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Schemas, or internal representation models of the environment, are thought to be central in organising our ev- 

eryday life behaviour by giving stability and predictiveness to the structure of the world. However, when an 

element from an unfolding event mismatches the schema-derived expectations, the coherent narrative is inter- 

rupted and an update to the current event model representation is required. Here, we asked whether the perceived 

incongruence of an item from an unfolding event and its impact on memory relied on the disruption of neural 

stability patterns preceded by the neural reactivation of the memory representations of the just-encoded event. 

Our study includes data from two different experiments whereby human participants ( N = 33, 26 females and 

N = 18, 16 females, respectively) encoded images of objects preceded by trial-unique sequences of events depict- 

ing daily routine. We found that neural stability patterns gradually increased throughout the ongoing exposure 

to a schema-consistent episode, which was corroborated by the re-analysis of data from two other experiments, 

and that the brain stability pattern was interrupted when the encoding of an object of the event was incongru- 

ent with the ongoing schema. We found that the decrease in neural stability for low-congruence items was seen 

at ∼1000 ms from object encoding onset and that it was preceded by an enhanced N400 ERP and an increased 

degree of neural reactivation of the just-encoded episode. Current results offer new insights into the neural mech- 

anisms and their temporal orchestration that are engaged during online encoding of schema-consistent episodic 

narratives and the detection of incongruencies. 
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. Introduction 

Experience is guided by internal representation models of the en-

ironment, or knowledge schemas, with an impact on perception and

emory ( Gilboa and Marlatte, 2017 ). Schemas are thought to be cen-

ral in organising our everyday life behaviour by giving stability and

redictability to the structure of the world ( Gershman et al., 2014 ).

hus, despite the ever-changing sequence of inputs of our experience,

chemas bring relatedness and comprehension of unfolding events by

nticipating stereotyped or congruent-like elements to encounter next.

 computational advantage to the memory systems is, therefore, that

chema-consistent items can be added to an existing schema with-

ut requiring alterations or extensions to it ( McClelland et al., 2020 ).
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ccordingly, when elements of the unfolding experience are congruent

ith expected representations from a currently activated schema, they

re rapidly integrated into the memory model of the event ( McClelland

t al., 2020 ; Tse et al., 2007 , 2011 ; van Kesteren et al., 2014 ). How-

ver, when our predictions are incorrect, we must update our internal

odels of the world to support adaptive behaviour. Nevertheless, the

eural mechanisms that support memory integration and updating of

n unfolding event remain unclear. 

Previous fMRI results showed activity invariance during the en-

oding of different, but schema-consistent episodes ( Baldassano et al.,

018 ), lending support to the notion that event encoding activates

nowledge schema representations about the expected structure of the

orld. Thus, if an internal memory representation (or a schema) is
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table during the unfolding experience of an event, then some properties

f its underlying neural implementations may also exhibit invariance

uring encoding. Indeed, neuroimaging studies in humans observed

table brain patterns of activity during the encoding of continuous

treams of schema consistent audio-visual inputs and that shifts in

eural stability are coincident with the detection of unexpected el-

ments in the unfolding stream ( Baldassano et al., 2017 ). Similarly,

inclair et al. (2021) recently showed that hippocampal activation

atterns stabilised during the encoding of a narrative episode, akin to

ustained representations accumulated during an unfolding schema-

ongruent event. Intriguingly, this study also revealed that when the

arrative was suddenly interrupted, the ongoing stability of the neural

ctivity became disrupted, reflecting the need to update the sustained

epresentation of the event model. 

However, the notion that the detection of incongruencies of an

nfolding event engenders a disruption of the ongoing representation

hallenges a set of findings that found no memory disturbance or even

mprovement for surprising events (e.g., Chen et al., 2015 ; Frank et al.,

018 , 2020 ; Greve et al., 2017 , 2019 ; Pine et al., 2018 ; Quent et al.,

021 ; Rouhani et al., 2018 ). This literature relies on the idea that

nemonic prediction error enhances hippocampal biases toward en-

oding ( Bein et al., 2020 ) and that this shift in encoding strategy reflects

he need to evaluate and, if necessary, update the representational

ontent of the ongoing experience with the current incongruent event. 

How does the brain accommodate these two seemingly opposite lines

f research evidence, namely, that mnemonic prediction errors disrupt

ngoing neural representations of unfolding events and, at the same

ime, promote the update of the ongoing memory model during encod-

ng? Here, we asked whether this process is supported by distinct brain

echanisms that occur rapidly (in the order of milliseconds) but are

equentially orchestrated over time. More specifically, drawing on past

heoretical ( McClelland et al., 2020 ) and empirical research ( Silva et al.,

019 ; Sols et al., 2017 ; Wu et al., 2022 ), we hypothesise that the subjec-

ive degree of an item’s congruence with an unfolding experience is de-

ermined by an evaluation process guided by a rapid reactivation of the

ncoded event. The concomitant representation of the new element and

he reactivated memory of the just-encoded event would promote the

ffective and rapid assessment of the extent to which the novel element

atches, or mismatches expectations driven by the unfolding event. As

 result, the brain would be able to either assimilate the new item with

he ongoing memory representation by preserving a stable state of neu-

al pattern of activity or, alternatively, disrupt it to promote its update.

To test this hypothesis, we recorded scalp electrophysiological (EEG)

ctivity while healthy participants encoded images of target objects

receded by trial-unique sequences of four pictures of events depicting a

outine from everyday life ( Fig. 1 a). The sequence of pictures preceding

he target object image was thought to mimic a realistic unfolding

pisodic event with the aim to provide a gradual schema-consistent

arrative that determined whether specific target objects matched or

ismatched expected occurrences within that context. Importantly,

articipants were instructed to rate the perceived congruence of the

tem in relation to the previously encoded event sequence episode,

hereby allowing us to assess the degree of perceived congruence of the

arget object for every single trial at an individual level. To examine

ow object congruence shaped memory for the target object, a surprise

ecognition memory test was administered to the participants after the

ncoding phase. In Experiment 1, we first asked participants to indicate

hether a label word referred to object pictures encoded in the previous

hase, and if so, to recognize which of two very similar pictures was the

xact one presented during the encoding phase ( Fig. 1 b). This later test

llowed assessment of the extent to which encoding congruence detailed

emory representation (e.g., Bein et al., 2020 ). We ran one additional

ollow-up behavioural experiment on a separate sample of participants

o further scrutinise congruence-shaped long-term memory. This exper-

ment consisted of a similar structure and materials used in Experiment

 but differed in the format of the recognition phase. In Experiment 2,
2 
e asked participants to indicate whether object pictures were encoded

ogether with a selected picture of the episodic sequence, thereby

llowing us to assess the ability of the participants to bind the object to

he preceding episodic context ( Fig. 1 c). This test allowed examining

hether the perceived congruence of the object within an episodic nar-

ative influenced how the two become associated in long-term memory.

. Material and methods 

.1. Participants 

Participants were healthy college students from the University of

arcelona who had normal or corrected-to-normal vision and reported

o history of medical, neurological or psychiatric disorders. Thirty-three

articipants (26 females, M = 20.94 years, SD = 3.24 years) were re-

ruited and were paid €10/h for their participation in Experiment 1.

our participants were excluded due to loss of EEG data for technical

easons. Eighteen participants (16 female, M = 23.05 years, SD = 6.55)

ere recruited and paid €5/hour for their participation in the follow up

xperiment 2. All participants signed informed consent, approved by

he University of Barcelona Ethics Committee. 

.2. Stimuli 

Experimental stimuli consisted of 160 photographs of household ob-

ects and 80 episodic sequences, each comprising 4 photographs. There

ere 80 different household objects included each with two slightly dif-

erent versions, for a total of 160 photographs. Episodic sequences con-

isted of 4 snapshots in temporal order depicting the same person mov-

ng around and interacting with the surroundings in different rooms

rom the same house during a short period of time. Each sequential

pisode was designed to match one of the 80 household objects. The

bject images were taken from the Stark lab set of stimuli, freely avail-

ble at ( http://faculty.sites.uci.edu/starklab/mnemonic-similarity-task-

st/ ). The pictures of the episodic sequences did not actually contain

he matching household object. Instead, the sequences were designed

n a way that the matching object could fit in or make sense within the

iven sequence. In other words, the matching object could be expected

o be encountered in the situation depicted in the episodic sequence.

ach episodic sequence was designed to be congruent with its specific

orresponding (congruent) object. 

.3. Experimental design 

The experiment design of the two studies consisted of an encoding

hase and a test phase. The encoding phase was the same in the two

tudies. Participants were presented in trial with an episodic sequence

ollowed by a picture object. Participants were asked to rate the degree

f congruence on a scale from 1 (i.e., does not fit in) to 4 (i.e., fits in

ery well) of the target picture object in relation to the context formed

y the succession of the 4 preceding episodic sequence images ( Fig. 1 a).

he encoding phase included a total of 80 trials, each consisting of an

pisodic sequence followed by an object. Two versions of the encoding

hase were constructed so that 40 of the episodic sequences could be

erceived as highly congruent with picture objects by the participant.

his yielded a total of an a priori possible 40 high and 40 low congruent

equence-object pairings. However, we followed the empirical partic-

pant’s ratings when assigning degree of object-episode congruency in

ur analysis. The order of the trials at encoding was randomised for each

articipant. 

Each trial started with the appearance of a fixation cross on the

creen for a random duration of 2000 to 4000 ms. Afterwards, an

pisodic sequence consisting of four photographs was presented. Each of

he four photographs was presented on a white background for 2000 ms,

ne at a time in temporal order, separated by the presentation of a fix-

tion cross for 500 ms. After the episodic sequence was presented, a

http://faculty.sites.uci.edu/starklab/mnemonic-similarity-task-mst/
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Fig. 1. Encoding and recognition memory task design for Experiments 1 and 2. (a) During the encoding phase for all experiments, participants encoded episodic 

sequences composed of 4 photographs depicting a routine domestic episode. These were followed by highly congruent or low congruent/incongruent object pictures. 

Participants indicated the degree of congruence between the episode and the object. (b) In Experiment 1, memory of object pictures was tested by the object word 

label followed by a true and a lure item of the same object. Participants had to indicate the correct picture presented during the encoding phase. (c) In Experiment 

2, each object picture presented during the encoding phase was displayed together with one image from an episodic sequence. Participants were required to indicate 

whether the object and episodic image picture corresponded with the episodic + object picture presented in the same trial during the encoding phase. 
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xation cross appeared on the screen for 2000 to 3000 ms, separating

he episodic sequence from the presentation of the following object. The

icture of the object was presented on a white background for 500 ms,

ollowed by the appearance of a fixation cross for 2 s. Finally, a screen

as presented with the word ‘Congruence?’ and the digits ‘1–2–3–4’

elow, upon which participants had to indicate, within a maximum of

 s, the degree of congruence between the object and the just-encoded

pisodic sequence by pressing 1, 2, 3 or 4 in the keyboard. Participants

ere previously instructed to respond thoughtfully as quickly and ac-

urately as possible. As soon as they responded, a fixation cross was

resented for 500 ms, and the next trial began. The encoding phase

asted around 30 min. After the 80 episodic sequences and objects were

resented, the encoding phase was finished. 

The encoding phase was followed by a ∼10 min interference task

onsisting of choosing the correct answer to simple additions and sub-

ractions that appeared on the screen. Participants were told to respond

s quickly as possible, although no time limit was imposed. The distrac-

ion task ensured the participants would not rehearse the pictures they

ad previously seen. 

.4. Recognition memory test 

After a break of ∼10 min, a recognition memory test was presented

nexpectedly to the participants in the two studies. 

In Experiment 1, the test included 160 object words and 160 ob-

ect picture pairs of each word. Eighty words and object pictures corre-

ponded to previously presented objects in the encoding phase (‘Old’),

hereas the other 80 were non-related (‘New’) objects ( Fig. 1 b). Each

icture pair depicted the same object but with small changes in specific

eatures between each other (e.g., orientation, colour, etc.). Each trial
3 
egan with a fixation cross lasting from 3 to 5 s at random. Subsequently,

ach word was presented for a maximum of 6 s with a question mark

elow ‘?’. Participants were instructed to press ‘1’ on the keyboard if

hey thought the word referred to an object presented during encoding

Old) or ‘2’ if not (New). If the participant responded ‘Old’ to a word,

hen two pictures of the object word were presented on the screen for

 maximum of 6 s ( Fig. 1 b). Pictures were presented on the computer

creen, with one item to the left and one to the right of fixation. The

eft/right assignment was randomly chosen in each trial. The two pic-

ures from each pair were almost identical, but only one corresponded

o the exact one presented in the encoding phase (true), whereas the

ther one served as a lure. For example, if the participant had seen the

hotograph of a hammer and later, during the test, correctly identified

he word ‘hammer’ as one of the objects she saw, then two photographs

f similar-looking hammers appeared. The participant was instructed to

dentify the picture object that was exactly like the one presented in

he encoding phase by pressing 1 if it was the left photograph or 2 if it

as the right one. The picture pair presented when a participant mis-

lassified as ‘Old’ a new word was almost identical, though neither of

he two pictures had been seen in the encoding phase. The order of the

resentation of word + picture pairs in the test was randomised before

ach participant started the test. The recognition memory test lasted

20 min. 

In the test phase of Experiment 2, the 80 object pictures presented

uring the encoding phase were included in the test. In each trial, each

bject picture was presented together with the first or the second im-

ge from each of the episodic sequences presented in the encoding

hase ( Fig. 1 c). Participants were requested to indicate whether the ob-

ect picture and episodic image picture matched the episodic sequence

nd object picture presented during the encoding phase. Half of the
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bject + episode picture pairs presented in the test matched the encoding

nes, whereas the others were randomly paired with each other. The to-

al set of 80 picture pairs was constructed so that 40 old ones included

0 object + episode pairs encoded in the high-congruency condition and

0 in the low-congruency condition. The same distribution pattern was

sed to construct the set of object + episode new picture pairings (i.e.,

hose that do not match the trials presented at encoding). Two differ-

nt versions of 40 old and 40 new sets of picture pairings were created

y controlling so that in one version, a picture object was paired with

 matched image from the encoded episodic sequence (Old) and to an

nmatched image (New) in the other. The two versions were assigned

andomly to the participant’s sample. Each trial began with a fixation

ross lasting from 3 to 5 s at random. The object and the episodic se-

uence picture were then presented on the screen. Participants were

nstructed to answer whether both photographs had been presented to-

ether in the same trial during the encoding phase (by pressing ‘1’ on

he keyboard) or not (by pressing ‘2’). Participants were asked to rate

heir confidence in their previous response from 1 (‘no confidence’) to 5

‘absolute confidence’) with the same numbers on the keyboard. Object

nd episodic pictures were presented on the computer screen, with one

tem to the left and one to the right of fixation. The left/right assignment

as randomly chosen on each trial. 

.5. Behavioural data analyses 

Paired Student t -test was used to compare participants’ perfor-

ance (measured in percentage) between conditions. Repeated mea-

ures ANOVA was used to statistically assess differences between par-

icipants’ performance when they included more than two variables. Sta-

istical significance threshold was set at p < 0.05. 

.6. EEG recording and preprocessing 

In study 1, EEG was recorded during the task using a 32-channel sys-

em at a sampling rate of 500 Hz, with an online band-pass filter set at

.01–100 Hz, using a BrainAmp amplifier and tin electrodes mounted

n an electrocap (Electro-Cap International) located at 29 standard posi-

ions (Fp1/2, Fz, F7/8, F3/4, Fcz, Fc1/2, Fc5/6, Cz, C3/4, T3/4, Cp1/2,

p5/6, Pz, P3/4, T5/6, Po1/2, Oz) and at the left and right mastoids.

n electrode placed at the lateral outer canthus of the right eye served

s an online reference. EEG was re-referenced offline to the average

f all channels. Vertical eye movements were monitored with an elec-

rode at the infraorbital ridge of the right eye. Electrode impedances

ere kept below 5 k Ω. EEG was low-pass filtered offline at 30 Hz.

e applied the Parks-McClellan Notch filter using the toolbox ERPLAB

 http://erpinfo.org/erplab ). 

For each participant, we extracted the EEG epochs for each encoding

mage. Epochs had a duration of 2000 ms for images from the episodic

equence and 2500 ms for images of the picture object and were base-

ine corrected to the pre-stimulus interval ( − 100 to 0 ms). Epochs with

aximum absolute amplitude over 100 μV were discarded for further

nalysis. For later analysis, all the epochs were smoothed by averaging

ata via a moving window of 100 ms (excluding the baseline period)

nd then downsampled by a factor of 5. 

.7. Event-Related potentials (ERP) analysis 

ERPs elicited by object picture were studied by extracting a trial-

y-trial event-locked EEG epochs of 2600 ms starting at 100 ms before

he presentation of the image. A baseline from − 100 ms to stimulus

nset was used. ERP trials with amplifier saturation, or trials with a

hift exceeding 100 𝜇V/s were automatically rejected offline. 

.8. Representational similarity analysis (RSA) 

To account for whether the ongoing encoding of an episodic se-

uence of pictures elicited a gradual increase in stable brain activity
4 
atterns, we implemented a temporally resolved RSA using Pearson cor-

elation coefficients, which are insensitive to the absolute amplitude and

ariance of the EEG response. The correlation analysis on EEG data was

ade at the individual level and to each time point separately and in-

luded spatial (i.e., scalp voltages from all the 29 electrodes) features of

he resulting EEG single trials. Cross-correlation outputs were converted

o Fisher’s z scores for statistical analysis. To examine how a schema-

onsistent sequence’s unfolding modulated the stabilisation of activity

atterns, we correlated, for each participant and at single trial level, the

EG patterns of activity elicited by the 1st and the 2nd, the 2nd and the

rd and the 3rd and the 4th pictures of each episodic sequence. 

To examine whether neural stability was disrupted by objects per-

eived as incongruent with the just encoded episodic sequence, com-

ared to congruent objects, we correlated, for each participant and at

ingle trial level, the EEG patterns of activity elicited by the 4th pictures

f each episodic sequence and the EEG patterns elicited by the subse-

uent associated picture object. 

We implemented a cluster-based permutation test to account for neu-

al stability differences between picture order within the episodic se-

uence and between High and Low congruence conditions ( Maris and

ostenveld, 2007 ). It identifies clusters of significant points in the re-

ulting 1D matrix in a data-driven manner and addresses the multiple-

omparison problem by using a nonparametric statistical method based

n cluster-level randomisation testing to control the family-wise error

ate. Statistics were computed for every time point, and the time points

hose statistical values were larger than a threshold ( p < 0.05, two-

ail) were selected and clustered into connected sets based on adjacency

oints in the 1D matrix. The observed cluster-level statistics were cal-

ulated by taking the sum of the statistical values within a cluster. Con-

ition labels were then permuted 1000 times to simulate the null hy-

othesis, and the maximum cluster statistic was chosen to construct a

istribution of the cluster-level statistics under the null hypothesis. The

onparametric statistical test was obtained by calculating the propor-

ion of randomised test statistics that exceeded the observed cluster-level

tatistics. 

RSA was also conducted between the EEG signal of each encoding

mage (i.e., the image at 1st, 2nd, 3rd, 4th position in a sequence) with

he EEG signal of the corresponding object encoding period (i.e., the

atching object with the sequence and the followed fixation cross). We

ermed the output of this analysis as neural reactivation, instead of neu-

al stability, because the resulting similarity values may not be directly

xplained by a direct timepoint-to-timepoint correspondence between

he each of the neural patterns, akin to possible temporal compression

f memory reactivation seen in previous rodent (e.g., Foster and Wil-

on, 2006 ) and human (e.g., Kurth-Nelson et al., 2016 ) studies. RSA

as performed timepoint-to-timepoint at trial level and upon spatial fea-

ures (i.e., scalp voltages from all the 29 electrodes) ( Silva et al., 2019 ;

u et al., 2022 ). Point-to-point Pearson correlation values were calcu-

ated, resulting in a 2D similarity matrix with the size of 200 × 250 (each

ime point represents 10 ms, given the 500 Hz EEG recording sampling

ate and a down-sampling factor of 5). The x -axis of the matrix rep-

esented the object and the followed fixation cross time points, and the

 -axis represented the time points of image encoding. The output 2D ma-

rix represents the overall degree of neural pattern similarity between

EG elicited for each pair of encoding images and its corresponding ob-

ect encoding period. 

We also explored the neural similarity between the EEG signal of

ach encoding image (i.e., the image at 1st, 2nd, 3rd, 4th position in a

equence) with the EEG signal of the offset period immediately follow-

ng the last image of the sequence. To do so, we extracted EEG signal of

he first 2 s of event offset ERPs. After smoothing and down-sampling

ach epoch following the same parameters used in the previous anal-

sis, we then performed the RSA timepoint-to-timepoint at trial level

etween each encoding image with its corresponding event offset. This

eturned a 2D similarity matrix with a size of 200 ×200, where the x-axis

f the matrix represented the event offset time points, and the y-axis

http://erpinfo.org/erplab
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epresented the time points of image encoding. The output 2D matrix

epresents the overall degree of neural pattern similarity between EEG

licited for each pair of encoding images and its corresponding event

ffset period. 

.9. Linear-mixed effect model 

To further explore in the trial base how the neural pattern was as-

ociated with the subjective feeling of the congruence and its impact

n subsequent memory of the object image, we applied a Linear Mixed-

ffect Model (LMM) on data from the neural stability analysis, on ERPs

licited by the picture object and during the offset period after that pic-

ure, and on EEG RSA data between each of the images of the sequence

nd the immediately following offset period preceding the object picture

i.e., sequence offset) and between each of the images of the sequence

nd the encoding of the object picture (i.e., object encoding). 

To complement the cluster-based statistical approach implemented

o assess for statistical significance of modulations of neural similar-

ty described in the previous section, we constructed a point-to-point

MM with neural stability value as the dependent variable. To evaluate

he extent to which neural stability fluctuated throughout the encod-

ng of the episodic sequence, we introduced in the model picture pair

rder in the sequence as a fixed-effect variable: 1st and 2nd pictures,

nd and 3rd pictures and 3rd and 4th pictures. Subject was included in

he model as the grouping variable, with random intercept and a fixed

lope for the fixed-effect variable. To evaluate whether the degree of

erceived congruence of the object picture with the encoded episode

hanged the ongoing EEG activity state of stability, 2 fixed-effect vari-

bles were introduced into the model: the rating of the object’s congru-

nce to the sequences (on a scale of 1 to 4) and the memory for the object

whether the word and the image were correctly recognised during the

est). We z -transformed the neural stability value and congruence rating

core across all trials. The subject was then introduced into the model

s the grouping variable, with random intercept and a fixed slope for

ach fixed-effect variable. 

For ERPs elicited by the encoding of the object picture, we first

rouped 29 electrodes into 6 scalp regions. To obtain more stable spa-

ial patterns, border electrodes between regions were included in each

eighbouring region ( Lu et al., 2015 ; Sols et al., 2017 ). As a result, the

 regions were defined as follows: region 1 (FP1, Fz, F3, F7, FCz, FC1,

C5); region 2 (FP2, Fz, F4, FCz, FC2, FC6); region 3 (FCz, FC1, FC5,

z, C3, T3, Cp1, Cp5); region 4 (FCz, FC2, FC6, Cz, C4, T4, CP2, CP6);

egion 5 (CP1, CP5, Pz, P3, T5, PO1, Oz); region 6 (CP2, CP6, Pz, P4, T6,

O2, Oz). The LMM was constructed separately for each region. ERPs

oltages at each offset time point were averaged across electrodes within

he region and then introduced in our LMM as the dependent variable.

he rating of the object’s congruence to the sequences (on a scale of 1

o 4) and the memory for the object (whether the word and the image

ere correctly recognised during the test) were included in the model as

xed-effect variables. We z -transformed the ERPs voltage value and con-

ruence rating score across all trials. The subject was then introduced

nto the model as the grouping variable, with random intercept and a

xed slope for each fixed-effect variable. The statistical significance was

djusted by Bonferroni correction for each fixed-effect variable taking

nto account both the number of regions and the number of time points,

esulting in a corrected alpha level of 𝛼 = 3.33 × 10 − 5 (0.05/(6 × 250)).

We also applied LMM on output from RSA. We identified on the re-

ulting 2D similarity matrix the time point of encoding and offset where

he pattern similarity reached the peak value. We then averaged at a

ingle-trial level the similarity value across ± 50 ms (11 data points)

round the peak encoding time point for each offset time point, result-

ng in a 1D similarity value with the length of 250 time points, cov-

ring the whole offset period. For each time point, we constructed the

MM with similarity value as the dependent variable. Then 3 fixed-effect

ariables were introduced into the model: the image position in the se-

uence (1st, 2nd, 3rd, and 4th), congruence rating and memory for the
5 
bject. We z -transformed the similarity value, congruence rating score

nd the image position number across all trials. Subject was included in

he model as the grouping variable, with random intercept and a fixed

lope for each fixed-effect variable. The statistical significance for each

xed-effect variable was Bonferroni corrected with a thresholded alpha

evel of 𝛼 = 2 × 10 − 4 (0.05/250). 

. Results 

.1. Behavioural results from experiment 1 

In Experiment 1, the proportion of trials rated as lowly congruent

‘1’ or ‘2’) was 45.17% (SD = 8.59%) and 15.43% (SD = 6.42%), re-

pectively, and highly congruent (‘3’ or ‘4’), respectively, was 13.45%

SD = 6.36%) and 25.39% (SD = 7.47%) with the episode. 

In general, participants were accurate in recognizing words referring

o picture objects learnt during the encoding phase (Mean = 71.09%,

D = 12.80%; above chance: t (28) = 8.41, p < 0.001). They showed

reater accuracy for words related to picture objects encoded with

igh (Mean = 76.07%, SD = 13.27%) than low (Mean = 66.11%,

D = 13.89%) congruency to the episodic context during the encod-

ng phase (paired t -test: t (28) = 5.89, p < 0.001) ( Fig. 2 a). For those

orrectly recognised words, in the next picture recognition test, par-

icipants were accurate in correctly identifying the exact object pic-

ure presented in the encoding phase (Mean = 73.13%, SD = 8.02%;

bove chance: t (28) = 15.53, p < 0.001). They performed similarly

or pictures rated as high (Mean = 74.61%, SD = 11.63%) and low

Mean = 72.61%, SD = 8.61%) congruency to the episodic context

paired t -test: t (28) = 0.39, p = 0.878) ( Fig. 2 b). 

To specify the subsequent memory strength for objects, for all later

nalyses, we classified the memory performance of a trial based on

hether the object image was correctly recognised during the test.

herefore, successful recognition of both gist word and object image

as considered as a ‘remembered item’ condition, while either failing

n recognition of gist word or image was considered as a ‘forgotten item’

ondition. This separation also rendered a balanced percentage of trials

cross conditions, with 53.53% (SD = 11.43%) for ‘remembered’ con-

ition and 46.47% (SD = 11.43%) for ‘forgotten’ condition (Wilcoxon

igned-rank test: z = 1.74, p = 0.08). 

.2. Behavioural results from experiment 2 

In Experiment 2, we sought to examine whether the retrieval benefits

f encoding congruence observed in Experiments 1 were also accompa-

ied by an increased ability of the participants to bind the object to the

receding episodic context. Thus, in Experiment 2, participants were re-

uired to judge whether pairs of pictures, including one of the encoded

bjects and one picture from the sequence episodes, were seen together

r not during encoding. As in Experiment 1, the proportion of trials rated

s highly (‘4’) and lowly congruent (‘1’) were 35.39% (SD = 12.63%)

nd 37.67% (SD = 10.06%), respectively, and the average proportion of

ntermediate levels of congruency was much lower (‘2’: Mean = 12.92%,

D = 9.97%; and ‘3’: Mean = 10.81%, SD = 5.68%). A comparison of

he proportion of trials rated as lowly congruent (‘1’) and highly con-

ruent (‘4’) revealed they were not statistically different ( t (17) = − 0.85,

 = 0.41). Therefore, we analysed participants’ hits for items classified as

1’ or ‘4’ at encoding. The results of this study revealed that participants

ere accurate in correctly identifying the encoded correspondence be-

ween objects and the episodic context (Mean = 0.79, SD = 0.12), but

hat the accuracy was higher (paired student t -test, t (17) = 5.59, p <

.001) and more confident ( t (17) = 6.78, p < 0.001) when the associ-

tion between the object and the context at encoding was high rather

han low congruent ( Fig. 2 c). 
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Fig. 2. Behavioural results of Experiments 

1and 2. (a) Participants’ test accuracy on 

recognising the gist word separated by whether 

the picture object was perceived by the par- 

ticipant as highly or lowly congruent with the 

episodic sequence during encoding in Experi- 

ment 1. (b) Participants’ test accuracy on iden- 

tifying the exact object picture presented in the 

encoding phase after correctly recognising the 

‘Old’ gist word. The accuracy was separated by 

whether the picture object was perceived by 

the participant as highly or lowly congruent 

with the episodic sequence during encoding in 

Experiment 1. (c) Participants’ percentage of 

hits in the recognition memory test of Exper- 

iment 2. In all plots, dots represent values for 

an individual subject. ∗ indicates p < 0.05. 
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.3. Neural stability and episodic congruence 

We next examined whether EEG states of stability changed through-

ut the encoding of a schema-consistent images of the narrative se-

uence. We hypothesised that schema consistency for picture sequences

ould promote neural stability, and that this would be observed as an in-

rease in across-item EEG pattern similarity of the EEG patterns elicited

hroughout the picture sequence. To address this issue, we calculated a

ime-resolved neural similarity analysis between EEG patterns elicited

y picture pairs (1st and 2nd, 2nd and 3rd and 3rd and 4th) across the

equences. Confirming our hypothesis, we found that the 3rd and the

th pictures elicited more stable patterns of EEG activity than the 1st

nd the 2nd pictures from 110 to 290 ms (Cluster statistics: p = 0.04,

orrected for multiple comparisons, sum T -values = 64.75), from 970

o 1350 (corrected p = 0.009, sum T -values = 119.38) and from 1520

o 2000 ms (corrected p = 0.007, sum T -values = 145.28) from stim-

lus onset. We also found that the 3rd and the 4th pictures showed

ore stable EEG patterns than the 2nd and the 3rd pictures from 1550

o 1800 ms (corrected p = 0.03, sum T -values = 68.11) and that the

nd and the 3rd picture elicited EEG stability did not differ statistically

ith the 1st and the 2nd picture ( p > 0.05) ( Fig. 3 a). A similar pattern

f result was found by the LMM analysis, which confirmed that neural

tability increased as the pictures in the sequence increased. The re-

ults of the LMM analysis revealed that the neural similarity increases

ere shown at an early from 90 to 390 ms and at a later time win-

ow from 780 to 2000 ms from stimulus onset ( p < 0.05, uncorrected)

 Fig. 3 b). 

Next, we evaluated whether EEG states of stability were associated

ith the encoding of object pictures that were highly or lowly congru-

nt with the preceding episode. We hypothesised that congruency in-

uced higher states of stability and that this elevated state of neural

tability would be reflected as an increase in neural similarity upon ob-

ect encoding, rendering them more similar than objects perceived as

owly congruent with the preceding episodic context. To address this is-

ue, we compared the cross-temporal correlation analysis of EEG activ-

ty patterns between the last picture of the episodic sequence (i.e., 4th

icture) and the picture object for trials in which the object was per-

eived as high and low congruent. Please note that the assignment of

pisode-object associations was counterbalanced between participants

nd, therefore, an object encoded highly congruently with an episode

n one participant could be encoded lowly congruently by another par-

icipant. The results of this analysis showed that highly congruent items

licited more stable patterns of EEG activity than lowly congruent items

ith the preceding picture of the episodic sequence from 980 ms to

220 ms from picture onset (corrected p = 0.04, sum T -values = 66.91)
 m

6 
 Fig. 3 c). A similar pattern of result was found by the LMM analysis,

hich confirmed that neural stability was lower for object pictures that

ere perceived lowly than highly congruent with the preceding episodic

equence from 980 to 1660 ms from stimulus onset ( p < 0.05, uncor-

ected) ( Fig. 3 d). The LMM results revealed however that an opposite

attern of results emerged at early stages of picture object encoding,

rom 150 to 260 ms from picture onset, whereby neural stability was

igher for lowly than highly congruent objects ( p < 0.05, uncorrected)

 Fig. 3 d). We found similar opposite relationship between neural stabil-

ty and memory for the picture object at early stages of encoding, from

90 to 290 ms and from 660 to 680 ms from picture onset ( p < 0.05,

ncorrected) ( Fig. 3 d). These results suggest that context-dependant

eural state of stability may be modulated by episodic congruency at

ncoding. 

.4. Neural stability in congruent episodes (evidence from Wu et al., 2022 )

To further scrutinize for the possibility that the increase in neural

tability during the encoding of pictures was due to elements that were

onsistent with an activated schema, we analysed scalp EEG data from

u et al. (2022) study. The study involved two groups of participants:

ne group was asked to encode picture sequences that depicted schema-

ongruent episodes ( N = 25, Experiment 1), while the other group

as asked to encode schema-unrelated picture series of similar length

 N = 27, Experiment 2). Each series consisted of 6 pictures, presented

nce to participants. In Experiment 1, the sequences of pictures depicted

ay-to-day routine circumstances that were congruent with a schema,

uch as shopping or cooking. In Experiment 2, we randomized the pic-

ures across sequences from Experiment 1, resulting in sequences that

o longer portrayed meaningful or schema-congruent episodes ( Fig. 4 a).

e analysed the scalp EEG data using the same RSA approach as in the

ain study and implemented a point-to-point LMM analysis to assess for

odulation of neural stability as a function of picture order. We found

hat only the schema-congruent group exhibited a gradual increase in

eural stability between pictures in the sequence ( Fig. 4 b-e). We then di-

ectly compared changes in neural stability between groups as a function

f picture order with a repeated measures ANOVA and confirmed differ-

nces in neural stability modulation between groups (sequence order x

roup interaction: F (4 , 200) = 4.04; p = 0.004; main factor picture order:

 (4 , 200) = 6.59; p < 0.001; main factor group: F (1,50) = 0.10; p = 0.75),

rom RSA averaged on the time window found in the findings in the

ain study (i.e., 780 to 2000 ms from stimulus onset, Fig. 3 b). 
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Fig. 3. Neural stability and congruence. (a) Point-to-point participants’ average degree of neural stability between the 1st and the 2nd, the 2nd and the 3rd and 

the 3rd and 4th picture from the episodic sequence. Thick green lines depict the statistically significant ( p < 0.05, cluster-based permutation test) time periods of 

increased neural similarity by the 3rd and 4th compared to the 2nd and 3rd (thick dark green) and to the 1st and 2nd (thick light green) pictures. ( b ) Beta estimates 

(thick black line), confidence intervals (thick grey lines) and associated t values resulting from the LMM analysis on the neural stability data for pairs of pictures in the 

episodic sequence. ( c ) Point-to-point participants’ average degree of neural stability between the 4th picture of the episodic sequence and the associated subsequent 

object picture separately when participants rated it as highly or lowly congruent with the just encoded episode. ( d ) Beta estimates (thick black line), confidence 

intervals (thick grey lines) and associated t values resulting from the LMM analysis on the neural stability between the 4th picture of the episodic sequence and the 

object picture. Thick black lines in b and d depict statistically significant points ( p < 0.05, uncorrected). 
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.5. The N400 signals low congruent items from encoding episodes 

We hypothesised that the disruption of neural stability elicited by

he detection of low-congruence objects from the unfolding schema-

onsistent episodic narrative would be preceded by a prediction er-

or signal in the brain. We aimed to identify such an error signal

n the EEG by means of a transient increase in the N400 ERP com-

onent, which has been widely related to incongruence detection in

he literature ( Kutas and Federmeier, 2011 ). To assess this issue in

ur data, we grouped the 29 electrodes into 6 regions and averaged

he epochs across electrodes within each region. We then introduced

he voltage value into the LMM as the dependent variable and in-

luded participants’ ability to correctly recognise the picture image

t test congruence rating provided at encoding as the main fixed-

ffect variables. Subject was included as the grouping variable. This

nalysis was conducted for each time point and each scalp region

eparately. 

The results of the LMM analysis revealed significant effects at spe-

ific scalp regions and temporal points for both memory and congru-

nce. For memory, later forgotten objects elicited significantly more

egative ERPs amplitude at 520 ms to 870 ms from picture onset dis-

ributed over the frontal scalp region (Bonferroni corrected p < 0.05,

um T -values = 171.42) ( Fig. 5 a). For congruence, we found more sub-

tantial negative amplitude with objects rated as less congruent with

he preceding episodic context. This effect was significant from 410 ms

o 730 ms from picture onset and was distributed over frontocentral

calp regions (Bonferroni corrected p < 0.05, sum T -values = 252.20)

 Fig. 5 b). 
7 
.6. Neural reinstatement induced by low contextual congruency 

We next sought to test that prediction error elicited by low-

ongruence items would be accompanied by more robust reactivation

f the just-encoded episodic elements. To address this issue, we imple-

ented a trial-based and temporally resolved neural similarity analysis

etween EEG data elicited at picture object and EEG data elicited by

ach image of the preceding episodic context. The results of this ap-

roach revealed an increase in neural similarity between EEG patterns

rom ∼100 ms - 700 ms at object picture onset and EEG patterns of ac-

ivity between ∼100 ms - 750 ms from the onset of pictures within the

pisodic sequence ( Fig. 6 a). 

To assess whether the degree of neural reactivation observed dur-

ng the encoding of picture objects was modulated by their perceived

ongruency with the encoding episodic context and their later memory

ccessibility at test, we ran an LMM analysis taking the neural similarity

s dependent variable and participant congruence rating and recogni-

ion hit rate at test as fixed-effect factors. We also included a variable

ccounting for the order of pictures in the episodic sequence to control

or the possibility that any effect could be accounted for by the temporal

roximity of the encoding pictures of the preceding episode with the pic-

ure object. We first identified on the similarity matrix the exact time

oint where the similarity value reached the peak across participants

i.e., at 240 ms from episodic sequence picture onset and at 220 ms

rom object picture onset) ( Fig. 6 a). We then extracted the averaged

imilarity value ± 50 ms around the peak over the encoding time for

ach time at object encoding period. This resulted in a 1D vector with a

ength of 250, where each time point represents 10 ms during object
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Fig. 4. ( a ) We implemented RSA to scalp EEG 

data acquired in Wu et al., 2022 . In this exper- 

iment, two groups of different healthy partici- 

pants were asked to encode different series of 

6 unique picture sets. In one group of partic- 

ipants (Experiment 1), each picture series de- 

picted a sequence of instances that depicted the 

unfolding of a realistic and congruent life-like 

episode, for example a birthday party. In the 

other group of participants (Experiment 2), pic- 

tures series from the first group were scram- 

bled and presented in a way that series were 

meaningless or incongruent between them. ( b ) 

Point-to-point participants’ average degree of 

neural stability between first and last pairs of 

pictures from episodic sequence in EEG data 

from group of participants that were asked to 

encode picture sequences depicting a schema- 

congruent episode in Wu et al. (2022) study. 

( c ) Beta estimates (thick black line), confidence 

intervals (thick grey lines) and associated t val- 

ues resulting from the LMM analysis on the 

neural stability data for pairs of pictures from 

EEG data in Experiment 1. ( d ) Point-to-point 

participants’ average degree of neural stabil- 

ity between first and last pairs of pictures from 

episodic sequence in EEG data from group of 

participants that were asked to encode pic- 

ture sequences depicting a schema-incongruent 

episode in Wu et al. (2022) study. ( e ) Beta es- 

timates (thick black line), confidence intervals 

(thick grey lines) and associated t values result- 

ing from the LMM analysis on the neural stabil- 

ity data for pairs of pictures from EEG data in 

Experiment 2. Thick grey lines in c and e depict 

statistically significant points ( p < 0.05, uncor- 

rected). 
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i  
ncoding. LMM was conducted at each time point with all trials in-

luded. We found that the degree of neural reactivation correlated neg-

tively with the participants’ ability to correctly recognise an item at

est. The predictive negative relationship between neural reactivation

nd memory started to be significant at 270 ms from picture-object on-

et and remained significant throughout almost the entire epoch until

100 ms ( Fig. 6 b, upper). In addition, we also found a negative corre-

ation between neural similarity and congruence rating. However, the

ignificant effects were more transient but comparably distributed along

ith the object-picture encoding epoch. Notably, the first significant

ime point was very early, at 190 ms from picture onset, which preceded

he relationship effects between neural similarity and memory ( Fig. 6 b,

ower). A more persistent negative correlation was also found later, be-

ween 490 ms - 720 ms and at 1340 ms from picture onset. Finally, no

ignificant point exceeded the statistical significance threshold for the

ariable sequence order, indicating that the significant relationship be-

ween neural similarity and memory and congruence was not driven by

pecific neural similarity measures between picture objects and pictures

f the episode. 

We examined the possibility that neural similarity could also be seen

mmediately after the encoding of the sequence, during the offset period

receding the onset of object picture. To address this issue, we computed

he RSA between EEG activity elicited by each of the images from each

f the episodic sequences with the corresponding EEG activity from the

000 ms offset period that followed the last image of the sequence. The

esult of this analysis showed, however, very little, if any, increase in

imilarity at the offset period after the episodic sequence ( Fig. 6 c). In

ddition, the LMM analysis revealed that the degree of neural similar-

ty at the episodic sequence offset period did not statistically vary as a
8 
unction of sequence order ( Fig. 6 d), thereby suggesting that neural sim-

larity at this offset period was not directly associated to the encoding

f the preceding episodic event information. 

We finally explored whether the increase in RSA between the EEG

atterns elicited by the picture sequence and the object picture was trial-

pecific. To do so, we shuffled the corresponding assignments between

he EEG data from the episodic sequence and the object, separately for

he High and Low congruency conditions, for each participant. For ex-

mple, during each shuffling, an episodic sequence from the High con-

ruency condition was paired with an object picture randomly selected

rom another trial in the High congruency condition. The RSA was then

omputed on a trial level between each encoding image in the sequence

i.e., the image at the 1st, 2nd, 3rd, and 4th positions in a sequence)

nd their new random picture epoch. For the resulting 2D similarity

atrix, we averaged the similarity value ± 50 ms around the identified

eak (i.e., 190 ms – 290 ms, see also Fig. 6 a) across the object encod-

ng period. Separately for the High and Low congruency condition, we

epeated this procedure 200 permutation times, each with a randomly

enerated shuffling index. We then averaged the results across permu-

ations and compared them to the true value yielded from the original

nalysis. No significant difference (all p > 0.05, cluster-based permuta-

ion test) in the RSA value across the object encoding period was found

etween the true and shuffled trials for neither the High nor Low con-

itions after being corrected by the cluster-based permutation test. 

. Discussion 

In this study, we tested whether the perceived incongruence of an

tem from an unfolding event and its impact on memory relied on the
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Fig. 5. LMM on ERPs elicited at object en- 

coding. 29 electrodes were grouped into 6 

scalp regions, and boundary electrodes were 

included in either neighbouring region to ob- 

tain more stable spatial patterns. (a) Beta esti- 

mates and t -value resulting from the LMM anal- 

ysis at each region and time point for the fixed- 

effect Memory. (b) Beta estimates and t-value 

resulting from the LMM analysis at each region 

and time point for the fixed-effect Congruence. 

The unmasked area on statistical map marks 

the corresponding region and time where the t - 

statistics exceed the significance threshold ( p < 

0.05) with the alpha level adjusted with Bonfer- 

roni correction. (c) Participants’ averaged ERPs 

from representative region 1. (d) Participants’ 

averaged ERPs from representative region 4 

(note that for visual illustration, trials with con- 

gruence ratings of 1 and 2 were grouped and 

averaged as Low congruence and trials with 

congruence ratings of 3 and 4 were grouped as 

High congruence). In (c) and (d) , the shaded 

area represents standard error (SEM) across 

subjects. 
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isruption of neural stability patterns preceded by the neural reacti-

ation of the memory representations of the just-encoded event. Our

ndings, derived from combining behavioural data from 2 different ex-

eriments and the implementation of multivariate pattern analysis on

EG signal during encoding of one of them, confirmed our hypothesis by

howing that neural stability patterns gradually increase throughout the

ngoing exposure to a schema-consistent episodic narrative, and that the

rain stability pattern is interrupted when the encoding of an object of

he event is lowly congruent within the ongoing schema representation.

e found that the decrease in neural stability for low-congruence items

as best seen at ∼1000 ms from object-encoding onset when compared

o high-congruence items and that this effect was preceded by an en-

anced N400 ERP and an increased degree of neural reactivation of the

ust-encoded episode for low-congruence items observed between ∼200

o 1000 ms from picture onset. Current findings provide new insights

nto the brain mechanisms and their temporal dynamics supporting the

ncoding of schema-consistent episodic narratives as it unfolds and their

nvolvement upon perceived incongruencies. 

Central in our findings is that the degree of neural reactivation of the

ncoded episode by the final target object correlated negatively with the

erceived congruence and the participant’s ability to later recognise the

icture in a memory test. The notion that memory reactivation bene-

ts memory formation is well established in previous research. Most

f it showed that the reactivation strength drives long-term memory

ormation by mimicking neural replay phenomena thought to promote

apid consolidation processes seen in rodent studies ( Carr et al., 2011 ).

ther studies have revealed that when novel encoding inputs reactivate

reviously encoded information that overlaps in content, the long-term

emory representations of the two event contents become integrated,
9 
romoting generalisation and adaptive behaviour ( Schlichting and Pre-

ton, 2015 ; Shohamy and Wagner, 2008 ). Despite the notion that mem-

ry reactivation may potentially benefit memory formation, another

et of findings described the opposite effect. These studies found that

emory reactivation of overlapping memories may yield competition

etween the two, resulting in interference with a negative impact on

emory ( Kuhl et al., 2011 ; see for recent reviews: Brunec et al., 2020 ;

itvo et al., 2019 ). In line with this view, we found a negative correla-

ion between object-picture participants’ hits and the degree of elicited

emory reactivation of the preceding event, suggesting an interference

etween the encoding of an incongruent item and the simultaneous

emory reinstatement of the just encoded event. 

Our findings that surprising or unexpected elements of the unfolding

xperience elicited the rapid reinstatement of the just-encoded picture

equence are in line with previous findings that showed that sudden

hifts in an ongoing episodic context (i.e., event boundaries) induce the

apid reactivation of preceding episodic information ( Silva et al., 2019 ;

ols et al., 2017 ). Event boundaries are thought to represent moments

n time whereby a continuous stream of incoming information is seg-

ented into different memory units ( Zacks et al., 2011 ). In this model,

he process of event segmentation starts when our current understand-

ng of the world is destabilised by a new observation that does not fit

ur current expectations. Viewed from this perspective, high levels of

urprise (defined here as a high degree of inconsistency of the object

icture to the schema or internal model representation activated during

he preceding episodic sequence) refer to a substantial change in our un-

erstanding of the current inputs from experience. This engenders addi-

ional resources to re-evaluate the current internal model in the face of

he new observation, which may benefit from the greater reactivation
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Fig. 6. Neural similarity results. (a) Time- 

resolved degree of neural similarity between 

EEG patterns elicited by picture images from 

the episodic sequence and EEG patterns elicited 

during the encoding of the associated picture 

object. Grey dashed line shows the ± 50 ms 

time window where neural similarity reached 

the peak (190 ms – 290 ms at encoding time). 

(b) Beta estimates (thick black line), confi- 

dence intervals (grey lines) and associated t 

values for fixed-effect Memory (upper) Con- 

gruence (middle) and Sequence order (lower) 

resulting from the LMM analysis on averaged 

similarity value over the peak (190 ms – 290 ms 

at encoding time) along object encoding pe- 

riod. (c) Time-resolved degree of neural sim- 

ilarity between EEG patterns elicited by pic- 

ture images from the episodic sequence and 

EEG patterns elicited during episodic event off- 

set period. (d) Beta estimates (thick black line), 

confidence intervals (thick grey lines) and as- 

sociated t values for fixed-effect Sequence or- 

der resulting from the LMM analysis on aver- 

aged similarity value around the peak (190 ms 

– 290 ms at encoding time) along the episodic 

sequence offset period. Thick grey lines on top 

of (b) marked the time window exceeding the 

significance threshold ( p < 0.05) with the alpha 

level adjusted with Bonferroni correction. 
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f the memory representations to resolve it. One possible direction for

uture research is to investigate whether the mechanisms behind neu-

al reactivation induced at event boundaries and during the detection

f unexpected events, as observed in the current study, are similar. In

his study, we showed that detecting inconsistencies in an ongoing event

riggers a rapid reactivation of recently encoded event information, fol-

owed by a decrease in neural stability between the encoded episode

nd the incongruent event. We speculate that the degree of neural rein-

tatement may reflect the need to re-evaluate ongoing event content,

hile subsequent changes in neural stability may reflect representa-

ional updates that influence how events are ultimately segmented and

rganized in long-term memory. If this hypothesis is correct, then de-

ecting surprising elements may induce neural reactivation of unfolding

vent memories, but only changes in neural stability may occur when

he surprising element leads to the sectioning off the preceding elements

s a separate event. 

A limitation of the study is that participants were required to evalu-

te the coherence between a swiftly displayed picture object and the pre-

eding episodic sequence, which may have increased the strain on their

orking memory and rekindled the previous sequence, thus constrain-

ng the applicability of the outcome of the study to real-life situations.

nother limitation of the current study is that increased reactivation

f event representations upon the detection of an incongruent element

s not trial-specific, thereby indicating that neural reactivation may re-

ect gist-based or schematic memory representations. This may be ex-

lained because the encoding of picture sequences in our study relied

eavily on the narrative aspect of each stimulus, which emphasized the

ist-like information rather than the perceptual features of each item.
10 
urthermore, our experimental design included episodic events where

he same actor appeared in all episodes, and each depicted different nar-

ative but shared very similar contextual perspectives, such as occurring

n the same house layouts, such as kitchen, living room, and bedroom.

he high degree of contextual overlap in the encoded material may have

ade it challenging to identify trial-unique memory reinstatement be-

ween episodes and picture objects, complicating the sensitivity of our

nalysis. Additionally, already encoded event episodes may induce in-

erference with subsequent encoding trials, making it challenging to dif-

erentiate between trials. For example, Koen & Rugg (2016) found that

sing an AB/AC source memory interference paradigm, the reactiva-

ion of neural activity features shared across numerous events in the

ame category was higher for subsequently remembered AB encoding

rials. However, pattern similarity analysis only revealed item-level re-

ctivation of AB trials during the AC encoding task when the strength

f interference across events was low. 

We found that neural activity shifted into a stable state as the num-

er of pictures consistent with an unfolding schema increased and that

his took place rapidly, within the first 2000 ms from picture onset.

hese findings complemented previous fMRI results that showed activ-

ty invariance during the encoding of different, but schema consistent

pisodes ( Baldassano et al., 2018 ). Leveraging on the fine-grained tem-

oral properties of the EEG signal, the current results, however, extend

revious fMRI findings by showing that the shifts towards neural states

f stability may be seen at two different time windows within the first

000 ms from cue onset. First, at an early stage, within the first 250 ms

rom picture onset, and at a later one, after ∼1000 ms from picture

nset. We interpret these two temporal windows of neural stability as
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eflecting different processes. The early time window may be influenced

y early perceptual processing, including visual and category properties

f the input stimuli. Indeed, temporally resolved decoding approaches

n humans have shown that the discrimination of visual images and their

lassification into categories occurred within the first 250 ms after from

heir presentation onset ( Cichy et al., 2014 ). In the context of the current

tudy, pictures presented within each episodic sequence shared similar

chematic representation, which included visual properties of the stim-

li itself (such as the spatial layout) and the stimulus category. For exam-

le, images from Fig. 1 a, depict the sequence of activities from a person

n the same kitchen. This visual image correspondence between pictures

rom an episodic sequence may gradually promote the gradual facilita-

ion of visual discrimination and categorization as the episode unfolds,

hich may, in turn, lead to the increased neural state of stability at

arly temporal windows throughout episodic sequence encoding in our

ata. 

We also found that shifts towards neural states of stability can be

een in a later time window, at ∼1000 ms from picture onset, and that

eural stability gradually increased as the number of schema consis-

ent picture images were presented and that it was disrupted upon the

resentation of a picture object perceived as lowly congruent with the

receding episode. While the exact nature of this later state of neural

tability fluctuation is uncertain, our finding that it is disrupted by the

etection of a schema incongruent element lends support to ERP liter-

ture that found late ERP amplitude modulations (after ∼900 ms from

timulus onset) reflecting the results of an expectancy match/mismatch-

elated processing between the incoming information and the preceding

ctivated schema information (e.g., Höltje et al., 2019 ). Additionally,

hile extensive electrophysiological evidence showed that mnemonic

rocesses can take place rapidly in humans, i.e., within the first 1500 ms

rom a reminder onset (e.g., Rugg and Curran, 2007 ; Yonelinas, 2002 ),

 recent proposal suggested that visual cues can render the activa-

ion of mnemonic associated information via a cascade progression

 Staresina and Wimber, 2019 ). According to this proposal, first, infor-

ation would enter the hippocampus in a feedforward fashion allow-

ng a fast old/new computation between the current and the available

nformation in memory. This would then be followed by pattern com-

letion mechanisms at approximately 500 ms after a cue onset, which

ould trigger a sustained activation of an associated memory trace be-

ween 500 and 1500 ms. We interpret, thus, our findings in line with

he possibility that late stages of neural stability reflected an end point

nemonic processing accounted by several preceding cascade stages

f processing, being some of them reflected by the amplitude modu-

ation of the N400 ERP (i.e., reflecting early stages of mismatch de-

ection of an unexpected element from the expected schema-consistent

pisode) and reinstatement of the just encoded episodic memory

nformation. 

In summary, the current study offers three new findings. It shows

hat the detection of low-congruence elements of an episodic experi-

nce elicited a rapid memory reactivation of the just-encoded event

nformation; that this is concomitant to a mnemonic prediction er-

or signal during encoding; and that the result of this computation

everages the disruption of stable patterns of neural activity elicited

uring the schema-consistent episodic event. These findings inform

s about the rapid but sequential structure of the distinct neural

echanisms supporting the detection of incongruencies during en-

oding and their consequences on memory. We speculate that these

ame processes may take place in realistic scenarios of our everyday

xperience. 
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