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The random field Ising model at zero temperature (RFIM T=0) is a paradigmatic model of
hysteresis and memory of driven extended disordered systems. Under quasistatic driving these
systems display interesting properties such as return-point memory (RPM) of partial cycles. Here
we show how to solve the T=0 RFIM in the mean-field approximation, and prove that in this simple
approximation the model still displays hysteresis, though only for sufficiently narrow distributions
of random fields. We simulate partial hysteresis cycles and first-order reversal curves (FORC) for
this case, and show that the T=0 RFIM in the mean-field approximation verifies also the RPM.

I. INTRODUCTION

Hysteresis is a highly recurrent phenomenon in the
fields of condensed matter physics, materials and meta-
materials, hydrology, biology, engineering and robotics,
as described in the 3-volume book series The Science of
Hysteresis [1].

Hysteresis, from the greek “lagging behind”, is the
dependence of the state of the system on its history.
Broadly speaking, hysteresis can be classified into rate-
dependent and rate-independent. The rate-dependent
hysteresis applies when the response of the system and a
periodic external forcing have similar time scales. The
rate-independent hysteresis, also known as quasistatic
hysteresis, applies when the response of the system is
much faster than the time scale defined by the rate of
change of the forcing. This work will focus on qua-
sistatic driven systems, where hysteresis survives even in
the limit of zero driving rate due to disorder, impurities
or the formation of domains. In hysteretic systems, we
apply an external input and the system shows an out-
put (response), which depends on the input history. The
simplest examples are bistable systems, i.e. systems that
have two possible equilibrium states and adopt one or an-
other depending on the past values of the external input.
In this paper we will adopt the formalism of magnetic
systems: the input is the external magnetic field, H, and
the output is the magnetization of the system, M [2].

Hysteresis loops, see Fig. 1,show the possible magne-
tization values for the system. For the extreme values of
H, positive and negative, the magnetization saturates to
its limiting values. In between, there are all the possible
values of M. Partial loops are inner cycles attached to the
main loop, and occur when the external field is reversed
before the system reaches one saturated magnetization
value. Then, before the system reaches the other sat-
urated value of the magnetization, the field is reversed
again. Eventually, the system returns to the same state
in the main loop. This is known as return-point memory
(RPM).

Memory is the faculty by which a system stores and
remembers information. We can assume that a system

FIG. 1: Magnetization vs applied magnetic field of a typical
uniaxial ferromagnet. Shown are the main hysteresis loop and
a partial loop. Figure from Ref. [2].

which is not fully relaxed to equilibrium may retain infor-
mation of its previous states. On the contrary, a system
in equilibrium has no memory of its past. Accordingly,
hysteresis cycles have memory while they are not on a
saturated state and they will erase all the information
once they are saturated, relaxed.

Hysteresis emerges in all kinds of dissipative prob-
lems where the underlying microscopic processes are ir-
reversible. At the microscopic scale the free energy land-
scape of the system dictates the minima where the sys-
tem can be found. For a bistable system the free energy
landscape has only two minima because the response of
the system only takes two different values. If a bistable
system is not externally forced, and thermal fluctuations
can be neglected (T = 0), it will remain frozen in its ac-
tual equilibrium state. However, by varying the external
field, see Fig. 2, the system is forced and the free energy
landscape is distorted. The system loses stability and
jumps from one equilibrium state to the other. During
the jump, part of the energy is dissipated, making the
process irreversible. Hysteresis is the macroscopic man-
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FIG. 2: Sequence of free energy landscapes of a bistable sys-
tem, for varying H. The first sequence is for increasing exter-
nal field. The system evolves from a state with negative mag-
netization to a state of positive magnetization. The second
sequence is for decreasing external field. The magnetization
jumps back from positive to negative. The presence of the en-
ergy barrier makes the two jumps to occur at different values
of the magnetic field, giving rise to a hysteresis cycle. Figure
adapted from Ref. [2]

ifestation of energy dissipation. In extended disordered
systems the free energy landscape is rugged, with many
metastable minima of varying height separated by large
energy barriers. When the system is externally driven
with H, it goes irreversibly from one metastable equi-
librium to another, eventually through an avalanche of
nonequilibrium transitions known as Barkhausen jumps.

There are two noteworthy family models that approach
this phenomenon. On the one hand, the Preisach model,
introduced by F. Preisach in 1935 [3], which is a black
box model based on hysterons. A hysteron is an opera-
tor that gives a rectangular response depending on the
field applied. It is considered that the switching value
of the external field of the hysterons from down to up is
α and the value for the switching from up to down is β,
therefore it is assumed that α ≥ β [4]. The output of
the elementary operators (hysterons) can only take two
values ±1, they can be interpreted as two-position oper-
ator, corresponding to γ̂αβH = ±1. The global response
of the system can be obtained as the sum of the response
of the hysterons of the system, with an arbitrary weight
function, µ(α, β), that represents the population of op-
erators with switching values α and β. In this model the
magnetization is given by:

M(t) =

∫∫
α≥β

µ(α, β)γ̂αβH(t)dαdβ. (1)

The distribution µ(α, β) may be found from the first or-
der reversal curves (FORC), Ref. [5]. These curves are
attached to a branch of the main loop. They are formed
when a monotonic increase of H(t) is followed by a sub-
sequent monotonic decrease down to saturation, see Fig.
4. Equivalentlly, a FORC could depart from the decreas-
ing magnetization branch all the way up to the positive
magnetization saturation value. Although the Preisach
model reproduces characteristics of hysteresis quite well,

it is phenomenological, and it is hard to link it with the
physics of the hysteretic systems.
On the other hand, there is the zero-temperature Ran-

dom Field Ising Model (T = 0 RFIM) introduced in this
context by Sethna et al [6]. It is based on the Ising model,
hence it is a reticular model and it is fluctuationless since
it is studied at 0 temperature. The hamiltonian reads:

H = −J
∑
⟨i,j⟩

sisj −H
∑
i

si −
∑
i

bisi. (2)

Each spin, si, interacts with its nearest neighbours, with
an external field, H, and a random local field, bi. J is
the magnitude of the exchange interaction. The flipping
value of a spin depends on its interactions. Depending on
the variation of the external field and its nearest neigh-
bours, the spins of the lattice will be set in a way that
minimizes the energy of the system. At zero tempera-
ture the hamiltonian coincides with the free energy of
the system, which can be written as:

H = U −HM, (3)

where U is the internal energy of the system and HM is
the product of the two conjugate variables through which
we vary the energy of the system. In a multispin system
with frozen disorder, the free energy landscape becomes
a rugged free energy landscape with multiple minima.
Thus, a variation of the external field or a change in
the magnetization will distort the free energy landscape
and may induce a spin flip. In turn, the free energy
landscape will be, again, modified and might induce the
flip of another spin and so forth, causing an avalanche
of spin flipping. An avalanche could be described as the
transition of the system through non-equilibrium states
until it reaches again a metastable state.
An alternative model of hysteresis is the mean-field

model of Lim and Saloma, inspired in the mean field
solution of a reticular model with delay, but written in
continuous instead of discrete variables [7].
The aim of this research is applying the mean-field

approximation to the T=0 RFIM and prove that it has
return-point memory. The mean-field approximation is
a theory where the interactions among the neighbours of
the lattice are treated approximately. They are replaced
by an interaction with an average field. Therefore, the
correlations of the fluctuations (the spin flips) are disre-
garded. The expression of the average field, or mean
effective field, can be easily found, just replacing the
value of each local magnitude for the mean value. Then,
each spin sees the same effective field and the many-body
problem becomes a single-body problem. On the whole,
the theory does not take into account the positions in the
lattice and relies on the self-consistency condition

⟨si⟩ = ⟨sj⟩. (4)

This report is organized as follows: first the mean-
field approximation of the T=0 RFIM is exposed in Sec.
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II. The results obtained with mean field theory for the
simulation of the RPM are presented in Sec. III. Finally
in Sec. IV we draw the conclusions of the investigation.

II. MEAN-FIELD APPROXIMATION OF THE
T=0 RFIM

The random field Ising model is a model that describes
the state of the system by means of the orientation of
the spins in the lattice. The orientations can only be
up (+1) or down (-1), si = ±1. The hamiltonian of
the model, Eq. (2), is built by the three interactions of
the spins contained in H. The random field is specific
of each lattice site and follows a statistical distribution,
which adds disorder to the system. This research will
take the gaussian distribution with mean value ⟨bi⟩ = 0,
and the variance of the distribution, σ, will be subject of
study.

Firstly, note that a new variable, the local field Fi act-
ing on the spin i can be defined by factoring out the spin
si:

H = −
∑
i

Fisi, (5)

where Fi accounts for the interaction of the spin with its
neighbours, the external field and with its local random
field:

Fi = J
∑
⟨j|i⟩

sj +H + bi. (6)

In mean-field approximation, by reason of Eq. (4), the
sum over j can be interpreted as the magnetization per
spin multiplied by the number of nearest neighbours of
a lattice site (the coordination number, z). Then, in
the thermodynamic limit, according to Ref.[8], the state
equation of the system becomes:

m = tanh(βzJm+ βH + βbi), (7)

where β stands for 1/kT and k is the Boltzmann con-
stant. For T = 0, β → ∞ and the tanh becomes a step
function between m = −1 and m = +1. Then, the con-
dition for a spin to flip corresponds to the argument of
the tanh equal to zero. The values of the external field
that satisfy this condition are given by:

H = −zJm− bi. (8)

These are the only values that will cause a change of
the magnetization. Starting at the equilibrium point,
m = −1, H = −∞, all spins are pointing downwards, the
condition for the first spin to flip (the spin with largest
random field, b1) will therefore be:

H1 = −zJ(−1)− b1. (9)

The corresponding magnetization after this spin flip is:

m = 1− 2p(b1), (10)

where the factor 2 arises from the change of the spin 1
from -1 to +1. Iterating this procedure to the k spin with
random field bk, we obtain that the corresponding spin
flip takes place at:

Hk = −zJ

(
1− 2

k−1∑
i=1

p(bi)

)
− bk, (11)

where the term in brackets is the magnetization of the
system before this spin k flips. Once the new spin flip
has taken place, the new magnetization is:

m = 1− 2

k∑
i=1

p(bi). (12)

Bringing it to the continuum limit, this expression be-
comes:

M = 1− 2

∫ −zJM−H

−∞
p(b)db, (13)

where we have used that the upper limit is given by Eq.
(8), i.e. b = −zJM − H. We have thus obtained a
mean-field self-consistency condition for the metastable
equilibrium values M(H).

It is remarkable that the result of the mean-field ap-
proximation depends on the variance σ of the distribu-
tion (through p(b)) but not on the spatial dimensionality
of the system. In this approximation the interactions
among the neighbours are replaced by the interaction
with an effective field, for which the dimension of the
system becomes irrelevant but the size of the system and
the variance of the distribution do not. The variance is a
measure of dispersion that takes into account the spread
of all local random fields; for large variance the local ran-
dom fields will be very spread in magnitude and the flip
of a spin will, typically, not induce another spin flip. On
the contrary, for smaller variances the random local fields
will be similar and a single spin flip may induce an in-
finite avalanche of all the spins. On the other hand, for
a given variance, the size of the system will make the
distribution more or less populated. Therefore the size
of the system will have an opposite effect to the vari-
ance σ. The critical variance, σC , defined as the value
of the variance for which a single point of the loop has
infinite slope, dictates the change of regime. According
to Ref. [9], σC = 0.798. However, in small systems and
for σ = σC , hysteresis appears before a point of the loop
has infinite slope. For that reason, the value σC = 0.798
is only valid in the thermodynamic limit, where N → ∞.
It is worth noting that in the mean-field approximation
the system shows hysteresis only for σ < σC , as shown in
Fig. 3. In this regime, the coupling between neighbouring
spins is more important than the amount of disorder of
the system. In this condition, the values of the random
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FIG. 3: Magnetization vs applied magnetic field for a sys-
tem with 105 spins in mean-field approximation for the three
regimes. From top to bottom: variance σ < σC , variance
σ = σC and variance σ > σC , with σC = 0.798 [9].

fields will be more similar and big avalanches are more
likely. Avalanches will cause energy dissipation and irre-
versibility, therefore, hysteresis cycles. This effect is more
important in the mean-field approximation since in this
approximation the position of the spins is not relevant
but the distribution of the local random fields is.

III. MEAN FIELD RETURN-POINT MEMORY

One of the exceptionalities of the T=0 RFIM is that it
was the first model to prove an interesting memory prop-
erty such as the RPM from physical arguments. This
property is observed in many hysteretic systems in the
quasiestatic limit. It is closely related with the wiping-
out property. Systems with RPM are able to store mem-
ory of its past states and are able to go back to those ex-
act states under proper conditions. On the other hand,
the wiping-out property ensures that when the system
returns to a state (H,M) where it has already been, the
memory of the past states in this inner loop is erased.

In the original work of Sethna et al [6], the origin of this
RPM was proved to be associated with a partial ordering
of the microscopic configurations, which was preserved by
the quasistatic dynamics. Under a monotonous excursion
of the driving field, one configuration ahead of another
remains always ahead (the no passing rule introduced
by A. Middleton in the context of charge density waves
(CDW) [10]). This property together with the adiabatic
character of the dynamics makes that a non-monotonic
excursion of the driving field can always be bounded by
two monotonic excursions, and all of them take the sys-
tem to the same final state.

FIG. 4: Magnetization vs applied magnetic field for a system
with 100 spins and variance σ = 0.7. Top: a FORC for
increasing field. Bottom: a FORC for decreasing field.
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We can prove that our mean-field solution of the T=0
RFIM displays also the RPM property. In the mean-
field approximation, this property can be shown only for
σ < σC because it is there where hysteresis appears. We
take a system with σ = 0.7 and N=100, where N is the
size of the system. The FORCs of the system are shown
in Fig. 4. In either the increasing or decreasing field cases,
there are no anomalous crossings of trajectories. This is
related to the fact that the area of the hysteresis cy-
cle in the suitable variables (the conjugated variables H
andM) corresponds to the energy irreversibly dissipated.
The properties of the trajectories in the hysteresis cycles
reflect the restrictions imposed by the first and second
laws of thermodynamics.

FIG. 5: Magnetization vs applied magnetic field for a system
with 100 spins and variance σ = 0.7. The ascending branch is
drawn in red, the descending branch in cian, and the partial
loop in black.

Figure 5 shows the results for a system with the same
characteristics as in Fig. 4 (N = 100, σ = 0.7) but

for another realization of values of the random fields.
It presents a partial loop initiated from the decreasing
branch. The descending trajectory after the partial cycle
rejoins exactly the original descending trajectory at the
return point. The system returns to the exact same state
once the internal cycle is completed. The memory of the
return point is stored exactly for a particular realization
of the local random fields.

IV. CONCLUSIONS

Hysteresis is a wide-interest phenomenon which can
be described with various models. We have applied the
mean-field approximation on the T=0 RFIM, and shown
that the result becomes independent of the spatial dimen-
sionality. In this approximation we have found a recur-
rency relation for the magnetization vs the applied mag-
netic field in the discrete formalism, Eq. (12), and the
corresponding expression for the continuous limit, Eq.
(13). The latter reproduces the results of Dahmen and
Sethna [9]. With this approximation, the system only ex-
hibits hysteresis for σ < σC . We have proved for the first
time that in this regime the hysteresis cycle exhibits also
the return-point memory property, by which the system
recovers its original configuration after a closed cycle in
the M −H parameter space.
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[3] F.Preisach. Über die magnetische nachwirkung. Z.
Physik, 94:277–302, 1935.

[4] I Mayergoyz. Mathematical models of hysteresis.
Springer-Verlag, New York, 1991.

[5] I. D. Mayergoyz. Mathematical models of hysteresis.
Phys. Rev. Lett., 56:1518–1521, 1986.

[6] J. P. Sethna, K. Dahmen, Sivan Kartha, James A.
Krumhansl, Bruce W. Roberts, and Joel D. Shore. Hys-
teresis and hierarchies: Dynamics of disorder-driven first-
order phase transformations. Phys. Rev. Lett., 70:3347–
3350, 1993.

[7] May Lim and Caesar Saloma. Emergence of hysteresis
in a network of nonhysteretic agents with continuous re-
sponses. Phys. Rev. Lett., 88:038701, 2002.

[8] H. Gould and J. Tobochnik. Statistical and Thermal
Physics: With Computer Applications. Princeton Uni-
versity Press, Princeton, 2010.

[9] Karin Dahmen and James P. Sethna. Hystere-
sis, avalanches, and disorder-induced critical scaling:
A renormalization-group approach. Phys. Rev. B,
53:14872–14905, 1996.

[10] A. Alan Middleton. Asymptotic uniqueness of the sliding
state for charge-density waves. Phys. Rev. Lett., 68:670–
673, 1992.

Treball de Fi de Grau 5 Barcelona, June 2023


