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Abstract: Cells perceive different stimuli and respond through a variety of dynamic behaviors. One 
of these interesting responses is perfect adaption, where the cell can detect a change in a stimulus 
and give a response. Nevertheless, this response is only transient and the cell returns to basal levels 
of activity after a certain time. Our objective is to describe different circuits that exhibit this 
behavior. Using numerical methods, we characterize the common and distinct features exhibited by 
these different systems. 
 

I. INTRODUCTION 

Understanding the response mechanisms of cells to 
external and internal stimuli is a problem that involves an 
enormous number of variables. The complex networks that 
are created by interacting genes and proteins make it 
impossible to describe their dynamical properties by intuitive 
reasoning alone. Nonetheless, some recent theoretical and 
computational studies have shown that these networks can be 
properly modeled in mathematical terms [1]. This has led to 
the identification of a variety of circuits (i.e., networks of 
few genes and proteins) that are able to account for the 
dynamics observed experimentally [2]. These circuits can 
involve both spatial and temporal coordinates, which can be 
analyzed independently. The main focus will be the temporal 
dynamics of the systems but we will also do some 
simplifications and considerations to be able to do an 
analysis of the spatial dynamics. 

Adaptation is a key feature of cellular signaling and 
regulatory pathways. Adaptation is defined as a process 
where a system responds to a stimulus, but the response is 
temporal, and the system returns to basal or near-basal levels 
after a certain time. If this return is complete and the system 
ends at the exact same level as initially, the behavior of the 
system is called perfect adaptation. Mathematically, this 
could be described as the steady state of the response element 
of a system being independent of the stimuli. 

A common example of perfect adaptation is sensory 
signal transduction. After a certain time smelling a new 
scent, we stop perceiving it even though is still there. But if 
we leave and come back later, we will again sense it. This 
example could be described as an incoherent feedforward 
system. More specific examples are bacterial chemotaxis for 
the negative feedback loop and ion channel activation and 
inactivation for the state-dependent inactivation system. 

Our objective is to characterize and analyze three 
different circuits that can achieve perfect or near-perfect 
adaptation. These are incoherent feedforward systems, 
negative feedback loops, and state-dependent inactivation 
systems. The description of the dynamics of systems will be 
done through the mass-action law, following the review 
article [2]. 

Regarding the units used in this work, we will be taking 
the following considerations. For the time variable, seconds 

or minutes will be used depending on the timescale 
associated with the biological processes involved in every 
type of circuit. For the concentration variable, adimensional 
units will be used for simplification purposes. This could be 
interpreted as every concentration value is divided by a 
characteristic constant concentration Co = 1 μM and therefore 
the obtained values have no unit associated with them. 

II. INCOHERENT FEEDFORWARD SYSTEMS 

 
We will start with a circuit that exhibits perfect 

adaptation and was introduced in [3]. Our system is made of 
two molecular species, A and B, that are dependent on an 
input [I].  Molecule A regulates positively the response (or 
output) while B inhibits A, and thereby the output. All these 
processes could be thought of as the synthesis and 
degradation of these two protein species. The entire 
mechanism is described by these two equations: 

 
𝑑[𝐴]

𝑑𝑡
= 𝑘 [𝐼]  − 𝑘 [𝐴][𝐵] 

( 1 ) 

 
𝑑[𝐵]

𝑑𝑡
= 𝑘 [𝐼] − 𝑘 [𝐵] 

( 2 ) 

In this case, we will use minutes as the time unit because 
the timescale of the biological processes of synthesis and 
degradation described by these equations is in the range of a 
few minutes to hours. Here k1, k2, k3, and k4 correspond to 
rate constants with units of min-1. The first term of the first 
equation, dependent on the input, stimulates the synthesis of 
the specie A and the second term, dependent on the 
concentration of species A and B stimulates the degradation 
of A. In the second equation, the first term, dependent on the 
input, stimulates the synthesis of B, and the second term, 
dependent on B, stimulates the degradation of B. 

Figure 1 shows the results from simulations of the 
dynamics over time of [A] and [B] as the input increases as 
step functions. From Fig. 1 we see that a sudden increase in 
the input causes an abrupt increase in the output [A] that 
returns toward the baseline monotonically. This is the perfect 



  Mechanims for signal adaptation in cells                                                                                       Carlos Gatón Rodriguez 

Treball de Fi de Grau 2 Barcelona, June 2023 

adaption. Moreover, every subsequent increase in the input 
produces weaker and weaker responses. This is due to the 
increasing amount of inhibitor [B] in the system after every 
increase. The inhibitory response is every time stronger and 
the response of the output is smaller. 

The results can also be readily understood by a simple 
analysis of the equations. We first find the stationary state, 
by equating both equations to 0. From the second equation, 
we can find directly the stationary value of [B], [Bss], then 
we substitute this value in the first equation and find the 
stationary value of [A], [Ass]. Finally, we find the values for 
[Ass] and [Bss]: 

 
 

[𝐴 ] =  
𝑘 𝑘

𝑘 𝑘
  ,   [𝐵 ] =  

𝑘 [𝐼]

𝑘
  

( 3 ) 

We see that the steady state of the output [𝐴 ] doesn’t 
depend on the input [I]. This explains why [A] returns to its 
basal level in Fig.1. A stationary output that is independent 
of the input is required for perfect adaptation.  

  
FIG. 1: Dynamics of the incoherent feedforward system for 
synthesis and degradation processes. Evolution of the output 
([A], red) with the estimated value obtained from Eq. 5 
(horizontal bars in bottom panel) for every increase and the 
inhibitor ([B], green) when the concentration of the input 
([I], blue) increases an amount [ΔI] equal to 1 every 10 
minutes. Parameter values: k1 = 2 min-1, k2 = 2 min-1, k3 = 1 
min-1, k4 = 1 min-1. Adimensional concentrations are used.  
 

We can also predict the maximum height of the output for 
an increase ∆𝐼 in the input. For that, we analyze the 
dynamics right after the increase in the input. We assume 
that A and B follow very different time scale dynamics, 
being A very fast and B very slow. Thus, when the maximum 
value of [A] is reached, the value of [B] remains the same as 
before the increase of the input, i.e., [𝐵 ] = [𝐵 (𝐼 )]. So, we 
have the following changes in our variables: 

 
[𝐴] → [𝐴 ] + [Δ𝐴],      [𝐵] → [𝐵 ],      [𝐼] → [𝐼 ] + [Δ𝐼] 

( 4 ) 

Then, we substitute these changes in our system of 
equations and equate the equation of [A] to zero (i.e. 
imposing it is a fast variable). We find the variation of the 
output with respect to the basal level: 

 
 

[∆𝐴] =  
𝑘 𝑘

𝑘 𝑘

[∆𝐼]

[𝐼 ]
 

( 5 ) 

From this equation, we see that the variation of the output 
depends on a relation between the parameter values and is 
proportional to the ratio between the increase of input, ΔI, 
and the last input value, Io. In this case, Io changes after every 
increase and takes the value of the last input value and not 
only the initial one. For the first increase, we can’t use this 
expression because I0=0 and the equation diverges. The 
results of this prediction are plotted in Fig. 1 (bottom panel). 

An interesting case is when we make k3 and k4 a lot 
smaller, so the response of molecule B is a lot slower (Fig. 
2). We chose to keep the ratio k4/k3 fixed so that the 
predictions of Eq. (5) are the same values as for faster 
dynamics of B. As expected, when B has slower dynamics, 
the predictions match better computational results. 

 

 
FIG. 2: Dynamics of the incoherent feedforward system for 
synthesis and degradation processes when the inhibitor is 
slow. Evolution of the output ([A], red) with the estimated 
value obtained from Eq. 5 (horizontal bars in bottom panel) 
for every increase and the inhibitor ([B], green) when there is 
an increase in the concentration of the input ([I], blue) an 
amount [ΔI] equal to 1 every 40 minutes. Parameter values: 
k1 = 2 min-1, k2 = 2 min-1, k3 = 0.1 min-1, k4 = 0.1 min-1. 
 

We can now analyze an alternative description of an 
incoherent feedforward circuit, introduced in [2]. In this case, 
we can think of this process as the activation and inactivation 
of a protein A. Active A sets the output. The input [I] 
activates A and B, which inactivates A. Here, the appropriate 
biological timescale is in the order of seconds, so we are 
going to use seconds as our time unit. This system is 
described by the following equations: 
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𝑑[𝐴]

𝑑𝑡
= 𝑘 [𝐼](1 − [𝐴])  −  𝑘 [𝐴][𝐵] 

( 6 ) 

 
𝑑[𝐵]

𝑑𝑡
= 𝑘 [𝐼]

1 − [𝐵]

𝑘 + 1 − [𝐵]
− 𝑘 [𝐵] 

( 7 ) 

In this case, we have conserved the total amounts of each 
protein, which are normalized to 1. We can find the 
stationary state. If we equate both equations to 0 and solve 
the system as we have done before, we obtain that: 
 

[𝐴 ] =  
𝑘 𝑘

𝑘 𝑘 + 𝑘 𝑘
  ,   [𝐵 ] =  

𝑘 [𝐼]

𝑘
 

( 8 ) 

To find this stationary state we have made the 
approximation that k5<<1-[B]. As before, we see that the 
output doesn’t depend on the input. We can also apply the 
same proceeding as described before to predict the height of 
the output. In this case, we obtain the following relation: 
 

[∆𝐴] =  
𝑘 𝑘

𝑘 𝑘 + 𝑘 𝑘

[∆𝐼]

[𝐼 ]
(1 − [𝐴 ]) 

( 9 ) 

 From this equation, we see that the variation of the 
output depends on a relation between the parameter values 
and is proportional to the ratio between the increase of input, 
ΔI, and the last input value, Io. The expression is also 
proportional to one minus the initial value of protein A, A0. 
We see that the expression is like Eq. (5) with an additional 
term. For the first increase, we can’t use this expression 
because I0=0 and the equation diverges. 
 

  
FIG. 3: Dynamics of the incoherent feedforward system for 
activation and inactivation processes. Evolution of the output 
([A], red) with the predicted value obtained from Eq. 9 for 
every increase and the negative leg ([B], green) when there is 
a variation of the concentration of the input ([I], blue) an 
amount [ΔI] equal to 0.2 every 10 seconds. Parameter values: 
k1 = 10 s-1, k2 = 100 s-1, k3 = 0.1 s-1, k4 = 1 s-1, k5 = 0.001. 

 
An alternative representation of the circuit dynamics can 

be done by plotting in the phase space ([B], [A]), as 
presented in [1]. The trajectory of [A] and [B] when the input 
changes from I0 to If is depicted (Fig. 4). In this phase space, 
the nullclines for each input value, I0 and If, are also 
depicted. Each nullcline represents one of the system 
equations equalized to 0. The intersection of both defines the 
stationary solution. The nullclines for the original input I0 are 
depicted with continuous lines while dashed lines correspond 
to the nullclines for the final input If. The stationary solution 
for each input value is highlighted with black and grey dots, 
respectively. The vector field is the vector of the time 
derivative for each variable taking the input value If. The 
color expresses the magnitude of the module of these 
derivatives. Finally, the blue line corresponds to the 
trajectory of the system variables when the input is changed 
from I0 to If and is tangent to the vector field. 

 

  
FIG. 4: Phase diagram of the incoherent feedforward system 
with activation and inactivation processes. The two input 
values are I0 = 0.4 and If = 0.2. Red nullclines correspond to 
[A] and black nullclines correspond to [B], in each case, the 
solid one is for the initial input I0 and the dashed one for the 
final input If. The vector field corresponds to the final input, 
its color represents the magnitude of the change, and it is 
graduated on the right-side scale. The blue line corresponds 
to the trajectory from the initial state (the stationary one for 
I0) to the stationary state for If. 

III. NEGATIVE FEEDBACK LOOPS 

 
The negative feedback loop consists of two proteins as in 

the previous one. In this case, the proposed circuit is slightly 
different than the previous one. An input stimulus activates 
output A which in turn activates B. Then, B mediates the 
inactivation of A. Thus, the delayed response from protein B 
returns the output to near a basal level. This return could be 
done monotonically or with damped oscillations depending 
on the particular conditions of the system. We use the circuit 
presented in [2]. The equations that describe this system are 
the following: 

 
𝑑[𝐴]

𝑑𝑡
= 𝑘 [𝐼](1 − [𝐴])  −  𝑘 [𝐴][𝐵] 

( 10 ) 
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𝑑[𝐵]

𝑑𝑡
= 𝑘 [𝐴]

1 − [𝐵]

𝑘 + 1 − [𝐵]
− 𝑘

[𝐵]

𝑘 + [𝐵]
 

( 11 ) 

As before, the total concentration of active and inactive 
forms of each protein is conserved and set to 1. Timescale for 
these activation and inactivation processes is in the range of a 
few seconds. The stationary state for this system follows the 
same mathematical procedure as before is: 
 

[𝐴 ] =  
𝑘

𝑘
  ,   [𝐵 ] =  

𝑘 𝑘 + 𝑘 𝑘

𝑘 𝑘
[𝐼] 

( 12 ) 

In this case, we have made the approximation that k5<<1-
[B] and k6<<[B]. Under this approximation, the output is 
independent of the input, as is required for perfect 
adaptation. But as we see in Fig. 5, where results from 
numerical simulations of the dynamics are shown, the system 
for finite values of k5 and k6 has a near-perfect adaptation 
behavior. So, the approximation that have been made do not 
capture the non-perfect adaptation behavior.  

The expression that gives an estimation of the maximum 
height of the output following the previous procedures and 
applying the previous approximations is:  

 

[∆𝐴] =  
𝑘 [∆𝐼](1 − [𝐴 ])

𝑘 [Δ𝐼] + 𝑘 [𝐼 ]
 

( 13 ) 

We see that this equation is different from the previous 
ones, (5) and (9). The numerator depends on the increase of 
input and initial value of protein A and the denominator 
depends on ΔI and the previous value of the input, I0. In this 
case, we can obtain predictions for all of the increases as the 
equation doesn’t diverge for any input value. 

 

FIG. 5: Dynamics of the negative feedback loop. Evolution 
of the output ([A], red) with the predicted value obtained 
from Eq. 13 for every increase and the feedback ([B], green) 
when there is a variation of the concentration of the input 
([I], blue) an amount [ΔI] equal to 0.2 every 10 seconds. 
Parameter values: k1 = 2 s-1, k2 = 2 s-1, k3 = 10 s-1, k4 = 4 s-1, 
k5 = 0.01, k6 = 0.01. 

 
As we see (Fig. 5) the return to the basal level is done 

through damped oscillations. In Fig. 6 we will see the effects 
of these oscillations. Moreover, as we have already 
discussed, the system doesn’t return exactly to the previous 
basal level (i.e., the output depends slightly on the input), in 
opposition to Eq. (12) which says that the output doesn’t 
depend on the input. With the approximations we have done 
to obtain Eq. (12), we have lost this behavior.  

A phase diagram for this system can also be represented 
(Fig. 6) and obtain a lot of information about the behavior of 
this system. First, we see that damped oscillations are 
represented by the multiple crossings of the nullclines that 
the trajectory of the stationary state, the blue line, does while 
reaching the final state. Second, we see that the initial 
stationary state and the final are not along a straight line 
parallel to the x-axis. This means that we only have a near-
perfect adaptation and the system doesn’t go back to exactly 
the same basal level after each variation of the input. As we 
have seen before the output depends slightly on the input. 
 

 
FIG. 6: Phase diagram for the negative feedback system. The 
two input values are I0 = 0.4 and If = 0.2.  

IV. STATE-DEPENDENT INACTIVATION 
SYSTEMS 

 
The last example is slightly different from the previous 

cases. It could be understood as a system of a protein that 
could transition between three states. In the first state, the off 
state (Aoff), the proteins are waiting for an input that will 
trigger its activation. In the second state, Aon, the proteins are 
in the activated state after receiving an input and expressing 
an output. In the third state, Ain, the proteins are inactivated 
and aren’t able to respond to any stimulus nor drive any 
output. As previously explained, the timescale involved in 
this type of process is of the order of seconds. The state-
dependent inactivation mechanism for adaptation was 
introduced in [4]. Herein we use the approach reviewed in 
[2]. 

In this approach, the model only describes the transition 
between the Aoff and Aon states and between Aon and Ain 

states. It could also be modeled an additional slow 
conversion back to the off state, with the addition of a third 
equation [4], but in the model studied is not considered. The 
total amount of the protein A, Atot, is normalized to one and 
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remains constant throughout the process. The equations that 
regulate that simplified system are: 

 
𝑑[𝐴 ]

𝑑𝑡
= 𝑘 [𝐼](1 − [𝐴 ] − [𝐴 ])  −  𝑘 [𝐴 ] 

( 14 ) 
𝑑[𝐴 ]

𝑑𝑡
= 𝑘 [𝐴 ] 

( 15 ) 
From the second equation, we see that the variation of Ain 

is proportional to the amount of Aon. From the first equation, 
we see the normalization of the amount of protein A in the 
term between brackets and the variation of Aon comes from a 
difference between Aoff and Aon. The stationary state for this 
system is:  

𝐴 =  0  ,   𝐴 =  1 
( 16 ) 

 
FIG. 7: Dynamics of the state-dependent inactivation system. 
Evolution of the output, i.e., the activated protein ([Aon], red) 
with the estimated value obtained from Eq. 17, the protein in 
the inactivated state ([Ain], green), the protein in the off state 
([Aoff], yellow) and the total amount of protein A ([Atot], 
black) when there is a variation of the concentration of the 
input ([I], blue) an amount [ΔI] equal to 5 every 10 seconds. 
Parameter values: k1 = 1 s-1, k2 = 1 s-1. 

Following the same procedure as before, we can find the 
expression that gives an estimation of the maximum height:  

 

[∆𝐴] =  
𝑘 [∆𝐼](1 − 𝐴 − [𝐴 ])

𝑘 ([I ] + [Δ𝐼]) + 𝑘
 

( 17 ) 

We see that this equation is similar to the previous one, 
(13). The numerator depends on the increase of input and 
initial value of activated and inactivated protein and the 
denominator depends on ΔI and the previous value of the 
input, I0.  

From Fig. 7, we see that after the first increase, the 
system can’t respond to any further increase of the input as 
all the proteins are in the inactivated state, Ain. 

 

V. CONCLUSIONS 

 
 For all the circuits studied, we have reproduced the 

results in [2]. We have also incorporated the phase 
plane analysis done in [1] for the two first cases. 
Finally, we have introduced the estimations of the 
height of the output that isn’t in any of the papers 
used. 
 

 As we have seen all of the circuits respond with the 
behavior of perfect adaptation. However, the state-
dependent inactivation system can’t respond to 
multiple increases of the input, due to the 
exhaustion of Aoff. After the first increase, there are 
no molecules remaining in the off state and the 
system can’t produce more of them as there is no 
recovery process. On the other hand, the negative 
feedback loop is the only one that returns to the 
basal level through damped oscillations and has a 
near-perfect adaptation instead. 
 

 All the circuits studied have one essential aspect in 
common. A fast time scale for activation and a slow 
one for inactivation to let the system produce the 
desired behavior. 
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