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ABSTRACT
◥

Background: The multifactorial risk prediction model BOADI-
CEA enables identification of women at higher or lower risk of
developing breast cancer. BOADICEAmodels genetic susceptibility
in terms of the effects of rare variants in breast cancer susceptibility
genes and a polygenic component, decomposed into an unmeasured
and a measured component - the polygenic risk score (PRS). The
current version was developed using a 313 SNP PRS. Here, we
evaluated approaches to incorporating this PRS and alternative PRS
in BOADICEA.

Methods: Themean, SD, and proportion of the overall polygenic
component explained by the PRS (a2) need to be estimated. a was
estimated using logistic regression, where the age-specific log-OR is
constrained to be a function of the age-dependent polygenic relative
risk in BOADICEA; and using a retrospective likelihood (RL)

approach that models, in addition, the unmeasured polygenic
component.

Results: Parameters were computed for 11 PRS, including 6
variations of the 313 SNP PRS used in clinical trials and imple-
mentation studies. The logistic regression approach underestimates
a, as compared with the RL estimates. The RL a estimates were very
close to those obtained by assuming proportionality to the OR per 1
SD, with the constant of proportionality estimated using the 313
SNP PRS. Small variations in the SNPs included in the PRS can lead
to large differences in the mean.

Conclusions: BOADICEA can be readily adapted to different
PRS in a manner that maintains consistency of the model.

Impact : The methods described facilitate comprehensive breast
cancer risk assessment.

Introduction
BOADICEA (1, 2) is a risk prediction algorithm for predicting

breast and ovarian cancer risk on the basis of genetic and nongenetic
factors. The algorithm incorporates the effects of common genetic
variants, summarized in a polygenic risk score (PRS), in addition to the
effects of pathogenic variants in major breast cancer susceptibility
genes, other lifestyle/hormonal risk factors, and cancer family history.

The current version (v6; refs. 1, 2) has been specifically developed to
incorporate the 313 SNP PRS ofMavaddat and colleagues (3); this PRS
was developed using the very large data set of the Breast Cancer
Association Consortium (BCAC) and extensively validated in pro-
spective studies. However, as larger genome-wide association studies
(GWAS) and novel statistical methods become available, new PRS are
being continually developed. In addition, PRS developed for clinical
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translation and generated in different health care systems use a variety
of technologies, including both targeted sequencing panels and geno-
typing arrays, and surrogate SNPs are often required. The BOADICEA
algorithm itself is flexible and can incorporate any PRS for which the
relevant parameters are known. These parameters are the mean (m)
and SD (s) of the PRS in the population, and the proportion (a2) of the
polygenic variance attributable to the PRS. In practice, the PRS can be
normalized and supplied as a Z-score, in which case only parameter a
is required. By modelling the PRS as the proportion of a (fixed)
polygenic component, the predicted familial risks remain consistent,
irrespective of the PRS used, and importantly, there is no double
counting of the effect of the PRS and cancer family history.

Here, we discuss the incorporation of alternative PRSs into BOA-
DICEA, and provide the relevant parameters for a number of PRS that
have been developed, including several that are in use in clinical
applications.

Materials and Methods
BOADICEA models breast cancer risks such that the incidence of

breast cancer at age t is of the form (1, 4):

l tð Þ ¼ l0 tð Þexpðdg ið Þ tð Þ þ sP tð Þx ið Þ
P þ

X

r

brzriÞ ðAÞ

Here l0ðtÞ is the baseline incidence. The term dgðiÞðtÞ models the
major gene component for individual i (dkðtÞ being the age-specific

log-HR associated with genotype k). sPðtÞxðiÞP models the polygenic

component, sPðtÞ being the polygenic SD and xðiÞP the normalized
polygenic component for individual i. The final termmodels the effects
of other risk factors. The polygenic variance s2

PðtÞ is allowed to be age-
dependent and assumed to be a linear function of age t:

s2
P tð Þ ¼ g þ �t

The parameters g and � have been previously estimated, using
complex segregation analysis, as 4.86 and �0.06 respectively (4).

The PRS is incorporated into BOADICEA by partitioning
the total polygenic component xP into the sum of a known com-
ponent xK measured by the PRS, and an unmeasured residual
component xR ð1). The variance due to the known component is
of the form (3):

s2
K tð Þ ¼ a2 g þ �tð Þ ðBÞ

sKðtÞ can also be interpreted as the age-specific log-HR per unit SD
of the PRS, conditional on other risk factors. Note that in Mavaddat
and colleagues (3) equation (B) is written s2

KðtÞ ¼ g2ðaþbtÞ. The
change of symbols is for consistency with Lee and colleagues (1) and
the Canrisk platform (www.canrisk.org), where the proportion of the
polygenic variance explained by the PRS is denoted as a2.

Estimation of a and incorporating alternative PRS
The key parameter is a. The first approach to estimating this

parameter makes the simplifying assumption that the polygenic SD
of the known polygenic component in BOADICEA, sKðtÞ can be
approximated by the marginal age-specific log-HR per unit SD of
the PRS (ref. 3; see Supplementary Methods). This can then be
estimated using cohort data or (approximately, making the rare
disease assumption) case–control data, by first transforming the
PRS using:

S0 ¼ xK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g þ �t

p
ðCÞ

where xK is the standardised (per unit SD) version of the proposed
PRS. S0 is then included as a covariate in a Cox or logistic regression
model: the parameter (log-HR or log-OR) estimate corresponding
to the covariate S0gives the required a parameter, which we deno-
te aGLM. This method was applied to 22,767 controls and 16,151
women diagnosed with invasive breast cancer from the validation
and prospective test sets used in Mavaddat and colleagues (ref. 3;
Supplementary Tables S1 and S2). The analysis was restricted to
women of European ancestry with age of diagnosis or last obser-
vation less than 80 years [after application of inclusion/exclusion
criteria, mean age at diagnosis ¼ 59.9 (SD¼ 10) years for cases, and
57.1 (SD ¼ 10.4) years for controls]. Analyses were adjusted for
country in which the study was conducted (15 countries) and 10
principal components.

The above analyses make the simplifying assumption that the
marginal PRS effect size is a good approximation to the effect size
conditional on other risk factors. This is likely to be a reasonable
assumption for nongenetic risk factors, which have relatively small
effects on risk and appear to be independent of the PRS, as shown in
recent analyses of the combined effect of breast cancer PRS and
individual SNPs with life-style/environmental risk factors including
questionnaire-based factors (5–10). However, it may not be true for
other genetic factors, in particular the unmeasured polygenic com-
ponent. Although the PRS and the residual polygenic component are
assumed to be conditionally independent, individuals with a high
polygenic component are more likely to develop the disease at an early
age. This results in a negative correlation between the PRS and the
residual polygenic component at later ages, which leads to an under-
estimation of the PRS effect size if the latter is not allowed for. To
address this problem, we also estimated a using a retrospective
likelihood approach ðaRL), applied to the same BCAC data set. In
this analysis, the observed PRS is computed conditional on the
phenotypes of the individuals (age of diagnosis and case–control
status), explicitly allowing for the unmeasured polygenic component.
Details are given in the Supplementary Methods. This approach
requires overall population age-specific incidence rates to be specified.
For this purpose, the rates for England and Wales 2016–2018 were
used (https://www.cancerresearchuk.org/health-professional/cancer-
statistics/incidence/age).

Because the mean PRS varies by country, we first regressed the PRS
on country and principal components, adjusted for case–control
status, and performed the analyses on the residual PRS. The likelihood
was maximized using the optimize function in R. 95% confidence
intervals (CI) were obtained using a grid of values for aRL, and finding
the difference between the log-likelihoods and the maximum log-
likelihood.

As a third approach, we derived an approximate estimate a from
the log-OR per unit SD (h), by calibrating against PRS313 as a
standard. From equations (A) and (B) in the methods above it can
be seen that, under the rare disease assumption, the marginal HR
associated with the PRS should approximate the conditional HR. If
differential age effects can also be ignored, a should therefore be
approximately proportional to h. This allows a to be estimated
using PRS313 as a standard. Thus: aAPP ¼ h

h0
a0 where h0 and

a0 are the corresponding estimates for PRS313. This provides a
simple method that could be applied to PRS developed and vali-
dated on a different data set.

We computed the relevant parameters for PRS313 and 10 additional
PRS [Supplementary Tables S3 and S4; SNP positions based
on Genome Reference Consortium Human Build 37 (GRCh37)].

Mavaddat et al.
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PRS313 includes two variants (22_29203724_C_T and 22_29551872_
A_G) which are correlated with the protein truncating variant
CHEK2�1100delC, and some of the derivative PRS also include these
SNPs. This could result in overestimation of risk in CHEK2�1100delC
carriers if the PRS is used in conjunction with gene-panel testing,
because BOADICEA assumes that the PRS and major gene
genotypes are independent in the population. We therefore also
considered PRS without these variants. (Note that CHEK2 p.I157T
(22_29121087_A_G) is also included in PRS313 but is only weakly
correlated with CHEK2�1100delC and does not introduce a bias). The
means and SDs of each PRS, and the proportion (a) of the polygenic
variance attributable to these alternative PRS were derived in the same
data set (Supplementary Tables S1 and S2), namely the validation and
prospective sets described by Mavaddat and colleagues (3).

All studies included in this analysis were approved by the relevant
local ethical review boards and used appropriate consent procedures.
SEARCH was approved by the NRES Committee East of England -
Cambridge South.

Data availability
Data were generated by the authors and is available on request.

Results
PRS examples

Eleven alternative PRS were constructed. Six of these are modifica-
tions of the PRS313, designed for clinical implementation. The
BRIDGES PRS was developed as an next-generation sequencing
(NGS) panel test to facilitate clinical translational studies of BOADI-
CEA implemented in the context of genetic testing of women with a
family history (https://bridges-research.eu/). Of 313 variants, 295
could be designed and a further 11 were replaced by surrogate markers
(r2 > 0.9 in Europeans). The PERSPECTIVE I&I PRS was designed to
facilitate risk stratified screening in the context of population-based
mammographic screening in Ontario and Quebec (11). This PRS was
designed as an NGS panel: 287 of 313markers could be designed and a
further 8 were surrogates. The EastGLH PRS was designed by the NHS
East Genomic Laboratory Hub for use in a randomized control trial of
women testing positive for an inherited pathogenic/likely pathogenic
gene variant inBRCA1, BRCA2, PALB2,CHEK2, orATM, using aNGS
panel of 303 markers (12). The PRISMA PRS, designed as genotyping
array of 268 markers (37 surrogates), was developed to provide
multifactorial cancer risks to women attending genetic clinics in Spain.
The eMERGE PRS consisted of 308 markers and is part of a large US
study aiming to communicate PRS-based genome-informed risk
assessment across multiple diseases (https://emerge-network.org).
DBDS299, using data from the Danish Blood Donor Study (https://
bmjopen.bmj.com/content/9/6/e028401) is used in a research study
to validate BOADICEA in the Danish population. In addition, we
included the earlier PRS77 developed using BCAC data and com-
prising genome-wide significant SNPs, PRS3820 developed by
Mavaddat and colleagues (3) using Lasso penalized regression, and
two PRS (WISDOM75 and WISDOM120) developed for the WIS-
DOM clinical trial (ref. 13; Clinical Trials identifier NCT02620852).
We also considered all of the above PRS without 22_29203724_C_T
and 22_29551872_A_G, SNPs correlated with CHEK2�1100delC, as
described in Materials and Methods.

PRS parameters
Table 1 summarizes the estimated parameters for PRS313 and each

of the alternative PRS. As expected, the 6 PRS that are variations on

PRS313 have very similar effect sizes, expressed as log-OR per 1 SD,
reflecting the fact that only a few variants are not accounted for. The
aRL parameters for these 6 PRS are also similar, and only marginally
lower than PRS313 estimate (0.441; 95% CI, 0.430–0.445). The effect
sizes for PRS77 (both in terms of the log-OR per 1 SD and a) were
smaller than for PRS313, while PRS3820 had larger effect sizes. The
two WISDOM and PRISMA PRSs also had somewhat smaller effect
sizes than PRS313. Removal of the 2 chromosome 22 SNPs had only a
small effect on the estimated log-OR per 1SD, and a – for example
reducing aRL from 0.441 to 0.439 for PRS313. The a values computed
using the simpler logistic regression approach (aGLM) were smaller
than those generated using the aRL for all PRS.

We note that the aRL are approximately proportional to the PRS
effect sizes, expressed as odds-ratio per 1 SD (Table 1; Fig. 1). Using
the PRS313 as the standard, the predicted a value assuming propor-
tionality is given byaAPP ¼ 0:887h (Table 1;Fig. 1). These predicted
values were very similar to the aRL values for all PRS.

Discussion
We evaluated approaches to incorporating alternate breast cancer

PRSs into the risk prediction algorithm BOADICEA. The a values
computed using the simpler logistic regression approach (aGLM) were
consistently smaller than those generated using the aRL, for all PRS.
This difference can be explained by the fact that the logistic regression
approach does not account for the residual component.Womenwith a
high polygenic component are more likely to develop the disease at an
early age, resulting in a negative correlation between the PRS and the
residual polygenic component, which leads to an underestimation of
the PRS effect size if the latter is not allowed for, a phenomenon related
to index event bias (14).

We showed further that the a parameters derived from the log-OR
estimate by assuming proportionality were very close to the aRL

estimates. This suggests that this approach is likely to be reasonably
accurate for other PRS, at least across the range of effect sizes
considered here, providing a very straightforward approach to incor-
porating a PRS developed on another data set if a log-OR estimate is
already available.

A striking observation is the very large difference in themeans of the
different PRS. This reflects the fact that the removal of a few SNPs with
important weights can have a substantial effect on the mean. For
example, the means for the PRS excluding the chromosome 22 SNPs
are higher. While the mean has no intrinsic significance, this empha-
sizes the importance of correctly normalizing the PRS. In particular,
because BOADICEA also incorporates the effects of CHEK2 protein
truncating variants, we recommend using the PRS without these SNPs
when gene-panel testing is performed.

It is important to note that estimates derived from European
ancestry populations may not be applicable to individuals of other
ancestries. The effect sizes may differ among populations, for example
due to differences in linkage disequilibrium structure. This has been
shown for PRS313, for which somewhat smaller effect sizes have been
estimated in Asian and African-American populations (15–18). In
addition, the mean PRS can vary significantly by population—PRS313
has a higher mean in both Asian and African-American populations
than in Europeans. This again emphasizes the importance of calibrat-
ing the PRS to the relevant population distribution. The argument that
the aRL is preferable and provides a more reliable estimate of a should
also hold in non-European populations.

The analyses used here adjusted the PRS for both the country in
which the study was conducted and ancestry informative principal

Incorporating Alternative PRS within Risk Prediction Models
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components. An adjustment is necessary because the mean PRS
varies by country, even among European populations (and this is not
reflected in differences in incidence rates). However, it is possible that
adjustment for both country and principal components is over-con-
servative. Further analyses in large population-specific data setsmay be
able to address this.

The approaches described allow BOADICEA to be adapted
for use with any PRS in a consistent manner. However, it should
be emphasized that the main validations of BOADICEA used
PRS313 (19–23). For PRS that are substantially different, and
particularly as more informative PRS are generated through larger
GWAS, further prospective validation in independent external data
sets will be required. We also note that the current formulation of
BOADICEA assumes that the age-specific effects of the PRS and the
residual polygenic component (as measured by the log-HR per 1
SD) are proportional. This significantly simplifies the algorithm, but
it is possible that better predictions may be available by allowing
differential age-specific effects.

The BOADICEA algorithm has been extensively validated, partic-
ularly when incorporating PRS313 (19–23) in addition to other risk
factors. It is available through the CanRisk (www.canrisk.org) tool (24)
and is widely used in the context of women with cancer family history
or undergoing gene-panel testing, including several ongoing clinical
implementation studies. The CanRisk tool provides the facility to
incorporate a PRS as a Z-score, providing that the a parameter is
known. The methods described here allow other PRSs to be used with
BOADICEA via CanRisk and hence facilitate more widespread com-
prehensive breast cancer risk assessment.
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