β) no matter the multiplicity of β.
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