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Abstract: The human brain is extremely complex, with multiple spatial scales interacting si-
multaneously. The connectome is a comprehensive map of the neural connections between brain
regions that is useful to delve deeper into the human brain. We studied the multiscale organization
of human brain connectomes and found two symmetries using two datasets from healthy subjects.
First, we measured the multiscale properties at five different hierarchical resolutions and recovered
the previously reported result that they remain self-similar as the resolution is decreased. Second,
we performed a quantitative analysis that shows that the structural features of the connectomes
remain self-similar when using a degree-thresholding renormalization method on the highest resolu-
tion network layer. Our results suggest that the human brain may be working near a critical point,
and that brain regions could be mapped to a hyperbolic hidden metric space, defining distances
that explain the structure of brain connectomes and helping in the development of simulation and

brain reconstruction tools.

I. INTRODUCTION

The human brain, consisting of eighty six billion of
interlinked neurons, is one of the least-understood net-
works from the perspective of connectivity and functional
properties. The reason is simple, we lack maps telling
us which neurons are linked together. Efforts to study
the brain in the field introduced the concept of the con-
nectome. The connectome [I] represents a comprehen-
sive map of neural connections between regions in the
brain, capturing both the structural connections formed
by groups of neurons or the functional connections that
control activity and information flow.

In recent years, research efforts directed to characterize
connectivity in the brain have been focused on detecting
properties found in most real networks at a single spatial
resolution. However, the human brain is extremely com-
plex with multiple scales interacting with one another. In
this study, we investigate the network features of the mul-
tiscale human (MH) connectome at five anatomical res-
olutions using two datasets of healthy subjects obtained
by different imaging techniques.

First, we measured topological properties of the human
connectome at different length scales for different sub-
jects in each dataset, and found statistical self-similarity
as the resolution decreased [2], resembling a fractal. Sec-
ond, the degree-thresholding renormalization [3] tech-
nique was applied to the connectome of the same sub-
jects with the highest resolution scale to show that cer-
tain network properties, particularly clustering, exhibit
self-similarity. To demonstrate that these results were
not trivial, the same measures were performed on ran-
domized versions of these networks.

All the code implemented in this study was developed
using the FORTRAN 90 programming language [10]
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II. DATA AND METHODS
A. Datasets

We used the two datasets analyzed in [2]. One of
the datasets is from the Human Connectome Project
(HCP) which contains multiscale connectomes, obtained
from weighted magnetic resonance imaging (MRI), of 44
healthy subjects. The other dataset is from the Univer-
sity of Lausanne (UL), consisting of diffusion spectrum
MRI data from 40 subjects. The neural fibers, responsi-
ble for transmitting information throughout the nervous
system, and the connectomes were reconstructed using
different techniques indicated in [2].

The nodes in the connectomes represent parcels of cor-
tical and subcortical regions (excluding the brainstem),
and the connections between them indicate the presence
of neural fibers. The layers in the multiscale reconstruc-
tion have 1014, 462, 233, 128, and 82 nodes, which are
labeled as 0, 1, 2, 3, and 4, respectively. The multiscale
parcellation was produced by iterating a coarse-graining
operation to layer 0 and producing successive layers with
lower resolution. Each node corresponds to a larger por-
tion of the brain as the resolution decreases. These net-
works are undirected and unweighted, which means that
the connections have no defined direction and equal in-
tensity.

To provide a comprehensive description of the MH con-
nectome, the adjacency matrix, A;;, is used. The adja-
cency matrix of a N node network has N rows and N
columns, with A;;=1 if nodes ¢ and j are connected and
A;j=0 otherwise. Because the datasets represent sparse
networks, meaning that the average number of connec-
tions per node is low, only a small percentage of Aj;;
elements are nonzero. As an alternative, networks can
be displayed in the form of an edgelist, which is a list
of the network’s links. We used a list of neighbors and
a list of the number of neighbors for each node to avoid
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storing the zero elements of the adjacency matrix.

B. Degree distribution

The most fundamental local property of a network’s
node is its degree: the number of total edges attached
to a vertex, meaning the number of neighbors that it
has in the network. The degree distribution P(k) is the
probability of a node having k neighbors. Sometimes the
complementary cumulative degree distribution Pco(k) is
used, which is the probability of a node having a degree
larger than k. Usually, researchers try to fit empirical
data with power-law degree distributions [4] of the type
P(k) o< k=7 with v > 2, known as fat-tailed degree dis-
tributions. Power-law distribution exhibits the heteroge-
neous character of the network [B], meaning that a few
nodes have a high number of nearest neighbors, while
most nodes have a relatively low number of links. The
fact that the degree distribution can be approximated
by a power law is a first indication of self-similar orga-
nization [6]. It is worth noting that, unlike many real
networks, the human brain connectome may not exhibit
a scale-free property with a power-law exponent in the
range of [2, 3]. Recent studies suggest that the lack of
scale-freeness in human brain connectomes makes it less
susceptible to random attacks [7].

C. Correlations

To measure correlations between the degrees of con-
nected nodes, known as degree-degree correlations, the
conditional probability P(k’|k) could be calculated,
which can be challenging with real data. Instead, it is
more practical to measure the average nearest neighbor
degree, k,,(k), which captures the tendency of nodes to
connect to peers based on their degree [8]. The expres-
sion for ky, (k) is given by Eq. , where Ny, represents
the total number of nodes with degree k, Y (k) is the
set of such nodes, and a;; denotes the adjacency matrix
element connecting node ¢ with node j.

Enn(k):NLk > %Zaz‘jkj (1)
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The clustering coefficient is a scalar feature used to cal-
culate three-point correlations that measures the likeli-
hood that two nodes with a common neighbor are also
connected to one another. It was introduced in social
networks to determine whether a friend of your friend
was also your friend [8]. From a local standpoint, it can
be calculated as the number of triangles (loops of length
three) passing through node ¢, T;, divided by the total
number of possible triangles given the number of neigh-
bors:
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The degree-dependent clustering coefficient [8] can be
measured by defining an average of ¢; over the set of
vertices of a given degree class:

1 2
(k) = — Ci = T; 3
(k) =, ig(:k) Ty A ‘g(:k) i (3)

Because most real-world networks have high clustering,
it is an important measure for capturing correlations.

D. Degree-thresholding renormalization

The degree-thresholding renormalization method [3]
consists of generating a hierarchy of nested graphs from
a given network graph G. This is done by extracting a
subgraph G(kr) for each degree threshold kr =0, 1, 2,...
which includes nodes with degrees greater than kp.

The degree of each node in G(kr) is then recalculated
based on its connections in the subgraph, and the new
neighbors of each node are computed. The degrees of
the nodes are then rescaled by dividing them by the
average internal degree (k;(kr)) in G(kr), resulting in
ki/{ki(kr)).

This process is repeated for each nested graph. This
renormalization, which was applied in [3] to scale-free
networks, provides a hierarchical view of the network,
revealing structural properties at different scales, based
on the degree thresholds chosen.

E. Random Networks

In order to check that the obtained network properties
are not trivial, null models are used. These models gen-
erate randomized versions of our graph while preserving
certain features. In our study, we used a random rewiring
process to create a randomized network that preserved
the degree distribution of the connectome [J], while si-
multaneously destroying all correlations except for the
structural ones. To generate the randomized network, we
begin by randomly selecting two distinct links from the
edgelist. Next, the endpoints of these links are exchanged
while ensuring that self-loops and multiple connections
are avoided, considering the undirected and unweighted
nature of our network. This process is repeated for at
least the number of links in the original network.

III. RESULTS AND DISCUSSION
A. Self-similarity in the MH connectome

For subject No.22 from the HCP dataset and No.10
from the UL dataset we measured the next properties at
each layer [ of the MH connectome: the complementary

cumulative degree distribution Pg ) (k:ﬁle)s), the normalized
average nearest neighbor degree calculated using Eq. ,
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denoted as Fy, , (kits) = T (k00) (kD) /(k0)2), the

degree-dependent clustering coefficient calculated using
Eq. , denoted as E(l)(kﬁle)s), average degree and av-
erage clustering coefficient. To account for the varia-
tion in average degree across layers and make them more
comparable, these features were calculated as a function
of kﬁle)s = k(l)/<k(l)>. Examining Table we see that
the connectomes in the UL dataset have a lower density
than the connectomes in HCP dataset, as evidenced by
the significantly fewer links and the average degrees. De-
spite this sparsity, the average local clustering coefficient
in both datasets remains relatively consistent for all sub-
jects.

Dataset Subject N L (kY kmax (c)

No. 0 1014 37910 74.8£1.5 529 0.41140.004
No. 2 1014 39609 78.1+1.5 566 0.422+0.004
No. 4 1014 43276 85.4+1.7 678 0.414£0.004
No. 22 1014 38855 76.6+1.5 598 0.39940.004
No. 34 1014 44274 87.3+1.7 643 0.418+0.003

No. 3 1011 12991 25.7+£0.6 277 0.410£0.005
No. 5 1014 14340 28.3£0.7 323 0.40740.005
No. 8 1002 13910 27.8+0.7 243 0.40540.005
No. 10 1014 15222 30.0£0.7 294 0.415+0.005
No. 15 1007 16208 32.24+0.7 334 0.431+£0.005

HCP

UL

TABLE I: Overview of the layer 0 of five subjects from each
dataset. The number of nodes (N), the number of links (L),
its average degree ((k) = 2L/N), its average local cluster-
ing coefficient ({c)), and +1 the standard error (SE) interval
around the mean, and the maximum degree (kmaz).

Plots in Fig. |1| exhibit an important overlap, suggest-
ing self-similarity across layers of the MH connectome
for the two selected subjects. Pg)(kge)s) in Fig. A and
B displays some degree of heterogeneity across the con-

nectomes. In Fig. [1] C E:,)m(k‘ge)s) is almost constant

as a function of the rescaled degree, while in Figll] D
Efffm(kﬁlgs) has assortative behavior, meaning that nodes
tend to connect to others with similar degree. In the In-
sets of Fig. [1] C and D, we observe a slight increase in
the average degree (k) followed by a decrease as the res-
olution decreases. Instead, in the Insets of Fig. [I| E and
F, we observe an increasing average local clustering coef-
ficient (c), which explains the observed shifts in Fig. [I|E
and F. It is noteworthy that layers 3 and 4 are sensitive
to finite-size effects given their small number of nodes.

To summarize, our results support the self-similarity
of the MH connectome for the selected subject in each
dataset. Despite the fact that both datasets were ob-
tained using different image techniques, the network fea-
tures of the two datasets are strikingly similar. However,
as in [2], we should measure all of the remaining 82 sub-
jects’ characteristics to validate our findings.
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FIG. 1: Self-similarity of the MH connectome across different
resolutions. (A, C, E) Results for HCP subject No.22. (B,
D, F) Results for UL subject No.10. (A, B) Complementary
cumulative degree distribution Pg )(k{Y,). (C, D) Normalized
average nearest neighbor degree E:ﬂm(kws) (C & D, Insets)
Average degree (k) across layers. (E, F) Degree-dependent
clustering coefficient ¢ (kﬁlg)s) (E & F, Insets) Average clus-
tering coefficient (c) across layers. In C, D, E, F, Insets, error
bars indicate the two-SE interval around the mean.

B. Self-similarity applying degree-thresholding
renormalization

The main objective of this part of the study is to detect
self-similarity of the nested graphs by applying a degree-
thresholding renormalization procedure to the highest
resolution layer 0 of five subjects from each dataset.
All the network features described in section are
now measured, except for the normalized average near-
est neighbor degree, because clustering is more relevant.

For the sake of brevity, the degree distribution is not
shown here. When degree-thresholding renormalization
was applied to human brain connectomes, the curves
Po(kres) as a function of k.5 overlapped, suggesting
self-similarity. Finite-size effects appeared above a cer-
tain threshold, so they had to be carefully chosen. As
UL datasets are sparser than HCP ones, thresholds are
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FIG. 2: Self-similarity of layer 0 applying degree thresholding renormalization. (A, B, C, D) Results from HCP subjects. (E, F,
G, H) Results from UL subjects. The degree-dependent clustering coefficient as a function of the rescaled degree for different
thresholds. (Insets) Degree-dependent clustering coefficient as a function of the rescaled degree for different thresholds from

the respective randomized versions.
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FIG. 3: Self-similarity of layer 0 applying degree threshold-
ing renormalization. (A, B) The degree-dependent clustering
coefficient as a function of the rescaled degree for different
thresholds of the subject No.22 from HCP and the subject
No.10 from UL, respectively. (A, B, Insets) Degree-dependent
clustering coefficient as a function of the rescaled degree for
different thresholds from the respective randomized versions.

smaller because statistical fluctuations manifest earlier.
This also indicates that there is a value above which self-
similarity disappears. The degree-dependent clustering
coefficient as a function of k., represented in Fig.
and [3] presents an overlap for the different degree thresh-
olds k7 for all the analyzed subjects from each dataset,
displaying self-similarity. In order to show that this was
not a trivial property, we generated randomized versions
of the connectomes while preserving the degree distribu-
tion through the random rewiring process. The overlap-
ping patterns in clustering indicate that self-similarity
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observed in the original networks is not present in their
randomized versions, as shown in the Insets of Fig. [2]and
Because these random networks preserve the degree
distribution, and the degree distribution overlaps in the
original brain connectomes, the degree distribution of the
randomized versions overlaps as well. With respect to the
average degree and average clustering coefficient shown
in Fig. for (k) there is not a discernible difference
between the real networks and their randomized coun-
terparts, very likely because they share the same degree
distribution. In Fig. [d] A and B, as well as Fig. [1] Insets
C and D, (k) has the same behavior, slightly increasing
at first and then dropping to a lower value due to finite-
size effects. Looking at (c) in Fig. [4| C and D, while it
remains almost constant as a function of kp in the origi-
nal networks, it grows as kr increases in the randomized
versions. The (c) of the randomized networks from UL
dataset is smaller than that of HCP probably because
UL networks are sparser. Furthermore, when compar-
ing clustering, we can see that human brain connectomes
from both datasets have higher clustering than their ran-
domized counterparts, which is one of the fundamental
properties observed in most real networks.

In a nutshell, observing the effects on clustering after
applying the degree-thresholding renormalization for the
human brain connectomes and their randomized coun-
terparts, we can say that self-similarity is present across
all subjects, and they all exhibit high clustering. As ob-
served in the MH connectomes, despite the fact that both
datasets were obtained using different techniques, the re-
sults are very similar, and there is a threshold value below
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FIG. 4: (A, C) Results for HCP subjects. (B, D) Results
for UL subjects. (A, B) Average degree as a function of the
threshold degree kr for the renormalized networks and their
randomized counterparts. (C, D) Average clustering coefffi-
cient as a function of the threshold degree kr for the renor-
malized networks and their randomized counterparts.

which self-similarity disappears, probably due to finite-
size effects.

IV. CONCLUSIONS

The architecture of the human brain fuels human be-
havior and is extremely complex, with multiple spatial
scales interacting with one another. We attempt to cap-
ture the essence of this complexity by simplifying it and
identifying two symmetries.

On the one hand, when the resolution was reduced

by a hierarchical anatomical approach, the MH connec-
tome remained self-similar for different subjects from two
datasets, despite being obtained using different method-
ologies. The presence of finite-size effects in layers 3 and 4
suggests that there is a limit beyond which self-similarity
on the MH connectome vanishes, but other scales should
be explored. This self-similarity indicates that the con-
nectivity rules in the connectomes are independent of the
resolution scale (at least with the ones studied), which
could indicate that the brain is working near a critical
point of a phase transition and may be helpful in the
development of tools for brain reconstruction and simu-
lation.

When we applied the degree-thresholding renormaliza-
tion procedure to the layer 0 of the MH connectome for
different subjects from each dataset, we found that the
degree distribution and clustering remained self-similar
as the degree threshold increased, whereas in random-
ized versions that preserved the degree distribution, the
clustering did not. When the original connectomes were
compared to their randomized counterparts, high clus-
tering was observed in the original ones, which is a fun-
damental property of many real networks. The presence
of self-similarity under this renormalization agrees with
properties displayed by geometric network models in hy-
perbolic space, which could indicate that brain regions
can be mapped to a hyperbolic hidden metric space defin-
ing distances that explain the structure of brain connec-
tomes.

Datasets with higher connectome resolution are re-
quired to extract more conclusions, and we hope that
one day we will be able to track the brain neuron by
neuron to obtain the greatest real network ever built.
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