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Abstract: The way in which complex networks behave has brought out very interesting proper-
ties. With its study, simple models have been developed to isolate these new phenomena, opening
up, in turn, many possibilities. The following work aims to extend the double percolation found in
the special coupling of two networks. The first step is to investigate the case of three interconnected
networks. The structure chosen to be studied is the Erdös-Rényi. Afterwards, to simulate the bond
percolation, I have applied the Newman-Ziff algorithm. We observed that multiple percolation
transitions can occur, finding the emergence of a new discontinuous phase transition to consider.

I. INTRODUCTION

The behaviour of networks has been a largely investi-
gated topic due to its wide applicability. For this reason,
a way to deal with them needs to be established. There
are some basic and interesting measurement parameters
to mention. We have the network’s number of nodes N
and edges M . Besides, an important feature is central-
ity, quantifying the importance of the vertices and links.
Within this classification, the degree k of a node is the
number of attached edges it has. Therefore, to describe
the whole system it is useful to know the network’s aver-
age degree ⟨k⟩ = 2M/N , where the links are considered
double because every bond is connecting two vertices.

One of the most studied processes, thanks to its sim-
plicity, is percolation [1, 2]. It consists of eliminating
edges to see how the properties of a network change. This
procedure is called bond percolation. On the other hand,
the removal of the network’s vertices, thus deleting the
links attached to them, is known as site percolation. An
important part of the process is the way in which the
elimination is made, being the simplest the random one.
Percolation is known to explain and be used to study
many real systems like the Internet and social or epi-
demiological spread networks, to mention some.

Focusing on bond percolation, from a generated net-
work where all the edges have been erased, it is useful to
simulate how they are set up again. While this is done,
the number of edges being occupied m characterises the
system’s evolution. Dividing it by the original number
of links M , the bond occupation probability p = m/M
is obtained. This probability is the control parameter
of the simulation. The remarkable point of the process
is the appearance of a continuous phase transition. We
say that a network percolates when the largest cluster
of interconnected nodes G, also known as the largest
component, becomes extensive. This means that with
the system growth the largest component will grow too.
Meanwhile, if the network is not percolated the largest
cluster is constant even though the system grows. At this
transition point, the percolation threshold pc, it is said
that a giant component is formed, or dissolved if we are
deleting links.
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FIG. 1. General structure and parameters necessary to define
the coupling of three networks.

As can be seen from the reported results in [3], the
heterogeneous division of a network in two regions, a
core and a periphery, leads to a double percolation phase
transition. This is caused by the breaking of the same
symmetry, in opposition to the modern theory of contin-
uous phase transitions. First is observed the percolation
of the core, the most connected region, followed by the
whole network, including the periphery. This is because
the links between regions show a sublinear growth com-
pared to the system size increment, eventually becoming
disconnected in the thermodynamic limit.

II. NETWORK GENERATION

The basic parameters to define a system of intercon-
nected networks are the subnetworks’ size Ni and their
average degree ⟨ki⟩. Moreover, the relative size between
two subnetworks can be defined as rij = Ni/Nj . Finally,
the connection between them, ⟨kij⟩, has to be also under
consideration, fulfilling ⟨kji⟩ = rij⟨kij⟩.
As we mentioned, from [3], to see multiple percolation

transitions the connection between subnetworks must go
sublinearly with the system size Nα, with 0 < α < 1.
Considering three connected networks allows us to play

with the structure, designing open and closed chains, not
possible in the two networks version. The general scheme
is illustrated in FIG. 1.
Now, all that remains is to consider what type of net-

work to use. Focusing on the random graphs for their
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simplicity, we would like to highlight the Erdös-Rényi [4]
and Gilbert [5] models. They refer to the microcanonical
and canonical ensembles respectively.

A. The Erdös-Rényi random graph

The network structure chosen is the Erdös-Rényi [4].
The generation is simple, from a defined 0 ≤ p ≤ 1 a
link between two vertices is established with probability
p and not with (1− p).
To model our subnetworks we only need to define their

size Ni and average degree ⟨ki⟩. Then we can calculate
the probability pi = ⟨ki⟩/Ni to establish the links. Look-
ing over all possible pairs, a real random number uni-
formly distributed between zero and one is created. If
this is lower or equal to the probability just mentioned,
pi, the bond is created. The connections between subnet-
works, with pij = ⟨kij⟩/Nj , are set up following the same
steps. Leading to pij = pji as it can be easily proved
using the subnetworks relations.

The Erdös-Rényi graphs have the same critical expo-
nents as the mean-field model [2], being β = γ = 1 and
ν = 3. Furthermore, the percolation threshold of this
type of networks, laying down links at random, is at the
control parameter value pc = 1/⟨k⟩.

III. PERCOLATION REALIZATION

In our case, to study the percolation transitions, we
have to take the values of the largest cluster G, specifi-
cally calculating the average over some realizations ⟨G⟩.
So the characteristic parameters we need to track are the
relative largest component g ≡ ⟨G⟩/N and its fluctua-
tions, this is the susceptibility χ ≡ [⟨G2⟩−⟨G⟩]/⟨G⟩. We
have taken the alternative susceptibility approach pro-
posed in [3], better for the numerical calculation. Fol-
lowing the mentioned reference, near the critical point,
the behaviour of the averaged largest component is

⟨G⟩c ∼ N1−β/ν ,

and, on the other hand, the susceptibility

χc ∼ Nγ′/ν ,

where γ′ = γ + β. Substituting the critical exponents of
the Erdös-Rényi graphs we obtain that ⟨G⟩c ∼ N2/3 and
χc ∼ N2/3.

To perform the percolation we applied the Newman-
Ziff algorithm, a Monte Carlo simulation described in
[6, 7]. It stands out for its applicability to any type of
network, being able to perform both site and bond per-
colation. The algorithm can keep track of the observable
quantities of interest in a time that scales linearly with
the system size, an improvement over other simulations.
Further, it is able to calculate the observables over all the
values of the occupation probability, from zero to one.

A. The Newman-Ziff algorithm

First, to set up the bonds uniformly at random, a sort-
ing function is called, establishing a link configuration
order. Starting from the beginning of the edges’ list, un-
til reaching the last bond M , for each element i another
item i < j ≤ M is chosen stochastically to exchange
positions. Repeating this process is useful to perform
different simulations with only one network. Neverthe-
less, since essentially there is only one sample, the results
between simulations will be correlated.
The algorithm used has two main steps to follow.

Briefly, from each added edge, we first ”find” the clus-
ters involved, those of the two linked vertices. Then,
only if the sites belong to different clusters, the ”union”
is performed. To optimize the process some improve-
ments are made, this is the ”weighted union-find with
path compression”. But first, another important con-
cept is needed. The ”tree-based” organization consists
of storing the clusters separately, defining a root for each
cluster. In this scheme, every vertex has a pointer di-
rectly to its root or to other nodes of the group.
Initially, where all the sites are unconnected, every

node forms a cluster of size one. This means that ev-
ery site is a root. Following the configuration list, the
bonds are established. In this step, the smart procedure
is that the big cluster absorbs the small. Making the
root of the small cluster point to the other. This is the
”weighted union”. To apply it, the size of the clusters
must be tracked. For good cluster management, the root
labels are set negative, so that they are distinguishable,
being equal to minus its cluster size. Conversely, the rest
of the cluster’s nodes are positive, being their values the
sites they point to. On the other hand, if the two groups
amalgamated have the same size, the new root is chosen
randomly. Last, because traversing a tree to find the root
can take a lot of computational effort, all the pointers of
the traversed nodes in the ”find” statement are set to
their root directly. This is the ”find with path compres-
sion”, useful when there are many big clusters to mix,
especially near the percolation point.
During the simulation, the observables of interest Q

are calculated every time a link is occupied. For this
reason, their distribution is discontinuous in the range of
study, only for p = m/M values. This corresponds to a
microcanonical ensemble, where the specified parameter
is the number of established links m, being the energy in
statistical physics. If we want to calculate the observable
for an arbitrary occupation probability Q(p), the canon-
ical ensemble is needed. With the set {Qm}, the values
of Q for all possible m, we can calculate

Q(p) =
∑
m

B(M,m, p)Qm =

=
∑
m

(
M

m

)
pm(1− p)M−mQm, (1)

where B(M,m, p) is the binomial distribution.
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Meanwhile the program is running, to measure our
variables of interest it is necessary to have a separated
score for each one.

IV. RESULTS ANALYSIS AND DISCUSSION

We can predict the theoretical behaviour of the sim-
ulations. For a network i with a defined ⟨ki⟩, the exact
relative largest component for a probability occupation
value, taken from [3], is determined by the transcendental
equation

gi = 1− e−p⟨ki⟩gi ,

which can be solved numerically by iterations. Consider-
ing the theoretical function gi(p) of one subnetwork, we
can calculate its contribution to the whole system g′i(p)
with

g′i(p) =
Ni∑
l Nl

gi(p), (2)

where l goes through all the subnetworks. Eventually,
we can also verify the susceptibility, which describes the
phase transitions. Its behaviour through two intercon-
nected networks is given in [3] and is generalized as

χ =
∑
i

⟨Gi⟩∑
l⟨Gl⟩

χi. (3)

Lastly, it is useful to remember that the subnetwork i
percolates at the control parameter value pc,i = 1/⟨ki⟩.
For a first approach to the problem, we considered the

same size for the three subnetworks, N1 = N2 = N3 = N .
Also, its interconnection, when it is established, is the
same. To obtain the desired multiple percolations, the
probability of linking two nodes of different networks has
to be defined as pij = Nα−2, with 0 < α < 1. When
both subnetworks have percolated, as follows from [3],
⟨Gi⟩, ⟨Gj⟩ ∼ N is fulfilled. At this moment, their connec-
tion goes like the wanted, pij⟨Gi⟩⟨Gj⟩ ∼ Nα, presenting
the sublinear growth. In short, the structures that we
studied, together with the last established parameters
and including the average degrees ⟨ki⟩ considered, are
represented in FIG. 2. Finally, using the same samples,
we averaged 104 simulations with different setup orders.
We have also applied, to the tracked variables, the equa-
tion (1), which considers the binomial distribution of the
results.

From FIG. 2, the first structures studied are (a) and
(b), very similar to each other. We can calculate the
theoretical relative giant component for both cases using
(2). This corresponds to the next piecewise function,
where the ⟨ki⟩ values are used as labels.

g′(p) =


0 p < pc,50
g′50(p) pc,50 ≤ p < pc,20
g′50(p) + g′20(p) pc,20 ≤ p < pc,10
g′50(p) + g′20(p) + g′10(p) p ≥ pc,10
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FIG. 2. Structures considered of three networks. The subfig-
ures (a) and (c) are open chains with p12 = p23 = Nα−2

and p13 = 0. Otherwise, (b) forms a closed chain with
p12 = p13 = p23 = Nα−2. The α = 1/2 in all the cases.

In these cases, the susceptibility has three peaks. Using
(3), the first behaves like the described for the standard
percolation transition.

χ
1st

≈ χ
50

∼ N2/3

This is because only the network with ⟨k3⟩ = 50
takes part, going like χc. As regards the second peak,
corresponding to the percolation of the network with
⟨k2⟩ = 20, the highlighted behaviours are χ20 ∼ χc and
⟨G20⟩ ∼ ⟨G⟩c. Also, because it is sufficiently separated
from the first one, we can consider χ50 ∼ const. Look-
ing over (3), and since the clustered ⟨k3⟩ = 50 is already
extensive, ⟨G50⟩ ∼ N , we obtain the second transition
trend.

χ
2nd

≈ χ
50

+
⟨G20⟩
⟨G50⟩

χ
20

∼ N2/3

N
N2/3 = N1/3

Finally, assuming that the third transition point is suf-
ficiently separated from the first and second peaks, we
can consider χ

50
, χ

20
∼ const.

χ
3rd

≈ χ
50

+ χ
20

+
⟨G10⟩

⟨G50⟩+ ⟨G20⟩
χ

10
∼ N1/3

We can compare these values with those obtained in
FIG. 3 and 4, following the expected behaviour and ex-
panding article [3] results. It is relevant to note that,
due to the finite scale, ignoring the contribution of the
system with N = 5000 to the third peak of the closed
chain sample, FIG. 4, we have obtained a better fit.
On the other hand, the following simulation, (c) struc-

ture of FIG. 2, corresponds to the connection of two sub-
networks through another with a lower average degree.
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FIG. 3. Results of a bound percolation simulation over a
sample of three interconnected networks, with sizes N1 =
N2 = N3 = N and average degrees ⟨k1⟩ = 10, ⟨k2⟩ = 20
and ⟨k3⟩ = 50. The modelled structure between subnetworks
forms an open chain and it is characterised by the intercon-
nection probabilities p13 = 0 meanwhile p12 = p23 = Nα−2,
with α = 1/2. Different subnetwork sizes have been simu-
lated. (a) Relative size of the largest connected component g
as a function of the bond occupation probability p. The graph
includes the numerical exact calculation. (b) Susceptibility χ
as a function of the bond occupation probability p, where the
theoretical pc points are highlighted. (c) Susceptibility peak
height as a function of the global size. The graph includes the
adjusted critical exponents.

Keeping the structure in mind and following the same
procedures as seen previously, the theoretical relative gi-
ant component can be found.

g′(p) =


0 p < pc,50
g′50(p) pc,50 ≤ p < pc,20
g′50(p) pc,20 ≤ p < pc,10
g′50(p) + g′20(p) + g′10(p) p ≥ pc,10

This result presents a first suitable difference com-
pared to the previous cases. When the second perco-
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FIG. 4. Results of a bound percolation simulation over a
sample of three interconnected networks, with sizes N1 =
N2 = N3 = N and average degrees ⟨k1⟩ = 10, ⟨k2⟩ = 20
and ⟨k3⟩ = 50. The modelled structure between subnetworks
forms a closed chain and it is characterised by the intercon-
nection probabilities p12 = p13 = p23 = Nα−2, with α = 1/2.
Different subnetwork sizes have been simulated. (a) Relative
size of the largest connected component g as a function of the
bond occupation probability p. The graph includes the nu-
merical exact calculation. (b) Susceptibility χ as a function
of the bond occupation probability p, where the theoretical
pc points are highlighted. (c) Susceptibility peak height as a
function of the global size. The graph includes the adjusted
critical exponents.

lation threshold pc,20 is reached, because of the lower
degree subnetwork mediation, ⟨k1⟩ = 50 and ⟨k3⟩ = 20
are not merged. Moreover, since g′50 is still growing, and
therefore greater than g′20, the ⟨k3⟩ = 20 network is not
considered. The fusion does not occur until the percola-
tion of the intermediary network.
Taking into account the giant component, the suscepti-

bility presents two peaks in the studied range. The first,
as seen, follows the expected critical behaviour.

χ
1st

∼ N2/3
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FIG. 5. Results of a bound percolation simulation over a
sample of three interconnected networks, with sizes N1 =
N2 = N3 = N and average degrees ⟨k1⟩ = 50, ⟨k2⟩ = 10
and ⟨k3⟩ = 20. The modelled structure between subnetworks
forms an open chain and it is characterised by the intercon-
nection probabilities p13 = 0 meanwhile p12 = p23 = Nα−2,
with α = 1/2. Different subnetwork sizes have been simu-
lated. (a) Relative size of the largest connected component g
as a function of the bond occupation probability p. The graph
includes the numerical exact calculation. (b) Susceptibility χ
as a function of the bond occupation probability p, where the
theoretical pc points are highlighted. (c) Susceptibility peak
height as a function of the global size. The graph includes the
adjusted critical exponents.

Then, although ⟨k3⟩ = 20 percolates, no changes are
noticed. It is not until the percolation of the ⟨k2⟩ = 10
subnetwork that a second peak χ

2nd
appears. Because the

subnetwork ⟨k3⟩ = 20 is already clustered, ⟨G20⟩ ∼ N ,
its suddenly consideration makes χ

2nd
∼ N . Leading

this union a discontinuous phase transition. The results
of this new phenomena are presented in FIG. 5. They
also append the experimental critical exponent values,
calculated with a linear regression.

V. CONCLUSIONS

With this project, we have proven the existence of mul-
tiple percolations in a system of three coupled networks.
At the same time, we have found a new discontinuous
phase transition as a consequence of the subnetworks
structure. Even with the small size of the systems stud-
ied compared with the thermodynamic limit, the experi-
mental behaviour is in accordance with the theoretically
expected.

Looking towards future studies, it could be interest-
ing to consider different networks’ sublinear connections,
changing the α value. It also could be possible, in the
three subnetworks version, to evaluate different α values
at the same time. In fact, introducing more subnetworks
would open many possible investigations.

Personally, the research made has been a good approx-
imation to the physics of complex systems. It has allowed
me to discover new algorithm logics and delve into some
data management techniques.
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