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Abstract: We train two Deep Learning (DL) classifiers, based on VGG19, using Gravitational
Waves (GW) simulated data. The first of them (from now on, N-S) is capable of distinguishing
between plain noise and a simulated signal with injected noise. The second one (from now on, L-U)
is trained with noisy GW signals and is able to tell if said signals are lensed GW or not. For our
simulations, we consider Binary Black Holes (BBH) systems with spinless members that have masses
between 10 and 80 solar masses. The luminosity distances detector-source lie between 500 and 3500
Mpc and we discard events with Signal-to-Noise Ratio (SNR) smaller than 5 or bigger than 50.
We feed our models with images of the Q transform of these strains of data, finding that VGG19
performs well in both classifications: when classifying the test sets, N-S achieved an accuracy of
100%, while L-U achieved an accuracy of 98%. The conclusion of this work is that it ratifies the
potential GW has, not only in the detection of GW signals, but also in the study of other predicted
effects such as lensing.

I. INTRODUCTION

Since the first detection of a GW on 14 September
2015, the LIGO-Virgo Collaboration has detected more
than 90 events [1, 2]. The beginning of a fourth ob-
serving run this past month of May (O4), the advances
in noise-reduction and the different projects concerning
new detectors (LISA, LIGO India, etc.) demonstrate the
importance that GW search is going to adopt in Astron-
omy during the following years. The recollection of big
amounts of data will facilitate the study of things like the
equation of state of neutron stars or the Hubble tension,
while being a tool for testing General Relativity (GR)
predictions, such as lensing (GR predicts that GWs can
be lensed by big amounts of mass, just like light does).
To this day, none of the more than 90 events has been
proved to be a lensed GW.

In this context of data recollecting, we find ourselves
in the need of technology capable of analyzing this data
in a fast and trustworthy way. For this task, Machine
Learning (ML) has been proved to be a good tool. The
combination of ML techniques, together with the tradi-
tional GW search methods (Matched Filtering (MF) [3]
for detection and Bayesian methods for parameter esti-
mation), could save researchers time, while retaining the
same levels of accuracy.

There have been many previous studies that have con-
sidered the use of ML for GW search. In [4], Kim et al.
improved the efficiency of traditional statistical methods
for detection by using an artificial neural network, and
suggested to combine these methods. The cited article
was received and revised in 2015 before the first detection
of a GW. In [5], Jiang, Yang and Li were able to detect
all 41 events from O1, O2 and O3a using a Convolutional
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Neural Network (CNN). Furthermore, this network was
able to analyze 4096 seconds of data in 21 minutes, and
the authors achieved a False Alarm Ratio (FAR) of one
false positive in a two months period. In [6] and [7],
Kim et al. applied VGG (a CNN) for the search of lens-
ing phenomena in detected GW events. Although these
models achieved high accuracy when tested, they did not
find lensed GW among the studied events. In [8], Jin
et al. used the 2D-UNet algorithm, a CNN created in
the context of medical image recognition, to detect GWs
with accuracy. They argued that this neural network
could even find prior masses for parameter estimation,
which would save significant time in this task. In adidi-
tion to event detection and parameter estimation, ML
has proven useful for other GW-related topics. A good
example is Gravity Spy [9], a ML model capable of clas-
sifying more than 20 different types of glitches.
The objective of this project is to draw a first approach

to the use of ML in GW search by training VGG19, a
well-known CNN, so that it can distinguish different im-
ages of simulated data in the time-frequency domain into
the categories Lensed Signal, Unlensed Signal or Noise.
Section II is dedicated to explaining the procedure for ob-
taining the simulated data, the ranges of parameters used
and the shape of the different datasets. Some information
about the type of data we work with in GW search will
be given. In section III, the reader will find all the neces-
sary information concerning the trained models, from the
structure of these to the training process. Finally, sec-
tion IV presents the results after the testing phase and
section V states the conclusions of this dissertation.

II. THE DATA

The usual procedure would be training our models with
real data, but nowadays we have only detected around 90
events. Luckily, GW data can be easily simulated, and
simulated data of GWs has been used before in ML mod-
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els with excellent results. But before going into detail, it
is necessary to talk about the different data we use when
studying GWs. The interferometers measure the differ-
ential change of the length of the arms of the detector,
giving us a temporal series of the strain of the signal h(t)
that looks like FIG. 1:

FIG. 1: Time series of a simulated GW with injected noise. In
blue we can see the hidden signal (upper image). The second
image shows the whole strain, without highlighting the signal.

As this figure shows, it would be impossible to find the
signal in the time series. This is much easier to spot in
the time-frequency domain, as it is shown in FIG 2:

FIG. 2: Q-transform of the time series in FIG. 1. Notice how
the signal has become visible.

FIG. 2 is obtained from the strain data used to plot
FIG. 1 by applying what is called a Q-transform, a type
of time-frequency transform that has some special ad-
vantages in front of other types of transforms [10]. The
reader can find more details about the Q-transform in
[11]. For now, it is enough to say that this transform has
proven to be very useful in GW search.

Since FIG. 2 gives us a more visual representation than
FIG. 1, we choose this type of data for training our CNNs.
The reason is that these networks are specialized for find-
ing differences between images.

A. Noise

We generate more than 20,000 images of Q-transforms
of strains of data without signals hidden. Instead of us-
ing white noise, we use colored noise, which is Gaussian
noise with a frequency-dependent variance; white noise,
on the other hand, has frequency-independent variance.
This makes our data more realistic. In order to give the
model noise templates as realistic as possible, we use the
Power Spectral Density (PSD) from three detectors: the
two LIGO detectors (Handford and Livingstone) and the
Virgo detector (Pisa). These densities are well-known
and can be found in different Python libraries such as
PyCBC [12]. They model the probability of finding noise
at each frequency. The images have a duration of 2 sec-
onds, and the PSDs from the three mentioned detectors
are used randomly when generating each image. Once we
have all the images, we divide them in three sets: around
18,000 will be used as training set (the images the model
will use for training), 1,000 as validation set (these im-
ages help us controlling some issues that could happen
during training such as over-fitting, a phenomenon that
takes place when the model performs good when classi-
fying the training set, but is unable to generalize) and
1,000 as test set (this set will be used to evaluate the
model performance over images that it has never seen).

B. Unlensed Signals

We generate around 10,000 images of Q-transforms of
BBH mergers in which noise from the mentioned PSDs
has been injected. The black holes considered are spinless
and they are taken to be perfectly oriented with respect
to the source. We use the IMRPhenomPv2 templates
from PyCBC library with no spin or precession included.
The masses are randomly generated following a log-
uniform distribution between 10 and 80 solar masses. For
each pair of masses, we generate 10 different images with
different luminosity distance. This distance lies in the set
{500, 750, 1000, 1250, 1500, 1750, 2000, 2500, 3000, 3500}
(in Mpc). All simulated events have SNR between 5 and
50. We use around 9,000 images for training, 500 for
validation and 500 for testing.

C. Lensed Signals

Just as waves of light undergo lensing when interact-
ing with a convex-shaped material, gravitational waves
can experience a similar phenomena. In practice, this
could be found in magnified signals, multiple images of
the same signal and other patterns that could be distin-
guished by ML models [6, 7]. We generate around 10,000
images of Q-transforms of lensed BBH mergers with in-
jected noise. Here, we consider the microlensing case, for
which two virtual images interfere. These images have
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the same characteristics than the simulated unlensed sig-
nals, with the addition of two parameters: a position
parameter y that relates the distance to the source and
to the lens, and that is randomized uniformly between 0
and 1, and the time delay ∆t, related to the mass of the
lens [13]. This last parameter is randomized uniformly
between 0.225ms and 0.5 s, and it tells us the delay be-
tween the two signals received consequence of the lensing
process. We use around 9,000 images for training, 500
for validation and 500 for testing.

Note: All the ranges of parameters mentioned, and the
distributions used, have been taken from the different ref-
erences involving training of ML models, adapting them
to the characteristics of our data and models. Also, since
images are taken or deleted depending on their SNR, the
size of the training, validation and test sets vary. This
is not a problem since, although this number is not the
same, in each set, the number of images of each class is
compensated.

FIG. 3: Distribution of masses for the lensed and unlensed
signals, differentiated by the set they belong to. Notice
that, since we used a log-uniform distribution, low masses
are slightly more common.

III. THE MODELS

Once we have simulated all the data, we can train our
models with it. Before discussing the two models trained
for this project, some context about DL, and CNNs in
particular, is needed [14]. DL is a branch of ML based on
the use of artificial neural networks, which are complex
ML models formed by an input layer receiving informa-
tion, some hidden layers performing different tensor op-
erations and an output layer giving results. These layers
can be connected in different ways, depending on the
architecture of the network. They are called ”neural net-
works” because they are inspired in how the brain works,
although it is not clear at all that the brain works in the
same way neural networks do. The basic unit building the

layers is called neuron. Their first advantage in front of
traditional ML models is the non-linearity of DL models,
which makes possible modelling really complex systems.
Probably, the most well-known kind of neural networks
are CNNs. These networks, based on convolution opera-
tions (basically, matrix multiplications), are really good
when working with images, and they have become almost
ubiquitous in the present.
In order to train DL models, data has to travel the

net back (back propagation) and forth (forward propa-
gation) a certain number of times or epochs, which can
be really time consuming. Nevertheless, the improve-
ment of the GPUs has brought a golden era for neural
networks, due to the time saving provided by paralleliza-
tion of tensor operations. This has allowed both scientists
and companies to create really advanced neural networks,
such as VGG19 [15], a CNN trained with huge amounts
of data. It would be impossible for an undergraduate
student to train a CNN such as VGG19, but luckily we
can count on Transfer Learning and Fine Tuning. These
two ideas are crucial for this project. Basically, neural
networks make their calculations based on a set of pa-
rameters called weights. During the training of a neural
network, what we are doing is looking for the weights
that minimize the error made by the network. Trans-
fer Learning consists on downloading an already trained
model, this is, a model with the optimal set of weights for
a certain task. In the case of VGG19, this task is find-
ing patterns in images. Once we have this pre-trained
network, we Fine-Tune it by freezing part of the weights
(i.e. they will not change during training) and training
just part of the network with our own data, so that the
network specializes in classifying it.

FIG. 4: VGG19 structure. It is made out of 16 convolutional
layers, with some maxpool layers between them, plus 3 linear
layers.

In our particullar case, the procedure has been the fol-
lowing: first, we download an already trained VGG19
network, with the structure of FIG. 4. Then we freeze
the weights of the 16 convolutional layers, and change the
3 linear layers by 4 linear layers adapted to our problem
(VGG19 classifies images in 1000 classes, but we want
to create two models, that classify images in two classes
each). Finally, we train the new 4 linear layers with our
simulated data.
Following these steps, we create two models:

Treball de Fi de Grau 3 Barcelona, June 2023



Gravitational wave search with Machine Learning Roberto Bada Neŕın

1. S-N model: Trained with around 18,000 noise im-
ages and 18,000 signal images (9,000 lensed and
9,000 unlensed) during 15 epochs. We use a learn-
ing rate of 1× 10−5.

2. L-U model: Trained with around 9,000 images of
lensed singals and 9,000 of unlensed signals during
15 epochs. We use a learning rate of 1× 10−5.

In both cases, the number of epochs and the value of
the learning rate (which is a hyperparameter that spec-
ifies the length of the step taken in each epoch when
updating the weights) were chosen by trial and error.

IV. THE RESULTS

Both training processes took around 4 and 3 hours
respectively. In the case of the L-U model, we got the
loss and accuracy plots shown in FIG. 5:

FIG. 5: Upper figure: Shows the evolution of the loss with
the epochs for the L-U model. The loss measures the error of
the network in each epoch. Lower figure: Shows the evolu-
tion of the accuracy with the epochs for the L-U model. The
accuracy measures the percentage of correct classifications in
each epoch.

Plots like these are what we expect when training neu-
ral networks: a smooth approach towards 0 in the case of
the loss and to 100 in the case of the accuracy. The vali-
dation test helped us make sure that over-fitting was not

happening in any of our models. When testing the mod-
els, we got accuracies of 100% for the N-S model and 98%
for the L-U model, which are promising numbers. The
reader can see the confusion matrices for both models in
FIG. 6. We have to be careful, in any case, since our
models may be experts in simulated data, but we do not
know how they would perform with real data yet (this
will be the scope of a future work). Some little modifi-
cations in the datasets may be needed. For example, we
may need to apply a time shift in our signals, since all of
them are set to be at t = 0. This would ensure that our
model could detect shifted signals.

FIG. 6: Upper figure: Confusion matrix for the test set of
N-S. We see that our model achieved a 100% accuracy. This
is promising, since some of the images we used had a SNR
of 5-6, and this signals could be hard to distinguish even for
the human eye. Lower figure: Confusion matrix for the test
set of L-U. We see that our model achieved a 98% accuracy,
which is also a good performance.

We observe that N-S had a test set made out of 1,800
noise images and 1,048 signal images. In total, it an-
alyzed 5,696 seconds of data in minutes, being able to
identify every simulated signal, with no false alarm cases.
This ratifies the useful ML models can be in the future
when analyzing GW data, since they will save researchers
an important amount of time. Similarly, in the case of the
L-U model, the test set had 602 unlensed signal images
and 587 lensed signals, and it was capable of classifying
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them in minutes. In the case of the lensed class, the
model only had a 1.2% false alarm ratio.

V. THE CONCLUSIONS

In the light of these results, we state the following con-
clusions:

1. ML methods are capable of carrying classification
tasks in the context of GW search in a fast and
accurate way.

2. In the particular case of the study of time-frequency
spectrograms, we find that CNNs such as VGG19
perform specially well when differentiating between
noise and simulated signals with injected noise.

3. Also in this context, VGG19 has proved to distin-
guish quite well (98% accuracy) between simulated
lensed and unlensed signals. This is specially excit-
ing, since lensed GWs are yet to be discovered.

4. One of the main strengths about this type of mod-
els is how fast they prove to be in detection tasks.

This characteristic of these models make them per-
fect for being combined with traditional GW search
methods such as MF, which can be excruciatingly
time-consuming.

Final note: The models were trained by the GPU
NVIDIA V100 TENSOR CORE provided by Google Co-
lab.
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