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Abstract 

Diabetes mellitus is a heterogeneous group of metabolic diseases characterized by 

impaired blood glucose homeostasis that affects more than 415 million people 

worldwide and is a leading cause of mortality. The most prevalent form of diabetes is 

Type 2 Diabetes (T2D) that accounts for 90% of diabetes cases. An interplay of 

environmental and genetic risk factors contributes to etiology of T2D via a progressive 

loss of pancreatic beta cell function coupled with insulin resistance. Genome Wide 

Association Studies (GWAS) identified more than 400 independent genetic loci 

associated with T2D risk, although the molecular mechanisms underlying these genetic 

signals remain poorly understood. A comprehensive understanding of gene regulation 

in human pancreatic islets and identifying the role of T2D risk variants on different 

components of gene regulation will enlighten our insights into T2D etiology. 

In this work, we performed an in-depth characterization of human pancreatic 

islets transcriptional regulatory elements, attaining a greater granularity at 

transcriptional enhancers. We further identified glucose responsive enhancers which 

regulate glucose-dependent gene expression programs via three-dimensional chromatin 

interactions. This allowed us to gain insights into human islet transcriptional gene 

regulation and how glucose, a primary physiological stimulant of pancreatic islets, 

modulates human islet genome function. 

We also generated comprehensive transcriptome annotations in human islets 

using short- and long-read sequencing data along with accurate maps of transcriptional 

start sites. This revealed islet-specific promoters, transcript isoforms and novel coding 

sequences. This underscored the importance of generating transcript models in disease 

relevant tissue to progress in the understanding of gene regulation. 

Finally, these parallel efforts allowed us to create pioneer maps of genetic 

effects on human alternative splicing that revealed for the first time the noteworthy 

contribution of human islet mRNA splicing to T2D pathophysiology. These results 

have thus the potential to blossom in the discovery of novel T2D drug targets. 
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1. Introduction 

 

1.1. Pathophysiology of Type 2 Diabetes 
1.1.1. Health burden of diabetes and sub-classification. 

Diabetes mellitus (DM) is a heterogenous metabolic condition characterized by 

hyperglycemia that affects more than 415 million people around the world 

(InternationalDiabetesFederation, 2019) and is a leading cause of mortality. The 

alarming increase in the prevalence of diabetes speaks to limited preventive strategies 

and poor disease management, which results in long pre-diagnostic periods, eventually 

leading to serious life-threatening complications (cardiovascular disease, renal failure, 

blindness or lower limb amputation) (Feero et al., 2010). This major global health 

emergency requires significant progress in (i) the early identification of individuals at 

high risk and (ii) the improved individual response to available therapies. Thereafter, 

characterizing the array of molecular mechanisms with the most significant 

contributions to diabetes aetiology is pivotal to determine actionable components that 

will set the basis for refined preventive and therapeutic strategies. 

The most prevalent form of diabetes is adult-onset type 2 diabetes (T2D) that 

accounts for nearly 90% of all diabetes worldwide (InternationalDiabetesFederation, 

2019). The interplay between genetic and environmental factors has been reported to 

both influence T2D pathogenesis, and pancreatic islet dysfunction coupled with 

obesity-related insulin resistance(DeFronzo, 2004; Feero et al., 2010). Other common 

forms of diabetes are type 1 diabetes (T1D) that accounts for 5-10% of all diabetes 

(Daneman, 2006)and is largely driven by autoimmune destruction of pancreatic islets 

(Katsarou et al., 2017). Type 1 diabetes usually presents in the childhood along with 

circulating islet-cell antibodies. Finally, rarer monogenic forms, including maturity-

onset diabetes of the young (MODY) or neonatal diabetes comprise 1-5% (Misra and 

Owen, 2018). Monogenic forms of diabetes share some hallmarks with T2D, such as 

mutations in genes that are essential for pancreatic islet function and identity. Taken 

together, although disparate pathological processes converge in T2D progression as 

aforementioned, pancreatic islets are central to the T2D pathogenesis and that of other 

diabetes forms.  
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1.1.2.  Human pancreatic islets: organization, function and 
implications in diabetes.  

The bulk of the pancreatic tissue is largely formed by the exocrine compartment that 

produces and delivers digestive enzymes to the gut. The endocrine compartment is 

enclosed in the islets of Langerhans and embodies a comparatively much smaller 

portion of the pancreas. However, endocrine islet cells are essential to maintain blood 

glucose homeostasis (Segerstolpe et al., 2016).  Pancreatic islets are composed of five 

different cell-types: glucagon producing alpha cells, insulin producing beta cells, 

somatostatin producing delta cells, pancreatic polypeptide (PP) secreting or gamma 

cells, and ghrelin producing epsilon cells(Segerstolpe et al., 2016). Nevertheless, the 

core of pancreatic islets draws upon beta cells, which account for 50-70% of the islets 

(Dolenšek et al., 2015)Importantly, reduction of beta cell mass and dysfunction are key 

players in the development of diabetes(Kahn et al., 2006). 

Pancreatic beta cells secrete insulin upon sensing increased glucose in the 

bloodstream (Figure 1.1). Glucose enters the beta cell through the GLUT2 transporters, 

is immediately phosphorylated by glucokinase encoded in the GCK gene, and 

subsequently metabolized. This result in an increase in the ratio of ATP to ADP. 

Elevated levels of cytosolic ATP close ATP-sensitive potassium (KATP) channels and 

leads to membrane depolarization, which stimulates calcium influx through voltage-

dependent Ca2+ channels (Ashcroft and Rorsman, 2012). The accumulation of cytosolic 

Ca2+ triggers the insulin release that will promote the uptake of blood glucose by 

peripheral organs such as liver, skeletal muscle and adipose tissue. 

Defects on insulin secretion are the main culprit of rare monogenic forms of 

diabetes, such as MODY or neonatal diabetes, but also of common forms like T2D, in 

this case in the context of obesity-associated insulin resistance. Neonatal diabetes is 

often caused by impaired beta cell depolarization due to mutations in the KATP channel 

that causes insulin secretion mis-regulation (Flanagan et al., 2009; Hattersley and 

Ashcroft, 2005) The majority of the cases of familial young-onset diabetes account for 

mutations in  
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Figure 1. 1 Glucose stimulated insulin secretion.  

Adapted from (León and Stanley, 2007) 

 

transcription factors (HNF1A, HNF4A and HNF1B genes), which determine beta cell 

fate and function, and the glucokinase GCK gene. Loss-of-function mutations in the  

GCK gene that results in decreased insulin secretion and gives rise to a mild 

hyperglycemia, which can be managed by diet alone. Transcription factor-associated 

mutations, mainly present in the HNF1A gene, result in a progressive decline of the 

beta cell function and hereby a deficit of insulin secretion(Shih et al., 2001; Yamagata 

et al., 2002; Yang et al., 2002) . Reduced beta cell function followed by the 

development of insulin resistance in muscle, liver and adipose tissues has also crucial 

roles in T2D pathogenesis (DeFronzo et al., 2015). Of note, T2D was considered for a 

long time as a disease mainly driven by insulin resistance associated with obesity, but 

the emergence of Genome Wide Association Studies (GWAS) has been instrumental 

for a paradigm shift. To date, more than 400 independent genetic signals have been 

identified to be associated with T2D risk (Mahajan et al., 2018a; Vujkovic et al., 

2020). Although, most of these risk genetic variants are in non-coding regions, as we 

will discuss later on, genetic studies have revealed the role of beta cell function and 

identity in T2D pathogenesis (Gaulton 2010, Pasquali 2014  (Bonnefond et al., 2010; 

Feero et al., 2010; Thomsen et al., 2018). Thus, gaining insights into the mechanistic 
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underpinnings of gene regulatory networks that govern pancreatic islet beta cell 

development and function, and the interplay with T2D risk genetic signals will 

enlighten our understanding of disease pathogenesis and create new avenues for 

improved preventive and targeted therapeutic strategies. 
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1.2. The functional human genome 

The human genome contains over 3.2 billion base pairs of nucleic acids as 

deoxyribonucleic acids (DNA) that encode the set of instructions for organism’s 

development and function. Due to the smaller size of the nucleus, DNA is stored in a 

compact form, wrapped around nucleosomes, which are the basic units of chromatin 

(Figure 1.2). A nucleosome is composed of 2 copies of histone proteins H2A, H2B, H3 

and H4, referred to as the histone octamer. Depending on the distance between 

nucleosomes, DNA can exist as (i) densely packed heterochromatin or (ii) loosely 

packed euchromatin. Heterochromatin was initially thought to be biochemically 

inactive while euchromatin is the active form, but it has been later suggested that the 

biochemical activity of DNA is not tightly subjected to this organization(Gilbert et al., 

2004). 

 

 

 

 

Figure 1. 2 Organization of DNA inside a nucleus.  

Adapted from Pierce, Benjamin. Genetics: A Conceptual Approach, 4th edition. 
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The central dogma of molecular biology (CRICK, 1970) described a 

unidirectional flow of information where DNA is transcribed into ribonucleic acid 

(RNA), a process referred to as transcription, and then RNA is used as a template for 

protein synthesis, a process referred to as translation. One notable exception to this 

theory is reverse transcription of RNA by retroviruses, where RNA is used as a template 

for cDNA synthesis. Another exception has been the recognition that a large number of 

RNAs do not appear to encode for protein but may nevertheless exert regulatory 

functions (Carninci et al., 2005; Guttman et al., 2009; Mercer et al., 2012). 

As DNA is tightly wrapped around nucleosomes, the genomic sequence is not 

usually accessible for transcription. Transcription of the human genome is a highly 

coordinated process that is preceded by the creation of an active chromatin 

environment. This active chromatin state is defined by the increasing accessibility of 

DNA sequences that are wrapped around histones by several proteins that initiate and 

stimulate transcription. Chromatin accessibility is primarily facilitated by post-

translational modifications (PTMs) of histone proteins, in particular in the lysine 

residues close to amino acid termini of H3 and H4. The PTMs of histones is carried out 

by chromatin-modifying proteins such as histone acetyltransferases (HAT), histone 

deacetylases (HDAC), lysine methyltransferases (KMTs) and lysine deacetylases 

(KDMs). Depending on the type of PTMs, the underlying chromatin state may become 

more active or less active, and they are also associated with the disparate purposes of 

active chromatin, as we will discuss in detail in chapter 1.3. 
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1.2.1. Impact of alternative splicing on protein and 
transcriptome diversification. 

The protein-coding parts of the human genome are transcribed to messenger RNA 

(mRNA), a process interchangeably termed gene transcription or gene expression. The 

resulting mRNA then can be translated to synthesize proteins that perform a vast 

number of biological functions. Of note, some of the RNAs may not encode for protein 

sequences. They are named non-coding RNAs (Carninci et al., 2005) and play key roles 

in genome regulation.   

 The human genome roughly contains 22,000 to 25,000 protein-coding DNA 

sequences in each tissue. However, the vast number of encoded proteins that the 

genome gives rise is far in excess of the original number of genes. A typical mRNA 

contains both exonic and intronic regions. Introns are not required for protein synthesis 

and are thereby spliced out from pre-mRNA molecules before being translated to 

proteins, by a mechanism known as alternative splicing(Sanford and Caceres, 2004) 

(Figure 1.3). Then, the exonic fraction of mRNA molecules are merged to form a 

template for protein synthesis. While many exons are part of pre-mRNA, some exons 

are alternatively spliced, which increases the breadth of mRNAs sequences and 

contribute to proteome diversity.  

 
 

 

 

Alternative splicing not only involves differential usage of exons but also differential 

usage of splice sites and intron retention events (Figure 1.4). 

Figure 1. 3 A schematic of alternative splicing showing intron excision in a lariat fashion. 
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Understanding splicing regulation is fundamental to gain insights into disease 

pathophysiology as many diseases are associated with mis-regulation of alternative 

splicing(Faustino and Cooper, 2003).  

 

Alternative splicing machinery 
Splicing is carried out by the spliceosome, a megadalton complex of U1, U2, U3, 

U4/U6 and U5 small ribonuclear proteins (snRNPs) along with multiple protein 

factors(Nagai and Fica, 2017; Wahl et al., 2009). Binding of snRNPs to pre-mRNA 

and stabilization of spliceosome is governed by intron and exon “definitions” of 

splicing. Intron definition of splicing predominates in organisms that have shorter 

introns, e.g., in yeast and many invertebrate species. In contrast, exon definition is 

preponderant in vertebrates, which usually have longer introns (median length of 1kb). 

This splicing complex is formed onto the pre-mRNA molecule in a stepwise manner 

(Figure 1.5). The introns contain splice site recognition sequences, the 5’ and 3’ splice 

sites (5’ss and 3’ss, respectively), that are GU and AG consensus sequences, 

respectively, along with a branch point sequence. The assembly of the splicing 

machinery begins with the recognition and binding of U1 snRNA through base-pairing 

Figure 1. 4 Different types of alternative splicing events.  
Adapted from Scotti and Swanson, 2016, nature reviews genetics. 
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to the 5’ss of introns. This process concurs with the binding of SF1/BBP protein and 

U2 auxiliary factor (U2AF) to the branch point sequence and the polypyrimidine tract 

downstream of the branch point sequence. The U2AF has two subunits, a 65 kDa which 

interacts with SF1 and a 35 kDa subunit which recognizes and binds to the 3’ss. This 

yields the spliceosome complex ‘E’, which is a crucial step for the initial recognition 

of 5’ss and 3’ss. The U2 snRNP then displaces SF1 at the BPS in an ATP-dependent 

manner, resulting in the ATP-dependent complex (complex 'A'). This process is 

stabilized by SF3a and SF3b, which are heteromeric protein complexes of U2 snRNP. 

Then, U4, U5 and U6 are recruited as a tri-snRNP complex to from complex ‘B’, a 

catalytically inactive complex. The dissociation of U1 and U4 is next triggered by a 

series of conformational changes catalyzed by RNA helicases Brr2, Snu1 14, Prp3, 

among others, and this progresses to the activated complex B (‘B*’) spliceosome. Then, 

two subsequent catalytic steps occur. The first one releases U2-associated proteins SF3a 

and SF3b, exposing the BPS that attacks the 5’ss. This results in a free 5’ exon and an 

intron lariat intermediate ‘C1’ complex. The second catalytic step involves the 3’OH 

of the 5’ of the exon that attacks the 3’ss to generate the ‘C2’ complex. Splicing 

concludes by the dissociation of the remaining snRNPs, the ligation of the exons and 

the rapid degradation of the intron lariat (Figure 1.5). 
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Regulation of alternative splicing 
As splice site sequences are degenerate across the genome, their recognition and 

selection by the spliceosome is accompanied by flanking regulatory sequences known 

as ‘splicing enhancers’ and ‘silencers’ that could be located either in introns or in exons 

(Singh and Valcárcel, 2005) (Figure 1.6). Along with the snRNPs described above, 

the primary regulators of splicing are RNA recognition motif (RRM)-containing 

proteins (SR proteins) and SR-related proteins, which contain regions of alternating 

serine (S) and arginine (R) residues. SR proteins tend to enhance splicing by binding to 

purine-rich exonic regions of pre-mRNA that could act as exonic enhancers, thus 

 Figure 1. 5 A stepwise assembly of spliceosome.  
 Adapted from Kiyoshi Nagai et al. 2017 
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recruiting U1 splicing factor and U2 auxiliary factor to the 5’ and 3’ splice sites, 

respectively, and promoting the inclusion of the respective exon(Fu and Ares, 2014). 

In addition to SR proteins, other types of RNA binding proteins (RBPs) participate in 

splicing regulation, such as the heterogeneous ribonucleoprotein (hnRNP) family as 

well as RBPs containing RRN k homology domain (KH), zinc-fingers and many others 

(Lunde et al, 2007). The hnRNP binding on splicing silencer motifs usually have a 

repressive effect on splicing i.e. they act to antagonize the effects of SR proteins, and 

prevent exons to be included in the mRNA sequence. Polypyrimidine tract-binding 

proteins (PTB), which prefer to bind to polypyrimidine sequences, are the best-

characterized of hnRNPs (Llorian et al., 2010; Xue et al., 2009) 

 

 

Even though alternative splicing is a ubiquitous mechanism of gene regulation, the 

regulation of alternative splicing is cell-type specific as it is a key player in development 

and tissue identity. The ubiquitous component of splicing is defined by very strong 

splice site sequences. In contrast, tissue-specific regulation of alternative splicing stems 

from weak splicing motifs. Additionally, cis-regulatory elements on the mRNA 

sequence enhance or suppress splicing depending on the binding of trans-acting RBPs, 

whose expression is regulated according to the cellular context(Baralle and Giudice, 

2017; Pan et al., 2008; Wang et al., 2008).  

 

Both gene transcription and alternative splicing are highly tissue-specific processes and 

previous studies indicate that they are interlinked at various levels (Drexler et al., 

2019; Kornblihtt et al., 2013; Luco et al., 2011; Vargas et al., 2011). 

Figure 1. 6 Auxiliary splicing regulators.   
A schematic representing splicing regulators. cis-acting Intronic and exonic splicing 
enhancers (ISE, ESE) and intronic and exonic splicing silences (ISS, ESS) are bound 
by trans-acting splicing regulators and govern the splicing reaction. Figure adapted 
from Scotti and Swanson, 2016, nature reviews genetics. 
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Long noncoding RNAs 

Along with protein-coding genes, the human genome also encodes for a plethora of 

non-coding RNAs as extensively reported in literature (Carninci et al., 2005; Guttman 

et al., 2009; Mercer et al., 2012). One class of non-coding RNAs are long non-coding 

RNAs (lncRNAs) that are arbitrarily defined as mRNA longer than 200bp that do not 

encode for proteins. Like protein-coding genes, lncRNAs are also poly-adenylated and 

undergo alternative splicing. The number of lncRNAs encoded by the human genome 

ranges from 15,000 to 25,000, depending on the source of the annotations. The majority 

of lncRNAs remain without a known clear role, but the regulatory potential of lncRNA 

has already been revealed but the characterization of some individual examples. One of 

the most notable examples is xist, a lncRNA that orchestrates mammalian X-

chromosome inactivation (Penny et al., 1996). Since then, there have been many studies 

elucidating the role of lncRNA in diverse cellular function such as transcriptional 

regulation(Akerman et al., 2017), cell reprogramming(Sherstyuk et al., 2018), 

chromatin remodelling (Akhtar; Quinodoz and Guttman, 2014) and their mis-regulation 

has been reported to be implicated in several human diseases (Morán et al., 2012; 

Scheuermann and Boyer, 2013) including cancer (Lin and Yang, 2017). 

 

Reference transcript annotations 

To gain insights in the molecular underpinnings of the plethora of coding and non-

coding transcripts in the human genome, it is essential to characterize them across 

tissues and cell-types. This fueled large initiatives to generate comprehensive 

catalogues of reference transcripts. Initially, human and vertebrate analysis and 

annotation (HAVANA) team at Sanger institute aimed at curating gene models from 

cDNAs, expressed sequence tags (ESTs) and protein sequences. The advent of the 

ENCODE project (Consortium, 2004), boosted the creation of a dedicated team, 

GENCODE (Harrow et al., 2006) strived for providing human gene annotations 

through the incorporation of manually curated HAVANA gene models along with 

experimental validations. In parallel, the Ensembl (Flicek et al., 2011) project took off 

with the purpose of annotating chordate species by the integration of gene annotations, 

multiple alignments, gene homology relationships and regulatory annotations. 

Currently, both GENCODE and Ensembl gene models are updated and cross-
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referenced in parallel, and  HAVANA team continues to manually curate their resulting 

gene annotations. FANTOM-CAT(Hon et al., 2017) is another resource that pursues 

creating a catalogue from of lncRNAs across tissues and cell types through the 

integration of several reference transcriptome annotations and by accurately 

determining the transcription start sites. 

 

Although reference transcriptome annotations serve the purpose of providing an overall 

overview of abundant protein-coding and lncRNA genes, they fall behind in procuring 

novel insights into human disease pathophysiology that stem from the vast majority of 

tissue-specific and context-dependent gene expression programs. As an illustrative 

example, re-analysis of cancer genome atlas (TCGA) data in the MiTranscriptome 

project (Iyer et al., 2015) revealed that 79% of the 58,648 lncRNAs identified in this 

study were previously unannotated in reference transcriptome databases. Similarly, a 

major fraction of lncRNAs detected in human pancreatic islets were previously 

unannotated, most notably those that were tissue-specific (Akerman et al., 2017; Morán 

et al., 2012). Another remarkable example that re-analyzed 21,504 samples from the 

sequence read archive (SRA) database determined that ~65,000 junctions consistently 

identified in more than 1000 samples were not represented in reference annotations 

(Nellore et al., 2016). 

 

There are several reasons for reference transcriptome annotations to fail to capture the 

transcriptome complexity observed in individual studies. First, transcriptome 

complexity could arise from genetic variation across individuals and also due to the 

inter-cellular somatic variation. Second, many of the transcriptional programs that 

regulate gene expression are cell-type specific and context-dependent, and therefore 

less studied tissues tend to have more poorly annotated transcripts. Third, post-

transcriptional modifications such as mRNA processing and degradation are also cell-

type and context-dependent. Thus, identifying gene and transcript models in disease-

relevant tissues across multiple individuals will allow us to interrogate pertinent tissue-

specific gene regulatory programs in order to expand our understanding of disease 

pathophysiology.  
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1.2.2. The non-coding genome 

One of the main unanticipated results that the Human Genome Project revealed, and 

other large-scale initiatives substantiated (Dunham et al., 2012) was that more than 98% 

of the DNA sequence does not encode for protein-coding sequences. Until recently, the 

role of the vast non-genic fraction of the genome was almost entirely unknown. Non-

coding genome was assumed to have no impact on the development and function of an 

organism, and therefore, to be under no selective pressure. Now, it is well established 

that the non-genic part of the genome contains regulatory elements that control gene 

transcription in a spatio- and temporal manner. This repertoire of non-coding elements 

that governs gene transcription are primarily composed of enhancers, promoters, 

silencers and insulators or boundary elements(Maston et al., 2006; Shlyueva et al., 

2014). Promoter elements are short DNA sequences upstream from the gene 

transcription start site (TSS) and direct transcription initiation(Andersson and Sandelin, 

2020; Haberle and Stark, 2018). In contrast, enhancer elements can be located several 

hundreds of kilobases away from their endogenous target genes, and thus, can activate 

or amplify gene transcription initiated by promoter sequences independently of their 

relative distance and orientation. Enhancers guide target gene expression by looping to 

the corresponding gene promoter with the assistance of an ensemble of transcriptional 

cofactors, such as Mediator, structural proteins like cohesin, CTCF and YY1 (Kagey 

et al., 2010; Weintraub et al., 2017). Enhancers and promoters are highly tissue-

specific, harbour sequence determinants that recruit lineage-specific transcription 

factors (TFs), and hence coordinate genome activity in development, cell-type and 

tissue identity and disease. 

 

Genome-wide identification of cis-regulatory elements 

In contrast to heterochromatin, which is densely packed by nucleosomes, regions across 

the genome that usually embed regulatory elements and transcribed gene bodies are 

depleted of nucleosomes (Lee et al., 2004). These nucleosome depleted regions, 

known as ‘accessible chromatin’ or ‘open-chromatin regions’, are bound by TFs, RNA-

polymerases and structural proteins that promote a higher-order genome organization 

that is central to gene transcriptional regulation (Figure 1.7). Several methods have been 

developed to identify accessible chromatin regions, but the rationale behind all of them 

is identifying DNA sequences that are susceptible to enzymatic methylation or 
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cleavage. The first large-scale approach to identify open-chromatin regions was 

performed by hybridizing captured ends from DNA sequences sensitive to 

Deoxyribonuclease I (DNase I) endonuclease cleavage to tiling microarrays(Crawford 

et al., 2006). This method was initially implemented by the ENCODE (Encyclopedia 

Of DNA Elements) consortium in two cell-lines, CD4+ cells and a cyclic B-

lymphoblastoid cell line, and was only capable to capture 1% of the selected genomic 

regions (Consortium, 2004). Open-chromatin regions identified by ENCODE are 

overwhelmingly located at gene transcription start sites, first exon, first intron and CpG 

islands, and average gene expression of nearby genes (<1kb) tend to be higher. The 

authors also observed that a fraction of the identified open-chromatin regions are 

specific to one or the other cell line, suggesting that accessible chromatin could be cell-

type specific. Genome-wide maps of open-chromatin regions emerged with the 

availability of tiled genome-wide microarrays(Boyle et al., 2008). This first genome-

wide method identified around 100,000 open-chromatin regions that represent ~2.1% 

of the human genome in CD4+ cells. While the observations remained consistent with 

the initial tiling array-based method, genome-wide maps by high-throughput 

sequencing also enabled examining nucleosome positioning. The major milestone in 

chromatin accessibility profiling was attained by the ENCODE project by high-

throughput sequencing of open-chromatin regions in 125 different human cell and 

tissue types (Thurman et al., 2012). This landmark study identified around 2 million 

open-chromatin regions across cell-types. Interestingly, 3% of them are unique to a 

single cell-type, and the bulk of chromatin accessible regions (95%) are distal (>2.5kb) 

from the TSS and tend to be cell-type specific overall. This paper also revealed that, 

Figure 1. 7 Accessible chromatin.  
DNA is usually wrapped around nucleosomes. The underlying DNA sequences is 
accessible by DNA binding proteins as and when necessary by opening of chromatin. 
Figure adapted from Shlyueva et al., 2014, Nature reviews genetics 
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while only 2-3% of the total genome is accessible, more than 90% of the TFs 

exclusively bind to open-chromatin regions. This indicates that the cis-regulatory 

elements are often found in an open-chromatin state. 

 Subsequently other methods were developed to map accessible chromatin, 

include FAIRE (formaldehyde assisted isolation or regulatory elements), which was 

first implemented at genome-wide scale to study human pancreatic islet regulatory 

elements and diabetes-relevant regulatory variants (Gaulton et al., 2010).  More 

recently, Assay for Transposase Accessible chromatin using sequencing (ATAC-Seq) 

has become the most popular method to interrogate open chromatin 

regions(Buenrostro et al., 2013). It uses Tn5 transposase loaded with sequencing 

adapters, such that it simultaneously cleaves and ligates sequencing adapters to DNA 

fragments from open-chromatin regions. The fact that does not involve complex and 

time-consuming protocols (~2-3 hours), that can be applied to very few cells (~ 50,000 

cells) and that has a very high signal to noise ratio explain the rise in popularity of this 

method. In addition, ATAC-Seq not only informs the open chromatin regions but also 

gives nucleosome patterns and the digital footprint of the binding of TFs to accessible 

chromatin regions. 

 While open-chromatin region maps allow identifying the landscape of 

accessible chromatin in a given cell-type/tissue, further annotation of the underlying 

chromatin states is crucial to learn the regulatory functions that these regions actually 

undertake.  

 

Promoter elements  

Gene transcription initiates at a precise location in the genome, the Transcription Start 

Site (TSS), which is the first base of the transcribed region. The RNA Polymerase along 

with General Transcription Factors (GTFs) forms a Pre-Initiation Complex (PIC) on 

the genomic region 50 bp upstream and 50 bp downstream from the TSS also known 

as “core promoter”(Smale and Kadonaga, 2003). This binding is facilitated by the 

underlying DNA sequence of the core-promoter. Traditionally, it was thought that all 

mammalian core-promoters have a TATA-box element and an initiator element, but 

genome-wide analysis of mouse and human promoter architecture revealed that only a 

fraction of them have a clear TATA-box (Carninci et al., 2006). While core-promoter 

elements help to assemble the transcription machinery and in the TSS recognition, the 
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rate at which genes are transcribed is determined by other proximal and distal 

regulatory elements. These regulatory elements are susceptible to TF binding and 

influence the dynamics of core-promoters i.e., transcription initiation or elongation 

rates. Proximal regulatory elements are usually found within 2.5kb upstream of the 

core-promoter and they are bound by one or more TFs. The 2.5kb genomic region 

around the gene TSS that spans the “core-promoter” and the “proximal-promoter”, 

defines what we termed the “promoter” sequence.  

Various experimental methods identify gene TSS based on sequencing the 5’ 

end of nascent RNAs, which allows us to map promoter sequences in a given cell-

type/tissue. One of the most widely adopted variants of this technique is Cap Analysis 

of Gene Expression (CAGE-Seq)(Takahashi et al., 2012), although many other 

complementary approaches also exist (Kruesi et al., 2013; Kwak et al., 2013; Lam et 

al., 2013; Mayer et al., 2015). CAGE data showed that gene sequences either embody 

closely spaced clusters of multiple TSS (typically <100bp away from each other) or a 

unique TSS at a single base-pair position. This observation enabled the 

subclassification of promoter sequences into ‘broad’ and ‘sharp’, that also involved 

different genomic contexts; e.g overrepresentation of TATA-boxes in sharp promoters, 

and CpG islands in broad promoters (Carninci et al., 2006). Developmentally active 

genes have been associated with broad promoters while tissue-specific genes are 

characterized by an enrichment in sharp promoters.   

 While 5’-end sequencing of nascent RNAs is the most popular method for TSS 

detection, the underlying chromatin state also has distinct signatures that identifies 

active transcription. Chromatin Immunoprecipitation Sequencing (ChIP-Seq) of 

histone modification marks showed that promoter sequences are highly enriched for tri-

methylation of histone H3 lysine 27 residues (H3K27Ac) and tri-methylation of histone 

H3 lysine 4 residues (H3K4me3)(Heintzman et al., 2007; Roh et al., 2004) (Figure 1.8).  

 

Transcriptional enhancers 

Enhancers are distal regulatory elements that were first discovered in the early 80s as 

~300-1000 bp regions that are upstream from the TATA-box, and amplify nearby gene 

transcription(Banerji et al., 1981; Benoist and Chambon, 1981; Grosschedl and 

Birnstiel, 1980). Enhancers act independently of their relative distance and orientation 

from their target gene. The tissue-specific nature of enhancer elements is identified by 
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the underlying DNA sequence context, which embeds specific sequence motifs that 

facilitate the association of lineage-specific TFs that are essential for enhancer activity 

(Banerji et al., 1983; Kundaje et al., 2015) . Cooperative occupancy of TFs is central 

to nucleosome repositioning and thus, regulation of enhancer activity (Spitz and 

Furlong, 2012; Tillo et al., 2010). Of note, chromatin accessibility at enhancers not 

always involve the cooperative binding of TFs; indeed, ‘piooner’ TFs also known as 

master regulators can directly bind nucleosomal DNA and ease enhancer activation by 

aiding in the subsequent association of other lineage TFs (Lambert et al., 2018; 

Magnani et al., 2011; Vaquerizas et al., 2009; Zaret and Carroll, 2011). Because of 

the complex interplay with TFs, transcriptional enhancers rely on a specific “grammar” 

that is essential for their activation and function. Two major models have been proposed 

for the enhancer lexicon. The first one is the “enhanceosome” model that proposes a 

very strict motif architecture in terms of motif organization and order in the enhancer 

DNA sequence. The other model is the “billboard” model where the underlying motif 

combination, order and spacing is flexible(Long et al., 2016; Thanos and Maniatis, 

1995). Previous TFs co-operativity model was expected to be mirrored in the DNA 

sequence through a motif composite that would include the complete collection of 

motifs of each of the TFs in rigid order. However, large-scale studies of TF-TF 

interactions and their DNA binding preferences suggested that TF cooperative 

occupancy primarily occurs through a novel consensus motif that would be otherwise 

weakly bound by each individual TF(Jolma et al., 2015). Despite of this, genome-wide 

identification of transcriptional enhancers is primarily dependent on the underlying 

epigenome state. Active enhancers are distinctly marked by H3K27Ac and tri-

methylation of histone H3 lysine 1 residues (H3K4Me1)(Heintzman et al., 2007, 

2009) (Figure 1.8).  Of note, subsets of enhancers that lack H3K27Ac enhancer 

hallmark and show a large presence of H3K27Me3, a repressive mark, have been 

identified as inactive or poised enhancers (Creyghton et al., 2010). Inactive enhancers 

can be fully activated by external stimuli and are thus, preferentially occupied by signal-

dependent transcription factors(Heinz et al., 2015) (Figure 1.8). 
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The number of active enhancers in a single cell type is far in excess of that of active 

genes, suggesting a synergistic or combinatorial activity of multiple different enhancers 

to control gene expression according to the cellular context. Another relevant feature 

of enhancer function relies on their distribution across the genome that is far from 

uniform. Cell-type specific genes have been reported to have a particular traction for 

enhancer-rich regions, variably known as clusters of open regulatory elements 

(COREs)(Gaulton et al., 2010), super-enhancers (Whyte et al., 2013), stretch 

enhancers(Parker et al., 2013),  enhancer clusters(Pasquali et al., 2014; Whyte et al., 

2013) or enhancer hubs(Miguel-Escalada et al., 2019). Mounting evidence showed that 

clusters of enhancers are highly occupied by lineage-specific TFs and transcriptional 

Figure 1. 8 Properties of enhancers and promoters.  
Active enhancers are primarily marked by H3K27Ac and H3K4me1. Active promoters 
are marked by H3K27Ac and H3K4me3. Closed or poised enhancers are marked by 
H3K27me3 and H3K4Me1 while removing H3K27me3 makes poised enhancers into 
primed enhancers. Figure adapted from Shlyueva et al., 2014, Nature reviews genetics. 
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co-activators such as Mediator complex, and thus are key players of cell-type identity 

and function. 

 Large efforts have been dedicated to the genome-wide identification of cis-

regulatory elements across tissues. Early initiatives such as the NIH Roadmap 

Epigenomics Consortium(Kundaje et al., 2015) profiled DNA accessibility, histone 

modification marks and DNA methylation in 111 epigenome datasets from diverse cell-

types and tissues and integrated these newly generated datasets with 16 epigenomes 

from the ENCODE project(Dunham et al., 2012). One of the major insights from this 

study was the tissue-specific nature of chromatin signatures associated with 

transcriptional enhancers, such as H3K4me1. In sharp contrast, chromatin fingerprints 

of active promoters and other transcribed regions are constitutively active across 

tissues. These cross-tissue genome-wide chromatin maps of enhancers and promoters 

allowed grouping them based on co-occurrence of chromatin accessibility. This 

unearthed modules of enhancers and promoters and revealed that nearby genes had 

relevant roles in the underlying tissue biology.  

 Cis-regulatory enhancer elements control the expression of genes that could be 

located far away, even up to 1 mega-base distance in the linear genome, and hence 

makes it challenging assigning enhancers to their target genes by in-silico approaches 

such as previous chromatin co-accessibility methods. Distal transcriptional regulation 

is mediated by chromatin loop formation that facilitates the physical contact of 

enhancer and target promoter elements. Thereafter, disentangling the tissue-specific 

three-dimensional organization of the chromatin within the nucleus was pivotal to 

expand our understanding of the mechanistic underpinnings underlying enhancer 

looping and to gain insights into how spatio- and temporal regulation is orchestrated. 
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1.2.3. Relationship between three-dimensional (3D) 
architecture of the chromatin and genome function.  

Our genome is tightly packed into nuclei following a hierarchical organization. At the 

lowest scale, DNA sequence is wrapped around nucleosomes forming chromatin fibers, 

which will be further condensed as chromosomes. Chromosomes occupy distinct 

territories as revealed through advancements in microscopy and three-dimensional 

chromatin assays. These studies primarily identified two chromosomal compartments, 

an “A compartment” predominantly consisting of euchromatin, and a “B compartment” 

that mainly comprises heterochromatin (Cremer and Cremer, 2001; Geyer et al., 

2011; Lieberman-Aiden et al., 2009; Stadhouders et al., 2019).  Chromosomal 

compartments further segregates into Topologically Associated Domains (TADs), 

which encompasses chromatin regulatory loops such as enhancer and promoter 

contacts. 

In order to study the three-dimensional architecture of the chromatin, there are 

two main experimental approaches:  

 

(i) Imaging-based techniques, particularly Fluorescence in situ 

hybridization of DNA (DNA-FISH).  

(ii) Chromosome Conformation Capture (3C) techniques, in particular 

different variants of High throughput chromosome conformation 

capture (Hi-C). 

 

FISH techniques use fluorescently tagged DNA sequences as probes that 

hybridize to the target sequences of the genome. This involves enhancing cell 

membrane permeability and denaturing the DNA such that the fluorescently labelled 

probes enter the nucleus and binds to the regions of interest. Then, microscopy 

techniques are used to visualize the probes inside the nucleus, and the distance between 

two or more fluorescently labelled probes is measured. Due to the limited resolution 

and the number of probes that can be simultaneously visualized, the application of FISH 

techniques is circumscribed to examine long-range contacts between large nuclear 

domains such as TADs or chromosomes. There has been progress in the resolution and 

throughput of microscopy-based techniques, such as the development of cryo-FISH or 
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Oligopaints, but they have not been widely adapted for genome-wide studies of 

chromatin contacts due still abovementioned limitations. 

 Our knowledge of chromatin 3D organization has dramatically increased with 

the fruitful advances in 3C experimental techniques. 3C methods are based on cross-

linking chromatin of spatially adjacent genomic loci followed by proximity ligation. 

Cross-linked chromatin is then digested using restriction enzymes and DNA ends are 

ligated in conditions that favor intramolecular proximity. These ligated fragments are 

known as a 3C library. Finally, interactions between two regions of interest are 

quantified from the 3C library using PCR and appropriate primer sequences. Thus, 3C 

is primarily focused on the interaction frequency of two genomic regions. Nevertheless, 

as a 3C library still contains all the genome-wide ligation events, it can be further 

employed to interrogate genome-wide chromatin loops (Kempfer and Pombo, 2020). 

Further advances such as circular chromosome conformation capture or chromosome 

conformation capture-on-chip (collectively called as 4C) techniques examined contact 

frequencies of one region of interest with the rest of the genome (“one versus all”) 

(Kempfer and Pombo, 2020) Only with the emergence of Hi-C techniques, first 

genome-wide maps of long-range contacts (“all versus all”) were generated. Hi-C first 

involves enzyme restriction of cross-linked genome with formaldehyde. Next, DNA 

ends are repaired and marked with biotin before ligation. Ligation ends are purified and 

non-specifically sheared using sonication. Finally, biotinylated junctions are isolated 

followed by paired-end sequencing (Berkum et al., 2010). Different variants of Hi-C 

such as “capture” based Hi-C methods were subsequently developed to primarily pull-

down specific ligation products and therefore, enriching the library for targeted 

genomic regions. 

 As major feature of gene transcription is 3D organization of the chromatin, 

progress in 3D techniques has been essential to gain new insights into gene regulation. 

Combining Hi-C techniques with chromatin immunoprecipitation has shed light on 

chromatin modifiers, components of the transcription machinery or structural proteins 

that mediate gene regulatory loops. Several techniques such as ChIA-PET, Hi-ChIP, 

PLAC-seq etc allowed specific enrichment of Hi-C libraries by chromatin 

immunoprecipitation (ChIP) before ligation   (Kempfer and Pombo, 2020). 
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Another method to genome-wide map chromatin contacts is genome 

architecture mapping (GAM) (Beagrie et al., 2017). Unlike Hi-C technologies, GAM 

is a ligation-free method. In GAM, nuclei are randomly sectioned into ultra-thin slices 

using cryosectioning.  Total DNA from every slice of nuclei is amplified and barcoded 

independently, pooled and then, sequenced. Sequencing data is used to mathematically 

model co-segregation of two genomic regions i.e., if two genomic regions are in close 

proximity, they tend to be found more frequently than expected in the same nuclear 

slice. While GAM allows studying chromosome interactions without disrupting nuclear 

structures unlike that of Hi-C, which involves extraction and ligation steps, it also 

requires around 400 nuclear slices, each sequenced to 1 million reads to achieve Hi-C 

resolution. Depending on the resolution requirements, one could generate a few 

thousands of slices of nuclei. 

 

Enhancer-promoter interactions 
In this hierarchical chromatin folding, enhancer-promoter loops represent the smallest 

unit. Enhancer-promoter interactions predominately occur within TADs, which are sub-

megabase domains of chromosome folding. TADs contain a high frequency of 

intradomain interactions that impose spatial insulation and prevents inter-domain 

interactions that could lead to aberrant gene regulation through unexpected contacts 

(Symmons et al., 2014, 2016). TAD formation is facilitated by cohesin and CTCF 

proteins, which are highly enriched and co-bound at TAD boundaries (Rao et al, Nora 

et al). This process has been convincingly described through the ‘loop extrusion’ model 

(Fudenberg 2016, sanborn 2015) (Figure 1.9). According to this model, cohesin 

extrudes DNA loops through its ring-like structure until it reaches two convergent 

CTCF bound regions. Although the loop-extrusion model has not been experimentally 

verified, it accounts for several lines of support, such as the observation that cohesin 

depletion and the subsequent loss of extrusion activity showed the disintegration of the 

majority of TAD boundaries  (Rao et al 2017, Schwarzer 2017). Other authors showed 

that cells deficient in cohesin-unloading factor WAPL account for extended chromatin 

domains (Haarhuis Cell 2017, Wutz EMBO 2017). While the loop extrusion model can 

explain how TADs are formed, it fails to describe how intra-TAD enhancer-promoter 

regulation occurs. In contrast to TADs, enhancer-promoter loops are not particularly 

enriched for CTCF or cohesin. In line with this notion, depletion of CTCF and cohesin, 
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or inversion of CTCF sites, did not lead to wide-spread changes in gene expression 

profiles, suggesting that CTCF and cohesin maintain the TAD structure but does not 

control enhancer-promoter interactions. Recently, YY1 protein has been suggested to 

be involved in gene regulatory loops (Weintraub et al., 2017) by the specific binding 

to enhancers and promoters as shown across cell-types in both human and mouse 

(Weintraub et al., 2017). In concordance, deletion of the YY1-binding motif at Raf1 

and Etv4 gene promoters lead to decreased interactions with their respective enhancers. 

 

  

Figure 1. 9 Loop extrusion model.  

According to the loop extrusion model, cohesin, after being loaded onto chromatin by 
NIPBL, progressively extrudes chromatin through its ring-shaped structure, resulting 
in a growing chromatin loop. Loop extrusion stops when cohesin encounters CCCTC 
binding factor (CTCF)-bound sites in a convergent orientation. Adapted from 
Schoenfelder, S., Fraser, P. (2019). Nature review genetics. 
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1.3. Non-genetic regulation of the genome function 

Functional complexity of the human genome, reflected in cell-type diversification, stem 

from dynamic changes of gene expression profiles acquired during cellular 

development. Gene expression patterns are assumed to be determined by epigenetic 

regulation without involving changes in the DNA sequence. Two of the most important 

epigenetic mechanisms that modulate gene expression are DNA-methylation and 

histone modifications(Jaenisch and Bird, 2003), which shape the chromatin landscape 

during organism development. Epigenetic modifications can also occur during adult 

phases, as cells need to respond to external stimuli, environmental cues and to 

dynamically adapt to maintain their cellular identity and function. Upon stimulation or 

change in the cellular environment, alterations in the epigenetic landscape facilitate 

interactions between DNA and DNA-binding proteins, such as transcription factors, 

known to be key regulators of lineage-specific gene expression programs (Vaquerizas 

et al., 2009).  DNA-TFs interactions with regulatory elements modulate cell-specific 

transcriptional programs and aid in the cellular response to external environmental 

perturbations. An illustrative example was the identification of latent enhancers that 

activate upon lipopolysaccharide (LPS) stimulation in terminally differentiated 

macrophages  (Ostuni et al., 2013). Ostuni and colleagues observed that upon LPS 

stimulation, many of the annotated enhancers showed altered chromatin state as assayed 

by h3k4me1 and h3k27ac. Surprisingly, they found that some genomic regions, which 

were not marked as enhancers in the basal state, gained enhancer features and were also 

bound by lineage-determining transcription factors. Many of these latent enhancers did 

not go back to their native state but persisted and mediated a faster and stronger 

response upon re-stimulation. 

 Taken together, the identification of epigenetic alterations at enhancers and 

promoters, and by examining gene expression patterns after exposing cells to different 

environmental conditions, allow us to determine transcription factors whose expression 

and activity are key for cell homeostasis and function. This understanding has important 

implications to modulate cellular function for therapeutic purposes. 
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1.4. Genetic regulation of genome function 

A major summit in modern biological research has been the completion of the first draft 

of the human genome sequence by the Human Genome Project (Lander et al., 2001; 

Venter et al., 2001). Since then, we witnessed a breathtaking process in genome science 

with the parallel technological development of genotyping arrays and Next Generation 

Sequencing (NGS), and the advent of large-scale data sharing initiatives that deepen 

democratization of scientific research. The emergence of these novel technologies 

fostered the rapid accumulation of sequence data from thousands of human subjects 

that has been used to catalogue genetic differences between individuals. A typical 

individual genome contains approximately 4-5 million single nucleotide variants 

(SNV) with respect to the reference genome(Auton et al., 2015). These SNVs can be 

categorized into common, rare and ultra-rare depending on the observed allele 

frequency of the minor allele (MAF) in the population. Variants with a MAF > 5% are 

considered common variants while variants with MAF < 1% are considered rare 

variants, although lower bound threshold are no longer fixed and are conditioned on 

the genetic resolution attained. Given that the human genome sequence encodes all the 

instructions for an organism development and function inevitably, genetic variation can 

cause phenotypic differences and underlie human diseases. To understand how genetic 

variation causes disease, first, we need to disentangle the relationship between 

individual genetic variation and disease conditions. With the establishment of 

genotyping arrays and NGS technologies, it is now possible to identify genetic variation 

across a large number of individuals, and that can be linked to phenotypic variation 

across individuals in a population. 

 

1.4.1. Genome Wide Association Studies (GWAS) - 
Unravelling the genome-phenotype relationship 
underlying complex diseases  

The etiology of complex traits and diseases, such as T2D, draws upon the aggregated 

effect of a large number of common genetic variants with small to modest effects, and 

a large involvement of environmental factors. Early efforts to study the genetic basis of 

complex traits and diseases recycled linkage analysis and candidate gene association 

studies, which were prolific in mapping the genetic causes of monogenic rare diseases 
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(Claussnitzer 2020). However, as highly penetrant rare genetic markers that co-

segregate in large families do not dominate the genetic architecture of most common 

complex traits, and prior knowledge of biologically relevant genes was scarce, these 

approaches were largely unrewarding (Claussnitzer et al., 2020). Genome-wide 

association studies (GWAS) has emerged as the most successful approach to link 

genetic variation with the absence or presence of a complex disease or variance in a 

trait across individuals in a population. This statistical approach interrogates from one 

to several millions of genetic variants and looks for statistically significant differences 

in allele frequencies in large cohorts of patients and unaffected individuals. GWAS has 

been applied to various diseases and have been fruitful in giving clues about the genetic 

architecture of common diseases and traits(MacArthur et al., 2017; Visscher et al., 

2017).  

 

The ‘missing heritability’ conundrum 

Despite the tremendous success of this approach, the overwhelmingly majority of 

GWAS risk variants only explain a modest proportion of the estimated heritability of a 

given disease or phenotype (Manolio, Nature 2009). This is known as the ‘missing 

heritability’ conundrum. One probable explanation of this gap of knowledge is that a 

myriad of common genetic variants that do not reach genome-wide significance due to 

their weak effects on disease risk are not readily detected in sample sizes used in current 

studies. Genotype imputation, a statistical approach that predicts the genotypes of 

variants that have not been directly typed in SNP arrays, boosted genetic resolution and 

increased statistical power by facilitating meta-analysis of GWAS summary statistics 

data from independent studies (Marchini and Howie, 2010). Nevertheless, the 

cumulative effects of all genome-wide common variants, even those that do not reach 

GWAS significance, was still lower than the heritability estimates from pedigree 

studies. Thus, several authors suggested that this missing fraction of complex trait 

heritability might rest upon low-frequency and rare variants that are not included in 

commercial arrays and thus, have not been extensively examined (Manolio et al., 2009; 

Visscher et al., 2012). Indeed, the recent availability of large whole-genome sequencing 

datasets allowed for the first time thoroughly assessing the role of rare and low-

frequency variants. This has begun to fill the gap of the missing heritability for body 

mass index (BMI) and height (Wainschtein et al., 2019). Finally, it should also be noted 



 37 

that genetic susceptibility of most common diseases is strongly influenced by 

environmental risk factors and studying the effect of genetic variants in the context of 

gene-environment interactions is likely to improve heritability estimates.  

 

1.4.2. Translating GWAS discoveries into functional 
insights 

The growing inventory of GWAS associations identified for hundreds of traits and 

diseases did not account so far for a comparable increase in novel insights into trait and 

disease biology. Two main reasons limited the biological interpretation of GWAS 

discoveries. First, genetic variants showing stronger associations are not usually the 

true causal variants. This limitation arises from the latent structure of genetic variation 

in the genome. Genetic variants can be segmented into haplotypes blocks of markers 

that frequently co-segregate together(Wall and Pritchard, 2003) . The degree of allelic 

co-dependency between two distinct loci is measured by Linkage Disequilibrium (LD). 

Within blocks of low frequency of recombination, a true disease causal variant will tend 

to be in high LD with adjacent markers. Thus, it will be inherited together, with genetic 

variants in relatively close proximity (Schaid et al., 2018). Following this rationale, any 

of the correlated markers within the same LD block could reach stronger associations 

with disease risk besides the true causal variant (Altshuler et al., 2008; Schaid et al., 

2018). Of note, although this high correlation between genetic variants within a 

haplotype block eases GWAS discovery, it makes it thus challenging identifying the 

underlying causal variant and subsequently, gaining insights into disease 

pathophysiology. Genetic fine-mapping and functional genomics analysis in disease-

relevant tissues emerged to discriminate likely causal variants from those that are 

merely correlated and do not account for a functional link with disease susceptibility. 

 Another major challenge in GWAS is that more than 80% of the disease risk 

variants fall in non-coding regions of the genome(Hindorff et al., 2009). Early studies 

showed that more than 60% of non-coding disease risk variants reside in cis-regulatory 

regions identified through chromatin accessibility analysis using DNase I 

hypersensitive sites (DHSs) (Maurano et al., 2012). Mounting evidence indicates that 

transcriptional enhancers, in particular clusters of enhancers, are enriched for disease 

risk variants(Kundaje et al., 2015; Pasquali et al., 2014) that might impact the binding 
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efficiency of TFs, and thus altering enhancer function. As we discussed in section 1.2, 

enhancer regulatory elements control the expression of genes that could be far away in 

the lineal genome. This hampers the assignment of non-coding GWAS variants to their 

respective downstream effector genes whose abnormal function impacts disease 

pathogenesis. Thus, progress in the identification of disease causal variants and effector 

transcripts could offer us novel insights into disease pathophysiology. 

 

Identification of candidate causal variants 

Genetic fine mapping nominates most-likely causal variant (or variants) of a disease 

association by estimating the posterior probability (PP) of a variant to be causal using 

Bayes factors. Variants are sorted in descending order of their causal posterior 

probabilities. Then, a ‘credible set’ of most likely causal variants is built by selecting 

those whose cumulative sum of posterior probabilities reach a certain threshold 

(cumulative PP ~ 95-99%) (Benner et al., 2016; Chen et al., 2015; Hormozdiari et 

al., 2014; Hutchinson et al., 2020; Lee et al., 2018; Wang et al., 2020) . Nevertheless, 

there are several factors that hinder the performance of fine-mapping approaches, such 

as the genetic resolution attained, the study size, the magnitude of the effect sizes or the 

number of causal variants (Schaid et al., 2018). As previously discussed, high local LD 

makes it challenging fine mapping causal variants. Trans-ethnic studies can exploit 

differences in LD structure between major ancestry groups to reach higher fine mapping 

resolution to uncover candidate causal variants. For instance, GWAS in individuals of 

African descent will benefit from the lower LD extension that will constrain the 

genomic space to search for the true causal variant (Cooper et al., 2008; Zaitlen et al., 

2010) 

 In contrast with protein-coding variants, our ability to infer the magnitude of 

the deleterious consequences of regulatory candidate causal variants is poor due to our 

limited understanding of the enhancer grammar. In-silico pathogenic scores that assess 

the putative effects of a given genetic variant on cellular phenotypes can aid in refining 

genetically fine mapped datasets.  The integration of these in-silico functional scores 

with fine mapped variants might allow selecting bona fide causal variants with 

clinically relevant implications for disease pathogenesis.  (Figure 1.10). In-silico scores 

are primarily based on either evolutionary conservation, or functional and sequence 

attributes of the surrounding genomic context. Several approaches that use one or a 
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combination of these principles now allow researchers to estimate fitness consequences 

of fine mapped regulatory variants. Commonly adopted tools are: CADD (Kircher et 

al., 2014), GWAVA (Ritchie et al., 2014), DeepSea (Zhou and Troyanskaya, 2015), 

Eigen (Ionita-Laza et al., 2016) or LINSIGHT (Huang et al., 2017), among others.  

  

Figure 1. 10 A schematic of GWAS variant to gene workflow.  
I) Genetic fine mapping approaches can be used to prioritize most likely candidate causal 
variants (credible set variants). The candidate causal variants can be further assessed for 
their likely function and pathogenicity based on a variety of in-silico functional scores. 
II) The credible set variants can further be narrowed down using epigenome data sets 
from disease relevant tissues. This can be validated by in-silico tools that can assess the 
disruption of sequence motifs by genetic variants and experimentally validated using 
enhancer reporter assays and electrophoretic mobility shift assays (EMSA). III) QTL 
colocalization and TWAS methods can be used to prioritize the candidate effector 
transcript in each GWAS loci along with the three-dimensional chromatin maps from 
disease relevant tissues. The effector candidate transcripts can be further validated by 
CRISPR perturbation of the variants and assess the impact on candidate gene expression. 
The candidate gene itself can be assessed for its functional role in the relevant tissues by 
knock-down and knock-out experiments in in-vitro and in-vivo. 
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Cis-regulatory elements like enhancers and promoters have distinct DNA 

sequences that promote lineage-specific transcription factor binding and regulate 

tissue-specific transcriptional programs(Long et al., 2016). The excess of genetic 

variants associated with complex traits and diseases in cis-regulatory elements(Gaulton 

et al., 2010; Kundaje et al., 2015; Thurman et al., 2012) indicates that their 

underlying molecular effects could involve altering transcription factor occupancy and 

thus, triggering defects in gene regulation. Hence, overlaying disease-risk variants with 

epigenome-based regulatory annotations from disease-relevant tissues eased causal 

variant prioritization (Figure 1.10). This approach has been successfully applied to 

understand the functional role of common regulatory genetic variants in several 

diseases (Cowper-Sal·lari et al., 2012; Farh et al., 2015; Gupta et al., 2017; 

Mumbach et al., 2017; Pasquali et al., 2014). Besides the direct overlay, regulome 

annotations and aforementioned in silico scores can also be used to directly improve 

fine mapping itself (Chen et al., 2016b; Kichaev et al., 2014; Pickrell, 2014) . 

 

Identification of candidate effector genes 
The identification of target effector genes of risk variants is an additional major 

handicap in the conversion of GWAS discoveries into mechanistic insights, as 

enhancers usually regulate distal genes. An illustrative example of this challenge is 

obesity-associated risk variants in the FTO locus. Data from 4C-Seq studies revealed 

that obesity-associated risk variants in the intron of the FTO gene are in spatially 

proximity of IRX3 gene. Accordingly, IRX3 gene expression in the brain(Smemo et al., 

2014). Thereafter, along with the integration of regulome annotations, leveraging three-

dimensional chromatin maps in disease relevant tissues might allow assigning 

candidate effector transcripts to GWAS risk variants (Figure 1.10). This approach has 

been widely used to predict target genes for several complex diseases (Arvanitis et al., 

2020; Cowper-Sal·lari et al., 2012; Fachal et al., 2020; Fang et al., 2019; Greenwald 

et al., 2019; Javierre et al., 2016; Jung et al., 2019; Miguel-Escalada et al., 2019; 

Nott et al., 2019; Song et al., 2019). Of note, Javierre and colleagues introduced a Hi-

C variant that increases the resolution to detect interactions between genes and their 

distal regulatory elements, known as promoter capture Hi-C data, in 17 primary blood 

cell-types. These novel chromatin interaction maps linked 2,604 genes to GWAS risk 

variants of 31 diseases and blood cell traits(Javierre et al., 2016). More recently, Jung 
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and colleagues generated a compendium of capture Hi-C data from 27 different human 

tissues and cell-types and assigned more than 50% of putative disease/trait-associated 

variants to at least one target gene (Jung et al., 2019). Although functional genomics 

based on 3C data has pushed forward our understanding of the molecular mechanisms 

underlying disease risk variants, it should be noted that, so far, only a handful of 

examples have been experimentally validated. 

 
Mapping disease risk variants that affect gene expression using QTLs 
Another strategy to gain insights into the role of non-coding genetic effects on genome 

function is assessing the relationship between genetic variants and molecular 

phenotypes from disease-relevant tissues. One of the most widely adopted approaches 

is expression quantitative trait loci (eQTL) (Figure 1.10) (Montgomery and 

Dermitzakis, 2011; Myers et al., 2007). eQTL studies test the association between 

allele frequencies of common genetic variants and gene expression measured in a given 

tissue across several individuals. Interestingly, these eQTL maps can be capitalized to 

prioritize non-coding variants likely affecting gene expression. Early studies indicated 

that eQTLs are tissue-specific by showing that 79.5% of the eQTLs mapped in three 

cell-types were unique, and only 8.5% are shared across cell-types (Dimas et al., 

2009). These pioneer studies suggested that is essential generating eQTL maps in 

disease-relevant tissues due to their tissue-specific nature. Genotype-Tissue Expression 

(GTEx)(Consortium et al., 2015b; Lonsdale et al., 2013) aimed at identifying genetic 

variants associated with gene expression across several tissues including immune cell-

types. So far, GTEx project identified thousands of genes under genetic control across 

883 samples and 49 tissues in scaling phases, and consistently showed the eQTLs from 

disease-relevant tissues tend to be enriched among disease-associated risk variants. 

Taken together, eQTLs provides an opportunity to identify putative causal disease risk 

variants and their effector transcripts. 

Other complementary approaches to eQTLs involve measuring molecular 

phenotypes that are informative of enhancer function, such as histone-QTLs (hQTLs), 

chromatin-accessibility QTLs (caQTLs) or methylation-QTLs (meQTLs) among 

others.  The BLUEPRINT epigenome project (Chen et al., 2016a) characterized 

different molecular QTLs in matched samples, providing a unique opportunity to 

understand shared genetic effects across intermingled molecular traits. The authors 

assayed gene expression profiles, along with two histone marks, H3K27Ac and 
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H3K4me1 and genome-wide methylation status using Illumina 450k arrays. The 

authors observed that 43% of eQTLs were also hQTLs for h3k4me1 or h3k27ac. These 

shared genetic effects across molecular QTLs along allowed them to connect putative 

regulatory elements with their target genes. 

Along with the eQTLs and complimentary hQTLs, genetic regulation of 

transcriptome variation also is driven from genetic effects on alternative splicing 

(sQTLs). Indeed, associated risk variants for several complex diseases have been shown 

to regulate alternative splicing in relevant tissues (Li et al., 2016, 2019; Raj et al., 

2018a; Zhang et al., 2020) sQTLs provided additional candidate effector transcripts 

that otherwise could be missed in eQTL and hQTL analysis.  

 In order to take advantage of eQTL maps to gain insights into genes mediating 

disease predisposition, diverse approaches have been developed to consistently 

integrate GWAS and eQTL data (Figure 1.10).  

 Colocalization methods are one family of methods that link molecular QTLs to 

disease risk variants by seeking for a shared genetic marker that is simultaneously 

associated with the disease and the molecular phenotype (e.g., gene expression or 

alternative splicing). Colocalization approaches are thus able to nominate candidate 

genes and the tissue of action where the disease phenotype manifest. This approach has 

successfully provided novel insights into GWAS loci for celiac disease with the simple 

overlap of GWAS risk variants with whole blood eQTLs, which nominated candidate 

genes in 20 out of 38 loci (Dubois et al., 2010)One of the limitations of such approach 

is that they do not account for local LD structure, and thus, does not rule out spurious 

overlaps. 

 Nica et al. (Nica et al., 2010) proposed a method called Regulatory Trait 

Concordance (RTC) which assesses the residual effects of eQTLs when conditioned on 

GWAS risk variants. In contrast with early approaches, this method accounts for local 

LD structure but does not perform any formal test of the odds of colocalization against 

the null hypothesis. 

 Hypotheses tests were included in Sherlock(He et al., 2013), that matches 

genetic signatures from eQTLs with GWAS. The underlying patterns of genetic 

associations of a gene constitute these so-called “genetic signatures”. If a gene is 

mediating disease risk, genetic signatures of the gene should overlap, at least partially, 

with GWAS risk variants. Of note, this approach allows comparing genetic effects from 

two traits not only locally but genome-wide, facilitating the integration of trans-QTL 
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effects with GWAS risk variants. Sherlock is based on a Bayesian framework that does 

not depend on conservative p-value cutoffs and thus, can benefit from both strong and 

moderately associated variants while accounting for LD patterns (He et al., 2013). One 

of the limitations of Sherlock is that only uses SNPs that are associated with either gene 

expression or GWAS and does not account for variants that act against colocalization 

in a particular locus. 

COLOC is the current state-of-the-art method that formally tests the null hypothesis 

against a shared genetic signal between two independent traits. It uses a Bayesian 

framework to calculate the posterior probability of a variant to be causal for both 

GWAS and eQTL phenotypes. COLOC tests five different tests hypothesis. 

 
H0: No association with either trait N 

H1: Association with trait 1, not with trait 2 N 

H2: Association with trait 2, not with trait 1 N  

H3: Association with trait 1 and trait 2, two independent SNPs N  

H4: Association with trait 1 and trait 2, one shared SNP 

 

For each of the above mutually exclusive configurations, a probability is calculated 

based on pre-selected informative probability priors, thus resulting in five posterior 

probabilities. A large posterior probability for H4 scenario indicates a shared causal 

genetic effect on both traits. It should be noted that all the above methods assume a 

single causal genetic variant in a locus. Alternative methods based on the original 

COLOC algorithm emerged, such as gwas-pw that employs empirical Bayes to estimate 

per-hypothesis priors.  

Previous methods assume no more than a single causal variant at each locus, and 

this does not reconciliate with recent observations of widespread allelic heterogeneity 

(Hormozdiari et al., 2017; Jansen et al., 2017). To further address this inconsistency, 

methods like eCAVIAR that accommodate multiple causal variants were developed. 

For a given lead GWAS variant, a window around that SNP is selected to include M 

variants (e.g., 50). Then, for all the variants within the locus, eQTL marginal statistics 

are considered and eCAVIAR framework is applied. eCAVIAR also provides a 

posterior probability for the hypothesis of shared causal variants termed colocalization 

posterior probabilities (CLPP) i.e., a posterior probability that the variant is causal for 

both the traits. There are several advantages for using CLPP; CLPPs not only inform 
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us about the strength of GWAS and eQTL colocalizatio. If eQTLs from several tissues 

and GWAS from multiple traits are available, CLPPs also give us clues about the tissues 

of action for GWAS loci from several traits (Hormozdiari et al., 2016). 

  

TWAS 

Transcriptome-wide association studies (TWAS) are another distinct family of methods 

to prioritize candidate effector transcripts of GWAS risk variants. TWAS tests the 

association of gene expression levels with disease risk by estimating the heritable 

component of gene expression from large expression panels, that will be harnessed to 

‘impute’ gene expression in individuals from GWAS datasets (Figure 1.11). Briefly, 

per-gene cis-heritable expression is estimated using predictive models that learn over 

panels where both gene expression and genotypes are available, such as GTEx data. 

Local SNPs at a certain distance from a given gene are considered (e.g., SNPs with in 

1 megabase from gene TSS) model gene expression variation based on allelic counts. 

These predictive models can then be used to impute gene expression in GWAS 

individuals where such data has not been measured. Predicted gene expression is then 

tested for association with trait variation or disease susceptibility. Thereafter, this 

approach is able to prioritize candidate genes that might mediate disease risk (Wainberg 

et al., 2019) 

Gamazon et al proposed PrediXcan method (Consortium et al., 2015a) that uses 

LASSO and elastic net models to predict the genetically regulated gene expression 

(GREx) component of whole-blood data(Battle et al., 2014) (‘training set’) to predict 

gene expression levels (treated as quantitative traits) in GEUVADIS LCLs(Consortium 

et al., 2013) and nine GTEx pilot tissues(Lonsdale et al., 2013) (‘test sets’). These per-

gene predictive models were then used to impute the gene expression in WTCCC 

study(Burton et al., 2007) and identified 41 associations for 5 diseases. One of the 

limitations of PrediXcan is that it requires individual-level genotype data from GWAS 

individuals, that are rarely available due to ethical policies. Thus, Gusev et al. adapted 

this TWAS framework to summary-statistics data in his method also known as 

Functional Summary-based Imputation (FUSION) (Gusev et al., 2016). FUSION uses 

five predictive models, Best Linear Unbiased Predictor (BLUP) and Bayesian Linear 

Mixed Model (BSLMM) on top of LASSO, elastic net and top eQTL SNPs. The 

inclusion of diverse predictive models allows dynamically selecting for each gene that 
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of that provides the highest accuracy, and thus, outperforms single eQTL based 

predictions. 

Another set of statistical methods that have been developed to prioritize 

candidate effector genes mediating disease risk rests on Mendelian Randomization 

(MR) approaches. The rationale underlying MR is that if a genetic variant is associated 

with gene expression variation, and if that gene expression variation mediates disease 

risk, genotype differences for that genetic variant should result in cognate phenotypic 

variation across individuals of a population. As in classic MR, genetic variants are 

considered as an instrumental variable to test for the causative effect of an exposure 

(e.g., gene expression) on an outcome (disease phenotype). Zhu et. al implemented this 

rationale in their Summary data-based Mendelian Randomization (SMR) method, 

which requires summary statistics from GWAS and QTL studies(Zhu et al., 2016). One 

of the limitations of MR approaches is that linkage is misinterpreted as pleiotropy 

(Hemani et al., 2018). Thus, Zhu et al implemented the heterogeneity in dependent 

instruments (HEIDI) test that can distinguish pleiotropy from linkage using multiple 

SNP associations within a given locus. Recently, several methods emerged hinging on 

the same principle(Richardson et al., 2020; Schmidt et al., 2020), and also considering 

multiple-instrument and multiple-exposure MR models (Porcu et al., 2019). It must be 

noted that, even though these methods have been primarily developed with gene 

expression reference panels, they can be used with any molecular trait measured across 

large reference panels and with genotype data available. 
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One of the key advantages of performing TWAS or MR based association tests is 

that multiple SNPs within the same cis-window are used to estimate the gene expression 

Figure 1. 11 A schematic representing TWAS approaches.  
First a reference transcriptome data set with genotypes is used to compute the 
heritability of gene expression. The weights for each SNP toward heritability 
of gene expression are used to impute the gene expression in GWAS 
individuals. The imputed gene expression levels are then used to perform 
association test with the trait. 
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heritable component by testing different models for prediction, which greatly increases 

the power over single-SNP eQTL associations. The second major advantage is that 

TWAS or MR can uncover novel disease risk loci that might have been missed by 

GWAS studies due to still unpowered study sizes. However, all novel biology proposed 

by TWAS and MR should be carefully considered as these methods cannot distinguish 

horizontal pleiotropy from vertical pleiotropy(Hemani et al., 2018; Wainberg et al., 

2019). Thus, close evaluation of prioritized effector transcripts using several lines of 

evidence, such as drawing additional support from colocalization approaches, is 

recommended. 

 

1.5. From T2D risk genetic variants to novel mechanistic 
insights. 

T2D is a paradigm of complex multifactorial diseases and has proved to be a fertile 

ground to advance the field of complex disease genetics. Our catalogue of T2D risk 

associated variants has expanded to more than 400 independent genetic signals 

(Mahajan et al., 2018a; Newman et al., 1987). This astounding summit has been 

accomplished thanks to the establishment of pioneer trait-specific consortia, such as the 

DIAbetes Genetics Replication And Meta-analysis (DIAGRAM), that allowed 

extending samples sizes from few to hundreds of thousands of individuals. The success 

of this collaborative strategy has been reinforced by the emergence of national 

biobanks, such as the UK Biobank (Bycroft et al., 2018) or the Million Veteran Program 

(Gaziano et al., 2016) . The generalization of T2D GWAS across underrepresented 

ancestries has been of the outmost importance to foster genetic discovery but also to 

enhance the resolution of fine mapping approaches(Consortium et al., 2014a). This 

large inventory of T2D risk genetic signals has already provided fruitful insights into 

disease pathophysiology. The central role of human pancreatic islets to T2D 

pathogenesis (Ashcroft and Rorsman, 2012) has been revealed with the marked 

enrichment of T2D risk variants in the epigenome landscape, particularly in enhancer 

domains, of human pancreatic islets (Gaulton et al., 2010; Parker et al., 2013; 

Pasquali et al., 2014). The by far non-coding nature of T2D disease risk variants has 

challenged the identification of effector transcripts through which these risk variants 

impact on T2D pathophysiology. Advances in “Hi-C” technologies aided in the 
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identification of effector transcripts by detecting genes that are in close proximity to 

the T2D risk loci in the 3D space. The integration of promoter-capture Hi-C data with 

refined pancreatic islet enhancer annotations generated during this PhD thesis allowed 

assigning one or more candidate effector genes to 53 loci, and 75% of them accounted 

for distal and unexpected candidate gene(Miguel-Escalada et al., 2019). Other studies 

have successfully integrated both Hi-C and eQTL information in human pancreatic 

islets with GWAS data to identify effector transcripts(Greenwald et al., 2019).  

Candidate gene assignments for T2D risk loci has also been successfully 

attained using Quantitative Expression Loci (eQTL) panels. Scaling efforts have been 

dedicated to expression and chromatin accessibility QTL studies in human pancreatic 

islets(Bunt et al., 2015; Fadista et al., 2014; Khetan et al., 2018; Varshney et al., 

2017a), that have culminated with recent eQTL maps from the InsPIRE consortium in 

420 human pancreatic islet samples from cadaveric organ donors(Viñuela et al., 2019). 

This large eQTL panel identified effector transcripts in 23 T2D GWAS loci, suggesting 

that a large fraction of the biology underlying T2D predisposition still needs to be 

discovered. 

 So far, three-dimensional chromatin studies and QTL approaches capitalized 

transcriptional regulation to provide effector transcripts associated with T2D risk. 

Importantly, it is now well established that genetic variants that alter alternative pre-

mRNA splicing contribute significantly to disease risk in several human genetic 

diseases(Li et al., 2016). Thereafter, complementary studies that assess the effect of 

genetic variants on pre-mRNA splicing in human pancreatic islets might hasten this 

translation of GWAS discoveries into molecular insights that could be harnessed for 

therapeutic purposes. 
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2. Hypothesis and objectives 

 
This thesis aims to provide a comprehensive understanding of both transcriptional and 

alternative splicing regulation in human pancreatic islets and to elucidate the 

relationship with T2D aetiology.  

 

This main aim has been built upon the following hypotheses: 

 

Hypothesis 1. Our insights into the human pancreatic islet transcriptional 

regulatory elements that control islet function and cell identity are still limited although 

their role is central to T2D pathogenesis.  

Hypothesis 2. The tissue-specific component of the human islet transcriptome 

is underrepresented in reference annotations.  

Hypothesis 3. The impact of common genetic variants on alternative pre-

mRNA splicing in human islets has not been determined and could shed light on the 

molecular mechanisms concurring in T2D pathophysiology.  

 

These hypotheses fuelled the following objectives, respectively: 

 

Objective 1.  To generate (1.a) a genome-wide atlas of islet regulatory 

elements by the integration of high-resolution maps of open-chromatin regions, histone 

modification marks and transcriptional regulators in human pancreatic islets, and to 

(1.b) unearth the components of the islet regulatory network that maintain beta cell 

function by using a glucose perturbation model in quasi-physiological conditions. 

 

Objective 2. To refine the human islet transcriptome and to identify novel 

coding sequences encoding islet-specific peptides, which can be potentially targeted for 

therapeutic purposes.  

 

Objective 3. To generate high-resolution maps of genetic effects on 

alternative pre-mRNA splicing and gene expression in human islets and to examine 

their distinct potential to ease on the identification of disease causal variants underlying 

T2D pathogenesis. 
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3. Methods 
ATAC-Seq data analysis 

13 human pancreatic islet donor samples were sequenced to a median depth of 30 

million reads. Low quality bases and adaptor trimming was performed using 

TrimGalore v.0.4.1 (--quality 15 --nextera). Trimmed reads were aligned to 

hg19 using bowtie2 v.2.1.0 (--no-unal) allowing no mismatches. Uniquely mapped 

reads (Mapping quality, MAPQ ≥ 30) were retained using SAMtools v.1.2 and 

duplicate reads were removed (picard v.2.6.0). Reads falling in blacklisted regions and 

reads from mitochondrial genome were also discarded. Peaks were called using 

MACS2 (--shift 100 --extsize = 200 --keep-dup all –nomodel -

-p 0.01) in 13 individual samples. We then pooled the bam files from these 13 

samples and peaks were called on the pooled bam file using MACS2 (--shift 100 

--extsize = 200 --keep-dup all –nomodel --q 0.05). We then defined 

consistent peaks present in at least three samples as well as in the pooled set. Consistent 

ATAC peaks that showed multiple subpeaks in >3 islet samples were manually split, 

leading to n = 241,481 ATAC peaks. A final set of accessible chromatin regions 

(n = 249,582) was defined by adding regions lacking ATAC-seq peaks that showed 

either Mediator or CTCF binding (n = 1,319, n = 9,596 respectively) or were bound by 

at least two islet transcription factors (n = 1,514). 

ChIP-Seq data alignment 

The alignment step for histone modifications (H3K27ac, H3K4me1 and H3K4me3), 

Mediator, CTCF and SMCA1 (part of the cohesion complex) was similar as follows. 

Adaptor trimming was performed with cutadapt v.1.9.1 (-m 20). Trimmed reads were 

aligned to hg19 using bowtie2 v.2.1.0 (--no-unal) allowing no mismatches. 

Uniquely mapped reads (Mapping quality, MAPQ ≥ 30) were retained using SAMtools 

v.1.2 and duplicate reads were removed using picard v.2.6.0. Reads falling in 

blacklisted regions were also removed. 

Consistent peaks – histone modifications 

For H3K4me3 and H3K4me1, broad enriched regions were called with MACS2 (--g 

hs --extsize = 300 --keep-dup all --nomodel –broad) and H3K27ac 
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narrow regions were called using MACS2 (--g hs --extsize = 300 --keep-

dup all --nomodel). To obtain a robust set of ChIP-seq peaks, we called peaks 

in individual human islet samples with relaxed stringency (P < 0.01), and in pooled 

samples using a stringent threshold (false discovery rate (FDR) q < 0.01). We then 

identified peaks present in at least three individual samples, or at least two samples if 

only three replicates were processed, as well as in the pooled set. 

Consistent peaks – Mediator, SMCA1 and CTCF. 

Narrow peaks were called using MACS2 (--g hs --extsize = 300 --keep-

dup all). To obtain a robust set of ChIP-seq peaks, we called peaks in individual 

human islet samples with relaxed stringency (P < 0.01), and in pooled samples using a 

stringent threshold (false discovery rate (FDR) q < 0.05). We then identified peaks 

present in at least three individual samples, or at least two samples if only three 

replicates were processed, as well as in the pooled set 

Classification of human islet-accessible chromatin 
We classified 249,582 consistent islet open chromatin regions using k-medians 

clustering of ChIP-seq signal distributions of H3K27ac, H3K4me1, H3K4me3, 

Mediator, cohesin and CTCF, using islet samples with the greatest signal to noise for 

these marks. Briefly, −log10 (P value) signal was calculated for each mark using 

100 base pair bins across a 6-kb window centered on consistent open chromatin regions. 

MACS2 estimates a p-value at each base-pair by testing the ChIP signal against the 

corresponding local lambda derived from the control sample (input) with a Poisson 

model. Full details of this algorithm are available at https://github.com/macs3-

project/MACS/wiki/Advanced%3A-Call-peaks-using-MACS2-

subcommands#Step_6_Compare_ChIP_and_local_lambda_to_get_the_scores_in_pva

lue_or_qvalue. K-median clustering (flexClust) was used to classify open chromatin 

regions into 14 clusters, which were manually merged into eight clusters based on the 

chromatin mark enrichment patterns. Each open chromatin class was ranked by CTCF 

binding to highlight a subset of CTCF-bound enhancers. Post-hoc analysis showed that 

human islet transcription start-sites defined by cap-analysis of gene expression (CAGE) 

were markedly enriched in regions classified as active promoters and, to a lesser extent, 

in class I enhancers. 

https://github.com/macs3-project/MACS/wiki/Advanced%3A-Call-peaks-using-MACS2-subcommands#Step_6_Compare_ChIP_and_local_lambda_to_get_the_scores_in_pvalue_or_qvalue
https://github.com/macs3-project/MACS/wiki/Advanced%3A-Call-peaks-using-MACS2-subcommands#Step_6_Compare_ChIP_and_local_lambda_to_get_the_scores_in_pvalue_or_qvalue
https://github.com/macs3-project/MACS/wiki/Advanced%3A-Call-peaks-using-MACS2-subcommands#Step_6_Compare_ChIP_and_local_lambda_to_get_the_scores_in_pvalue_or_qvalue
https://github.com/macs3-project/MACS/wiki/Advanced%3A-Call-peaks-using-MACS2-subcommands#Step_6_Compare_ChIP_and_local_lambda_to_get_the_scores_in_pvalue_or_qvalue
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Enhancer-promoter H3K27 acetylation correlations 

We considered that H3K27 acetylation signal in enhancer-promoter target pairs should 

tend to show higher correlation values across tissues and human islet samples than 

unrelated pairs. We empirically combined data from multiple tissues and human islet 

samples to generate a single Spearman’s Rho value for every possible enhancer-

promoter pair in each islet TAD-like domain and found improved discrimination in 

functionally characterized enhancer-gene pairs. As control sets, for every enhancer with 

an assigned gene promoter, we randomly selected another gene promoter in the same 

TAD. 

Correlations were calculated with H3K27ac ChIP-Seq from 14 human islet 

samples, including 7 samples exposed to 11mM glucose and 4mM glucose, and 51 

tissues from the Epigenome Roadmap Consortium (aligned reads from ChIP-Seq 

samples and inputs downloaded from 

egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/ and converted to 

BAM format using bamToBed from BEDTools). We selected datasets containing > 15 

million usable reads, and uniformly subsampled to a maximum of 30 million usable 

reads. Active islet enhancers were uniformly extended to +/-750 bp from the centre of 

the peak. Active islet promoters were used without further modifications. 

Reads mapping to islet active enhancers and promoters were quantified in all 

tissues and inputs using featureCounts from Rsubread R package and were sequence-

depth normalized. Input signal was subtracted from the sample signal. Spearman’s Rho 

values (scipy.stats.spearmanr) were calculated between all pairs of active enhancers 

and active promoters within TAD-like domains of human pancreatic islets function.  

Glucose regulation of enhancers and their target genes.  

We analyzed H3K27ac ChIP-seq and RNA-seq datasets from islets from 7 human 

donors cultured for three days in 11- or 4-mM glucose.  

For RNA-seq of islets exposed to different glucose concentrations, 100 bp paired-end 

sequencing reads were aligned to masked hg19 genome using STAR aligner v2.3.0 

(options: --outFilterMultimapNmax 1 --outFilterMismatchNmax 10). Gene level counts 

were obtained using FeatureCounts v1.5.0. (-s 2 -p). After removing genes that did not 

have at least 5 raw reads mapped in at least 3 replicates, a paired DESeq2 (v1.10.1) 

analysis was carried out to identify differentially regulated genes.  
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To assess glucose-regulation of enhancers, we defined H3K27ac-enriched 

regions, rather than using annotated enhancers that typically contain nucleosome-

depleted sub-regions lacking H3K27ac enrichment. We thus defined consistent 

H3K27ac- enriched regions for each human donor and each glucose condition treatment 

using MACS2 (--g hs --extsize = 300 --keep-dup all –nomodel). A 

total of 90,814 narrow H3K27ac-enriched regions were interrogated. The number of 

H3K27ac reads mapping to each peak was calculated using FeatureCounts (--

ignoreDup -O -- minOverlap 10). Then, paired DESeq2 (v1.10.1) analysis was used to 

assess differential signal strength. Peaks showing differential H3K27ac ChIP-seq signal 

at adjusted P ≤ 0.05 were then mapped to annotated regulatory elements. Motif analysis 

was performed using homer(Heinz et al., 2010) 

To calculate the enrichment of interactions between glucose-induced enhancers 

and glucose-induced genes, we considered all possible pairs of glucose-induced 

enhancers and genes within an islet TAD-like domain. For each enhancer-promoter pair 

we created a control pair with a distance-matched gene. We excluded experimental 

pairs when we could not find a distance-matched control.  Then, we calculated a 

Fisher’s exact test p-value to assess if glucose-induced enhancer and glucose-induced 

genes were enriched in high-confidence or imputed assignments. As an additional 

control, we assessed if glucose-induced enhancers preferentially contact glucose-

repressed genes. We further examined whether gene promoters assigned to glucose-

induced enhancers also show a significant glucose-dependent increase in H3K27ac 

levels. As a control, for every glucose-induced enhancer we chose a gene promoter that 

had the closest distance to the enhancer as the assigned gene promoter. The median 

distance for interacting gene promoters and control promoters was 200 kb (IQR 102-

356 kb) and 167 kb (IQR 99-351 kb), respectively. The median distance for imputed 

gene promoters and control promoters was 114 kb (IQR 58-301 kb) and 134 kb (IQR 

71-324 kb), respectively.  

 

PacBio data analysis 

Two human pancreatic islet donor samples were sequenced on PacBio IsoSeq platform. 

From each human islet samples, 4 libraries of different sizes (0.5-2kb, 1.5-3kb, 2.5-

6kb, 4.5-10kb) were sequenced. This yielded around 400,000 full-length non-chimeric 
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reads in total. The full-length reads were aligned to hg19 reference genome using 

STARlong 

 
STARlong --runThreadN 16 --outFilterMultimapNmax 1 --
genomeDir Indexes --readFilesIn ${sample} --
outSAMstrandField intronMotif --genomeLoad NoSharedMemory 
--runMode alignReads --outSAMattributes NH HI NM MD  --
outFilterMultimapScoreRange 1 --outFilterMismatchNmax 2000 
--scoreGapNoncan -20 --scoreGapGCAG -4 --scoreGapATAC -8 -
-scoreDelOpen -1 --scoreDelBase -1 --scoreInsOpen -1 --
scoreInsBase -1 --alignEndsType Local  --
seedSearchStartLmax 50 --seedPerReadNmax 100000  --
seedPerWindowNmax 1000  --alignTranscriptsPerReadNmax 
100000  --alignTranscriptsPerWindowNmax 10000  --
outReadsUnmapped Fastx --readNameSeparator space 
  

The resulting aligned sam file was converted to a gff file using 

sam_to_gff3.py. The 95% identical transcript models were then merged using 

collapse_isoforms_by_sam.py. Both scripts are run with default parameters 

as recommended and are available at https://github.com/Magdoll/cDNA_Cupcake 

 

De-novo transcriptome assembly 

PacBio, FANTOM cat and GENCODE GTF files were merged using gffcompare, and 

used as reference for StringTie de-novo assembly. 
stringtie ${BAM} -o ${SAMPLE}_stringtie_output.gtf -p 16 -

G ${reference_annotation} --fr -f 0.01  

StringTie assemblies from 77 human islet samples culture in high glucose 

concentration and 53 culture in low glucose were merged using gffcompare. 
gffcompare -r ${reference_annotation} -T -A -K -p STG -o 

${OUTPUT_PREFIX} ${StringTie_assembly_GTFs} 

Transcript expression was quantified using Salmon using the merge of StingTie 

assemblies as reference to build Salmon index. 
salmon quant -p 12 --incompatPrior 0.0 --gcBias --posBias 

-i ${INDEX} -l A -1 ${FASTQ_R1} -2 ${FASTQ_R2} -o 

${sample}_quantification   

 

https://github.com/Magdoll/cDNA_Cupcake
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Single cell RNA-Seq data analysis 

We compiled 4 publicly available scRNA-seq data sets of human pancreas and human 

pancreatic islets. We selected data sets that were sequenced using full-length transcript 

protocols which ensure maximum capture efficiency (Enge et al., 2017; Lawlor et al., 

2017; Segerstolpe et al., 2016; Xin et al., 2016). We downloaded the individual fastq 

files and aligned the data to hg19 reference genome using STAR.  

 
STAR –runThreadN 8 --outFilterMultimapNmax 1 --
outFilterMismatchNmax 10 --genomeDir Index --
readFilesCommand zcat --readFilesIn ${sample}_1.fastq.gz 
${sample}_2.fastq.gz --outSAMstrandField intronMotif --
genomeLoad NoSharedMemory --outSAMattributes All --
quantMode TranscriptomeSAM --sjdbGTFfile  
HI_transcriptome_v2.1.2.gtf 
 

Gene level quantifications were obtained using salmon(Patro et al., 2017). 

Combat (Johnson et al., 2007) was used to correct the batch effects across 4 datasets 

and Seurat_v3.1.0 (Butler et al., 2018) was used to cluster the cells. A series of steps 

performed using Seurat are 

 

ScaleData  RunPCA  FindNeighbors  RunUMAP  

findClusters  

We did not find any batch effects on clustering (Figure 3.17). Cell clusters were 

manually annotated based on the expression of marker genes (Figure 3.18).  
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To obtain the cell-type specific expression of each gene, we took the mean 

expression of genes per cell-type and Tau score (Equation 3.1) (Kryuchkova-Mostacci 

and Robinson-Rechavi, 2016; Yanai et al., 2005) is calculated. 

 

 

Figure 3. 1 Annotation of human islet scRNA-Seq clusters. 
A) Expression of cell-type specific marker genes (INS: beta cells, GCG: Alpha 
cells, SST: Delta cells, PPY: Gamma cells, REG1A: Acinar cells, KRT19: Acinar 
cells) B) Based on the marker expression, cells were labeled with respective cell-
type. This led us to identify 6 cell-types. 

Figure 3. 2 Seurat analysis of scRNA data sets. 
A) Clustering of all cells from different studies identified 12 clusters. B) Same 
clusters as shown in A) but the cells are colored according to the study, 
representing that the clustering is not driven by batch effects.  
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Tau score ranges from 0-1. A score of 0 represent ubiquitous genes and 1 

represent cell-type specific genes. To identify cell-type specific genes, we selected 

genes with a Tau score ≥0.9 and subsequently performed a k-means clustering using 

cluster3.0 (Hoon et al., 2004) based on their mean expression levels.  A heatmap 

representing the gene expression levels is plotted using Seaborn python package (using 

option z-score=True). For cell-type enriched genes, we chose all the genes whose Tau 

score is >0.5 and performed k-means clustering analysis and a heatmap is plotted as 

above. 

 

Coding sequence analysis 
 
We first identified human islet transcripts that contained an annotated CDS. We 

compared the annotated CDS sequence with human islet transcript sequence to identify 

various types of internal modifications. For the transcripts that do not contain an 

annotated CDS, we used TransDecoder 

https://github.com/TransDecoder/TransDecoder/wiki  to identify a long (>= 100 amino 

acids) open reading frame (ORF). We then compared these ORFs against the human 

UniProtKB protein sequence database using BLAST-P which led to identification of 

24,865 unannotated CDS. CDS with the end >50 bp upstream of the last exon-exon 

junction were considered to trigger NMD. 

 
 
CAGE data analysis 

Four human pancreatic islets were cultured in moderately high (11mMol) and low 

(4mMol) glucose conditions. no-amplification non-tagging (nAnTi)-CAGE protocol 

(Murata et al., 2014)  was used to sequence 8 libraries using 100bp paired-end reads. 

Individual samples were aligned to hg19 reference genome using STAR aligner.  

 

Equation 3.1 xi is  the  expression  of  the  gene  in  cell-type  i. 
n  is  the  number  of  cell-types 
 

https://github.com/TransDecoder/TransDecoder/wiki


 58 

star --runThreadN 12 --outFilterMultimapNmax 1 --
outFilterMismatchNmax 10 --genomeDir $TMPDIR/Index --
readFilesCommand zcat --readFilesIn ${read1} ${read2} --
sjdbFileChrStartEnd $TMPDIR/Introns.bed --
outSAMstrandField intronMotif --genomeLoad NoSharedMemory 
--outSAMattributes All 
 

The resulting sam file was converted to bam file using samtools (Li et al., 2009). 

The genomic position of 5’-end of each read-1 (R1) of a paired-end read was extracted, 

which correspond to a TSS. The TSS from each sample were used to identify tag 

clusters (TC) using decomposition based peak identification (DPI) 

https://github.com/hkawaji/dpi1 

Promoter width is defined as an interquantile range that captures 10-90% of the 

expression. A cumulative sum of TSS expression along the TC is calculated. The 

number of base-pairs between 10% and 90% of expression were defined as promoter 

width. 

De-novo motif analysis was performed on sharp and broad promoters separately 

using homer (Heinz et al., 2010). A window of 500bp upstream and 250bp downstream 

from the promoter was chosen for motif analysis. Strand information was used 

depending on the directionality of promoter. All the promoters were used as 

background. 

  
findMotifsGenome.pl input_bed hg19 ouput_folder -size 
given -len 4,6,8,12 bits -p 8 -h -bg all_promoters.bed –
norevopp 
 

For each gene with more than one promoter, relative promoter usage is 

calculated. Promoter with maximum expression is referred to as primary promoter. 

Promoter with next high expression is referred to as secondary promoter and expression 

from the remaining promoters is summed and referred to as ‘Others’. 

To identify human islet specific promoters, we analyzed 672 samples from 

FANTOM consortium. We downloaded bam files and quantified the expression (TPM) 

of human islet assigned promoters across all the samples. We used average TPM 

whenever the replicates are available from same tissue/cell-type. Then we calculated a 

z-score. A promoter with a z-score >3 is considered as islet specific promoter. For de-

novo motif analysis, open-chromatin regions with active promoter signatures that 

https://github.com/hkawaji/dpi1
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overlap with islet specific promoters were used (n=1851). As background, rest of the 

active promoters of human islets were used (n=11,827) 

 
RNA-Seq data analysis for QTL study 
We compiled publicly available genotype and RNA-seq datasets (GEO accession 

number GSE50244, EGA accession number EGAD00001001601), 112 unpublished 

samples obtained in the context of a collaboration with Piero Marchetti and sequenced 

through T2DSystems Horizon 2020 project, and 101 in-house samples from human 

islet donors without diagnosis of diabetes (after QC analysis, respectively, see below), 

yielding a total of 399 samples.  

RNA-Seq alignment was performed using STAR aligner (Dobin et al., 2013). 

First, an index was generated for human reference genome version hg19. Then, Raw 

fastq files were aligned to using STAR (version) using the options --
outFilterMultimapNmax 1 --outSAMstrandField intronMotif -

-outSAMattributes All --twopassMode Basic. 

Samtools(Li et al., 2009) was used to convert the sam file format to bam format and 

then read-group information is added using Picard 

(http://broadinstitute.github.io/picard/). For EGAD00001001601, only bam files were 

available, hence the alignment step was not performed. 
 

Genotype analysis 

In-house samples were genotyped with distinct SNP arrays, Illumina Infinium 

OmniExpress 12 v1 and HumanOmni 2.5-8v1. Thus, we removed strand ambiguous 

variants and duplicate samples (prioritizing data from the SNP array with the largest 

genetic resolution) to harmonize all genotypes in a single dataset.  Then, a three-step 

quality control of genotype data, involving two stages of SNP removal and one 

intermediate stage of sample exclusion, was conducted in each cohort. Genotyped SNPs 

were filtered if (i) minor allele frequency (MAF) < 0.01), (ii) missing genotype rate ≥ 

5% and (iii) significantly deviated from Hardy-Weinberg equilibrium (HWE, p-value 

≤ 1x10-6). Samples were excluded if (i) individual missing genotype rate ≥ 2%, (ii) 

cryptic relationships and sample duplicates (individuals with higher individual 

missingness genotype rate from pairs with pi ≥ 0.185), or (iii) showed >4 standard 

deviations from the mean according to the first four principal components in each given 

cohort.   

http://broadinstitute.github.io/picard/
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For each cohort, we generated per-chromosome VCF files after checking for 

strand alignment against the Haplotype Reference Consortium (HRC) and 1000 

Genomes (1000G) reference SNP list. HRC-1000G-check-bim.pl script with the -n 

option (to turn off the removal of variants showing MAF differences between the 

reference panel and the study genotypes) was used. We submitted resulting VCF files 

to the Michigan Imputation Server 

(https://imputationserver.sph.umich.edu/index.html): EAGLE2 was used for phasing, 

minimac3 for genotype imputation with the HRC r1.1 20 and the 1000G Phase 3 release 

reference panels, independently. For each dataset of imputed genotypes, we excluded 

variants with: (i) MAF < 1%, (ii) imputation-quality R2 < 0.7, and/or (iii) HWE P ≤ 

1x10-6. We extracted indels from the 1000G Phase3 imputed results, filtered them using 

the aforementioned criteria and merged with the filtered HRC imputed dataset.  

 

Genotype principal component analysis 

To identify individuals of divergent ancestry and to characterize population structure, 

we first selected a subset of genotyped SNPs that were common in all 4 data sets, that 

also passed all our QC filters and with MAF ≥ 1% and missingness < 5% across all the 

samples. We also excluded SNPs in high LD (pairwise r2 ≤ 0.1 within 1 Mb window), 

C/G and A/T SNPs to avoid strand mismatches, and those located in previously reported 

regions with long-range LD. We aggregated the 1000 Genomes Phase3 reference 

dataset using the set of overlapping variants. flashPCA tool was used to calculate 

genetic principal components. 

https://imputationserver.sph.umich.edu/index.html
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Correcting allelic bias mapping using WASP Pipeline 

All reads from WASP pipeline (Geijn et al., 2015) was used to remove reads mapped 

with allelic bias. First the genotype vcf file was converted to a HDF5 file format using 

the following command. 
snp2h5 --chrom chrom.hg19.txt --format vcf --haplotype 

haplotype.h5 --snp_index index.h5 --snp_tab tab.h5 --

geno_prob geno_probs.h5 chr*.vcf.gz 

Once the VCF file was converted to HDF5 format, the WASP alignment and correction 

steps were carried out. Briefly, first WASP identifies all the reads that may have 

mapping biases using find_intersecting_snps.py. For all the reads that 

overlap a heterozygous variant, the two allelic version of the reads are generated. The 

two allelic versions of the reads are mapped back to the reference genome using exact 

parameters as that of original alignment step. Then, 

filter_remapped_reads.py is used to filter out reads where one or more of 

allelic versions of the reads fail to map back to the same location as the original read. 

VerifyBAMID(Jun et al., 2012) was used to assess the concordance between 

genotypes and RNA-Seq samples using options --best --precise --

Figure 3. 3 Principal Component analysis (PCA) of population structure on islet 
samples. 
We calculated PCs from genotypes with the aggregation of 1000 Genomes Phase 3 data. 
(A) The population structure of the islet samples included in this study was assessed by 
the comparison with major population groups from 1000 Genomes Phase 3 data using 
PC1 (x-axis) and PC2 (y-axis). (B) Differences in population structure between the four 
cohorts that are part of our complete panel of 399 islet transcriptomes through PC1 and 
PC2.  
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maxDepth 200. Samples with more than 2% contamination (CHIPMIX >> 0.02 

and FREEMIX >> 0.02) were removed. 

Note: In-case of EGAD00001001601, only bam files were available, hence the initial 

alignment step was not performed. 

 

Gene expression quantifications for QTL study 

The in-house developed transcriptome annotations were used to quantify gene 

expression. featureCounts(Liao et al., 2014) was used to get the gene level 

qualifications using default parameters except using appropriate strandedness flag for 

each dataset and batches. Genes with less than 5 raw reads mapped in less than 5% of 

the samples were removed. Counts per million (CPM) normalization was performed 

using edgeR(Robinson et al., 2010) cpm function and then the normalized expression 

values were log2 transformed. Combat (Johnson et al., 2007) was used to remove 

known batch effects (Figure 3.36) and 15 principal components (PCs) were calculated 

on Combat corrected gene expression using prcomp function in R-programming 

which were later used as covariates in eQTL analysis. 
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Splicing activity quantification 

To quantify the splicing activity, we used the annotation free method, leafcutter (Li et 

al., 2018). Briefly bam2junc.sh from leafcutter was used to quantify de-novo 

the number  

of junctions spanning reads i.e., split mapped reads. We removed junctions that are not 

supported by at least 5 spliced reads in 10% of the samples and then clustered the 

junction spanning reads that are anchored on common junctions using 

leafcutter_cluster.py using the options -m 30 -l 500000 to get the read 

quantifications per junction and corresponding cluster information. 

prepare_phenotype_table.py was used to get relative junction usage (ratios) 

across samples. Combat was used to remove know batch effects (Figure 3.37) and 5 

principal components were calculated on Combat corrected junction usage using 

prcomp function in R programming. 

 

  

Figure 3. 4 Gene expression principal components before and after correcting batch 
effects. 



 64 

 

 

cis-eQTL mapping 

cis-eQTL mapping was performed using QTLtools (Delaneau et al., 2017)for 399 

samples with available genotype and RNA-seq data after quality control analysis using 

a cis-window of 500 kb up- and downstream of the transcription start site (TSS). 15 

principal components derived from gene expression and 4 genetic principal 

components were used as covariates in the linear model. In order to identify best 

associated cis eQTL SNP-eGene pairs, QTLtools was run using the permutation pass 

mode (1000 permutations), and beta approximated permutation p-values were adjusted 

for multiple testing correction using Storey q-values implemented in the qvalue R 

package. We set the significance threshold at FDR < 0.01. We also calculated nominal 

p-values for all cis-SNPs within a 500kb window centered on the TSS of each gene 

(nominal pass mode from QTLtools).  To identify all significant variant-gene pairs, we 

defined a genome-wide p-value threshold (pt), by considering the empirical p-value of 

the eGene closest to the 0.01 FDR threshold. A gene-based nominal p-value threshold 

was then calculated using pt and the beta distribution parameters from QTLtools. For 

each significant eGene, variants with a nominal p-value below the gene-level threshold 

were considered in subsequent analyses (significant nominal cis-eQTL variants). 

 

cis-sQTL mapping 

We performed cis-sQTL mapping as described in above using intron excision ratios 

and a cis-window of 50 kb up- and downstream of the junction. In case of cis-sQTLs, 

Figure 3. 5 Leafcutter junction usage principal components before and after 
correcting batch effects. 
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only 5 PCs derived from splicing ratios and 4 genetic PCs were used in the linear model. 

In order to identify best associated cis sQTL SNP-junciton pairs, QTLtools was run 

using the permutation pass mode (1000 permutations), and beta approximated 

permutation p-values were adjusted for multiple test correction using Storey q-values 

implemented in the qvalue R package. We set the significance threshold at FDR q-value 

≤ 0.01 resulting in 4,858 junctions with a significant sQTL. We also calculated nominal 

p-values for all cis-SNPs within a 50kb window around the junction (nominal pass 

mode from QTLtools).  To identify all significant variant-junction pairs, we defined a 

genome-wide p-value threshold (pt), by considering the empirical p-value of the 

junctions closest to the 0.01 FDR threshold. A junction-based nominal p-value 

threshold was then calculated using pt and the beta distribution parameters from 

QTLtools. For each significant junction, variants with a nominal p-value below the 

gene-level threshold were considered in subsequent analyses (significant nominal cis-

eQTL variants). 

 

Annotation of sQTL junctions 

As leafcutter is a de-novo-based method, we used the transcriptome annotation GTF 

file as a base to annotate the leafcutter derived junctions with respective genes. We used 

gtf2leafcutter.pl script from leafcutter’s leafviz module to obtain the intron coordinates 

of all gene. The sQTL junctions were then mapped to the intron coordinates and 

annotated with respective gene names. 

 

Magnitude of genetic effects on splicing 

To quantify the magnitude of genetic effects on splicing, for each sQTL junction, we 

calculated the difference (delta-psi) in median junction usage of samples with 

homozygous reference and homozygous alternate alleles. This was plotted as a function 

of -log10(p-value). 

 

Visualization of splicing events 

The junctions identified from leafcutter were loaded into IGV (Robinson et al., 2011) 

for visualization.  

 

Genomic regions enrichment analysis 
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We used GREGOR (Schmidt et al., 2015)to perform enrichment analysis of lead sQTLs 

and eQTLs in different genomic annotations using the following options  
R2THRESHOLD=0.7, LDWINDOWSIZE=50000 (for sQTLs), 

LDWINDOWSIZE=100000 (for eQTLs), MIN_NEIGHBOR_NUM=200 and 

POPULATION=EUR. 

We used the islet-regulome annotations and genic annotations from GENCODE. 

 

Comparison with GTEx 

We obtained summary statistics data for eQTLs and sQTLs from 49 GTEx tissues (v8 

release). We first listed eGenes and junctions with significant eQTLs and sQTLs, 

respectively, at FDR 0.01, consistent with our significance threshold. Significant 

variant-phenotype associations for each of the 49 tissues were filtered based on the 

previous feature sub-selection, and variant and junction coordinates (for sQTLs) were 

lifted down using liftOver from hg38 to hg19. For each GTEx tissue, we looked at the 

variant-phenotype (eGenes or Junctions) overlap with our islet eQTL and sQTLs, using 

nominal QTL variants. For example, for GTEx x eGene in j tissue, if any of the GTEx 

significant variants mapped any of our nominal eQTL variants for that x eGene, we 

considered that islet eQTL to be shared with that given j tissue. Same approach was 

implemented to sQTLs. We excluded from this analysis testis, given the pervasive 

number of eQTLs, and pancreas because it is a partial surrogate of pancreatic islets.  

 

Credible set analysis 

We used fine-mapping approaches to identify candidate causal variants that underlie 

cis-eQTL and sQTL loci. We identified 95% credible set variants using CAVIAR(Chen 

et al., 2015) software and allowing for one causal variant (-c 1). LD information 

between SNP pairs (i.e. the r matrix) was generated using PLINK (Purcell et al., 2007)  

v1.9 –matrix –r , and our effective 399 high-quality human islet samples used in the 

eQTL and sQTL identification (see Methods, Genotype analysis and Correcting allelic 

bias mapping using WASP Pipeline sections) as reference panel. 

 

DeepSea annotations 

The credible set variants of both eQTLs and sQTLs were assessed for their disease 

impact on the basis of their predicted transcriptional and post-transcriptional regulatory 

effects, using a deep-leaning model that is based on (a) (a) DeepSEA, trained on 
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transcriptional regulatory features (histone marks, DNAse I profiles and transcription 

factors, a total of 2,002 features), and (b) Seqweaver, trained on post-transcriptional 

regulatory features i.e RNA-binding proteins binding data based on CLIP experiments 

on 82 unique RBPs (ENCODE and other CLIP datasets) (Zhou et al., 2019). We 

performed in-silico mutagenesis on both eQTL and sQTL credible set variants using 

both DeepSEA and Seqweaver models and obtained the Disease Impact Scores (DIS) 

from respective models. Prior to in-silico mutagenesis, the strand information was 

added to sQTL credible sets based on the orientation of the gene. The credible sets were 

further stratified based on their location in the genome and the DIS from both models 

for each category of variants were shown as boxplots. 

 
Quantile-quantile plots:  

In order to estimate genomic inflation of T2D risk in transcriptomicquantitative trait 

loci (enrichment of small T2D GWAS pvalues among e and sQTLs), we generated 

quantile-quantile (Q-Q) plots using summary statistics from Mahajan, et. al 2018. We 

included variants with MAF  ≥ 5% that were intersected with our nominal e and sQTLs 

(see Methods XX). To provide further support to the enrichment of sQTLs and eQTLs 

in T2D GWAS data, we generated 1000 permutations of subsets of control sQTL 

variants. Each control set of sQTL-like variants was generated by first identifying 

independent recombination regions, defined by Berisa and Pickrell, 2016, that 

comprised nominal eQTL or sQTL variants, respectively. Then, we shuffled non-

overlapping genomic regions, that were created based on our nominal sQTL variants, 

across the genome, but excluding those recombination regions where either eQTL or 

sQTL variants were located, and blacklisted regions 

(wgEncodeDacMapabilityConsensusExcludable.bed.gz and 

wgEncodeDukeMapabilityRegionsExcludable.bed.gz). Among the set of shuffled 

recombination regions, we randomly sampled the same number of nominal sQTL 

variants. This was done 1000 times.  

 

TWAS analysis: 

FUSION software (Gusev et al., 2016) was used for the TWAS analysis. For gene 

expression, first the weights were computed using FUSION.compute_weights.R using 

options --models 
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top1,blup,bslmm,lasso,enet on the same data that is used for eQTL analysis. 15 

PCs and 5 genetic PCS were used as covariates and variants with-in a cis-window of 

500kb from TSS were used to compute the gene expression heritability. For splicing 

analysis, variants with-in 50kb from the junction boundaries were used and 5 PCs and 5 

genetic PCs were used to compute the weights. 

After computing weights, FUSION.assoc_test.R script was used to test for 

association of the computed weights and BMI-adjusted T2D GWAS summary statistics 

from one of the latest large-scale meta-analysis in 74,124 T2D and 824,006 controls 

(Mahajan et al., 2018b) . We only included GWAS data from variants that overlaid our 

~6.5M high-quality imputed common genetic variants.  The resulting p-values were 

corrected using Benjamini-Hochberg method.  

 

Colocalization analysis across 403 independent T2D-GWASsignals.  

We performed colocalization as implemented in gwas-pw at each of the selected 

independent T2D signals. To this end, we only considered the fraction of variants in r2 

≥ 0.6 with credible set variants with genetic posterior probability ≥ 0.01 for each 

independent T2D signal. LD calculations were performed using the genotypes of our 

~399 high-quality islet samples, but if any of the selected credible set variants for a 

given independent signal were not included in our imputed genotypes, we then used 

1000 Genomes Phase3 as the reference panel. Colocalization was performed across 

1Mb genomic interval centered on the reported lead variant for a given GWAS locus. 

We nominated a region as a colocalized locus if the posterior probability for model 3 

(presence of the same genetic variant associated with QTL and GWAS traits, 

“colocalization”) was  ≥ 0.9.  
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4. Results 
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4.1. Regulatory maps of human islets and effect of glycemic 
environment 

The heritability of T2D has been shown to be enclosed in the islet regulatory landscape 

through large enrichments of T2D risk variants in human pancreatic islet enhancers 

(Pasquali et al., 2014). Previous definitions of human islet enhancers defined in 

Pasquali et al were based on open-chromatin regions defined using a combination of 

FAIRE-Seq and H2Z.A ChIP-seq data. However, FAIRE-Seq and H2Z.A ChIP-seq 

data tend to have higher signal to noise ratio that limits the resolution of the maps and 

thus, define broader genomic regions. Furthermore, only 2-3 samples were used in 

those maps. We reasoned that using high resolution Assay for Transposase-Accessible 

Chromatin using sequencing (ATAC-Seq) (Buenrostro et al., 2015) data from a larger 

number of individuals would allow us to better characterize the open-chromatin 

landscape in human pancreatic islets. We also sought to improve the enhancer 

definitions using additional data such as Mediator and Cohesin occupancy. Mediator 

has been shown to identify enhancers that are highly occupied by lineage specific 

transcription factors that regulate cell-specific gene expression programs(Whyte et al., 

2013). Even though one primary role of Cohesin is to maintain the chromatin structure, 

it is also been observed that Cohesin regulates enhancer promoter interactions 

independent of CTCF (Schmidt et al., 2010). 

To further investigate how the regulatory genome orchestrates the human islet 

function, we used a perturbation model where human pancreatic islets are exposed to 

varying glucose concentrations. Glucose is a primary physiological stimulus for 

pancreatic beta cell to secrete insulin. High glucose concentrations for prolonged 

periods of time have been shown to have both adverse and beneficial effects on beta 

cells. The adverse effects include increased oxidative stress leading to apoptosis 

(Poitout and Robertson, 2008; Poitout et al., 2010).  On the other hand, the beneficial 

effects of glucose include its capacity to act as a mitogen. Studies in mouse and in 

human islets transplanted into mouse have reported that beta cells replicate upon 

glucose challenge (Alonso et al., 2007; Levitt et al., 2010), and that glucose stimulation 

is the underlying cause for beta cell replication (Porat et al., 2011). Furthermore, 

moderately high glucose concentrations can help beta cells functionally adapt to 

increased demands. Understanding the molecular mechanisms that control this adaptive 

response of beta cells to glucose could lead us to novel therapeutic targets. However, 
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the molecular basis of these this glucose adaptation remains poorly understood. Studies 

in mouse and rodent islets showed that carbohydrate response element binding protein 

(ChREBP, encoded by MLXIPL gene) has been shown to orchestrate some glucose-

induced transcriptional changes (Metukuri et al., 2012; Schmidt et al., 2016). Although 

these studies laid the groundwork for a more proper understanding of glucose-induced 

transcriptional rewiring of beta cells, they have not been translated to human model 

systems. Furthermore, other glucose-dependent changes remain unexplored. Thus, we 

investigated the transcriptional and epigenetic changes to variation in glucose 

concentrations in human pancreatic islets. 

 

4.1.1.  High resolution human islet regulome annotations 

We performed ATAC-Seq (Buenrostro et al., 2015) on 13 human pancreatic islet donor 

samples (median depth of 30 million reads) to define a set of consensus open-chromatin 

regions. We first identified stringent open-chromatin regions using MACS2 (q < 0.05) 

by pooling data from 13 samples. We also obtained less stringent (P < 0.01) open-

chromatin regions in individual samples. We then defined consistent open chromatin 

regions if they were present in at least three samples as well as in the pooled set. This 

led us to identify 241,481 consistent human islet open-chromatin regions.  

To annotate the underlying epigenome state, we generated ChIP-Seq data from 

histone modifications, structural proteins, and a transcriptional co-activator. We thus 

assayed H3k27Ac (a mark for active promoters and enhancers), H3K4me3 (a mark for 

active promoters), H3K4me1 (a mark for active enhancers), the Med1 subunit of 

Mediator (a transcriptional co-activator), CTCF, and SMC1A (subunit of cohesin 

complex, a chromatin structural protein that is also enriched in active regulatory 

elements) in human pancreatic islet donor samples.  We followed a similar strategy as 

that of ATAC-seq analysis to define consistent peak sets for each ChIP-Seq data set 

using replicate samples.  We observed that some regions that were not captured by 

ATAC-Seq were enriched with Mediator, CTCF or previously generated islet 

transcription factors’ ChIP-Seq data (Pasquali et al., 2014); thereafter, we added those 

regions to the consistent accessible chromatin region set. The rationale was that it is 

unclear if all regulatory regions were necessarily call by ATAC-seq, and if some 
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genomic regions were bound by DNA-binding proteins technically this means that they 

are accessible.   This led us to define a final set of 249,582 accessible chromatin regions. 

We then used an unsupervised k-medians clustering approach to group these open-

chromatin regions based on the enrichment of combinations of different chromatin 

marks. Briefly, we defined a window of 6kb from the center of each accessible 

chromatin region. We then divided each 6kb region into 100bp bins and quantified the 

ChIP signal enrichments (as a -log10 p-value) of assayed chromatin marks. Finally, we 

performed a k-medians clustering of all accessible chromatin regions.  This led us to 

group all accessible chromatin regions into active enhancers (n=45,683) that are 

enriched with H3K27ac and H3K4me1, active promoters (16,313) that are enriched 

with H3K27ac and HeK4me3, CTCF binding sites (n=29,915), inactive enhancers that 

show enrichment of H3K4me1 but lacks H3K27ac (n=66,029), and “inactive” regions 

which do not of any ChIP signal of assayed chromatin features (n=91,642) (Figure 3.6). 

H3K27ac and Mediator ChIP-Seq signal allowed us to further classify active enhancers 

into different subclasses, class I – III, which showed marked differences in the strength 

of these signals (Figure 3.6). We also observed, post-hoc, that active promoters are 

expectedly marked by strong human islet CAGE signal. These findings, therefore, 

defined a map of accessible chromatin regions in human islets with greater spatial and 

functional resolution than that provided in the team’s previous epigenome maps 

(Pasquali et al., 2014) 
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Figure 3. 6 High-resolution annotations of islet open chromatin.  
A) ATAC-seq data from 13 islet samples were used to define consistent open chromatin 
regions, which were classified with k-medians clustering based on different combinations 
of epigenomic features. Mediator and H3K27ac binding patterns allowed subclassification 
of active enhancer classes I–III. Post-hoc analysis of islet CAGE tags confirmed that 
transcription start sites are highly enriched in promoters and weakly in class I enhancers. 
B) Average H3K27ac and Mediator signal centered on open chromatin regions for active 
enhancer subtypes in three human islet samples and input DNA. 
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4.1.2.  Effect of glycemic environment on human islet 
regulome 

 

To gain insights into the effect of variable glucose concentrations into the human islets 

regulatory landscape, we cultured human pancreatic islets from 7 organ donors in 11 

mM (referred to as “high glucose”) and 4 mM glucose (“low glucose”) concentrations 

for 72h. Of note, 4- and 11-mM glucose represent glucose levels that can be observed 

under extreme physiological conditions. We then profiled gene expression (RNA-Seq) 

and H3K27Ac activity (ChIP-Seq) 

 

High glucose induces gene expression programs beneficial for beta cells 

We performed differential gene expression analysis between high and low glucose 

conditions that revealed 930 up-regulated genes, and 595 down-regulated genes in high 

glucose condition (adjusted p-value ≤ 0.05, absolute fold change ≥ 1.2, Figure 3.7). 

This suggested that human pancreatic islets undergo broad transcriptional changes upon 

glucose stimulation. Functional enrichment analysis showed that upregulated genes in 

high glucose condition are enriched for synaptic transmission, ion channels, and for 

beta cell differentiation genes such as PDX1, NKX6-1 (Figure 3.3). We also observed 

that genes implicated in apoptotic pathways such as DDIT3, JUN and TNF are 

downregulated in high glucose conditions (Figure 3.8). This suggests that in our in-

vitro human model system, glucose is showing a beneficial effect as it is increased 

expression of genes that are important for the correct function of pancreatic islet cells.  
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Figure 3. 7 Differential gene expression analysis between high and low glucose samples. 

Volcano plot showing the gene expression log2 fold change against the -log10(adj p-value). 
A positive fold change indicates the a given gene is up regulated in high glucose condition. 

Figure 3. 8 Enrichment of glucose regulated genes in functional annotations.  
Genes induced by high glucose conditions are enriched for ion channels, synaptic 
transmission and beta cell differentiation genes. Genes repressed in high glucose conditions 
are genes primarily involved in apoptotic pathway. 
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High glucose predominately activates enhancers in human pancreatic islets 

We performed differential analysis of H3k27ac activity to understand how glucose 

effects translate into the chromatin landscape. This revealed glucose-dependent 

changes in 2,847 H3k27ac regions (adjusted p-values ≤  0.05), with 2,193 regions 

induced and 654 regions repressed in high glucose (Figure 3.9A). These H3k27ac-

enriched regions were defined independently of enhancers or promoters, but the 2,193 

H3k27ac-enriched regions induced at high glucose condition mapped to 3,065 active 

enhancers (of which 2,116 i.e., 69% were class-I enhancers) and 443 were active 

promoter elements.  

We performed de novo motif analysis on 2,116 glucose induced class-I 

enhancers using HOMER (Heinz et al., 2010). As a background, we used the rest of 

non-glucose induced class-I enhancers (~10,000). This identified a homeobox domain 

motif (Figure 3.9B) to be enriched among glucose induced enhancers. This is consistent 

with the known up-regulation in high glucose condition of homeobox 1 genes, such as 

PDX1 and NKX6.1 that are crucial regulators of islet cell identity. Our results therefore 

showed that high glucose concentrations elicit quantitative chromatin changes in many 

human islet enhancers that are enriched with the homeobox domain motif and may thus 

be mediated by changes in transcription factors such as PDX1. 

  

Figure 3. 9 Differential H3K27Ac activity between high and low glucose samples.  
A) Volcano plot showing the log2 fold-change against -log10 (p-values). A positive 
fold change indicates the region show higher H3K27Ac activity in high glucose. B) 
De-novo motif analysis in glucose induced class-I enhancers. 
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Glucose induced enhancers regulate glucose induced genes 

To investigate if glucose-regulated enhancer activity is coupled with cognate glucose-

regulated gene expression changes, we used promoter-capture Hi-C (pcHi-C) data 

generated after culturing human pancreatic islets in high glucose condition.  

More than 80% of human islet enhancers have been linked to their target genes 

using targeted sequencing of promoter 3D chromatin interactions (pcHi-C) in human 

islets, either based on observed interactions or via imputations (Figure 3.10A), as 

described in (Miguel-Escalada et al., 2019). 

To further evaluate if pcHi-C assignments of enhancers to their target genes 

truly informs us about functional interactions, we first calculated correlations of human 

islet enhancer and promoter activity based on H3k27ac data from a broad range of 

human tissues. We observed a high correlation in H3k27ac signal between human islet 

enhancers and their assigned gene promoters, and this correlation was greater than that 

of the same enhancers with gene promoters that were not connected by pcHi-C but 

resided in the same TAD (Figure 3.10B).  

Next, we reasoned that if the epigenetic alteration at glucose-induced enhancers 

is coupled with glucose-regulated changes at gene expression level, we should observe 

an increased frequency of interactions between glucose-induced enhancer-gene pairs. 

Indeed, we observed that glucose-induced enhancers show enriched interactions with 

glucose-induced genes, compared with distance-matched non-glucose regulated genes 

(Odds ratio 2.7, p= 4.9e-16 and OR 2.6, p=6.4e-12) (Figure 3.10C). We also observed 

that glucose-induced enhancers do not show any increase in the frequency of 

interactions with glucose-repressed genes (OR 0.9, p-value 0.9 and OR 1.3, p=0.2) 

(Figure 3.10C).  Likewise, gene promoters that are assigned to glucose-induced  
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Figure 3. 10 Glucose-induced enhancer are linked to glucose-induced genes.  

A) We assigned target genes to 39.5% of all 45,683 active enhancers through high-
confidence interactions and imputed assignments to gene promoters for another 40% of all 
active enhancers. B) Functional correlations of enhancer–gene pairs assigned through high-
confidence interactions (n = 18,637 pairs) or imputations (n = 28,695 pairs). Spearman’s 
rho values for normalized H3K27ac signal in enhancer–promoter pairs across 14 human 
islet samples and 51 Roadmap Epigenomics tissues. Control enhancer–gene pairs were 
unassigned gene-enhancer pairs from the same TAD (n = 20,186 pairs). C) Genes assigned 
to glucose-induced enhancers showed concordant glucose-induced gene expression. 
Glucose-induced enhancers were enriched in high-confidence (n = 439) or imputed (n = 
640) assignments to glucose-induced genes, compared with distance-matched genes from 
the same TAD (top). Glucose-induced enhancers showed no enrichment for assignments to 
genes that were inhibited by high glucose concentrations (n = 196 interacting and n = 218 
imputed pairs) (bottom). OR odds ratio. P values were calculated with chi-square tests. D) 
Genes assigned to glucose-induced enhancers through high-confidence interactions (n = 
275) or imputations (n = 321 pairs) were enriched for glucose-induced promoter H3K27ac, 
compared with control genes from the same TAD. Box plots represent interquartile ranges 
(IQRs), notches are 95% confidence intervals of median, P values are from Wilcoxon’s 
two-sided signed ranked tests. 
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enhancers showed increased H3K27ac levels in high glucose condition than distance-

matched genes in the same TAD (p=10e-6, p=0.002) (Figure 3.10D). Altogether, this 

analysis suggested that glucose-induced changes of enhancer activity are accompanied 

with glucose-induced gene expression changes. It also provided a functional validation 

of enhancer-promoter assignments based on 3D chromatin interactions.  

 

Glucose elicits domain-wide chromatin changes 

Given the functional link between glucose-induced enhancers and their distal target 

genes, we wondered if glucose varying concentrations also elicit domain-wide 

chromatin changes.  

 To investigate this, we examined enhancer-hub domains. Enhancer hubs 

represent clusters of enhancers that shared showed 3D chromatin interactions with 

common genes. In a bit more detail, islet enhancer hubs were defined as three-

dimensional regulatory units where multiple class-I enhancers (>3 class-I enhancers) 

are connected through pcHi-C interactions to one or more promoters in the same TAD 

(Miguel-Escalada et al., 2019) (Figure 3.11A).  

 We found that glucose-induced enhancers and genes were highly enriched in 

enhancer-hubs, compared with non-hub enhancers (Fisher’s P = 1.1 × 10−7 and 2.2 × 

10−16, respectively). Of 297 glucose-induced H3K27ac regions that map to active 

promoters, 94 were contained in hubs, and 65% of these showed glucose-induced 

mRNA changes. We reasoned that if glucose draws out domain level changes, hub 

enhancers connected to glucose-induced genes should tend to show coordinated 

glucose-dependent changes. Indeed, we observed that hub enhancers assigned to 

glucose-induced promoters showed a widespread parallel increase in H3K27ac levels 

(Figure 3.11B). This was illustrated by the KIRREL3 hub (Figure 3.11C). This analysis 

revealed that varying glucose concentrations elicit chromatin changes in human islets 

at the level of broad regulatory domains. Together, this analysis suggests that varying 

glucose concentrations elicit a domain wide change in human pancreatic islets 

chromatin organization. 
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Figure 3. 11 Glucose elicits domain-wide chromatin changes  
A) A schematic of enhancer-hubs. Enhancer-hubs are regulatory units where > 3 class-
I enhancers are connected to one or more promoters. Red boxes represent enhancer 
elements, and turquoise and dashed green lines depict high-confidence and imputed 
enhancer assignments, respectively. B) Hub promoters were ranked by their median 
fold change (FC) in H3K27ac at high glucose, so that glucose-induced promoters are 
on the left side in the x-axis. Median mRNA levels for genes associated with each hub 
(top). Median glucose-dependent fold change of H3K27ac in enhancers from hubs 
connecting with each promoter, IQR values in blue shading (bottom). In both graphs, 
values are shown as running averages (window = 50). C) Coordinated glucose-induced 
H3K27ac in hub enhancers connected to KIRREL3. Top tracks show RNA and 
H2K27ac in one representative sample. Bottom insets highlight H2K27ac at 11 mM 
glucose (red) versus 4 mM (blue) in selected regions, showing coordinated glucose-
induced changes in most hub enhancers, highlighted with black arrows (n = 4 human 
islet samples). 
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4.2. Comprehensive Transcriptome annotation of human 
pancreatic islets 

4.2.1. Annotation of human pancreatic islet transcriptome 

High quality annotation of the transcriptome is critical for the accuracy of genetic and 

genomic studies. Current annotations such as ENSEMBL or GENCODE have been 

built by compiling known gene transcript isoforms. As such, they are still biased 

towards transcript isoforms present in the most studied tissues and cell lines. Therefore, 

these annotations are still incomplete, in particular, cell-specific isoforms from less 

studied tissues are missing. To generate an accurate annotation of the human islet 

transcriptome, we decided to integrate RNA sequencing datasets from human islets.  

Short read sequencing technologies produce millions of reads which can be used 

to reconstruct the transcript models from large panel of samples. However, such 

transcripts tend to be incorrect in their exonic composition and often produce inaccurate 

start and end positions(Steijger et al., 2013). Third generation sequencing platforms can 

sequence entire mRNA molecule and provide highly accurate transcript models(Sharon 

et al., 2013). But such technologies capture only highly abundant transcripts and are 

not easily scalable to large panel of human samples due to several issues.  Thus, we 

designed a strategy to maximize the accuracy of our transcript models using long reads, 

short reads along with Cap Analysis of Gene Expression (CAGE) data from human 

pancreatic islets. An overview of the strategy is show in Figure 3.12. 

 Briefly, we first used long-read sequencing data to guide the de-novo transcript 

assembly from short reads. We generated approximately 500,000 full-length non-

chimeric reads from two human pancreatic islet donor samples using Pacific 

Biosciences (PacBio) platform. This resulted in 79,020 non-redundant transcript 

models. PacBio transcript models along with the annotations from GENCODE and 

FANTOM-CAT(Harrow et al., 2012; Hon et al., 2017) were used as a template to 

perform de-novo transcript assembly from 8 billion paired-end short reads derived from 

130 human pancreatic islet samples (average of 60 million paired-end reads per 

sample). Integrated analysis using Stringtie (Pertea et al., 2015) resulted in 10,487,818 

transcripts (Figure 3.12).  

Next, we used no-amplification non-tagging (nAnTi)-CAGE (Murata et al., 

2014)  from four human islet samples to annotate transcription start sites (TSS) with 

single base pair resolution.  In contrast to previous studies where TSS have been linked 
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to transcripts based on proximity, we performed 100 bp paired-end sequencing, and 

used the CAGE 3’ read information to accurately assign a CAGE TSS to a transcript 

where the 3’read was mapped. We retained transcripts that contained a CAGE TSS, as 

well as those with a minimum of expression of 0.1 TPM in at least 10 samples. This 

resulted in 202,593 transcript models that correspond to 19,812 genes (Figure 3.12). 

 

 

 

We further classified the transcripts into protein-coding genes, long non-coding 

RNAs, and others (e.g., miR, pseudogenes) based on their coding potential(Wang et al., 

2013). We identified 14,512 protein coding genes, 4,283 lncRNA genes and around 

1000 other type of genes.  

Figure 3. 12 An overview of transcriptome annotation workflow. 
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To evaluate the novelty of our annotation, we compared it with one of the most 

recent GENCODE annotation (v34lift37), requiring a difference > 50 bp at the 

beginning and end of the transcript to call the 1st and last exon different from 

GENCODE. Out of all the transcripts, 4,046 were from completely unannotated genes, 

while 1,512 were from new spliced variant containing at least one exon not previously 

annotated. The majority of the newly annotated transcripts (79.4%) were novel splice 

variants of transcripts in which all exons had been previously annotated (Figure 3.13). 

This analysis, therefore, defined the known and novel human islet transcripts with 

accurate TSS. 

4.2.2. Annotation of novel protein coding sequences.  

One of the major challenges in transcriptome studies is to understand to what extent the 

vast number of alternatively spliced isoforms encode novel peptides.  We therefore 

Figure 3. 13 Comparison of human islet isoforms with reference annotation maps. 
Top panel is a schematic showing the comparison of human islet annotations with 
reference annotations. Bottom pie chart indicates number of isoforms in each 
category. 
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decided to annotate human islet CDS based on our de-novo transcript models. To 

address this, we used a systematic approach. First, we identified transcripts that 

contained an annotated CDS with various internal modifications (Figure 3.14A). Then, 

for transcripts that do not contain an annotated CDS, we used TransDecoder to identify 

a long (>= 100 amino acids) open reading frame (ORF). We then compared these ORFs 

against the human UniProtKB protein sequence database which led to identification of 

24,865 unannotated CDS. A substantial number of these seemingly novel CDS could 

be a byproduct of alternative splicing with low expression and/or be regulated by non-

sense mediated decay (NMD). We therefore filtered out unannotated CDSs that were 

most likely to trigger NMD i.e., CDS with the end >50 bp upstream of the last exon-

exon junction. We also removed CDS retaining introns as they are less likely to be 

translated. Finally, we required a minimum of expression of 1 TMP, and >20% of 

expression of all CDS transcripts of the gene (Figure 3.14B). This led us to 

identification of a total of 938 unannotated CDSs from annotated genes that have a 

significant expression and could represent new protein isoforms specifically expressed 

in human islets. The large majority of these new CDSs are generated by alternative 

splicing of already annotated exons. However, we identified 67 CDSs containing a 

coding exon that was not previously annotated by GENCODE. In ongoing experiments, 

in collaboration with Prof. Alan Attie and Prof. Lloyd Smith, we are comparing these 

predicted CDSs to proteoforms identified by mass spectrometry to validate the 

existence of these peptides. 
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4.2.3. Annotation of islet transcriptome at single-cell resolution 

With the advancement of single cell genomic technologies, it is now possible to 

measure gene expression levels in individual cells (Eberwine et al., 2014). 

Understanding cell-type specific gene expression patterns will provide insights into 

how the repertoire of genes contributes to cellular identity and function. We compiled 

4 published single cell RNA-Seq (scRNA-Seq) data sets of human islets and human 

pancreas, based on Full-length SMART-Seq protocol (Enge et al., 2017; Lawlor et al., 

2017; Segerstolpe et al., 2016; Xin et al., 2016). Briefly, we quantified the gene 

expression levels based on our transcriptome annotations. Dataset specific effects were 

removed using combat. The cells are clustered together using Seurat workflow. The 

clustering analysis defined transcriptomes that matched major islet cell types, namely 

Alpha, Beta, Delta and Gamma along with exocrine Acinar and Ductal cells. This 

revealed cell-type specific gene expression patterns of both protein coding and lncRNA 

genes.  

Figure 3. 14 Identification of unannotated coding sequences. 
A) Schematic representing the identification of unannotated coding sequences from 
annotated genes. A reference CDS sequence that is contained within islet transcript was 
compared with respective human islet transcript sequence to identify various amino 
acid sequence modifications. B) Workflow to identify potentially novel protein coding 
CDS. 
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We calculated a Tau-score of each gene (Yanai et al., 2005). Tau-score ranges 

from 0-1, 0 refers to ubiquitous expression and 1 refers to cell-type specific expression. 

We found 226 genes (of which 16 are lncRNA genes) that were expressed in only one 

pancreatic cell-type (Tau-score > 0.9). We also annotated 2986 genes (of which 502 are 

lncRNA genes) whose expression is enriched in one or more cell-types (Tau-score > 

0.5) (Figure 3.15). Given the low capture efficiency and low depth of sequencing, it is 

challenging to annotate the cell-type specific isoform expression. There is an ongoing 

effort to characterize the cell-type specific isoform expression by pooling data from 

multiple cells using on k-nearest neighbors (KNN) approach. These results, therefore, 

revealed cell-type specific and cell-type enriched protein coding genes and lncRNA 

genes. 

  

 

  

Figure 3. 15 Cell-type gene expression patterns.  
Heatmaps representing cell-type specific and cell-type enriched gene expression 
patters. Pie-charts represents the number of protein-coding genes and lncRNA 
genes in each category. 
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4.2.4. Promoter landscape of human pancreatic islets 

Gene transcription is initiated by RNA-Polymerase II at precise locations in the 

genome. The DNA regions surrounding transcriptional initiation sites are known as 

promoters. The promoter architecture is crucial for spatial, temporal and tissue specific 

gene expression patterns(Lenhard et al., 2012). The promoter landscape of human 

pancreatic islets is generally unknown.  

The 5’-end of each CAGE paired-end read of annotated transcripts was defined 

as a TSS. TSS that were within 100 bp of each other were merged to form a tag cluster 

(TC) and the number of reads that formed a TC was used to determine the expression 

of the TC. We used decomposition based peak identification (DPI) method ((DGT) et 

al., 2014) to define a set of 61,337 permissive (>3 reads per TC) and 19,834 robust 

promoters (>11 reads per TC). As expected, we observed that the width of promoters 

shows a bi-modal distribution that can be separated into broad (>10.5 bp) and sharp 

promoters (<=10.5bp) (Carninci et al., 2006) (Figure 3.16A). The sharp promoters were 

enriched with the TATA-binding protein binding site motifs while the broad promoters 

were enriched with ETS domain motifs (Figure 3.16B). These results were expected 

for these promoter types(Carninci et al., 2006; (DGT) et al., 2014), and supported that 

our CAGE-based promoter definitions comply with known mammalian promoter 

architecture subtypes. 
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The TC were assigned to a transcript if the transcript resided within 50 bp on 

the same strand, and the 3’ read overlapped an exon of the transcript (Figure 3.17A). 

Using this approach, 83% of the robust TCs and 25% of the permissive TCs were 

assigned to at least one transcript (Figure 3.17B). A majority of the assigned TCs also 

contained an underlying epigenome-based active promoter signature, which further 

supported the accuracy of our TSS annotations (Figure 3.17C). 

 

  

Figure 3. 16 Human islet promoter characteristics. 
A) Distribution of width of all human islet CAGE-based promoters, an 
inter-quantile range between 10-90% of expression is plotted. The arrow 
points to bi-modal distribution that separates sharp (<10.5bp) and broad 
promoters (>10.5bp) B) De-novo motifs identified via homer on sharp and 
broad promoters. 
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Thousands of novel TSS contribute to human islet gene expression 

We further compared our TSS with reference annotations of transcriptional initiation 

sites. Among protein-coding genes, we observed ~1300 robust TSS and ~6000 

permissive TCs that were >100 bp away from any predicted 5’ region of GENCODE 

transcripts (Figure 3.18A).  These represent previously unannotated promoters of 

protein coding genes.  

We also compared our annotated lncRNA TSS to FANTOM-CAT(Hon et al., 

2017), which is the most comprehensive catalogue of lncRNAs. We observed around 

132 robust and 885 permissive TSS are at least 100bp away from annotated lncRNA 

TSS (Figure 3.18B).  

A) 

B) C) 

Figure 3. 17 Accurate annotation of transcription start sites (TSS). 
A) A schematic representing TSS assignment. B) Proportion of robust and permissive TCs 
assigned to at least one transcript. C) Proportion of TSS overlapping with different 
epigenome-based regulatory annotations. Majority of the assigned TSS have an active 
promoter signature. 
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Overall, we noticed that 2,566 unannotated TSS contributes to >20% of total expression 

of the gene (RNA-Seq) (Figure 3.18C). This suggests that a major portion of the human 

islets active TSS are not annotated in reference maps. 

Figure 3. 18 Identification of unannotated TSS. 
A) A bar plot representing number of human islets TSS of protein coding genes 
and their distance to GENCODE TSS. B) A bar plot representing number of human 
islets TSS of lncRNA genes and their distance to FANTOM-TSS. C) Relative 
usage of annotated and unannotated TSS of each gene. X-axis represents the 
density of TSS and y-axis represents the relative TSS usage. 
 



 92 

Functional validation of a novel pancreatic islet promoter 

To evaluate if our annotations are truly capturing functional TSS, we performed a 

clustered regularly interspaced short palindromic repeats (CRISPR) activation 

experiment targeting the newly identified dominant promoter of NKX6-1 gene, an 

important regulator of pancreatic islet differentiation (Aigha and Abdelalim, 2020) 

(Figure 3.19A). We designed guide RNAs (gRNAs) targeting two alternative NKX6-1 

promoters. HEK293 cells were transfected in biological triplicates using FugeneHD 

(Promega) with a plasmid expressing dCas9-VPR activator and a plasmid expressing 

five guide RNAs targeting the GENCODE (v34lift37) annotated TSS region, five guide 

RNAs targeting the dominant human islet promoter and five control non targeting guide 

RNAs. RNA was isolated 72 h after transfection, retrotranscribed and NKX6-1 gene 

expression was measured using RT-qPCR(Balboa et al., 2015). This CRISPRa 

experiments showed that the newly annotated dominant promoter shows a marked 

increase in NKX6-1 expression (p=0.003) while the GENCODE annotated TSS show 

only a marginal increase in NKX6-1 expression (Figure 3.19B). This illustrates the 

functional value of our TSS and highlights the importance of annotating accurate TSS 

to aid in epigenomic modification studies.  

 

 

 

 

Figure 3. 19 Transcriptional activation of alternative NKX6-1 promoters 
A) Genome browser screenshot illustrating the dominant TSS of NKX6-1 identified 
through our CAGE data. B) CRISPRa experiments in HEK293 cells showing the NKX6-
1 expression after targeting two alternative TSS. 
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Widespread alternative promoters contribute to human islet gene expression 

We found 3495 genes (23% of all active genes in pancreatic islets) that have 2 or more 

independent active promoters (Figure 3.20C). 3296 of these genes correspond to 

protein-coding genes.   

  

Figure 3. 20 Alternative promoter usage in human pancreatic islets. 
A) A schematic representing linking CAGE-based promoter expression to RNA-Seq 
expression. Average expression of all transcripts that are assigned to a TSS is quantified. 
B) The CAGE-based promoter expression is plotted against the average transcript 
expression from RNA-Seq. A spearnman’s correlation (r) is shown inside the plot. C) 
Number of independent promoters identified per gene. D) For each gene with more than 
1 promoter, relative promoter expression is calculated. For each gene, promoters are 
ranked based on their contribution to total gene expression. On x-axis, genes are ranked 
in ascending order according to primary expression and proportion of expression is 
plotted on y-axis. 
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To assess if these were likely to be biologically relevant alternative promoters, 

we evaluated the relative contribution of different promoters to each gene, which we 

refer to as relative promoter usage.  To this end, we first assessed if CAGE-based 

promoter activity provided reliable estimates of gene expression levels. For each CAGE 

TC, we calculated the average mRNA expression levels from all the transcripts that 

originated from that TC (Figure 3.20A) and performed a correlation analysis between 

CAGE-based promoter expression vs mRNA. We found a strong correlation between 

the promoter expression and mRNA expression (R2 = 0.82 and R2 0.73 for robust and 

permissive TC, respectively) (Figure 3.20B) Next, we assessed the relative contribution 

of promoters for each gene (Figure 3.20C). We found that more than 80% of genes that 

have a secondary promoter, show >20% expression from a secondary promoter (Figure 

3.20D). 

 

Analysis of islet-specific promoters 
Identifying tissue specific promoters can give us novel biological insights into cell-

specific transcriptional regulation. To this end, we quantified the expression of all 

31,967 transcript-assigned islet promoters in 672 samples from FANTOM human 

tissues and primary cells. We calculated a z-score that related the expression value of 

each promoter in islets to that of other samples. This revealed that 5427 promoters (16% 

of all islet promoters) were islet-specific (z-score>3), of which 47% are robust 

promoters (Figure 3.21A,B). Out of 5427 islet-specific promoters, 1052 do not have 

evidence of transcriptional initiation sites in any of the 672 samples (<0.1 TPM across 

all FANTOM samples) thus represents islet selective promoters. 

To gain insights into the sequence composition of islet-specific promoters, we 

used homer (Heinz et al., 2010) to perform de novo motif analysis on the upstream 

open-chromatin regions containing a characteristic active promoter chromatin 

signature, using rest of active promoters as a background sequence. Comparison of de 

novo-enriched motifs with known motifs revealed that homeobox domain, CTCF, ETS 

domains and zinc-finger domain containing TFs were enriched among islet specific 

promoters (Figure 3.21C). We would like to make a note that a more thorough analysis 

is being carried out to further analyze the sequence composition of cell-specific 

promoters, and to link islet-specific transcription factor expression with the enriched 

motifs in islet specific promoters. These findings, therefore, have so far shown that i) 

Human islet TSS are incorrectly annotated ii) Human islets use more than one promoter  
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to drive gene expression iii) Thousands of islet-selective and islet specific promoters 

harbor specific sequence determinants. 

 
  

Figure 3. 21 Islet specific promoters. 
A) A heatmap of promoter expression (log2 TPM) of islet-specific promoters (z-score 
>3) across 680 CAGE samples (includes 8 human islet samples). x-axis represents 
the samples and y-axis represents the promoters. Human islet samples are highlighted 
with an arrow at the bottom. B) A pie chart representing number of robust and 
permissive promoters that are islet specific. C) De-novo motifs detected on islet-
specific robust promoters.  
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4.3. Genetic regulation of alternative splicing and gene 
expression. 
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4.3.1.  Widespread effects of genetic variants on human islet 
splicing 

 

The growing inventory of T2D risk associated genetic variants that GWAS have 

identified over 15 years did not result in connate transformative biological insights into 

T2D pathophysiology. As we noted in the Introduction, section 1.4, several limitations 

hinder the biological interpretation of GWAS results, such as high local LD or the fact 

that the majority of risk variants fall in the non-coding genome and lack a direct address 

to disease-causal target genes. In parallel, most of the efforts dedicated to characterize 

the molecular mechanisms underlying T2D non-coding variants only assessed the 

impact on islet transcriptional regulation, neglecting the effects of genetic variation on 

alternative splicing. Nevertheless, genetic effects on alternative splicing have been 

reported to underlie the etiology of several diseases(Li et al., 2016; Raj et al., 2018a). 

To address these limitations, we generated a catalogue of genetic effects on alternative 

splicing (sQTLs) and gene expression variation (eQTLs) in human pancreatic islets. 

This data allowed us to unveil the distinct contribution of genetic effects into alternative 

Figure 3. 22 QTL discovery in human pancreatic islets. 
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splicing regulation in contrast with transcriptional regulation in human islets, as well as 

assessing their independent contribution to T2D pathophysiology.  

W aggregated unpublished and publicly available RNA-Seq and genotype data totaling 

399 high-quality human pancreatic islet RNA-Seq samples (Bunt et al., 2015; Fadista 

et al., 2014; Miguel-Escalada et al., 2019) (Figure 3.22).  

Samples were sequenced at an average depth of 50 million paired-end 100bp 

reads. We quantified relative junction usage using leafcutter, an annotation free method 

(Li et al., 2018)(Liao et al., 2014). Briefly, leafcutter uses split mapped reads to infer 

junction positions. A graph is then constructed based on the overlapping junctions that 

have a common donor or acceptor site to form a cluster of junctions. Relative junction 

usage in each cluster is calculated in an analogous manner to the percent spliced in 

(PSI) metric. Junctions that were not supported by at least 5 reads in 5% of the samples 

were removed before applying the leafcutter algorithm. 

In parallel, we quantified mRNA expression using featureCounts (Liao et al., 2014) 

After correcting for known and unknown covariates, we performed QTL 

analysis using ~6.5 million high-quality imputed common variants. This led to the 

identification of 4,858 cis-sQTLs (q-val < 0.01) (Figure 3.22). We mapped the 4,858 

sQTL junctions to 2,088 distinct genes (sGenes, ~6% of which were lncRNA genes) in 

which common variants cause splicing variation in human pancreatic islets. In parallel, 

we identified significant cis-eQTLs (q-val<0.01) in 3,433 out of 16,070 tested eGenes. 

We found that sQTL junctions encompassed major types of splice variants 

(Figure 3.23A). For example, we identified instances in which common genetic 

variation had major effects on the usage of the first exon (RNF6), caused alternative 

splice sites in an exon or complex splicing variation in genes that map to T2D loci 

(THADA, KCNK16A, respectively), or led to mutual exclusion of exons in SLC7A2, 

thus leading to a splicing variation that is known to affect the function of this amino 

acid transporter gene (Smith et al., 1997) (Figure 3.23B)  
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We benchmarked islet splice variants against GENCODE annotations and 

found that 23% of the sQTL junctions were unannotated (Figure 3.24). This overlap, 

however, was increased to 90% in comparison with our human islet transcript maps, 

further supporting that human islet transcripts are incompletely annotated. Our sQTLs, 

therefore, detect splicing variation in annotated and unannotated islet transcripts. 

 

 

 

Figure 3. 23 Types of alternate splicing event under genetic effects. 
A) All significant sQTL junctions were categorized based on their participation in 
different types of splicing events. B) Examples showing various types of splicing 
events under genetic control. Box plot represents the junction PSI stratified by lead 
sQTL genotype. 
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We further compared islet sQTLs to previously reported exon-QTLs from the 

largest human islet eQTL study to date (Viñuela et al., 2020), and found that only 18% 

of sQTL junctions were flanked by exons from exon-QTLs. Furthermore, when sQTL 

and exon-QTLs affected the same gene, there was limited LD between the lead sQTL 

and exon-QTL variant: for 45.2% of overlapping genes the LD between all lead sQTLs 

and exonQTLs identified for that given gene showed r2 < 0.6 (Figure 3.25A, B). In 

contrast, 36.9% of genes that harbor eQTLs and exon-QTLs showed low LD correlation 

(r2 < 0.6), suggesting a larger degree of genetic sharing between eQTLs and exon-QTLs 

(Figure 3.25C, D). This finding then suggests that sQTLs, which directly measure splice 

junction variation, and exon-QTLs, which measure exon levels and can thus be 

influenced by variables unrelated to RNA splicing, capture fundamentally different 

events. 

  

Figure 3. 24 Annotation of sQTL junctions. 
A) Percent of sQTL junctions that could be annotated using GENCODE and in-house 
transcriptome annotations. B) Percent of protein coding, lncRNA genes and other 
RNAs that sQTL junction belongs to. 
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To assess the magnitude of genetic effects on isoform usage, we quantified the 

absolute difference between median junction usage of individuals with reference and 

alternate allele of lead sQTL. This showed that 25% of sGenes had >10% shift in 

transcript usage depending on the genotype (Figure 3.26A).  

We further quantified the percent of transcripts containing an sQTL junction 

that resulted in either truncating variants or omitted the stop codon, which we refer to 

as nonsense mediated decay/non-stop decay (NMD/NSD) (Figure 3.26B). This showed 

Figure 3. 25 Comparision of sQTLs and eQTLs with exon-QTLs. 
A) Overlap between number of exonGenes and sGenes. B) Linkage disequilibrium (LD 
r2) between the lead exonQTL and lead sQTL for the overlapping genes. C) Overlap 
between number of exonGenes and eGenes. D) Linkage disequilibrium (LD r2) between 
the lead exonQTL and lead eQTL for the overlapping genes. 
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that ~23% of transcripts that contain an sQTL junctions led to NMD/NSD, while 22% 

preserved the ORF. 

 

 

We also assessed if sQTLs preferentially affect distinct gene programs. We found that 

sGenes are enriched in annotations that belong to co-expression networks that control 

islet-cell function (Figure 3.27), 

  

Figure 3. 26 Magnitude of genetic effects on splicing.  
A) Delta-PSI of sQTL junction w.r.t reference and alternate allele is shown x-
axis with -log10(p-vaues) on y-axis. B) Proportion of transcripts containing 
sQTL junctions that undergo either non-sense mediated decay/non-stop decay 
(NMD/NSD) or leads to a protein coding ORFs. 

Figure 3. 27 Functional enrichment of sGenes. 
Enrichr was used to identify enrichment terms of various biological functions 
based on All RNA-seq and ChIP-seq sample and signature search (ARCHS4) web 
resource (Lachmann et al., 2018). Only significant enrichments (p-adjusted <0.01) 
are shown. 
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In sum, our results disclosed widespread effects of common genetic variants on 

alternative splicing of human pancreatic islet transcripts, which cannot be directly 

measured by genetic effects on exon level variation. Our sQTL data also provided 

further evidence about the limitations of reference transcriptome annotations in 

identifying the tissue-specific component of the transcriptome. This hereby underscores 

the importance of generating transcriptome annotations in disease-relevant tissues to 

gain insights into disease biology. Finally, we also observed that genes whose splicing 

is genetically controlled tend to be key players of islet-cell identity and function.  
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4.3.2.  sQTLs and eQTLs reveal distinct forms of transcriptome 
variation 

 

Although sQTLs and eQTLs are intended to measure different types of events, it is 

unclear to what extent splicing variation affects steady state mRNA levels, or 

transcriptional mechanisms affect splicing. We thus examined the degree of genetic 

sharing between gene expression and splicing regulation. We found that only 34% of 

sGenes (715 genes) also harbor a significant eQTL. (Figure 3.28A). We further 

observed that for those 715 common genes, the lead eQTL and sQTL frequently showed 

low linkage disequilibrium (r2 <0.6 for 56.5% of genes, < 0.1 for 23.6% of genes 

(Figure 3.28B). This suggests that, in most genes that harbored both eQTL and sQTLs, 

these were driven by different variants that drive distinct processes. This is illustrated 

by the RGS1 gene, which has an intronic sQTL variant that impacts exon inclusion but 

has no effect on mRNA levels, and a distal eQTL which impacts total gene expression 

but not exon inclusion (Figure 3.28C).   

In keeping with these findings, eQTLs and sQTLs were enriched in different 

functional genomic annotations. sQTLs were predominantly enriched in 5’, 3’ splice 

sites and exons, whereas eQTLs showed higher enrichment in active promoters and 

enhancers (Figure 3.29A). This is consistent with the notion that sQTLs impact cis-

regulatory elements that govern splicing, while eQTLs impact transcriptional cis-

regulatory elements, thereby showing that both represent fundamentally independent 

mechanisms of genetic variation.   

 We further examined the extent to which genetic effects on splicing or 

expression differed across tissues. We observed that ~60% of lead sQTLs were found 

in less than 5 GTEx (Consortium, 2020) tissues, compared to ~30% of lead eQTLs, 

suggesting greater islet-specificity of sQTLs (Figure 3.29B).  

Taken together, our results reveal two separable layers of genetic influences on 

the human islet transcriptome that is reflected in terms of the underlying consequences 

in the functional non-coding genome and their distinct tissue-specific nature.  
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Figure 3. 28 Degree of genetic sharing of eQTLs and sQTLs across tissues. 
A) Enrichment of sQTLs and eQTLs in different functional genomic regions. eQTLs are 
more enriched in active promoters and class-I enhancers where as sQTLs are more 
enriched in 5’ and 3’ splice sites and exonic regions. B) Number of GTEx tissues that an 
eQTL or sQTL is sharee with. 

Figure 3. 29 Distinct genetic effects on gene expression and alternative splicing. 
A) Overlap of sGenes and eGenes. B) Distribution of LD (measured as r2) between lead 
sQTL and lead eQTL for the 715 common genes from panel-A. C) An example 
illustrating distinct genetic effects on gene expression and alternative splicing. RSG1 
lead eQTL is distal and located in intron of FBXO42 gene which does not have any 
association with the splicing of RSG1 gene. The intronic lead sQTL of RSG1 gene does 
not have any association with RSG1 gene expression. 
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4.3.3. Identification of candidate causal variants 

One of the main limitations that frustrates the conversion of GWAS results into 

molecular insights is that extensive local linkage disequilibrium hampers the 

identification of true causal variants (Altshuler et al., 2008; Schaid et al., 2018). Genetic 

fine mapping approaches aid in narrowing down the most likely candidate causal 

variants in each locus. We thus derived 95% credible sets of putative causal cis eQTL 

and sQTLs using CAVIAR (Hormozdiari et al., 2016) and reasoned that causal 

posterior probabilities (CPP) estimated for each marker should inform about their 

likelihood for being causal. To this end, we compared the CPP distribution of e- and 

sQTL credible set variants across different functional annotations. This showed that 

amongst 95% credible set sQTL variants, those located in 5’- and 3’ splice sites showed 

higher CPP compared to intergenic variants (Mann-Whitney p-values = 1.36x10-19, 

1.13x10-21, respectively) (Figure 3.30A). We also observed that exonic and intronic 

credible set variants showed higher CPP compared to intergenic variants (Mann-

Whitney p-value = 4.55-80 and 0.001, respectively). This genetic analysis fulfilled 

functional expectations, because variants that influence splicing are known to alter 

sequence motifs of splice acceptor/donor sites, as well as exonic/intronic splicing 

enhancers and silencers. It therefore validated the ability of credible sets to prioritize 

causal sQTL variants.  

Figure 3. 30 Distribution of DIS of sQTLs and eQTLs. 
A) Distribution of CPP of sQTLs in genic annotations. sQTL credible sets show higher 
CPP in 5’ and 3’ splice sites and exonic regions. B) eQTLs show higher CPP in active 
promoters and active enhancers (primarily class-I enhancers) compared to eQTLs in 
non-open-chromatin regions.  
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In parallel, we assessed the distribution of CPP probabilities for eQTL variants 

across islet regulatory annotations. We observed higher CPPs for fine-mapped eQTLs 

that overlap human islet active promoters and enhancers (mainly in class I enhancers) 

(Mann-Whitney p-values 3.24x10-203, 38x10-58, respectively) (Figure 3.30B). This is 

consistent with the notion that promoter and distal regulatory elements play a key role 

in gene transcriptional regulation.  

To further characterize bona fide causal regulatory variants, we calculated the 

disease impact scores (DIS) for all credible set variants using DeepSEA models (Zhou 

et al., 2019). DeepSEA trains deep learning models on chromatin data (a model known 

as DeepSea) and RNA-binding proteins data (model known as Seqweaver), to predict 

underlying regulatory sequence preferences, and to subsequently perform in-silico 

mutagenesis.  Then, DeepSEA combines this information with human gene mutation 

database to derive disease impact scores (DIS) (Zhou et al., 2019). We reasoned that 

even though such models used datasets from non-islet tissues, they could provide 

additional insights into causal functional variants.   

Consistent with functional expectations, sQTL credible set markers in 5’- and 

3’ splice sites had highest disease impact scores, followed by exonic variants (Figure 

3.A).  

  

Figure 3. 31 Distribution of DIS of sQTLs and eQTLs. 
A) Distribution of DIS of sQTLs in genic annotations. sQTL credible sets show higher 
DIS in 5’ and 3’ splice sites and exonic regions. B) eQTLs show higher DIS in active 
promoters and active enhancers (primarily class-I enhancers) compared to eQTLs in 
non-open-chromatin regions.  
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Furthermore, we looked at the impact of credible set variants on individual TFs and 

RBPs. For each sQTL credible set variant (CPP > 0.01), we identified the RBP whose 

sequence has a maximum impact based on in-silico mutagenesis. Then, top 10 most 

frequently disrupted RBPs in each category were chosen. The same analysis was done 

for eQTL credible sets (CPP >0.01) with individual TFs. This analysis showed that 3’-

splice site credible set sQTLs showed recurrent disruptions of core-splicing 

components such as U2AF1, U2AF2 and branch point motifs (Wahl et al., 2009) , 

whereas credible set sQTLs in introns and exons disrupted motifs of auxiliary regulators 

of splicing such as SR and SR-related proteins (SRSF3, SRSF9) (Fu and Ares, 2014),  

heterogenous ribonucleoprotein proteins (HNRNPA1,HNRNPK,HNRNPC), and 

polypyrimidine tract binding proteins (PTBP2) (Llorian et al., 2010; Xue et al., 2009) 

(Figure 3.32A). 

On the other hand, eQTL credible set variants in active promoters and class I 

enhancers showed higher disease impact scores compared to variants in non-open 

chromatin regions of human pancreatic islets (Figure 3.31B). Expectedly, promoter 

eQTLs were recurrently disrupting motifs of promoter associated chromatin regulators 

such as CHD1 and RBBP5 (Murawska and Brehm, 2014; Narlikar et al., 2013), while 

other credible set eQTLs disrupted sequence motifs of CTCF and cohesion complex 

components (Bailey et al., 2015; Ong and Corces, 2014) , as well as FOXA and GATA 

TF motifs that are known to be involved in pancreatic development and 

pathophysiology of diabetes(Greenwald et al., 2018; Pasquali et al., 2014; Shaw-Smith 

et al., 2014; Viger et al., 2008) (Figure 3.32B). 

Taken together, our credible set analysis, coupled with deep learning analysis 

of disease impact scores and functional annotations, provides a collection of bona fide 

candidate causal variants that are likely to drive splicing and expression variation in 

human pancreatic islets.  
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Figure 3. 32 Frequently disrupted RNA-binding proteins and transcription factor sequences by 
sQTLs and eQTLs. 
This analysis is performed after dividing each credible set variant into different categories 
based on their genomic location. A) Frequently disrupted RNA-binding protein sequences by 
sQTLs credible set variants as predicted by Seqweaver B) Frequently disrupted transcription 
factor sequences by eQTL credible set variants as predicted by DeepSea model. 
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4.4. Interpretation of T2D GWAS signals through TWAS 
and Colocalization 

 

sQTLs are enriched among T2D risk variants  

Genetic susceptibility for T2D has been consistently linked to variants that influence 

transcription in human islets, based on enrichments of T2D risk variants in islet-specific 

regulatory annotations(Miguel-Escalada et al., 2019; Parker et al., 2013; Pasquali et al., 

2014; Thurner et al., 2018; Varshney et al., 2017b) and human islet eQTL studies(Bunt 

et al., 2015; Fadista et al., 2014; Viñuela et al., 2020). However, the relationship 

between T2D susceptibility and islet splicing is poorly understood.  

 

We first examined the enrichment of T2D susceptibility variants in islet eQTLs and 

sQTLs. To this end, we used quantile-quantile plots that compare the distribution of 

T2D association p-values from one of the largest BMI-adjusted meta-analysis for 

T2D(Mahajan et al., 2018b)  against the expected null distribution (Figure 3.30). We 

identified a strong inflation of lower T2D association p-values for eQTLs, consistent 

with the expected enrichment of islet transcriptional regulatory variants. Remarkably, 

our results also showed T2D risk inflation for sQTLs (Figure 3.33). This provides for 

Figure 3. 33 Quantile-Quantile plot (QQ plot) for T2D risk across eQTLs and sQTLs. 
Expected −log10 p-values under the null hypothesis are represented in the x axis, 
while observed −log10 p-values are represented in the y axis. 
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the first time an indication that a subset of noncoding variants could contribute to T2D 

genetic susceptibility through their effects on RNA splicing in human islets.  

 

Transcriptome-Wide Association Study reveals novel T2D risk loci 

To gain further insights into the genetic mechanisms underlying T2D genetic signals, 

we integrated genetic effects on gene expression and splicing in human islets with T2D 

GWAS data using (1) Transcriptome-Wide Association Studies (TWAS) (Gusev et al., 

2016), which as discussed in the introduction, imputes gene expression in GWAS data 

to identify genes whose splicing or expression in human islets is associated with T2D 

risk,  and (2) traditional colocalization approaches that match QTL and GWAS genetic 

signals by estimating the probability that both association signals are due to the same 

causal variant (Giambartolomei et al., 2014; Hormozdiari et al., 2016; Pickrell et al., 

2016). 

 We first sought to nominate candidate effector transcripts for T2D susceptibility 

variants through TWAS as implemented in FUSION(Gusev et al., 2016). We thus 

leveraged our expression and splicing datasets to impute gene expression (eTWAS) and 

splicing ratios (sTWAS) into T2D summary statistics. This identified 44 genes showing 

eTWAS associations with T2D, and 37 annotated genes (65 splicing events) with 

sTWAS associations with T2D at after multiple test correction (p-value significance at 

1.75x10-5 and 8.61x10-6, after correcting for 2,851 genes and 5,804 splicing junctions, 

respectively) (Figure 3.34). We observed that 40/44 with eTWAS and 32/37 genes 

sTWAS associations were in known T2D GWAS loci. Besides outlining genes of 

interest for known T2D risk variants, the second main potential of TWAS is discovering 

novel risk loci that do not reach stringent thresholds for statistical significance in 

GWAS yet show genetic transcriptome effects that enable the detection of significant 

TWAS associations. We found 4 genes that identified novel T2D risk regions via 

eTWAS; CWF19L1, PCBD1, PXK and CTC-228N24.2 (Figure 3.34B). PCBD1 is of 

obvious interest because recessives mutations have been reported to cause early-onset 

diabetes and it is the co-factor for HNF1A, a gene that is mutated in monogenic diabetes 

and carries variants associated with polygenic T2D (Bonnefond and Froguel, 2015; 

Simaite et al., 2014). An additional five novel T2D risk loci were found through 

sTWAS in ERO1LB, SCAMP3, NHSL1, FAM57A and ZNF277 genes (Figure 3.34A). 

As expected, all of them accounted for suggestive p-values in GWAS (best GWAS lead 

variant p-value < 5x10-5). 
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Figure 3. 34 Manhattan plots of islet gene expression (eTWAS) and splicing 
(sTWAS) associations for T2D risk. 
Y-axis represents the −log10 p-values that were colored in dark and light grey for 
non-significant associations in alternate chromosomes, respectively. Significant 
eTWAS or sTWAS associations in known T2D GWAS loci are depicted in red. 
Those that also attained strong support from colocalization (any of the approaches 
implemented, see Methods). Were colored in purple. Those associations in loci that 
have not been reported by Mahajan, A. et al (2019), were depicted as blue dots. (A) 
shows sTWAS results, and (B) presents eTWAS results. 
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As TWAS suffers from limitations to distinguish genetic sharing from both traits from 

linkage (Hemani et al., 2018; Ndungu et al., 2020; Wainberg et al., 2019), we carried 

out colocalization analysis of TWAS variants with T2D risk variants that show 

substantial statistical association evidence (GWAS p-value < 1x10-5). Colocalization 

probabilities (PP4 ≥ 0.8) that indicate a strong support for shared signal between T2D 

risk and gene expression variation were found at 24 out of 44 genes, and between T2D 

susceptibility and variation in splicing for 33 out of 65 splicing events in 37 genes. In 

addition, as shown in Figure 3.35, we observed an overall trend of high PP4 values 

supporting sTWAS and eTWAS associations. This is in sharp contrast with the 

depletion of high PP3 values that suggest linkage as the underlying cause of the 

association signal between T2D susceptibility and our islet expression and splicing 

datasets.  In line with this, among the fraction of novel T2D risk loci identified either 

by eTWAS or sTWAS, only three genes did not show strong colocalization (PP4 ≥ 

0.8). Coupled with the fact that the majority of our novel associations are within robust 

T2D GWAS significant loci, our results suggests that the novel T2D risk associations 

identified here have a potential role in the pathophysiology of T2D.  

 

Independent colocalization analysis 

We performed additional colocalization analysis between each of the 403 independent 

GWAS signals (Mahajan et al., 2018b) and our significant islet eQTL and sQTL maps. 

We applied colocalization as implemented in gwas-pw (Pickrell et al., 2016), that draws 

upon the original coloc algorithm but does not rely on user-defined priors. We identified 

candidate effector transcripts with robust colocalization evidence (posterior probability 

of shared association between both phenotypes ≥ 0.9) for 25 and 9 independent T2D 

GWAS signals using eQTLs and sQTLs, respectively. We further compared TWAS 

and gwas-pw results using eQTL and sQTL data. This comparison showed that both 

approaches converged in at least one common candidate effector transcript (Figure 

3.31) except for two T2D independent GWAS signals. We then examined additional 

candidate effector transcript genes identified by gwas-pw alone.  gwas-pw identified 

eight candidate effector transcripts that were not detected in eTWAS: PTGFRN, 

B3GALNT2, CEP68, IGF2BP2, HI-LNC77, RPL8, PLEKHA1 and RP11-282018.3. 

Colocalization between T2D risk variants and sQTLs identified two additional 

candidate genes that were not captured by sTWAS: KIF9 and CTBP1. Taken together, 
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the implementation of both TWAS and colocalization approaches offered a 

comprehensive catalog of target effector genes whose expression or splicing in human 

pancreatic islets is linked to genetic effects influencing T2D predisposition.  

 

Figure 3. 35 A heatmap representing the colocalization posterior probabilities for TWAS 
associations. 
A) Heatmap showing the colocalization posterior probabilities for eTWAS analysis. B) 
Heatmap showing the colocalization posterior probabilities for sTWAS analysis. Separate 
heatmaps are shown for known T2D loci and novel T2D loci identified by TWAS. Heatmap 
color bar indicates colocalization posterior probability. Green vertical bar indicates if the 
TWAS prioritized candidate gene is also a e/sQTL in human islets. 
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Integrative analysis of islet QTLs to highlight effector transcripts of T2D risk 

We next quantified the actual gain in novel molecular insights into T2D susceptibility 

that our expression and splicing datasets provided. To this end, we compared our 

complete collection of candidate genes identified by TWAS and colocalization 

approaches, with the set of candidate effector transcripts nominated in the largest 

human islet eQTL study (Viñuela et al., 2020). The integration of islet QTLs from both 

studies pointed to candidate effector transcripts for 100 T2D independent GWAS 

signals. For 27 of these independent T2D GWAS signals, candidate effector genes were 

nominated by both our transcriptome studies, as well previous studies. In total, 42 

candidate effectors were identified for these 27 signals, 22 of which were genes that 

showed eQTLs/eTWAS in both studies, namely CEP68, UBE2E2, ADCY5, SLC12A8, 

IGF2BP2, DGKB, HAUS6, GPSM1, CARD9, DNLZ, CAMK1D, PLEKHA1, STARD10, 

PDE2A, CCDC67, KLHL42, CCDC92, RNF6, HMG20A, C15orf38-AP3S2, AP3S2 

and ITFG3.  Importantly, the current study pointed to splicing or expression variation 

in candidate effector genes for additional 45 of the 100 T2D independent signals 

(Figure 3.36).  

Figure 3. 36 Candidate effector transcript genes for 100 T2D risk loci assigned by the 
current study and/or previous studies. 
The outer circle depicts T2D independent signals with a candidate effector transcript 
nominated solely by the current study (black), this study and eQTL maps from 
Viñuela, A. et al 2020 (dark grey), or only by the latter study (light grey). The inner 
circle breaks down each of the previous fraction that includes target effector 
transcripts nominated in this study according to the underlying molecular mechanism: 
islet expression (blue), islet alternative splicing (orange) and both (green). 
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Overall, we identified candidate effector transcripts for 72 independent T2D signals, 

increasing the number of T2D loci with candidate effector transcripts by 1.8-fold 

(Figure 3.33). Importantly, this increase in T2D known loci with assigned target genes 

was also notably driven by the integration of allelic variation with effects on islet 

splicing 

 

Credible set analysis helps prioritize causal T2D risk variants 

Given that the human pancreatic islet QTL credible set analysis (Section 3.3.3) allowed 

prioritization of candidate causal variants, we rationalized that QTL credible sets should 

also help us prioritize T2D risk causal variants. Therefore, first we sought for 

convergence of GWAS credible set and sQTL/eQTL credible set posterior probabilities 

(CPP). To investigate this in an unbiased manner, for each of the 403 GWAS signals 

we selected 99% credible set variants along with variants that are in moderate LD (r2 

> 0.1) with lead GWAS variant (Mahajan et al., 2018a). We then annotated each variant 

into three mutually exclusive categories: (i) GWAS credible set only; (ii) GWAS 

credible set in LD (r2>0.1) with a lead QTL, but not in a QTL credible set; (iii) GWAS 

credible set that is also in a QTL credible set.  We then plotted the distribution of GWAS 

CPP for each of the three categories of variants. This analysis showed that the GWAS 

credible set variants that are also in sQTL credible sets show a higher GWAS CPP 

compared to GWAS credible set variants that showed no overlap at all, or were only in 

LD with a lead sQTL (Mann-Whitney p = 3.30x10-64 and 3.15 x10-11, respectively) 

(Figure 3.37A). Likewise, we observed that GWAS credible set variants that are also 

eQTL credible sets show higher GWAS CPP compared to GWAS credible set variants 

that showed no overlap at all, or were only in LD with a lead eQTL (Mann-Whitney p 

= 1.19x10-143 and 4.3x10-5, respectively) (Figure 3.37B). We also assessed the 

distribution of deep learning-based Disease Impact Scores in the same categories and 

found marginally increased, but non-significant, Seqweaver and DeepSea scores in 

GWAS credible set variants that overlapped with sQTL or eQTL credible sets (p = 0.1, 

and p=0.06, respectively) (Figure 3.37C, D).    

 Overall, this integrative analysis provided further independent support for a role 

of splicing and expression QTLs in T2D susceptibility variants and suggests that 

candidate causal variants that impact gene regulation in human pancreatic islets can 

guide us to prioritize T2D risk causal variants. 
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Figure 3. 37 QTL credible sets prioritize T2D risk candidate causal variants. 
A) Distribution of GWAS causal posterior probabilities of the variants that are either in 
LD (r2>0.1) with a GWAS index variant or in credible set of GWAS. The GWAS CPP 
is plotted based on the relation with sQTL credible set variants. B) Similar plot but in 
relation with the eQTL credible set. Interquartile range is shown in the small box plots 
C) Seaweaver disease impact scores for the exonic variants according to the same 
category as in A. D) DeepSEA disease impact score for variants in class-I enhancers 
according the same categories as in B. Mann-Whitney p-values are shown. 
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Discussion 

Refining the regulatory landscape of human pancreatic islets.  
Genome-wide maps of open-chromatin regions in the human genome and their in-depth 

characterization of their distinct regulatory potential into regulome annotations is 

fundamental to advance our understanding of tissue-specific gene regulation. Human 

pancreatic islet open chromatin regions were previously defined based on a 

combination of FAIRE-Seq and H2ZA data that resulted in low-resolution maps of 

chromatin accessibility(Gaulton et al., 2010).  Moreover, previous annotations of 

regulatory elements (Pasquali et al., 2014) did also not profile key transcriptional 

regulators such as Mediator and Cohesin. 

Considering these major limitations, we profiled open-chromatin regions in 

human pancreatic islets using high resolution ATAC-Seq data from several individuals. 

We then annotated open-chromatin regions by epigenome datasets of histone 

modifications, Mediator, CTCF and Cohesin. This not only allowed us to refine human 

islet regulatory annotations but also to sub-classify active enhancers (Class I-III) based 

on high Mediator presence, revealing a finer granularity in enhancer function. 

Our novel high-resolution regulome annotations are central to unearth the 

molecular mechanisms underlying T2D pathophysiology with a polygenic risk model 

based on genetic variants overlaying islet enhancer annotations that identifies 

individuals at high genetic risk due to beta-cell dysfunction.(Miguel-Escalada et al., 

2019)  Remarkably, these novel regulome annotations also have relevant implications 

to expand our understanding of the genetic causes of monogenic diabetes forms. The 

majority of individuals clinically diagnosed with rare monogenic DM forms do not 

present causal mutations in known protein-coding genes (Hattersley and Patel, 2017; 

Shields et al., 2010). Recent work showed that recessive islet enhancer mutations are 

the most common cause of isolated pancreatic agenesis (Consortium et al., 2014b)  

suggesting that the role of islet enhancers spans beyond T2D-heritability to rare and 

severed diabetes forms. Thereafter, we expect that our islet regulome annotations could 

be leveraged to gain insights into the genetic basis of monogenic diabetes through the 

non-coding genome. From a gene regulatory point of view, this study also deepens into 

enhancer hierarchy by the identification of class-I enhancer, which are highly enriched 

with Mediator signal and are key players in our novel definitions of islet specific three-

dimensional regulatory units that control islet-specific gene expression programs  
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Nevertheless, we should note that temporal regulation elicited by transcriptional 

enhancers during development has not been accurately captured in this study. Our open-

chromatin regions and regulatory maps are primarily defined based on data from adult 

donor samples. Thereafter, regulatory elements that are distinctly active at particular 

developmental stage could be missed. Although the dearth in available islet human 

tissues at early developmental stages, our on-going efforts to improve our regulatory 

annotations using juvenile samples will enlighten the role of islet regulation during 

pancreatic islet differentiation. 

Human pancreatic islets are composed of various cell-types, predominately beta 

and alpha cells. Our regulatory maps primarily reflect the bulk of the human islet tissue, 

and thus, we did not reach enough resolution to characterize the cell-type specific nature 

of regulatory elements. Preliminary analysis based on our scATAC data from human 

islets has shown that class-I enhancers are more specific to beta cells while inactive 

enhancer regions are more specific to rare islet-cell populations, such as delta cells. 

Thus, further analysis is required to dissect the cell-type specific component of 

regulatory annotations to have a more precise understanding of gene regulation in 

human islets in order to gain insights into diabetes pathophysiology. 

 

Glucose dependent genome regulation in human pancreatic islets. 

Blood glucose is a primary stimulant for beta cells to secret insulin. In mouse and rodent 

islet studies (Alonso et al., 2007; Levitt et al., 2010; Porat et al., 2011), prolonged 

exposure to high glucose has shown to induce beta cell proliferation to meet the 

increasing demands of insulin secretion. Such studies are lacking in human model 

systems. To gain molecular mechanisms into adaptive response of human pancreatic 

islets to prolonged glucose concentrations, we cultured human pancreatic islets in 

11mmMol (high) and 4mMol (low) glucose concentrations for 72 hours, where 

11mMol glucose mimics prolonged glucose levels that occur in physiological 

conditions. We then assayed gene expression (RNA-Seq) and chromatin activity 

(H3K27ac).  

By analyzing gene expression data, we observed that human pancreatic islets 

undergo major transcriptional changes. High glucose concentrations induce beta cell 

differentiation genes while repress genes involved in apoptotic pathways. This is 

contrary to glucotoxic models, that do not echo physiological glucose variation, and 

thus lead to apoptosis (Poitout and Robertson, 2008; Poitout et al., 2010).  
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By analyzing chromatin activity, we observed that human islet enhancers, in 

particular class-I are predominately induced by a high glucose condition.  Remarkably, 

glucose-induced enhancers account for cognate changes in gene expression for their 

target genes. We further show that, glucose effects on the islet regulatory landscape are 

not confined to individual enhancer-gene pairs but elicit a domain wide change as 

observed in our enhancer hub definitions. This suggests that glucose may rewire 

enhancer-promoter interactions at a broad domain level. However, we have not profiled 

chromatin interactions in low glucose samples, which limits our insights into the effect 

of glucose on re-arranging regulatory domain interactions.  

This analysis paved a way to identify transcriptional programs that are involved 

in the adaptive response of human pancreatic islets to the glucose stimuli, and a detailed 

study on higher sample sizes is required extend the primary insights achieved in this 

PhD thesis. 

Accurate transcriptome annotations of human pancreatic islets 

Reference transcriptome annotations such as GENCODE are mainly driven to annotate 

abundant protein-coding and lncRNA genes. Thus, they are not particularly powered to 

elucidate the mechanistic underpinnings of human disease pathophysiology that stem 

from tissue-specific and context-dependent gene expression programs(Akerman et al., 

2017; Iyer et al., 2015; Morán et al., 2012; Nellore et al., 2016) 

In this work, we leveraged billions of short reads and thousands of transcript 

models from long-read sequencing from human pancreatic islets to assemble transcript 

models of protein-coding and lncRNA genes. We further used CAGE data to accurately 

annotate TSS that also revealed dominant and alternative promoters of human islet 

transcripts. This analysis uncovered novel isoforms for known protein-coding genes 

and new transcripts without an assigned known gene. We re-analyzed several scRNA-

Seq data sets to characterize the cell-type specific component of human islet genes. One 

of the major concerns (Tress et al., 2017) that arises from the vast number of isoforms 

identified is whether they encode for novel peptides or not. We undertook a systematic 

approach that allow us detecting novel coding sequences that may encode for tissue-

specific peptides. We leveraged large catalogues of promoter expression data from 

FANTOM to identify islet selective and islet specific promoters. 

Accurate transcript models are fundamental to understand tissue biology, as 

they aid in characterizing transcription regulatory programs and provide a biological 
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interpretation to guide genetic studies. For example, we demonstrated that the induction 

of NKX6-1 gene expression via CRISPRa on annotated TSS did not elicit gene 

expression levels. In sharp contrast, our dominant promoter definitions based on CAGE 

data showed a significant induction in gene expression upon CRIPSR activation. This 

is a noteworthy example of the importance of annotating tissue-specific transcript 

models that facilitate genomic and genetic perturbation studies. A recent 

study(Cummings et al., 2020) used transcript expression levels to infer the 

pathogenicity of coding mutations. We could envision that our human islet transcript 

models could be capitalized to provide a more comprehensive interpretation of coding 

mutations in rare monogenic forms of diabetes. 

 

Even though we created transcriptome annotations based on long-read sequencing 

technologies, the majority of our transcript models may have been built from short 

reads. One of the limitations of long-read sequencing technologies is that they mainly 

capture abundant transcripts. Moreover, more than 60% of the human islet 

transcriptome is composed of mRNAs that are transcribed from INS and GCG genes. 

This makes it challenging for long-read sequencing technologies to detect even 

moderately abundant transcripts. Several strategies are now available to deplete 

selected mRNA molecules before sequencing (Gu et al., 2016), but the accuracy of such 

techniques needs to be evaluated. Thus, very deep sequencing of human islet 

transcriptomes in comparatively larger study sizes could further improve the accuracy 

of our transcript annotations.  

The little progress in examining the potential of the vast number of transcript 

models arises from technological limitations in measuring protein abundance. Current 

methods are limited to the detection of abundant short peptides but not intact proteins. 

This hinders our ability to assess whether novel isoforms encode novel protein 

sequences or not. We are currently collaborating with Prof. Alan Attie and Prof. Lloyd 

Smith, who are experts in human islet proteomics and proteoform detection(Schaffer et 

al., 2019) to further investigate to what extent intact proteins from our novel coding 

sequences are functionally relevant. 

Gene transcription is initiated at precise locations in the genome, the TSS, by the 

involvement of a sequence of 40bp upstream and downstream of TSS known as as the 

core promoter. Core promoters contains sequence determinants that facilitate 

transcription initiation by RNA-PolII machinery(Smale and Kadonaga, 2003). There is 



 123 

growing evidence that suggests that promoter elements not only direct the RNA-Pol II 

machinery to the TSS, but they also receive cis-regulatory inputs and can determine the 

responsiveness of gene transcription (Engström et al., 2007; Zabidi et al., 2015). Thus, 

analyzing the sequence composition of tissue specific promoters gives clues about the 

determinants of transcriptional regulation. Our current analysis of sequence 

determinants of islet-specific promoters is restricted to only a subset of robust 

promoters that have an epigenome-based active promoter signature. An unbiased 

thorough analysis is still needed to uncover the sequence determinants of human islet 

specific promoters. 

Genetic effects on human pancreatic islets transcriptome provides insights into 

Type 2 Diabetes genetic signals.  

As we discussed in the Introduction, to unlock the real potential of GWAS discoveries 

to pave a way to personalized medicine, we need to push forward our understanding of 

the consequences of common genetic variation on the different components of human 

islet gene regulation and its implications in human disease. Multiple dedicated efforts 

have only focused on the impact of common genetic variation on transcriptional 

regulation in human pancreatic islets and the role in T2D predisposition. Although, it 

is now well established that genetic variation that alter alternative pre-mRNA splicing 

have significant contributions to disease risk in several human genetic diseases(Li et 

al., 2016; Raj et al., 2018b; Walker et al., 2019), allelic effects on human islet 

alternative splicing have not been profiled and its implications in T2D are not largely 

understood. 

These limitations drove us to create maps of genetic effects on mRNA 

expression and alternative splicing in a panel of ~400 human pancreatic islet samples. 

This led us to identify wide-spread genetic effects on both islet mRNA expression 

(eQTLs) and alternative splicing (sQTLs).  Our in-depth characterization of eQTL and 

sQTL variants revealed that they represent two separable layers of genetic control on 

human islet gene regulation, accounting for a distinct tissue-specific nature and 

contributing to gene regulation through recognizable different molecular mechanisms. 

We then assessed the contribution of islet alternative splicing to T2D susceptibility by 

the integration of sQTL and T2D GWAS data. This revealed that genetic effects on islet 

alternative splicing contributes to T2D heritability. Following these evidences, we 

leveraged TWAS and colocalization approaches to uncover molecular target genes 



 124 

underlying T2D risk loci. Of note, we showed that the increase in the number of 

independent T2D signals with candidate effector transcripts that this study provided 

was notably driven by the inclusion of sQTL data. This highlights the importance of 

underappreciated non-coding genetics effects on alternative splicing in human 

pancreatic islets to gain insights into T2D pathophysiology. Of note, the 

implementation of TWAS approaches allowed us to expand our understanding of the 

genetic basis of T2D by identifying novel T2D genetic loci that yet have not been 

identified by GWAS approaches. Although these novel T2D loci should be carefully 

examined due to the inherent TWAS limitations to distinguish pleiotropy from linkage, 

we envisage that their implementation on other molecular traits will harvest additional 

new knowledge of themolecular mechanisms underlying T2D risk. Remarkably, we 

also observed that the fraction of T2D credible set variants that are also in QTL credible 

sets show a marked increase in posterior probabilities for T2D risk. Following this 

notion, we rationalized that defects on human islet gene regulation might have higher 

impact on T2D risk than genetic effects on the regulatory landscape of other disease-

relevant tissues or environmental effects.  This could be further assessed based on the 

credible set size; a marked decrease in the credible set size of GWAS loci that colocalize 

with islet QTLs vs the rest could suggest that genetic effects on islet function and 

identity are not only the major contributors to T2D heritability overall, but also have 

higher functional deleterious consequences.  This has relevant implication on fine-

mapping approaches and perturbation genetic screens. 

We want now to discuss several limitations of the present study and how we 

foresee that could be addressed in on-going efforts arising from this project or in other 

future studies. First, our sQTL maps are based on measuring splicing activity using 

short-read sequencing, although attaining accurate measures of isoform variant using 

this of technology is challenging. Second, islet splicing activity was measured using 

LeafCutter that measures local splicing events based on the relative junction usage. We 

want to underscore that although this might inform us about splicing activity, it does 

not quantify the direct impact on isoform expression, as each junction could belong to 

multiple isoforms. This is one of the largest bottlenecks of our data, as it limits our 

understanding of the impact of alternative junction usage on a particular isoform, and 

the implications in T2D pathophysiology. A potential way to overcome this short-

coming is by the quantification of the expression of each isoform using long read-

sequencing technologies across hundreds of individuals, which is far from reality to 
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date. Third, the majority of our human islet samples are from adult donors, and thus do 

not allow us to uncover genetic effects that impact islet-cell identity and function during 

development. A recent study revealed that developmental specific genetic effects on 

splicing and gene expression are implicated in neurological and psychiatric diseases  

(Walker et al., 2019) . Collecting samples from juvenile individuals at a sufficient study 

size to robustly carry out QTL analysis is arduous, Thereby, interrogating the effect of 

genetic variants on gene expression and splicing using human induced pluripotent stem 

cell (iPSC) models from individuals with different genetic backgrounds remains an 

attractive alternative strategy (Zhang et al., 2020). Fourth, cell-type specific genetic 

effects have been shown to provide insights into complex trait disease genetics (Kim-

Hellmuth et al., 2020). Several methods (Jew et al., 2020; Newman et al., 2015; Wang 

et al., 2019) are now available to deconvolute the cell-type composition of bulk 

heterogenous tissues that can be used as an interaction term to identify cell-type specific 

genetic effects. Our initial analysis following this approach did not reveal any novel 

insights, but we hypothesize that this could be due to the fact that our human islet data 

is composed of a more uniform distribution of predominant cell-types. Fifth, we did not 

interrogate the contribution of low-frequency variants into the regulation of islet 

expression and splicing. Thereafter, we could not comprehensively link human islet 

splicing to all the spectrum of risk alleles that contribute to T2D pathophysiology. 

Extreme changes in gene expression and alternative splicing triggered by rare genetic 

variants have already been observed across tissues(Ferraro et al., 2020; Li et al., 2017). 

We predict that the aggregation of human islet samples in comparatively larger datasets, 

as well as the replacement of SNP arrays by WGS, will allow identifying rare variants 

underlying extreme changes but also mild effects in islet expression and splicing, and 

assessing the relationship with T2D pathophysiology. Finally, so far, this study did not 

provide any experimental evidence to directly implicate splicing mis-regulation into 

T2D pathophysiology. We are currently carrying out two experiments. First to validate 

the impact of candidate cause sQTL variants on alternative splicing and to also measure 

the impact of splicing on beta cell function using glucose-responsive EndoC βH3 cell 

line (Benazra et al., 2015)  
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Conclusions 

 
This thesis advanced our molecular understanding of the regulatory molecular 

mechanisms underlying cell-identity and function in in human pancreatic islets and its 

implications into T2D pathophysiology.  

 

• High-resolution genome-wide maps of open-chromatin sites that integrate 

multidimensional epigenomic datasets provide a larger granularity of the 

functional regulome in human pancreatic islets, particularly of 

transcriptional enhancers.  

• The integration of regulome annotations, capture Hi-C data (pcHi-C in this 

study) and T2D GWAS data from large-scale meta-analysis led to the 

identification of novel targets for T2D loci.  

• Capitalizing a glucose perturbation model in human isles led to the detection 

of functional regulatory domains that underlie adaptive response of human 

pancreatic islets and thus, to maintain islet-cell homeostasis and function. 

• Transcriptome annotation in human pancreatic islets revealed vast number 

of previously unannotated transcripts, promoters and coding sequences. 

• Maps of genetic effects on islet mRNA splicing and gene expression (sQTLs 

and eQTLs, respectively) showed distinct layers of genetic control from 

non-coding common genetic variants. 

• eQTLs and sQTLs identify distinct molecular mechanisms with 

recognizable different degree of genetic sharing across tissues, and impact 

independent machinery of the functional non-coding genome involving 

independent regulatory networks. 

• The integration of fine mapped QTL data, in-silico functional scores and 

genome annotations provide a compendium of bona fide candidate causal 

variants that are likely to impact splicing and expression variation in islets.  

• Leveraging large panel human islets transcriptome data with the joint effort 

of TWAS and colocalization approaches provided an exhaustive catalogue 

of candidate target genes that might enlighten our understanding of T2D 

pathophysiology.  
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• Fine-mapped eQTL and sQTL data integrated with T2D credible set 

variants prioritize bona fide candidate causal variants that are more likely to 

show functional consequences in genetic perturbation screens.  
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