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ABSTRACT
Introduction The growing worldwide prevalence of 
Alzheimer’s disease (AD) and the lack of effective 
treatments pose a dire medical challenge. Sleep 
disruption is also prevalent in the ageing population and 
is increasingly recognised as a risk factor and an early 
sign of AD. The ALFASleep project aims to characterise 
sleep with subjective and objective measurements in 
cognitively unimpaired middle/late middle- aged adults 
at increased risk of AD who are phenotyped with fluid 
and neuroimaging AD biomarkers. This will contribute 
to a better understanding of the pathophysiological 
mechanisms linking sleep with AD, thereby paving the 
way for the development of non- invasive biomarkers and 
preventive strategies targeting sleep.
Methods and analysis We will invite 200 participants 
enrolled in the ALFA+ (for ALzheimer and FAmilies) 
prospective observational study to join the ALFASleep 
study. ALFA+ participants are cognitively unimpaired 
middle- aged/late middle- aged adults who are 
followed up every 3 years with a comprehensive set of 
evaluations including neuropsychological tests, blood and 
cerebrospinal fluid (CSF) sampling, and MRI and positron 
emission tomography acquisition. ALFASleep participants 
will be additionally characterised with actigraphy and CSF–
orexin- A measurements, and a subset (n=90) will undergo 
overnight polysomnography. We will test associations 
of sleep measurements and CSF–orexin- A with fluid 
biomarkers of AD and glial activation, neuroimaging 
outcomes and cognitive performance. In case we found 
any associations, we will test whether changes in AD 
and/or glial activation markers mediate the association 
between sleep and neuroimaging or cognitive outcomes 
and whether sleep mediates associations between CSF–
orexin- A and AD biomarkers.
Ethics and dissemination The ALFASleep study protocol 
has been approved by the independent Ethics Committee 
Parc de Salut Mar, Barcelona (2018/8207/I). All participants 

have signed a written informed consent before their 
inclusion (approved by the same ethics committee). Study 
findings will be presented at national and international 
conferences and submitted for publication in peer- 
reviewed journals.
Trial registration number NCT04932473.

INTRODUCTION
Alzheimer’s disease (AD)
AD is one of the leading public health 
problems worldwide, potentially affecting 

STRENGTHS AND LIMITATIONS OF THIS STUDY
 ⇒ The study has a multimodal approach combining not 
only subjective but also objective sleep measure-
ments, cerebrospinal fluid orexin determinations, as 
well as fluid and neuroimaging Alzheimer’s disease 
(AD) biomarkers.

 ⇒ Although the study population includes cognitive-
ly unimpaired adults from a cohort that has been 
enriched for AD risk factors, which may limit the 
generalisability of the results to the general popula-
tion, this recruitment strategy has been optimised to 
identify early AD pathophysiological events.

 ⇒ An additional source of bias is that the study pop-
ulation mostly comprises well- educated individuals 
with very low comorbidity burden and low ethnic 
diversity.

 ⇒ The design is that of a cross- sectional study nest-
ed in a prospective observational cohort, enabling 
a potential follow- up study with longitudinal sleep 
measurements.

 ⇒ The observational design of the study does not al-
low us to infer causality in potential associations 
between sleep and AD- related outcomes.
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100 million people by 2050.1 Currently available fluid and 
neuroimaging biomarkers allow the in vivo detection of 
brain amyloid [amyloid beta (Aβ)] and tau pathology 
(the AD neuropathological hallmarks), with evidence 
showing that these proteins start to accumulate ~10 to 
20 years before the onset of cognitive impairment.2 This 
preclinical stage represents an exceptional window of 
opportunity for preventive interventions targeting poten-
tially modifiable risk factors, which have been pointed to 
account for up to 40% of dementia risk.3

Sleep and cognitive impairment
Sleep alterations have been consistently associated with 
worse cognitive outcomes,4 and sleep disturbances are 
common in patients with AD.5 6 The latter has been 
related to the neurodegeneration of neural systems that 
regulate the sleep–wake state.7 8 Nevertheless, research 
from the last decade suggests that sleep disorders may be 
a risk factor for cognitive impairment.4 9–12 In line with 
this, obstructive sleep apnoea (OSA) treatment may slow 
disease progression in patients with mild cognitive impair-
ment (MCI).13 Conversely, while non- pharmacological 
interventions may improve sleep quality in patients with 
MCI, whether such interventions can prevent or delay 
cognitive impairment remains to be demonstrated.14 15 
In light of this evidence, sleep is emerging as a poten-
tial candidate for strategies aimed to prevent cognitive 
impairment. However, to design such interventions, a 
better understanding of mechanisms linking sleep with 
cognitive impairment is needed.

Sleep and AD: a bidirectional relationship?
Different lines of research point to a complex interplay 
between sleep and AD pathophysiology, with reciprocal 
effects on each other.16 First, evidence from animal 
models17 and human studies18 19 suggests that sleep depri-
vation promotes Aβ peptide and tau protein accumula-
tion in the brain due to increased neuronal activity and 
impaired function of the glymphatic system (a physio-
logical brain waste clearance mechanism that is strongly 
enhanced during sleep).20 Second, AD- related neuro-
degeneration in brain regions involved in sleep–wake 
cycle regulation may alter sleep and circadian regula-
tion early in the disease.21 22 A potential effect of chronic 
sleep deprivation on AD pathology is further supported 
by several studies showing cross- sectional associations 
between altered sleep quality, sleep duration and OSA 
with higher Aβ pathology burden in cognitively unim-
paired adults.23–27 Other studies have evaluated the rela-
tionship between altered sleep and tau biomarkers, with 
less consistent results.27–32 Additionally, reduced sleep effi-
ciency and non- rapid eye movement (NREM) slow- wave 
activity (SWA) have been shown to predict Aβ accumula-
tion over time.33 However, recent data suggest that asso-
ciations between cognitive decline and these changes in 
sleep architecture may not be linear.34 Other longitudinal 
studies have related OSA and excessive daytime sleepiness 
with increased Aβ and tau burden.35–37 In summary, while 

there is evidence that sleep disturbance may act both as a 
risk factor and clinical manifestation of AD, mechanisms 
underlying these associations remain unclear, and longi-
tudinal studies involving individuals at the very early stage 
of preclinical AD are needed to unravel the directionality 
of this relationship.

Role of sleep oscillations
During NREM sleep, cortical electroencephalographic 
activity oscillates between periods of activity and silence at 
very low frequencies.38 This SWA can be further classified 
as slow oscillations (<1 Hz) and delta activity (1–4 Hz). 
Another cortical rhythm associated with NREM sleep 
is spindles (11–16 Hz), which originate in the reticular 
nucleus of the thalamus and propagate through the thal-
amocortical loop.39 Both SWA and spindle activities are 
reduced in normal ageing, particularly in frontal areas.40 
However, in the context of AD pathology, these reductions 
are frequency- dependent and topography- dependent. 
In healthy older adults with increased amyloid burden, 
a specific reduction of the slow oscillation frequency, 
concomitant with an increase in the delta frequency, has 
been observed in frontal areas.41 Furthermore, reduc-
tion in spindle activities in the context of AD pathology 
shows specificity for fast frequencies (13–16 Hz) and pari-
etal areas.42 Finally, a disruption of the coupling between 
spindles and slow oscillations has been associated both 
with normal ageing and increased tau burden.43 44 Based 
on this assumption, NREM SWA disruption and impaired 
slow oscillation–spindle coupling have been postulated as 
potential biomarkers of Aβ and tau deposition.44 Finally, 
alterations in REM- sleep duration, latency and synchrony 
have been reported in AD probably due to degeneration 
of basal forebrain cholinergic nuclei.45 46 However, the 
potential diagnostic usefulness of REM and NREM- sleep 
alterations in preclinical AD remains to be elucidated.

Sleep, orexin and neuroinflammation
Orexin is a neuropeptide synthesised in the lateral hypo-
thalamus that promotes sleep and inhibits rapid eye 
movement (REM) sleep. Increased orexin cerebrospinal 
fluid (CSF) levels have been described in MCI and AD 
dementia.47 48 Conversely, a postmortem study found 40% 
fewer orexinergic neurons in the hypothalamus of patients 
with AD compared with controls.49 Given this evidence, it 
has been hypothesised that orexin may be upregulated in 
early AD stages in response to neurodegeneration, which 
may in turn lead to impaired sleep–wake cycle regula-
tion.50 However, other studies have found no differences 
between patients with AD and controls, and there is little 
information concerning CSF orexin levels in preclinical 
AD.50

Sleep disturbances have also been linked with systemic 
inflammation in humans, and sleep- deprived mice have 
been found to express higher levels of proinflammatory 
interleukins and microglial activation.51 52 While a dysreg-
ulated glial response is increasingly recognised as an 
important feature in AD pathogenesis,53 few studies have 
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assessed the association between sleep and CSF markers 
of glial response.26 31 32

A better understanding of the role of orexin and 
neuroinflammation in the association between sleep and 
AD could lead to the identification of novel therapeutic 
targets to prevent or slow down cognitive decline.

Structural neuroimaging in sleep disorders
MRI studies have reported inconsistent differences in 
grey matter volume in patients with sleep deprivation due 
to insomnia,54 mostly involving orbitofrontal, temporal, 
parietal and cingulate regions.55–58 Orbitofrontal and 
other frontal regions have also been consistently asso-
ciated with self- reported poor sleep quality, inadequate 
sleep duration, sleep fragmentation and slow- wave sleep 
disruption.59–61 Insomnia symptoms and poor sleep 
quality have been also associated with lower volume in 
AD- vulnerable regions58 62 and loss of white matter integ-
rity.58 63 Similarly, other studies have reported an overlap 
between brain areas affected by OSA and those affected 
by AD pathology, including the anterior cingulate, 
hippocampal, frontal, parietal and temporal lobes.64 65 
A detailed understanding of the intersections between 
local sleep deficits and the topography of brain struc-
tural and AD pathology changes over time may offer a 
unique opportunity for staging and tracking AD preclin-
ical changes.46

Role of APOE and sex
APOE-ε4 is the most important genetic risk factor for 
sporadic AD and has been suggested to modify the asso-
ciation between sleep and AD pathology.66 Similarly, two- 
thirds of all patients with AD are female,67 and women are 
at higher risk of sleep worsening with increasing age.68 A 
potential mechanism linking female sex with AD and sleep 
disorders is hormonal alterations since lower oestrogen 
levels have been associated both with increased Aβ neuro-
toxicity69 and sleep and circadian rhythm disruptions 
during perimenopausal and postmenopausal periods.70 
These findings highlight the need for further research 
exploring the neurobiological basis of potential interac-
tions between APOE and sex on sleep in preclinical AD 
to better understand which subgroups of patients would 
benefit the most from potential interventions targeting 
sleep quality.

Knowledge gaps
Despite recent advances, there are still several unresolved 
issues concerning the relationship between sleep and 
cognitive impairment. To address these questions, there 
is a need for multimodal studies combining not only 
subjective but also objective sleep measurements with 
different outcomes related to AD risks, such as fluid and 
neuroimaging biomarkers and cognitive performance 
measurements.

The ALFASleep project aims to cover these knowledge 
gaps by acquiring subjective and objective sleep data, as 
well as measuring CSF orexin levels, in middle- aged/

late middle- aged cognitively unimpaired individuals at 
increased risk of AD. To do so, this project takes advan-
tage of the ongoing ALFA+ study, a prospective obser-
vational study conducted at the Barcelonaβeta Brain 
Research Center (BBRC) that involves the follow- up of 
cognitively unimpaired adults with state- of- the- art neuroim-
aging and cognitive measurements, as well as AD and glial 
activation biomarkers.71 Moreover, the prospective design 
of the ALFA+ study enables the longitudinal extension of 
the present study, thus providing critical knowledge to 
unravel the bidirectional relationship between sleep and 
AD.

Hypotheses and aims
Our main hypotheses are (1) altered sleep patterns 
(including altered sleep macroarchitecture (eg, 
abnormal sleep duration, efficiency or fragmentation) 
and microarchitecture (eg, decreased SWA or spindle 
expression)) and OSA are associated with higher AD 
pathology and neuroinflammation levels (the latter after 
accounting for AD pathology); (2) higher CSF–orexin- A 
levels are associated with abnormal AD biomarkers; (3) 
altered sleep patterns and OSA are associated with brain 
structural differences involving AD vulnerable areas and 
worse cognitive performance; (4) association of altered 
sleep patterns and OSA with neuroimaging and cognitive 
outcomes is partially mediated by AD biomarkers and 
neuroinflammation; and (5) associations between CSF–
orexin- A and AD biomarkers are mediated by changes in 
sleep architecture. To test these hypotheses, we will char-
acterise 200 cognitively unimpaired participants from 
the ALFA+ study with actigraphy measurements, nasal 
flow monitoring devices and CSF–orexin- A levels, and a 
subgroup of 90 participants with overnight polysomnog-
raphy (PSG). We will also explore the potential usefulness 
of objective sleep measurements to predict the presence 
underlying AD pathology.

METHODS AND ANALYSIS
Design and setting
The ALFASleep study ( ClinicalTrials. gov) is an obser-
vational, cross- sectional study that is developed in the 
context of the ALFA+ study (NCT02485730), an obser-
vational, prospective, longitudinal study that has been 
optimally designed for the characterisation of early 
pathophysiological changes in preclinical AD.71

Study population
The ALFA+ study includes 419 individuals (baseline 
mean age 61.1 years, range 48–73 years, 61% women), 
most of them kindred of patients with AD (55% APOE-
ε4 carriers), without evidence of cognitive impairment 
[Clinical Dementia Rating (CDR) scale=0, Mini–Mental 
State Examination (MMSE) score of ≥27, semantic 
fluency ≥12] or any medical condition that may inter-
fere with cognitive performance (a detailed list of exclu-
sion criteria is listed at online supplemental material). 
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Any cases with clinical and/or psychometric evidence 
suggestive of cognitive impairment (presence of a signif-
icant cognitive complaint with worries accompanied by 
objective impairment, below 1.5 SD, ≤scaled score of 5 
or ≤percentile 5 using the regular sociodemographically 
adjusted published norms) are discussed in an interdisci-
plinary committee composed of neurologists and neuro-
psychologists and excluded/discontinued from the study 
if this committee concludes that the participants meet the 
National Institute on Aging- Alzheimer's Association (NIA- 
AA) 2011 criteria for MCI or dementia diagnosis.72 73

The ALFA+ study involves the acquisition of variables 
related to sociodemographic, clinical, epidemiological, 
genetic and anthropometric measurements: compre-
hensive neuropsychological assessments, blood and 
CSF sampling, an extensive MRI protocol and amyloid 
(18F- Flutemetamol) positron emission tomography (PET) 
acquisitions every 3 years, as well as [18F]fluorodeoxyglu-
cose (FDG) PET at baseline. In addition, 100 partici-
pants will have tau PET data available by the end of the 
ALFASleep study recruitment period. Table 1 shows the 
distribution of ALFA+ participants across different AD 
biomarker categories. We defined Aβ positivity (A+) as 
CSF Aβ42/40 of <0.071, and tau positivity (T+) as CSF 
p- tau of >24 pg/mL, measured with the exploratory 
NeuroToolKit immunoassays and the electrochemilumi-
nescence immunoassay Elecsys phosphor‐tau(181P) CSF 
on a fully automated cobas e601 instrument (Roche Diag-
nostics International), respectively,74 and further classi-
fied participants in four AT biomarker profiles based on 
the NIA- AA research framework: A−T−, A+T−, A−T+ and 
A+T+.75

A total of 200 participants from the ALFA+ study will 
be invited to participate in the present study. Eligible 
participants have undergone the ALFA+ study baseline 
visit between 2016 and 2020, have available CSF and/or 
neuroimaging AD biomarker data and are being followed 
up in the ALFA+ study (see selection criteria in box 1). 
Participants will be selected based on these criteria and 
their AD biomarker status at baseline: n=100 participants 
with normal AD biomarkers (A−T−) and 100 within the 
AD continuum (A+T− or A+T+). All participants will be 
characterised with actigraphy, a nasal flow monitoring 
device and CSF–orexin- A determination. A subgroup 

(n=90) will also be invited to undergo an overnight PSG 
in the Sleep Centre of the Hospital Clinic of Barcelona. 
They will be selected based on their availability and their 
AD biomarker profile (~1/3 A−T−, 1/3 A+T− and 1/3 
A+T+). For this substudy, we will exclude participants 
reporting current use of medications that may interfere 
with sleep architecture (eg, antidepressants or hypnotic 
medications). Data collection started on January 2021 
and is expected to be finished in September 2023.

Recruitment and visits
We will take advantage of the nearest upcoming sched-
uled visit included in the ALFA+ protocol to invite 200 
ALFA+ participants to join the ALFASleep study. During 
this session, a study nurse will explain the study and 
deliver a wristwatch- like actigraph (Actiwatch2; Philips 
Respironics, Murrysville, Pennsylvania, USA) and a nasal 
flow monitoring device (RUSleeping RTS, Philips Respi-
ronics) and will instal an in- house app- based electronic 
sleep diary in their cell phones (participants will be given 
a paper version of this electronic sleep diary that can 
be used in case they cannot use the app). Ninety partic-
ipants will also be invited to the PSG substudy and will 
sign a separate informed consent form. A flow diagram is 
depicted in figure 1. Additional details about the acqui-
sition of actigraphy, nasal flow device and PSG data are 
provided as online supplemental material. All relevant 
study variables (including clinical, neuropsychological, 
neuroimaging, fluid biomarkers and objective sleep 
data) will have been acquired within 36 months, with a 
maximum interval of 24 months between any objective 
sleep measurement and CSF sample obtention.

Data acquisition and processing
Sleep objective measurements

 ► Actigraphy: Actigraphy data will be collected for 
2 weeks with Actiwatch2 (Philips Respironics), which 
has shown a high correlation with PSG.76 77 Data will be 
processed with the Actiware software. The main sleep 
measurements will include estimations of (1) total bed 
time, (2) total sleep time, (3) sleep latency, (4) sleep 

Table 1 AT classification of ALFA+ participants at baseline, 
based on CSF biomarkers (NIA- AA research framework 
criteria)

n % Biomarker category

A−T− 249 62.7 Normal AD biomarkers

A+T− 104 26.2 AD pathological change

A+T+ 31 7.8 AD

A−T+ 13 3.3 Non- AD pathological change

A−, normal amyloid level; A+, altered amyloid level; AD, Alzheimer’s 
disease; ALFA, Alzheimer and Families; CSF, cerebrospinal fluid; 
T+, altered p- tau level; T−, normal p- tau level.

Box 1 ALFASleep study inclusion and exclusion criteria

Inclusion criteria
● Subjects who are currently participating in the ALFA+ study.
● Subjects from whom CSF and/or neuroimaging AD biomarkers have 
been acquired during the last 36 months prior to their enrolment in the 
ALFASleep study.
Exclusion criteria
● Presence of cognitive impairment.
● Presence of clinically relevant neurological disorder, psychiatric dis-
order or other medical conditions that may bias the interpretation of the 
study results according to the investigator criteria.
● Participants with OSA using CPAP

AD, Alzheimer’s disease; ALFA, Alzheimer and Families; CPAP, continuous 
positive airway pressure; CSF, cerebrospinal fluid; OSA, obstructive sleep 
apnoea.
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efficiency (% of total sleep time out of total bed time), 
(5) wake time after sleep onset and (6) fragmentation 
index. We will also compute circadian parameters 
such as amplitude, phase and rest–activity pattern 
fragmentation measurements. Sampling frequency 
will be set at 30 s epochs, and wake threshold will be 
set at 20 counts.76 Actigraphy data will be reconciled 
with sleep diary data using a validated scoring algo-
rithm to define rest intervals based on four inputs, 
ordered hierarchically according to the preference 
of use: (1) actigraph event marker, (2) participant’s 
diary entries, (3) actigraph light signal and (4) acti-
graph activity signal.78 We will exclude from the anal-
yses actigraphy data collected on the same night when 
participants are wearing the nasal flow monitoring 
device to avoid the impact on sleep measurements of 
discomfort feeling associated with this device. Actig-
raphy measurements will be also acquired in the 
subset of participants undergoing overnight PSG to 
objectively document the participant’s sleep habits 
the week before performing the test.

 ► Nasal flow monitoring device: During the first night 
of the 2 weeks of actigraphy recording, participants 
will use a singlechannel portable device (RUSleeping 
RTS, Philips‐Respironics) that has been validated 
against a standard multichannel PSG for the detec-
tion of OSA.79 This device calculates a respiratory 
event index (average number of apnoeas and hypo-
pneas per hour) and the number of respiratory events 
for each hour of recording. These measurements 
are stored locally and displayed on an LCD screen. 
Data will be entered into the study database by study 
personnel. In case data are not available, scores anno-
tated by participants in the diary will be used (see 
online supplemental material). These data will be 
mainly used to adjust analyses involving actigraphy 

data by the presence of sleep apnoeas, which are a 
potential confounder, and to explore their inde-
pendent association with cognitive neuroimaging and 
fluid biomarkers outcomes.

 ► Video-PSG: A subset of 90 participants will undergo 
a full night PSG study (Brain RT; OSG, Rumst, 
Belgium) at the Sleep Centre of the Hospital Clinic 
of Barcelona. PSG will include an electroencephalo-
gram (EEG) of bilateral central, occipital and frontal 
regions; electrocardiography; electro- oculography; 
surface electromyography of the mentalis in the chin, 
bilateral anterior tibialis in the legs and bilateral flexor 
digitorum superficialis muscles in the forearms; nasal 
and oral airflow; thoracic and abdominal movements; 
continuous oxyhaemoglobin saturation; and synchro-
nised audiovisual recording. Total sleep time, sleep 
efficiency, wake time after sleep onset, sleep stage 
amount and latencies, plus sleep- associated events will 
be scored in accordance with the American Academy of 
Sleep Medicine Scoring Manual.80 Respiratory events will 
be defined as apnoeas whenever airflow is interrupted 
for at least 10 s, and as hypopneas when the peak 
nasal pressure signal drops ≥30% from baseline and 
is associated with ≥3% oxygen desaturation from pre- 
event baseline and/or with arousal.80 To calculate the 
apnoea/hypopnea index, we will add up the number 
of apnoeas and hypopneas per hour of sleep. The 
periodic leg movements in sleep index will be defined 
as the number of leg movements per hour of sleep.81 
For quantitative analyses, fast Fourier transform spec-
tral analysis will be used to quantify the power of the 
EEG signal in different frequency bands, specifically 
from 0 Hz to 1 Hz for the slow oscillation band, from 
1 Hz to 4 Hz for the delta band, from 11 Hz to 13 Hz 
for the slow spindles band, and from 13 Hz to 16 Hz 
for the fast spindles band.

Sleep subjective measurements
 ► Sleep diary: During the 2 weeks of actigraphy data 

acquisition, participants will fulfil a sleep diary (either 
electronic or paper version) and register any poten-
tial event that may potentially impact the quality or 
interpretation of the data (see online supplemental 
material for a full description of the data collected).

 ► Sleep questionnaires: We will use the Pittsburgh Sleep 
Quality Index, the Insomnia Severity Index and the 
Epworth Sleepiness Scale to measure sleep quality, 
insomnia symptoms and excessive daytime sleepi-
ness, respectively.82–84 We will screen for the presence 
of REM- sleep behaviour disorder and restless legs 
syndrome with single- question formularies.85 86

CSF and blood samples
CSF and blood sampling and processing will be performed 
as described elsewhere,71 74 and the following measure-
ments will be performed:

 ► Orexin- A determination: Orexin- A levels in CSF will 
be measured at the Clinical Neurochemistry Lab of 

Figure 1 Flow diagram of the ALFASleep study. *This 
corresponds to the number of participants that are currently 
undergoing the first follow- up visit of ALFA+. AD, Alzheimer’s 
disease; ALFA, Alzheimer and Families; BBRC, Barcelonaβeta 
Brain Research Center; CSF, cerebrospinal fluid; PSG, 
polysomnography
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the University of Gothenburg using an in- house radi-
oimmunoassay method, as described elsewhere.87

 ► Core AD and glial markers: CSF total- tau and phos-
phorylated (P181)- tau will be measured with the elec-
trochemiluminescence immunoassays Elecsys (Roche 
Diagnostics International). The rest of the biomarkers 
(Aβ42, Aβ40, neurogranin, neurofilament light, YKL- 
40, sTREM2, GFAP and S100) will be measured with 
the NeuroToolKit (Roche Diagnostics International), 
as previously described.74 All measurements will be 
performed at the Clinical Neurochemistry Laboratory, 
Sahlgrenska University Hospital, Mölndal, Sweden.

 ► APOE genotyping: APOE genotype determination has 
been performed as explained elsewhere in all ALFA+ 
participants.71

Neuroimaging
 ► MRI: Scans will be obtained with a 3 T scanner (Ingenia 

CX; Philips, Amsterdam, Netherlands). Images will be 
processed with Statistical Parametric Mapping (SPM) 
software for volumetric and functional analyses. Volu-
metric analyses will be performed through voxel- 
based morphometry using SPM general linear models. 
FreeSurfer V.6.0 software will be used to calculate the 
volume and cortical thickness in different regions of 
interest. Diffusion data will be analysed through tract- 
based- spatial statistics, implemented in FMRIB Soft-
ware Library software. Seed- based and multivariate 
analyses, including an independent components anal-
ysis, will be used to evaluate data from task- free fMRI 
and to derive functional connectivity matrices.

 ► Amyloid PET: 18F- Flutemetamol uptake will be calcu-
lated using the Centiloid method.88 Additionally, 
scans will also be quantified regionally and catego-
rised as either positive or negative according to visual 
reading following standard procedures.

 ► Tau (PET): Retention of 18F- RO6958948 in brain 
regions and voxel- based analysis of 18F- RO6958948 
will be measured by in vivo PET. Thresholds for posi-
tivity will be applied and 18F- RO6958948 uptake will 
be categorised according to such values.

Clinical variables
 ► Neuropsychological testing: Cognition will be evalu-

ated through a comprehensive neuropsychological 
battery, covering the main cognitive domains: (1) 
global cognition (MMSE, QI estimation (Word Accen-
tuation Test)); (2) attention [Wechsler Adult Intelli-
gence Scale (WAIS)- IV: Digit Span, Wechsler Memory 
Scale –Fourth Edition (WMS- IV): Symbol Span, Trail- 
Making Test (TMT)- A]; (3) episodic memory (Free 
and Cued Selective Reminding Test, Memory Binding 
Test, WMS- IV Logical Memory, NIH Toolbox Picture 
Sequence Memory Test); (4) executive function 
(TMT- B, Five Digits Test, WAIS- IV Coding, WAIS- IV 
Matrix Reasoning and NIH Toolbox Flanker Inhibi-
tion Test); (5) language (animal fluency: number of 
animals named in 1 min); and (7) visual processing 

(WAIS- IV Visual Puzzles, RBANS Judgement of Line 
Orientation).89–94

 ► Mood state: Mood state will be evaluated with the 
Spanish version of the Hospital Anxiety and Depres-
sion Scale.95

 ► Medical history, medication and lifestyle habits will be 
collected, including detailed neurological, psychiatric 
and systemic history; brief parental medical history; 
history of medication; and smoking, alcohol and drug 
consumption, physical exercise and dietary habits.

 ► Anthropometric measurements and vital signs will be 
acquired, including weight, height, waist diameter, 
body mass index (BMI), blood pressure and heart 
rate.

 ► Sex- specific variables including age at menopause, 
use of sexual hormones (oestrogens) to treat meno-
pause symptoms and/or contraceptive medications, 
together with a history of surgeries and medication 
will be acquired.

Statistical analyses
Data will be inspected to check normality assumptions and 
identify outliers. We will analyse associations between the 
following predictors: (1) objective (actigraphy, nasal flow 
monitoring device and PSG) and subjective sleep- related 
measures and (2) CSF–orexin- A levels; and the following 
dependent variables: (1) CSF AD and glial biomarkers, 
(2) neuroimaging and (3) cognitive performance 
outcomes. We will also analyse between- group differences 
in these predictors among different biomarker categories 
(AT profiles). These analyses will be adjusted by potential 
confounders (eg, age, sex, APOE genotype, education, 
anxiety/depression, BMI, sleep apnoeas and/or others) 
as appropriate. Additional interaction analyses may be 
performed to test whether APOE genotype or sex modify 
any of these associations. Mediation analyses will be used 
to evaluate whether associations between sleep- related 
metrics and brain structure and function are driven by 
AD and/or glial activity biomarkers. In addition, we will 
compute receiver operating characteristic curves and use 
the Youden Index (J=sensitivity+specificity–1) to derive 
optimal cut- off values for objective sleep measurements 
to discriminate between individuals with normal versus 
altered AD biomarkers. We will use general linear models 
to test associations involving continuous dependent vari-
ables and analysis of covariance (ANCOVA) to assess 
between- group differences among AT profiles. Non- 
parametric equivalents will be used if required model 
assumptions are not met.

Sample size calculation
The sample size has been computed with G*Power 
V.3.1.9.4,96 taking into account the estimated effect size 
(ES) of a previous study using a similar methodology for 
the detection of differences in sleep efficiency between 
cognitively unimpaired individuals with normal versus 
abnormal Aβ biomarkers.24 For this ES (ES=0.49), 
we calculate that a sample size of n=178 (89 cases/89 
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controls) would be enough to achieve a statistical power 
of 90%, assuming a 5% type I error probability (two tails) 
(figure 2).

Based on these estimations, we plan to recruit 200 
subjects: 100 with altered Aβ biomarkers and 100 with 
normal biomarkers. The sample size for the exploratory 
PSG substudy (n=90) is based on previous literature.44

Patient and public involvement
Participants and the public were neither involved in the 
study design, recruitment or conduct, nor in the selection 
of research questions or study outcomes. All participants 
will receive feedback related to their usual sleep patterns. 
In case any clinically relevant finding is detected in the 
context of their participation, participants will receive a 
specific report describing such findings, as well as clinical 
counselling. Additionally, with the support of the commu-
nication unit at BBRC, we will develop specific activities 
to participate in public engagement initiatives. BBRC is 
fully aware of the importance of, and is committed to, 
involving the public as an active stakeholder of its research 
activities. As such, BBRC researchers lead and participate 
in diverse research- related communications and public 
awareness initiatives focused on increasing awareness 
about AD and the research that is being developed. BBRC 
will also include the profile of any proposed action at the 
institutional website, which is regularly updated as the 
research progresses.

Ethics and dissemination
The ALFASleep study protocol has been approved by the 
independent Ethics Committee Parc de Salut Mar, Barce-
lona (2018/8207/I). All participants have signed a written 
informed consent before their inclusion (approved by the 
same independent ethics committee). Study findings will 
be presented at national and international conferences 
and submitted for publication in peer- reviewed journals.

DISCUSSION
Studies analysing the association between sleep and AD 
are gaining momentum since sleep represents both an 
appealing target for interventions aimed to prevent cogni-
tive impairment and for the development of non- invasive 

diagnostic and prognostic biomarkers for AD. However, 
many studies published so far rely on subjective sleep 
quality scales, which are valuable clinical tools but may 
not be an ideal marker for incident dementia risk.97 
Conversely, objective sleep measurements, such as actig-
raphy or PSG, provide unbiased, measurable and multidi-
mensional sleep- quality data. Therefore, to gain a better 
understanding of the mechanisms underlying the associ-
ation between sleep and cognitive impairment, there is 
a need for multimodal studies in cognitively unimpaired 
adults combining not only subjective but also objective 
sleep measures, with fluid biomarkers (encompassing 
AD and glial activation biomarkers, as well as CSF orexin 
levels), neuroimaging and cognitive data. Due to its 
multimodal approach and the profile of the study popu-
lation (a cohort of cognitively unimpaired middle- aged 
adults enriched for AD risk), the ALFASleep project 
has the potential to make relevant contributions to the 
understanding of the role of sleep as a risk factor and 
early clinical manifestation of AD. On top of this, the 
present project may be complemented in the future with 
additional neuroimaging processing methods or MRI 
sequences to quantify structural changes in key regions 
involved in sleep–wake cycle regulation, such as the locus 
coeruleus or the hypothalamus,98 99 as well as emerging 
neuroimaging techniques to investigate the glymphatic 
system function, one of the most relevant potential links 
between sleep and AD pathophysiology.20 In addition, 
taking advantage of the prospective design of the ALFA+ 
study, with the present project, we intend to set the basis 
for a longitudinal study that may help unravel bidirec-
tional associations between sleep and AD.

However, this project has some limitations. First, its 
observational design does not allow us to infer causality 
in potential associations between sleep and AD- related 
outcomes. Second, the ALFA+ cohort is mainly composed 
of well- educated individuals with very low comorbidity 
burden and low ethnic diversity, which may therefore 
constitute a source of bias.

Nonetheless, this project has direct potential clinical 
applications, which are the identification of altered sleep 
architecture patterns that may be specifically linked with 
AD pathology (such as decreased SWA), as well as charac-
terising mechanisms linking sleep disruption and AD that 
may be amendable to potential therapeutic interventions. 
Thus, the resulting evidence could be used to design an 
intervention study targeting sleep quality, with the ulti-
mate goal of preventing or slowing cognitive decline.
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