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“In 1940, when Samuelson came to write his doctoral dissertation,
he sensed that, although he was studying apparently diverse fields,
he kept encountering and solving the same problems over and
over. The economics might differ in each subfield, but the
mathematical structure of the problems was the same. They were
all about choosing the best possible outcome given the constraints
facing people.”

Roger Backhouse
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1 Introduction

The pressing need to address the intertwined challenges of economic growth, en-
vironmental sustainability, and strategic interactions among economic agents has
never been more urgent. Our world faces unprecedented environmental and eco-
nomic challenges, such as climate change, depletion of natural resources, and grow-
ing income inequalities driven by varying growth impacts. To navigate these com-
plex issues and design effective policies, it is essential to understand the dynamic
and strategic nature of economic systems. This thesis highlights the crucial role that
dynamic games, environmental economics, and the study of economic growth play
in enhancing our comprehension of these challenges. In doing so, it establishes the
groundwork for the development of effective and well-informed policies. Moreover,
the thesis integrates valuable insights from behavioral economics, encompassing
time-inconsistencies and status concerns, and interweaves ideas of regime switch-
ing to further enrich the analysis.

Time inconsistency occurs when the preferences of a decision-maker evolve over
time, deviating from their original intentions or plans. This phenomenon typically
emerges when individuals or policymakers must weigh short-term benefits against
long-term goals. As time progresses, their guiding preferences may shift, resulting
in less-than-ideal outcomes or the abandonment of previously set long-term goals.
Grasping the concept of time-inconsistency is vital for understanding a range of
economic issues, as it can compromise policy efficacy and contribute to market
failures. On the other hand, status concern preferences refer to situations where
individuals or participants in an economic context derive satisfaction not only from
their own actions but also from their relative position compared to others. In such
scenarios, players may engage in strategic behaviors to enhance or preserve their
comparative status, leading to economic outcomes that differ from those in cases
without status concerns. Comprehending status concern preferences is essential
for examining various economic phenomena, as it can impact consumption behav-
iors, labor market choices, and investment decisions, as well as the formulation and
efficacy of public policies targeting social and economic inequalities. Moreover,
endogenous regime switching occurs when economic, financial, or environmental
systems transition between distinct states or regimes as a direct result of the strate-
gic choices made by the agents involved. In these scenarios, agents actively decide
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when to switch between regimes based on their assessments of costs, benefits, and
the prevailing circumstances.

The interdisciplinary approach employed in this research enables us to synthe-
size insights from various fields of study, fostering a holistic understanding of the
complex issues under consideration. Throughout the subsequent paragraphs, we
will try to demonstrate the critical significance of this research by offering a per-
suasive justification for exploring the captivating realm of dynamic games, environ-
mental economics, and economic growth while incorporating invaluable knowledge
and perspectives gleaned from advancements in psychological science over recent
decades.

Dynamic games offer a powerful framework for analyzing strategic interactions
and dynamic processes in multi-agent systems. By capturing the complex interde-
pendencies and feedback effects that arise in economic systems, dynamic games
provide valuable insights into the behavior of economic agents and the potential
consequences of their decisions. Environmental economics, on the other hand, is
a vital field that seeks to harmonize economic activities with environmental sus-
tainability. It recognizes the indispensable role of natural resources and ecosystems
in sustaining human welfare and fostering responsible economic practices. This
discipline systematically assesses the complex connections between the economy
and the environment, striving to find a balance that ensures both human prosperity
and ecological preservation. By integrating the perspectives and methodologies of
dynamic games and environmental economics, this thesis endeavors to cultivate a
more sophisticated comprehension of the multifaceted relationships among human
activities, strategic behavior, and environmental sustainability. Thus, studying en-
vironmental economics is essential for shaping effective policies and solutions that
safeguard our natural world without compromising human well-being.

Moreover, the importance of understanding human decision-making and its in-
fluence on future events cannot be overstated, as it has profound implications for
the evolution of humankind. Examples of such decisions include determining the
extent of pollution today in exchange for immediate wealth versus a future where
humans suffer the consequences of past pollution and climate damage, or weighing
the benefits of extracting more natural resources against the drawbacks of depleting
those resources. Additionally, there is the dilemma of choosing between immedi-
ate gratification through consumption today and saving for consumption tomorrow
to reap the benefits of compound interest. Noting the prevalence of human “mis-
behaving”, authors like Richard Thaler propose plans to “nudge” humans toward
strategies that are in their best interest (Thaler and Sunstein, 2008; Thaler, 2015).
Building upon the ideas of the previous author, and incorporating ideas presented in
Daniel Kahneman’s book “Thinking, Fast and Slow”, we also emphasize the need

2



to incorporate psychological factors in economic models for a more accurate under-
standing of decision-making processes. As Kahneman (2011) wrote in chapter 25
of his book:

“The field had a theory, expected utility theory, which was the foundation of the rational-

agent model and is to this day the most important theory in the social sciences. Expected

utility theory was not intended as a psychological model; it was a logic of choice, based

on elementary rules (axioms) of rationality. [...] The mathematician John von Neumann,

one of the giant intellectual figures of the twentieth century, and the economist Oskar Mor-

genstern had derived their theory of rational choice between gambles from a few axioms.

Economists adopted expected utility theory in a dual role: as a logic that prescribes how

decisions should be made, and as a description of how Econs make choices. Amos and I

were psychologists, however, and we set out to understand how Humans actually make risky

choices, without assuming anything about their rationality.”

By interweaving elements from behavioral economics, this research aims to en-
hance the examination of dynamic games and environmental economics, facilitating
a more profound grasp of the intricate connections among human decisions, strate-
gic interactions, and environmental sustainability.

It is essential to recognize that the models in this doctoral thesis should be viewed
as frames of reference or tools for thought experiments rather than direct map-
pings of reality. By using these models, researchers can reflect on complex issues
and draw conclusions that would otherwise be highly costly or nearly impossible
to attain. This approach to modeling economic behavior aligns with the ongoing
paradigm shift in the field of economics, where scholars are progressively integrat-
ing insights from behavioral economics into their analyses, even without explicitly
identifying them as behavioral concepts. This convergence of ideas reflects a grow-
ing recognition of the value and relevance of incorporating behavioral perspectives
into the study of economic systems and decision-making processes.

In what follows, we will walk through the origins of game theory, its importance,
its connection with optimal control theory, and how differential games emerged
when game theory met optimal control theory, revealing the captivating interplay
between these two remarkable fields. We will also explain the importance of in-
cluding non-constant discounting and examining regime shifts, as both elements
contribute to a profound understanding of the nuanced challenges investigated in
this dissertation.
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Introduction

1.1 Game Theory: Theoretical Foundations and
Applications

Game theory, a mathematical framework for modeling and analyzing situations
of strategic interaction among decision-makers, has become an essential tool for un-
derstanding various aspects of economics, including environmental economics. We
will now examine the origins of game theory, its evolution, its applications in eco-
nomics, and its connections to optimal control theory, and differential games. We
will also provide an overview of its historical development and significant research
in the field.

The foundations of game theory can be traced back to the early 20th century,
with the pioneering work of mathematicians such as Ernst Zermelo, Émile Borel,
John von Neumann, and economist Oskar Morgenstern. Zermelo’s work published
in 1913 on chess showed that in a finite two-player game with perfect informa-
tion and no chance, if a tie cannot happen, then one player has a winning strategy
Zermelo (1913).1 Later, mathematician Émile Borel published a series of papers
from 1921 to 1927 that defined games of strategy Borel (1921, 1924, 1927).2 How-
ever, years later, John von Neumann contended that Borel’s definition of games
of strategy was flawed, as he did not accept the minimax theorem (Von Neumann
and Fréchet, 1953). Nevertheless, other authors claimed that the work by Cournot
(1838), Bertrand (1883), and Edgeworth (1881) on oligopoly pricing and production
were the first studies of games in economics but “were seen as special models that
did little to change the way economists thought about most problems” (Fudenberg
and Tirole, 1991).

In the 1920s, John von Neumann made significant contributions to the devel-
opment of game theory, most notably the minimax theorem for zero-sum games
(von Neumann, 1928). Building on this foundational work, von Neumann and Os-
kar Morgenstern published their seminal book “Theory of Games and Economic
Behavior” in 1944, marking the beginning of modern game theory and laying the
groundwork for its subsequent development and application across various fields
(von Neumann and Morgenstern, 1944). The book also laid the foundations for var-
ious solution concepts, such as the Nash equilibrium, which was later introduced
by John Nash in a concise, one-page paper in 1950 (Nash, 1950), and further de-

1The paper was published in German with the title Über eine Anwendung der Men-
genlehre auf die Theorie des Schachspiels (On an Application of Set Theory to the The-
ory of the Game of Chess) https://web.archive.org/web/20131217224959if_/http:
//www.socio.ethz.ch/publications/spieltheorie/klassiker/Zermelo_Uber_eine_
Anwendung_der_Mengenlehre_auf_die_Theorie_des_Schachspiels.pdf.

2https://www.britannica.com/science/function-mathematics
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Game Theory: Theoretical Foundations and Applications

veloped in Nash (1951). For an interesting historical perspective on the creation
of game theory see Leonard (1995) and the chapter “Introduction to the Theory of
Games” in Basar and Zaccour (2018).

Over the years, game theory has evolved and expanded, with numerous scholars
contributing to the development of the field. Among the most influential contrib-
utors are several Nobel laureates in economics, such as John Nash, who shared
the 1994 Nobel Prize with Reinhard Selten, and John Harsanyi for their pioneering
work on game theory as a tool for analyzing strategic interactions. Furthermore,
in 2005, Thomas Schelling and Robert Aumann were awarded the Nobel Prize for
their research on conflict and cooperation through game theory. Two years later,
three more game theorists, Leonid Hurwicz, Eric S. Maskin, and Roger B. Myerson
were awarded the Nobel Prize for their work on mechanism design. Elinor Ostrom’s
2009 Nobel Prize can also be considered a recognition within the field of game the-
ory, as her analysis of economic governance, particularly the study of the commons
and non-market institutions such as natural resources managed by common prop-
erty and firms, has become a vibrant area of research in dynamic games nowadays.
In 2012, two more game theorists, Alvin E. Roth and Lloyd S. Shapley were rec-
ognized with the Nobel Prize for studying stable allocations and market designs.
French economist Jean Tirole received the same honor in 2014 for his analysis of
market power and regulation. In 2016, two other game theorists, Oliver Hart, and
Bengt Holmström were recognized for their work on contract theory. Recently, in
2020 Paul R. Milgrom and Robert B. Wilson were also awarded the Nobel Prize for
their work in auction theory and inventions of new auction formats. While Dou-
glas Diamond and Philip Dybvig may not be considered traditional game theorists,
their innovative model of bank runs, developed in 1983, ultimately earned them the
Nobel Prize in 2022.

Game theory has significantly contributed to our understanding of human behav-
ior in competitive and cooperative settings across a wide array of fields, includ-
ing economics, political science, and biology. The diverse models encompassed
by game theory, ranging from static games with complete information to dynamic
games with incomplete information, have found applications in numerous areas,
reflecting the versatility and adaptability of game theory as an analytical tool (My-
erson, 1997). The work of the aforementioned Nobel laureates, along with other
scholars, has led to the development of several key concepts and refinements within
game theory. Among these are the concepts of Nash equilibrium, developed by
John Nash in 1950, and subgame perfect equilibrium, introduced by Reinhard Sel-
ten (Selten, 1965). These refinements of the equilibrium concept have proven in-
strumental in guiding our understanding of strategic behavior across a myriad of
contexts, such as oligopolistic competition, contract theory, mechanism design, auc-
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tions, and bargaining (Tirole, 1988).
In the broader economic landscape, game theory has proven invaluable for un-

derstanding how firms compete in markets, how countries engage in international
trade, and how individuals make choices in strategic situations. By synergistically
combining game theory with insights from behavioral economics, researchers have
been able to delve deeper into the decision-making processes of individuals across
various contexts (Camerer, 2011). This interdisciplinary fusion has not only broad-
ened the scope of game theory but also enriched our understanding of complex
economic phenomena, leading to more effective policies and strategies.

Environmental economics, in particular, offers a fascinating and policy-relevant
application of game theory. In this field, strategic interactions among agents play
a crucial role in determining the exploitation of natural resources and the provision
of public goods, such as clean air and water. By employing game-theoretic models,
researchers have successfully analyzed and proposed solutions to complex envi-
ronmental challenges, including the tragedy of the commons postulated by Hardin
(1968), the management of transboundary pollution (Barrett, 1994b), and the nego-
tiation of international climate agreements (Barrett, 1994a; Rubio and Ulph, 2006;
Barrett, 2016; Battaglini and Harstad, 2016; Harstad, 2016; Harstad et al., 2019).
This integration of game theory into environmental economics demonstrates its ver-
satility and ongoing relevance in addressing contemporary economic issues.

In conclusion, game theory has come a long way since its inception in the early
20th century, playing a critical role in shaping modern economic research, particu-
larly in the realm of environmental economics. The pioneering work of mathemati-
cians and economists, alongside the contributions of numerous Nobel laureates,
has shaped the field and demonstrated its wide-ranging applicability across various
disciplines. As an interdisciplinary tool, game theory has greatly influenced the
way researchers approach and study complex environmental issues, offering valu-
able insights and strategies for managing scarce resources and fostering sustainable
development. As we continue to face global challenges, the insights provided by
game theory will be crucial in guiding research, informing policy, and fostering co-
operation among diverse stakeholders. In essence, game theory has proven to be
an invaluable and indispensable resource in understanding and navigating the com-
plex strategic interactions that define our world and addressing the contemporary
challenges that face our global society.

Good books on game theory are, for instance, Fudenberg and Tirole (1991), Os-
borne (2004), Osborne and Rubinstein (1994), among many others. In the absence
of any time dependence, a game Γ in its normal form game is characterized by a set
of players N , the set of strategies (or actions) A i for each player i ∈ N , with its
payoff function U i : A → R for each player i ∈ N . One defines A := ∏i∈N A i
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as the product of the strategies (or actions) available to player A i, and a = (ai)i∈N

as the set of (pure) strategy profiles. Therefore, the normal form game can be rep-
resented as

Γ =
(
N ,A ,

{
U i(·)

}
i∈N

)
,

which describes a static game with complete information. Moreover, it is also
assumed that each player fulfills the assumptions of “rationality” and “common
knowledge”. The first concept means that each player chooses her strategy (or ac-
tion) ai to maximize her payoff U i(ai,a−i), which is a function of her own strategy
ai and what all the other players will do a−i :=

(
a j)

j∈N \{i}. The second concept,
common knowledge, implies that each player is aware of the rules of the game, and
knows that the other players know the rules of the game, and that those other players
know that she knows the rules of the game and so one and so forth ad infinitum.

One can define a Nash Equilibrium in the game Γ as the strategy profile a∗ =
(ai∗)i∈N ∈ A as the strategy with the property that for every player i ∈ N , we
have

U i (ai∗,a−i∗)≥U i (ai,a−i∗) , ∀ai ∈ A i, (1.1)

capturing the idea that a Nash Equilibrium is a strategy profile a∗ where each player
maximizes her own payoff given that all the other agents are playing their equilib-
rium strategies. Put differently, no player has an incentive to deviate. This is one of
the most important results in game theory.

As we move to explore the connections between game theory and other mathe-
matical frameworks, we will first delve into the calculus of variations, a field that
has played a critical role in the development of optimal control theory.

1.2 From Calculus of Variations to Optimal Control
Theory

The history of the calculus of variations, a branch of mathematical analysis con-
cerned with the optimization of functionals (functions that map functions to scalars),
is deeply rooted in the quest for solving optimization problems and can be traced
back to the ancient world. Among the earliest instances of these optimization prob-
lems are the concepts of minimum distance in Euclidean space and the famous
isoperimetric problem. These mathematical ideas laid the foundation for the devel-
opment of the calculus of variations and continue to be relevant in modern research.
The concept of the minimum distance in Euclidean space is a fundamental notion
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that originated from the study of geometry. The idea is simple: in a two-dimensional
plane, the shortest distance between two points is a straight line.

Another significant optimization problem from antiquity is the isoperimetric prob-
lem, which can be traced back to the legendary tale of Queen Dido, the founder of
Carthage (modern Republic of Tunisia). The story goes that Queen Dido wanted to
build a new city on the coast of North Africa and was given as much land as she
could enclose with a single oxhide. To maximize the area of her new domain, Dido
cleverly cut the oxhide into thin strips and arranged them into a circle, forming the
largest possible area enclosed by a given perimeter. This tale highlights the essence
of the isoperimetric problem: finding the shape with the largest possible area for
a given boundary length. The solution to this problem, as hypothesized by Queen
Dido, is the circle.

From the intuitive understanding of the minimum distance and the isoperimet-
ric problem in antiquity, the calculus of variations has evolved into a sophisticated
mathematical tool that allows for the optimization of a wide array of problems.
Among the most famous problems in the calculus of variations is the brachis-
tochrone problem, first posed by Johann Bernoulli in 1696. The term “brachis-
tochrone” is derived from the Greek words “brachistos” (shortest) and “chronos”
(time), aptly reflecting the nature of the problem. The Brachistochrone problem
seeks to determine the curve of fastest descent, that is, the path taken by a particle
moving under the influence of gravity along a curve, connecting two points in the
plane, which minimizes the time of travel.

Bernoulli’s challenge to the mathematical community to solve the Brachistochrone
problem in 1696 attracted the attention of prominent mathematicians. The solution,
as independently discovered by Newton, Jakob Bernoulli, Gottfried Leibniz, Ehren-
fried Walther von Tschirnhaus, and Guillaume de l’Hôpital, is the cycloid, a curve
traced by a point on the circumference of a circle as it rolls along a straight line
without slipping. The significance of this problem lies not only in the solution itself
but also in the techniques and concepts that emerged as a result of its investigation.

Serving as a catalyst for the development of the calculus of variations, the Brachis-
tochrone problem introduced the notion of a functional and the concept of minimiz-
ing a functional subject to constraints. This new field began to take shape in the
late 17th and early 18th centuries, building upon early optimization problems such
as Newton’s minimal resistance problem in 1687 and Johann Bernoulli’s Brachis-
tochrone curve problem in 1696. The techniques and concepts derived from these
problems found applications in numerous fields, such as physics, engineering, and
economics, and laid the foundation for the further development of the calculus of
variations. One of the most important developments in this field was the introduc-
tion of the Euler-Lagrange equation, which helped in finding extrema of functionals.
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As a result, the Brachistochrone problem not only highlighted the power and rele-
vance of the calculus of variations in the study of optimization problems but also
established its vital role in modern mathematical analysis.

The contributions of Leonhard Euler and Joseph-Louis Lagrange in the 18th cen-
tury marked a turning point in the development of the calculus of variations. Eu-
ler’s groundbreaking work on the Euler-Lagrange equation provided a systematic
method for solving variational problems, greatly expanding the scope and applica-
bility of the field. The simplest variational problem is

max
∫ t1

t0
F(t,x(t), ẋ(t))dt, subject to x(t0) = x0, x(t1) = x1. (1.2)

The equation allowing to search for the solution (of the extremums, which may not
be maximums) is the so-called Euler-Lagrange equation, or the fundamental lemma
of calculus of variations. One gets extremum only if the Euler-Lagrange differ-
ential equation is satisfied. It was already discovered by the Swiss mathematician
Leonhard Euler in 1744 and is given by3

∂F
∂x

− d
dt

(
∂F
∂ ẋ

)
= 0, (1.3)

where x(t) and ẋ(t) represent a function that evolves over time and its first deriva-
tive, respectively. This equation has become a cornerstone of modern calculus of
variations, as it allows researchers to find the extrema of functionals subject to var-
ious constraints.

The 19th and 20th centuries saw further advancements in the calculus of vari-
ations, as mathematicians like Carl Gustav Jacobi, William Rowan Hamilton, and
Richard Courant contributed to the refinement and generalization of the theory. In
particular, the development of the Hamiltonian formalism and the Pontryagin Max-
imum Principle extended the applicability of variational techniques to a wide range
of fields. For instance, in economics, some of its first applications were by Ram-
sey (1928), where he studied an optimal saving problem, and by Hotelling (1931),
where he studied a problem of finding the optimal extraction of a non-renewable
resource, which we use in Chapter 4.

The foundations of the calculus of variations paved the way for the development
of optimal control theory.

3See, for instance, Sydsæter et al. (2008).
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1.3 On Optimal Control Theory and its Impact on
Economics

Optimal control theory has established itself as a fundamental and indispensable
tool in a wide range of disciplines. The theory’s core tenet is the systematic deter-
mination of the best possible control for a given dynamic system in order to achieve
a desired objective, subject to certain constraints. Next, we will explore the appli-
cations of optimal control theory, focusing on its importance and influence in the
field of economics. This dissertation will employ the framework of continuous-time
methods, reflecting the pertinence of these techniques in our investigation.

The genesis of optimal control theory can be traced back to the work of mathe-
maticians Richard Bellman and Lev Pontryagin in the 1950s. Bellman (1957) intro-
duced the concept of dynamic programming, a method for solving complex prob-
lems by breaking them down into smaller, more manageable subproblems.4 The
second major advance was made by Pontryagin and his colleagues in 1956, who
developed the Maximum Principle, a necessary condition for an optimal solution
(see Pontryagin et al. (1962) for a version in English). These two groundbreak-
ing contributions laid the foundation for the modern framework of optimal control
theory.

Optimal control theory has evolved significantly since its inception, encompass-
ing an array of techniques and methodologies, each tailored to address specific
classes of problems. The rich and diverse nature of this field has enabled it to
find applications in fields such as aerospace, robotics, finance, and, of course, eco-
nomics. The application of this theory in economics has a long history, with seminal
contributions from researchers such as David Cass, and Tjalling Koopmans. These
pioneers applied the principles of optimal control to a variety of economic prob-
lems, such as growth theory, resource allocation, and intertemporal consumption,
paving the way for its widespread adoption in economic research. Building on
the foundation laid by pioneers like Ramsey (1928), Cass (1965), and Koopmans
(1965), the application of optimal control theory in economics has significantly in-
fluenced the study of optimal economic growth.5 These groundbreaking models
used optimal control to optimally allocate resources between consumption and in-
vestment, thereby maximizing intertemporal welfare. The scope of this research

4Although as mentioned in Weber (2011), “[t]he idea of dynamic programming precedes Bell-
man’s work: for example, von Neumann and Morgenstern (1944, ch. 15) used backward induction
to solve sequential decision problems in perfect-information games.”

5Tjalling C. Koopmans shared the Nobel Prize in Economics in 1975 with Leonid Kan-
torovich for their contributions to the theory of optimum allocation of resources https://www.
nobelprize.org/prizes/economic-sciences/1975/press-release/
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has expanded over time, incorporating elements such as endogenous technological
progress, environmental constraints, and various other factors, which will be thor-
oughly discussed in Chapter 4. In addition to growth theory, optimal control theory
has found applications in monetary and fiscal policy, international trade, environ-
mental economics, and finance, among others. In monetary and fiscal policies, one
can include optimal inflation targeting and optimal taxation. In international trade
models, one can study the optimal tariff policies. In environmental economics, one
can study the optimal extraction of a renewable resource, the amount of emissions,
and climate change mitigation strategies.6

In this dissertation, we will employ the tools of optimal control theory, high-
lighting its applications in economics. First, we just state the basic problem. By
doing so, we aim to provide a comprehensive understanding of this powerful ana-
lytical tool and its continued relevance in the ever-evolving landscape of economic
research.

Let us consider a general optimal control problem, which can be formulated as
follows:

Opt
{u(s)}s∈[t0,T ]

J(x,u, t) =
∫ T

t0
L(s,x(s),u(s))ds (1.4)

subject to ẋi(s) = f i(s,x(s),u(s)), (1.5)

x(t0) = x0, for i = 1, ...,n. (1.6)

In the problem formulation above, the vector of control variables is formed by
u(s) = (u1(s), ...,um(s))∈U ⊂Rm, representing the decision-making processes that
influence the system, i.e., what to do at any moment in time. Observe that the
decision-maker has m different decisions to choose, which are u1(s),u2(s), ...,u j(s),
up to um(s). This general formulation allows the agent to choose many different
important variables in the system. The vector of state variables of the system at
time s is denoted by x(s) = (x1(s), ...,xn(s))∈ X ⊂Rn. Observe that now the system
has n different dynamics or variables that evolve in that system. The dynamics of
the system are described by a set of differential equations, one equation per state
variable, ẋi(s) = f i(s,x(s),u(s)), with the corresponding initial condition xi(t0) =
xi

0, which describes how the system starts at the initial time t0. Moreover, L : [to,T ]×
X ×U →R represents the discounted utility function at time s. One should consider

6Central banks, for instance, frequently employ optimal control methods to determine the best
course of action for achieving macroeconomic stability. In each of these contexts, the elegance
and versatility of optimal control theory have proven invaluable in providing rigorous, quantitative
solutions to complex economic problems.
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L(s,x(s),u(s)) to be a general function (including the discount function if needed).
To address such an optimal control problem, various techniques can be employed.

Two of the most prominent approaches are Bellman’s dynamic programming and
Pontryagin’s Maximum Principle. Dynamic programming is well-suited for both
discrete and continuous time systems and relies on the principle of optimality,
which states that an optimal trajectory can be decomposed into an initial subop-
timal trajectory followed by an optimal trajectory. Pontryagin’s Maximum Prin-
ciple, on the other hand, provides a set of necessary conditions for optimality in
continuous-time systems. The principle introduces the concept of an adjoint vari-
able, in this case will be the vector λ (s) = (λ 1(s), ...,λ n(s)), and a Hamiltonian
function, H(s,x(s),u(s),λ (s)), defined as:

H(s,x(s),u(s),λ (s)) = λ0L(s,x(s),u(s))+λ (s) f (s,x(s),u(s)). (1.7)

The Maximum Principle7 states that for an optimal control trajectory u∗(s) and a
corresponding optimal state trajectory x∗(s), there exists a constant λ0, with λ0 = 0
or λ0 = 1, and a continuous and piecewise differentiable adjoint vector function
λ (s) = (λ 1(s), ...,λ n(s)), such that for all time s ∈ [t0,T ], one has (λ0,λ (s)) ̸=
(0,0), and:

1. The control function u∗(s) maximizes the Hamiltonian H(s,x∗(s),u,λ (s)) for
u ∈U , that is,

H(s,x∗(s),u,λ (s))≤ H(s,x∗(s),u∗(s),λ (s)) for all u in U, (1.8)

2. Whenever u∗(s) is continuous, the adjoint function satisfy

dλ i(s)
ds

=− ∂

∂xi [H(s,x∗(s),u∗(s),λ (s))] for i = 1, ...,n (1.9)

3. Given different terminal conditions, it should be that

a) When xi(T ) = xi
1, there are no conditions for λ i(T )

b) When xi(T )≥ xi
1, then λ i(T )≥ 0 (λ i(T ) = 0 if xi,∗ > xi

1)

c) When xi(T ) is free, λ i(T ) = 0.

These conditions, when combined with the system dynamics, provide a set of
equations that can be solved to obtain the optimal control and state trajectories. See
Sydsæter et al. (2008), Weber (2011), Sethi (2019), Kamien and Schwartz (1991)
and Liberzon (2011).

7We follow Sydsæter et al. (2008).
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Moreover, suppose that (x∗(s),u∗(s)) is an optimal pair with a corresponding ad-
joint function λ (s), together with λ0 = 1, such that the necessary conditions are
met. If the control region U is convex and H(s,x,u,λ (s)) is concave with respect
to (x,u) for every time s ∈ [t0,T ], together with the partial derivatives ∂L/∂u j and
∂ f i/∂u j existing, then (x∗(s),u∗(s)) is an optimal pair. This is known as the Man-
gasarian sufficiency conditions.8 For the infinite horizon problem, see the previous
references.

Throughout this dissertation, we will further explore the nuances and intricacies
of optimal control theory within the realm of economics. For a captivating account
of the history of the calculus of variations and optimal control theory, see Goldstine
(1980) and the previous references.

1.4 Differential Games: Bridging Game Theory and
Optimal Control Theory

Differential games is an area of research that brings together the concepts and
tools from game theory and optimal control theory to study strategic interactions in
dynamic settings. It harmonizes these two previous fields by modeling scenarios
where agents make decisions over time, considering the actions and reactions of
others. It was first introduced by Rufus Isaacs in the 1950s as a means to analyze
pursuit-evasion problems in the context of military operations (Isaacs, 1965).

Since then, differential games has evolved into a vital instrument for compre-
hending the strategic behavior of economic agents in dynamic settings. Conse-
quently, in today’s increasingly interconnected world, understanding the dynamics
of strategic interactions between such economic agents is crucial. Thus, this is
where differential game theory equips economists with a powerful tool to model
and analyze these interactions, shedding light on optimal decision-making in com-
plex and uncertain environments. This approach enables economists to better grasp
the intricacies of the global economy, anticipate future trends, and inform policy-
making. An example of the application of differential games in economics is the
study of dynamic competition between firms, where firms choose their strategies
over time to maximize their profits while taking into account the actions of their
competitors. In these settings, differential games can help to analyze issues such
as entry and exit, pricing, and investment decisions. In particular, environmen-
tal economics has greatly benefited from the implementation of differential games
techniques. The dynamic nature of environmental problems, such as resource ex-

8One could also consider Arrow’s sufficient conditions.
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traction and pollution control, makes them well-suited for analysis using this frame-
work. For example, researchers have used differential games to study the strategic
behavior of countries in addressing transboundary pollution problems, where each
country’s actions affect the others’ environments. Differential games have also been
employed to analyze the optimal management of renewable resources, such as fish-
eries and forests, where the actions of multiple agents can significantly impact the
long-term sustainability of these resources. A comprehensive exploration of differ-
ential games with economics applications can be found in Dockner et al. (2000),
while Lambertini (2018) offers a detailed analysis of applications in industrial or-
ganization. Additionally, for insights into the applications of dynamic games in the
economics and management of pollution, refer to Jørgensen et al. (2010) and the
cited references therein. The authors thoroughly discuss challenges associated with
pollution control instruments, such as quotas, taxes, subsidies, and tradable emis-
sion permits. Furthermore, they address issues in transboundary pollution scenarios
and macroeconomic concerns, incorporating aspects such as economic and popula-
tion growth, climate change, income and technology transfers, as well as the pursuit
of sustainable development.

As a result of combining insights from game theory, optimal control theory, and
differential games, researchers in environmental economics have been able to better
understand the complex interactions between economic agents and the environment.
This understanding has, in turn, informed the design of policies and institutions that
promote the sustainable use and management of environmental resources.

1.5 On Discouting

Discounting is a fundamental aspect of economics and intertemporal decision-
making, playing a crucial role in determining the value of costs and benefits that
occur at different points in time. The importance of discounting cannot be over-
stated, particularly when it comes to evaluating long-term projects and policies,
such as climate change mitigation, natural resource management, public infrastruc-
ture investments, and research and development initiatives. As a result, discounting
will hold a central position in this dissertation, featuring prominently in the prob-
lem statement of Chapters 2 and 4. In the subsequent section, we will explain the
motivation underlying our research problem and its importance.

As clearly expressed in Myerson et al. (2001), “[d]iscounting is a pervasive phe-
nomenon in decision making by humans and nonhuman animals. The results of a
large number of experiments using delayed rewards have shown that the subjective
value of a delayed reward is less than the value of an immediate reward of the same
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nominal amount (e.g., Green, Fry, & Myerson, 1994; Kirby, 1997; Mazur, 1987;
Myerson & Green, 1995; Rachlin, 1989). More specifically, the value of a reward
has been shown to decrease as a function of delay, and this phenomenon is termed
temporal discounting.” The idea of discounting and self-control can be traced back
to the work published by the Scottish philosopher Adam Smith (2010 [1759]).9

Additionally, how human beings compare current and future events has also been
the subject of extensive research in psychology and economics since the nineteenth
century. Pioneering studies on the study of intertemporal decisions can go back to
the work by Rae (1834), Senior (1836), von Böhm-Bawerk (1889) and Jevons (1879
[1871]), where the last author highlighted, “[t]he intensity of present anticipated
feeling must, to use a mathematical expression, be some function of the future actual
feeling and of the intervening time, and it must increase as we approach the moment
of realisation. The change, again, must be less rapid the farther we are from the
moment, and more rapid as we come nearer to it. An event which is to happen a
year hence affects us on the average about as much one day as another; but an event
of importance, which is to take place three days hence, will probably affect us on
each of the intervening days more acutely than the last”. Fisher (1930), who used
the term “impatience”, argued that such time preferences showed a lack of foresight
and self-control. Moreover, (Ramsey, 1928, p. 543) preferred to use a discount
rate equal to zero.10 In addition, Pigou (2017 [1920]) also thought that discounting
was a sign of the poor functioning of our imagination.11 Nevertheless, despite the
reluctance of previous authors, it was in the work by Samuelson (1937) when the
Discounted Utility (DU) Model was popularized. In his model, decision-makers
are characterized by having a constant discount rate, and time preferences are time-
consistent. This is the well-known exponential discounting problem, which has as
discount function

θ(s− t) = e−ρ(s−t), (1.10)

where θ(s−t) is the discount function, ρ is the constant discount rate, time t is when
the agent takes the decisions, and time s is when she experiences such a decision

9Adam Smith wrote in his first book “The theory of moral sentiments” that “[t]he pleasure which
we are to enjoy ten years hence interests us so little in comparison with that which we may enjoy to-
day, the passion which the first excites, is naturally so weak in comparison with that violent emotion
which the second is apt to give occasion to, that the one could never be any balance to the other”.

10His justification was that “we do not discount later enjoyments in comparison with earlier ones,
a practice which is ethically indefensible and arises merely from the weakness of the imagination.”

11Pigou (2017 [1920]) wrote: “[b]ut this preference for present pleasures does not - the idea is
self-contradictory - imply that a present pleasure of given magnitude is any greater than a future
pleasure of the same magnitude. It implies only that our telescopic faculty is defective, and that we,
therefore, see future pleasures, as it were, on a diminished scale.”
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(number of years into the future until the action occurs).12

The exponential discounting approach, characterized by a constant discount rate,
has been widely adopted due to its simplicity and leading to time-consistency. How-
ever, it has been criticized for its lack of empirical and theoretical foundations, with
evidence suggesting that individuals often rely on hyperbolic discounting (Freder-
ick et al., 2002). A rich body of literature supports the time varying discount rate
framework, extensively surveyed by the previously mentioned authors and DellaV-
igna (2009) providing seminal insights into this area.

Time inconsistency, the discrepancy between the choices made by an individual
at different points in time, has also been widely studied in Strotz (1955), Phelps and
Pollak (1968) and Laibson (1997). This has led to the consideration of alternative
discounting models, such as quasi-hyperbolic discounting, which can better capture
the observed behavioral patterns in intertemporal decision-making. Strotz (1955)
showed that exponential discounting with constant rates of time preferences was
the only discount function that generated time-consistency, and Phelps and Pollak
(1968) introduced the (quasi)hyperbolic (or quasigeometric) discount functions in
discrete time.

Some authors give validity to the hypothesis that individuals are simply not aware
of their future impatience (Caliendo and Aadland, 2007; Findley and Caliendo,
2014). However, others argue that humans behave in a sophisticated, or time-
consistent manner, as Barro (1999), Karp (2007), Karp and Tsur (2011), Tsoukis
et al. (2017) or Cabo et al. (2020a). The first author of this latter group initiated the
literature on non-constant discounting and economic growth by studying the loga-
rithmic and power utilities. He concluded that for a neoclassical growth model with
log utility, exponential discounting is observationally equivalent to quasi-hyperbolic
(non-constant) discounting. This is precisely what we get for our procrastinator
agent under an endogenous growth model with natural resources in Chapter 4.
Nonetheless, this equivalence does not hold when we consider elasticities of sub-
stitution different from one (Pollak, 1968; Marín-Solano and Navas, 2009; De-Paz
et al., 2014, 2013; Farzin and Wendner, 2014).

Moreover, Marín-Solano and Patxot (2012) examined a distinct form of time-
inconsistent preferences by introducing heterogeneous discounting in a determinis-
tic setting. In their finite horizon model, the utility payments derived from consump-

12Even Paul Samuelson, the proponent of the exponential formulation, harbored doubts regarding
its suitability as a representation of an individual’s preferences and as a representation of the col-
lective preferences of individuals, writing “[i]t is completely arbitrary to assume that the individual
behaves so as to maximize an integral of [this] form” (p.159), and further arguing that “any connec-
tion between utility as discussed here and any welfare concept is disavowed” (p.161). However, as
Frederick et al. (2002) clearly state, “despite Samuelson’s manifest reservations, the simplicity and
elegance of this formulation was irresistible”.
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tion during the planning horizon were discounted at a rate (ρ1) different from that of
the final function (ρ2), which could represent savings to be enjoyed post-retirement.
This approach recognizes that it may be unrealistic to assume that the enjoyment
of various goods should be discounted at the same rate, as the final function can be
viewed as a distinct type of good.

In one of the problems studied in Chapter 2, we incorporate different (constant)
discount rates in our regime-switch model. This can be justified in several ways.
For instance, given that e−ρ2(T−t) = e−ρ1(T−t) · e(ρ1−ρ2)(T−t), when ρ2 > ρ1, this
function increases with time t. As t approaches the final time T , the agent assigns
greater value to the final term, representing the adoption of new technology in our
model. Consequently, the decision-maker exhibits a present bias that diminishes as
the technology adoption approaches. This aligns with the psychological perceptions
of many decision-makers, who often assign increasing value to a regime change as
it approaches. Moreover, we also consider general non-constant discount functions
as in Karp (2007) and Marín-Solano and Navas (2009).

Additionally, it is claimed in the literature that individuals invest or save too little
when they discount the future hyperbolically and are subject to self-control prob-
lems (Laibson, 1997, 1998). This highlights the fact that individuals are more pa-
tient concerning decisions in the distant future and highly impatient when decisions
take place in the near future. Recent work analyzing present bias in consumption-
saving models are Maxted (2020) and Laibson et al. (2021).

As it has been studied in the neoclassical literature, rational agents come to play
an important role. Nevertheless, as expressed by Kahneman (2011), “[r]ational
agents are expected to know their tastes, both present and future, and they are sup-
posed to make good decisions that will maximize these interests”.

Additionally, the choice of the discount rate has significant implications for long-
term decision-making and policy, as evidenced by the disagreement between Nobel
Prize laureate William Nordhaus and Nicolas Stern on climate policy, following the
Stern (2007) Review. As clearly highlighted in Harstad (2020):

“Over the past decades, our profession has settled on employing exponential discount-

ing, partly because preferences are then likely to be time-consistent. Apart from the conve-

nience, however, there are few reasons to impose exponential discounting as a reasonable

model of decision-making. The lack of empirical and theoretical foundations for exponen-

tial discounting will be reviewed [later], suggesting that individuals often rely on hyperbolic

discounting. I also explain why, even if every individual and voter applies constant discount

factors, policymakers who rotate being in office will evaluate investment projects using dis-

count factors that increase (i.e., discount rates decrease) in relative time. Intuitively, even

if everyone wants a future government to invest for the future, those ending up in office may
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rather prefer perks. This time-inconsistency problem turns out to be particularly severe for

investment projects that are associated with externalities, such as climate change.”

Time preferences are defined generally by the discount function θ(s− t) ≥ 0,
which is not just a function of the time when the control (consumption) is enjoyed,
i.e., time s, but a function of the time distance from the present t (when the de-
cision is made). This time distance between when consumption is enjoyed and
when the decision is made will be defined as j ≡ s− t. The discount function θ( j)
satisfies the properties θ( j) > 0, θ̇( j) < 0, for all j > 0 and θ(0) = 1. The in-
stantaneous discount rate ρ( j) ≡ −θ̇( j)/θ( j) does not have to be constant and
decreases with the time distance from the present, i.e., ρ( j) > 0, ρ̇( j) ≤ 0, for
all j > 0 (Laibson, 1997; Barro, 1999). One might conceptualize it as the (nega-
tive) growth rate of the discount function. Intuitively, this means that the further
an event is in the future, the “less important” it is for the present agent at time t.
In contrast, under the standard time distance exponential discounting popularized
in Samuelson (1937), where θ(s− t) = e−ρ(s−t) = e−ρ j = θ( j), one can observe

that ρ( j) = −θ̇( j)/θ( j) = −(−ρ)e−ρ j

e−ρ j = ρ ∈ R++ is constant in comparison to
a general discount function. Put differently, the logarithmic rate of change of the
discount is constant, i.e.,

d
d j

[ln(θ( j))] =
d
d j

[
ln
(

e−ρ( j)
)]

=
d
d j

[−ρ j] =−ρ,

which ensures time-consistency in standard inter-temporal problems (Strotz, 1955).
The problem of time-inconsistencies has deep historical roots, even appearing in the
ancient epic, The Odyssey:

“but you must bind me hard and fast, so that I cannot stir from the spot where you will

stand me... and if I beg you to release me, you must tighten and add to my bonds.”13

Therefore, understanding the intricacies of discounting is crucial for designing
effective policies that address long-term challenges. Time-inconsistency can moti-
vate political measures such as subsidies or taxes, normally reserved for traditional
market failures. Furthermore, the interaction between time-inconsistency and tra-
ditional market failures, such as spillovers and externalities between countries, can
have important implications for international environmental policy and participation
in international environmental agreements.

By examining the interplay between discounting, time-inconsistency, and policy,
we seek to contribute to the understanding of how discounting influences long-term
decision-making and the design of effective policy interventions.

13See the quote in (Strotz, 1955).
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1.6 On Switching

Economists should pay close attention to switching problems and optimal switch-
ing regimes for several compelling reasons. First and foremost, real-world eco-
nomic systems frequently involve multiple states or regimes, with agents need-
ing to determine when to transition from one state to another. By investigating
these switching problems, economists can acquire a deeper understanding of how
decision-makers optimize their actions when confronted with diverse scenarios, ul-
timately improving outcomes in various sectors.

There are many real-world examples that demonstrate the importance of studying
optimal switching problems. In the energy sector, utility companies can use these
models to determine the ideal transition points between different power generation
sources, such as fossil fuels, renewable energy, and nuclear power, while balancing
energy production costs, environmental impact, and supply reliability. Similarly,
the agricultural sector benefits from understanding optimal switching models, as it
would help farmers decide the optimal time to transition between different crops
or cultivation techniques, taking into account factors like climate, soil conditions,
and market demand to maximize yield and profit. In financial markets, investors
and portfolio managers can use optimal switching models to decide when to transi-
tion between different investment strategies or asset classes, optimizing risk-return
profiles for improved investment outcomes. Climate policy also benefits from these
models, as they assist governments and policymakers in determining the optimal
timing and conditions for implementing various climate change mitigation strate-
gies, enabling the identification of the most effective and cost-efficient policy mix.

Furthermore, switching problems are particularly pertinent in the context of tech-
nological advancements and evolving market conditions. As new technologies
emerge and market dynamics shift, comprehending the optimal timing and con-
ditions for adopting novel methods or transitioning between market strategies be-
comes critical for economic agents to maintain competitiveness and secure long-
term profitability. Manufacturing firms facing the challenge of deciding when to
upgrade production technologies or switch between different production processes
can rely on optimal switching models to identify the most cost-effective times and
conditions for transitioning. The study of optimal switching problems and regimes
seamlessly integrates also into diverse contexts, such as environmental economics,
where adopting greener technologies can enhance efficiency and reduce emissions.
Moreover, there are interesting applications in the field of international economics
where countries may decide whether to join a free trade agreement or a climate
change agreement. One can also find exciting macroeconomic applications such
as adopting a new currency and giving up their monetary policy (for instance, Eu-
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ropean countries adopting the Euro). In addition, there are direct applications to
health economics, such as deciding when to stop smoking, when to start going to
the gym, or even in transport economics, deciding when to switch to a more efficient
but more expensive electric car. The case of adopting a more efficient technology
will be studied in Chapter 2.

The extensive applicability and adaptability of optimal switching models in di-
verse economic contexts highlight their crucial importance in modern economic
research. By enabling more informed, strategic decision-making, these models con-
tribute significantly to the efficient allocation of resources, the identification of op-
timal policy interventions, and the overall enhancement of economic welfare. As
the global economy faces ongoing evolution and new challenges, the insights de-
rived from optimal switching models prove indispensable in fostering innovation,
advancing sustainable development, and deepening our understanding of the in-
tricate dynamics shaping the economic landscape. Moreover, the study of optimal
switching problems bolsters the creation of robust economic models that account for
the inherent complexities characteristic of real-world decision-making processes.
Integrating switching mechanisms into economic models allows economists to de-
liver more accurate forecasts and policy recommendations, ultimately promoting
improved economic outcomes for society as a whole.

1.7 Conclusion

In conclusion, the interdisciplinary fusion of game theory and optimal control
theory that led to the development of differential games has had a profound impact
on economics, particularly in the field of environmental economics. The develop-
ment of these sophisticated mathematical frameworks and their applications, which
allow us to unravel strategic behavior between agents, the impact of dynamic com-
petition, and the implications for natural resource extraction, have provided invalu-
able insights that have helped to shape new policies and improve our understanding
of the challenges and opportunities facing the economy in the coming decades and
centuries. This confluence of theoretical and applied knowledge underlines the cru-
cial role of these interdisciplinary approaches in shaping a more sustainable future.

Therefore, by acknowledging the historical context of our research, we can better
appreciate the importance of the theories and methodologies we use. As we con-
tinue to explore the applications of game theory, optimal control theory, and differ-
ential games, we will be following the steps of pioneers like Von Neumann, Nash,
Bellman, Pontryagin, and Isaacs, who helped shape our understanding of complex
dynamic systems and the ways in which individuals and organizations interact with
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1 agent n-agents/players
Partial Equilibrium 2nd Chapter 3rd Chapter

General Equilibrium ∄ 4th Chapter

Table 1.1: Evolution of the doctoral thesis.

one another.

The structure of the thesis is as follows. In Chapter 2, “Time to Switch: Differ-
ent Regimes and Competitive Management of Natural Resources with Technology
Adoption under Time Inconsistent Preferences”, we investigate an optimal switch-
ing point problem with time-inconsistent preferences. In this case, a time-consistent
(sophisticated) decision-maker chooses the time of switching between two consec-
utive regimes. The corresponding dynamic programming equations are presented,
and conditions for deriving the switching time by agents with different degrees of
sophistication are studied. In Chapter 3, “What is my Neighbor Doing? Heteroge-
neous agents under Free Trade with Renewable Resources”, we study a dynamic
(differential) game where two countries extract a renewable resource when they
show “status concern” preferences, and they are “keeping up with the Joneses”,
which means that they also care about the performance of other players. We com-
pare the implications of staying under autarky or having free trade between coun-
tries and how they extract the resource. We also analyze the welfare implications
of the different games. Finally, in Chapter 4, entitled “Being Human: Endogenous
Growth, Pollution and Natural Resources under Time Inconsistent Preferences”, we
examine the implications of agents having time-inconsistent behavior (procrastina-
tion), an intrinsic part of being humans (Thaler, 2015), in an endogenous growth
model with non-renewable resources and pollution. Pollution is a by-product of
economic activity and the extraction of an exhaustible resource, which negatively
affects agents. Curiously, we show that when decision-makers have “human behav-
iors”, they can enjoy higher levels of “well-being” (sum of discounted utilities) than
those who are time-consistent under the strong observational equivalence principle.
By modeling time preferences in a general setting, we contribute to the behavioral
macroeconomics debate and shed light on its social implications.

In order to provide a visual representation of the overall structure of the thesis,
Table 1.1 is presented as an intuitive guide. The second chapter will present a com-
prehensive model that involves a single agent in a partial equilibrium setting. The
third chapter will study a two-player game under partial equilibrium conditions.
Finally, in the fourth chapter, we will investigate the complex dynamics that arise
when multiple agents interact and make decisions in a general equilibrium frame-
work.
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In conclusion, the research presented in this thesis may have important impli-
cations for our understanding of the complex challenges that confront our world
today. By delving into the intricacies of dynamic games, environmental economics,
behavioral economics, switching problems, and economic growth, we can develop
the intellectual tools and insights necessary to inform the design of effective policies
and institutions that promote economic prosperity, social equity, and environmental
sustainability. We hope that our work will contribute to the ongoing development
and application of these powerful mathematical frameworks in the pursuit of a better
understanding of our world and the improvement of our societies.
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2 Time to Switch: Different Regimes
and Competitive Management of
Natural Resources with
Technology Adoption under Time
Inconsistent Preferences1

Abstract

A two-stage non-standard optimal control problem with time-inconsistent pref-
erences is studied. In an infinite horizon setting, a time-consistent (sophisticated)
decision-maker chooses the time of switching between two consecutive regimes.
The second regime corresponds to the implementation of a new technology, and a
cost must be paid at the switching time. Although the problem is formulated for a
general discount function, special attention is devoted to models with nonconstant
discounting and heterogeneous discounting. The problem is solved by transform-
ing it into a problem in finite horizon and free terminal time. The corresponding
dynamic programming equations are presented, and conditions for the derivation of
the switching time by decision-makers with different degrees of sophistication are
studied. A model of extraction of a nonrenewable resource with technology adop-
tion is solved in detail. Effects of the adoption of different discount functions are
illustrated numerically.

Keywords: Resource Management; Regime Shift; Switching Time; Non-constant
Discounting; Heterogeneous Discounting

1This chapter was published as a paper coauthored with Jesús Marín-Solano and Jorge Navas
as Mañó-Cabello, C., Marín-Solano, J., & Navas, J. (2021). A Resource Extraction Model with
Technology Adoption under Time Inconsistent Preferences. Mathematics, 9(18), 2205.
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JEL Codes: C61; C73; Q20; Q30

2.1 Introduction

In the optimal management of a natural resource, one problem of interest is
whether or not it is profitable to change to a new technology and, in the affirma-
tive case, when to do it. This is of particular interest in the case of nonrenewable
natural resources, since if the new technology implies a more efficient extraction or
exploitation, we can extend the actual availability of the resource.

From a formal perspective, the former question is a controlled endogenous regime
shift or two-stage (or multiple-stage) optimal control problem. While there is a
rich literature on regime shifts (some recent contributions on the topic are Gro-
mov and Gromova (2017) for switches in differential games, Gromov et al. (2022)
for optimal control problems with infinite switches, or the different chapters in
Haunschmied et al. (2021) for a recent good overview of applications to Economics),
there are less papers focusing on the optimal timing of switching. Some papers
studying this last problem, for the case of one decision-maker, are Tomiyama (1985)
and Amit (1986), who derived necessary conditions for the optimal switching time
in a finite time horizon, while Makris (2001) focused on the infinite time horizon
case. The extension to problems with more than one agent has been studied, for
instance, in Dawid and Gezer (2021) and in Van Long et al. (2017). In all these
models, the switching time involves a trade-off between immediate costs and po-
tential future benefits.

Regarding the study of biases in intertemporal decision processes, variable rates
of time preference have received considerable attention in recent years. These bi-
ases, leading to decisions not totally rational from an axiomatic point of view, are
supported by experimental evidence pointing out the fact that decision-makers are
more impatience in their short term choices than in their long when they face sim-
ilar decisions (see, for instance, Thaler (1981)) . Thus, payoffs in the near future
used to be discounted at higher instantaneous rates than payoffs in the long run, for
instance, by using a discount function of the type

θ(s− t) = e−
∫ s

t ρ(τ−t)dτ , (2.1)

where ρ ′(·) ̸= 0. The case when ρ ′(·) ≤ 0 describes a situation in which decision-
makers are more impatience for short term decisions, whereas for ρ ′(·) ≥ 0 the
effect is the opposite. For ρ ′(·) = 0, we recover the standard case with a constant
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discount rate. However, since the work by Strotz (1955), it is well known that when
the instantaneous rate of discount depends on the position of the decision-maker,
as in (2.1), standard optimization techniques fail in providing time-consistent solu-
tions. The main reason is that, since preferences change with time, as long as the
decision-maker goes over the planning horizon, they will depend on the instant t at
which solutions are obtained. Because of this, a t ′-agent, in general, will not find
optimal the solutions computed by the t-agent, for any t and t ′ in the time horizon.
Note that in the literature of models with general time preferences, by non-constant
or variable discount rates we refer to the case where temporal preferences depend
explicitly on the current position of the decision-maker in a way that it can not be
removed from the optimization problem, and not only on the future calendar time
at which utilities will be enjoyed. This dependence will imply that preferences be-
come time-inconsistent.

Karp (2007) faced the analysis of dynamic optimization problems in a continuous
time setting with non-constant discount rates, and obtained, in the infinite time hori-
zon case, a dynamic programming equation (or modified Hamilton-Jacobi-Bellman
equation) that characterizes time-consistent solutions in this framework. Later on,
Marín-Solano and Navas (2009) extended the approach to the finite horizon case
and studied the application to a nonrenewable resource problem with non-constant
discounting.

A different type of time-inconsistent preferences was analyzed in Marín-Solano
and Patxot (2012), that introduced and studied a problem with heterogeneous dis-
counting in a deterministic setting. In that paper, in a finite horizon setting, pay-
ments of utilities derived from consumption enjoyed during the planning horizon
are discounted at a rate (ρ1) different to that (ρ2) of the final function, representing,
e.g., savings to be enjoyed after retirement. This can be justified in the sense that it
seems questionable to assume that the enjoyment of different goods should be dis-
counted at the same rate. In that model, the final function can be seen as a function
of a good that is somehow different.

The introduction of different (constant) discount rates can be justified in different
ways in our model with a regime switch. First, note that e−ρ2(T−t) = e−ρ1(T−t) ·
e(ρ1−ρ2)(T−t). For ρ2 > ρ1, this is an increasing function in t. This means that,
as time t approaches T , the t-agent assigns a higher value to the final term, which
will be in our model the moment in which the new technology is adopted. Hence,
the decision-maker has a bias towards the present, but this bias goes down as the
moment of technology adoption is nearer. This is in agreement with psychological
perceptions of many decision-makers, according to which they can assign an in-
creasing value to a change in regime when it is nearer in the future. For example, if
a decision-maker placed at time 0 exploits a natural resource and has the option to
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introduce a new technology at a future date T , but there exists some uncertainty on
the actual effectiveness of the new technology, this uncertainty can be internalized
by the decision-maker at time 0 by applying a discount rate to payoffs obtained af-
ter T different to that applied to current payoffs before that time. There are other
potential justifications for introducing different discount rates. If, after the regime
switch, the firm is more efficient, it could have access to better financial conditions,
and this could impact the discount rate by reducing it (ρ2 < ρ1 in this case). An
opposite effect (ρ2 > ρ1) could be present if we introduce mortality rates (of the
business) in the long term (i.e., after T ), maybe due to stopping in the use of the
resource (oil, natural gas...) by the society.

The objective of this paper is to combine the above ideas, by extending previous
results in standard optimal control problems with two regimes, in which the switch-
ing time is a decision variable, to a framework with time-inconsistent preferences.
Special attention is paid to the case of non-constant discounting (an area of increas-
ing interest in Economics) and to the case of heterogeneous discounting. In order to
solve the problem, we transform the infinite horizon problem with a switching time
into a finite horizon problem with free terminal time. Then we find necessary condi-
tions on the terminal time to be satisfied by decision-makers with different degrees
of sophistication (or rationality). The procedure proposed to solve the problem is
then applied to a model of management of a natural resource, in which the agent
has to decide when to implement a new technology.

The paper is organized as follows. Section 2.2 presents the main problem for
an arbitrary discount function. Three particular classes of discount functions are
described. Section 2.3 collects and derives some theoretical results that will be
used in the paper. A procedure for solving the problem is presented in Section
2.4. In Section 2.5, we solve in detail a resource extraction model with technology
adoption. Numerical illustrations showing the effects of introducing the different
discount functions are presented in Section 2.6. Section 2.7 concludes the paper.

2.2 The Problem: Regime Switching with
Time-Inconsistent Preferences

In this section we will state the general problem for the case of one decision-
maker with time-inconsistent preferences. First, we introduce the general model
in which future utility streams are discounted through a general discount function.
Later on, we present some specifications for this discount function. The more rel-
evant one is that of non-constant discounting (Problem A), a model that has been
widely explored in a continuous time setting during the last fifteen years. A mod-
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ified version of non-constant discounting is presented later on (Problem B). As
we will see in Section 2.4, this modified version simplifies the resolution of the
problem. Although it is less realistic and departs from the standard model with
non-constant discounting (somehow it is in the middle point between non-constant
discounting and standard exponential discounting), it will serve us to illustrate the
difficulties of the problem due to the introduction of non-constant discounting. As
a final specification, we will present a third problem (Problem C) in which the
decision-maker discounts the future by using constant discount rates, but these dis-
count rates can be different for the different utilities and costs.

2.2.1 The General Model

First, we state the general model. For simplicity, we will restrict our analysis to
the one-dimensional case, so that there is just one state variable x ∈ R and one con-
trol variable u ∈R. The extension to multidimensional problems is straightforward.

The decision-maker maximizes a flow of utilities enjoyed along an infinite plan-
ning horizon [0,∞), but has the possibility to change to a better technology at any
moment T ∈ [0,∞). This change can modify the state dynamics, improve the pay-
offs, or can have both effects. The utility function is given by

F(x,u) =

{
F1(x,u) if t < T ,

F2(x,u) if t ≥ T ,
(2.2)

and the state dynamics is driven by

ẋ = f (x,u) =

{
f1(x,u) if t < T ,

f2(x,u) if t ≥ T .
(2.3)

Finally, the agent incurs a cost Ω(x(T ),T ) at the moment T in which she imple-
ments the new technology.

The objective of the decision-maker is to maximize∫ T

0
d1(s,0)F1(x,u)ds +

∫
∞

T
d2(s,0)F2(x,u)ds−d3(T,0)Ω(x(T ),T ) . (2.4)

Functions Fi and fi, for i ∈ {1,2}, and d j, for j ∈ {1,2,3}, are assumed to be, at
least, continuously differentiable in all their arguments. In addition, we will assume
that the second integral converges.

In the previous expression, functions d j(s, t), for j ∈ {1,2,3}, represent the way
the agent at time t (the t-agent) discounts the different utilities (profits and costs)
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enjoyed at a future time s. Hence, it is natural to assume that
∂di(s, t)

∂ s
< 0 (later

enjoyments are valued less than more recent ones) and lim
s→∞

d(s, t) = 0 (decision-
makers do not value utilities located in the very distant future). Unless all these
functions coincide and di(s, t) = e−ρ(s−t), with ρ a (positive) constant number, time
preferences become time-inconsistent, in the sense that what is optimal for the agent
at time t is no longer optimal for the agent at a future time t ′ > t. In order to find
time-consistent decision rules, we have to solve a sequential game with a continuous
set of players, described by all of the t-agents. In the literature of non-constant
discounting, these agents are said to be sophisticated.

Remark 2.1. In economic models and, in particular, in the resource model studied
in Section 2.5 in this paper, the utility functions depend just on the control vari-
able (representing consumption, extraction rate, harvest rate. . . ). In that case, it is
common to assume that Fi(u), for i ∈ {1,2}, is continuously differentiable, strictly
increasing, and concave. In addition, fi(x,u) = gi(x)− u, where gi(x) is a con-
tinuously differentiable and concave (possibly linear) production function. These
conditions facilitate the fulfillment of the conditions in Benveniste and Scheinkman
(1979) for the concavity and differentiability of the value function.

Remark 2.2. The extension of the theoretical results in the paper to multidimen-
sional problems with x ∈ X ⊂Rn and u ∈U ⊂Rm is straightforward, provided that
the value functions are sufficiently smooth.

In order to solve the problem (2.2)–(2.4), we can proceed backward in time. For
t > T , i.e., once the new technology has been adopted, the agent at time t aims to
maximize in the control variable u the payoff function

J2(x,u, t) =
∫

∞

t
d2(s, t)F2(x,u)ds (2.5)

given the dynamics

ẋ = f2(x,u) with initial condition x(t) = x . (2.6)

In order to find time-consistent decision rules (or time-consistent policies) followed
by sophisticated agents, we can apply the nowadays well-established procedures
described in, e.g., Karp (2007), Ekeland and Lazrak (2010), Marín-Solano and
Shevkoplyas (2011) or Yong (2011), among others.

Later on, for t < T , the t-agent maximizes the general payoff function∫ T

t
d1(s, t)F1(x,u)ds +

∫
∞

T
d2(s, t)F2(x,u)ds−d3(T, t)Ω(x(T ),T ) , (2.7)

28



The Problem: Regime Switching with Time-Inconsistent Preferences

given the dynamics (2.3). In this problem, for s > T , the control decision rule
u(s) = φ(x(s),s) is taken as given, and is that calculated in the resolution of Problem
(2.5)–(2.6). Hence, we have to compute the decision rule u(s) for the initial period
s ∈ [t,T ]. In addition, we must derive the switching time T .

2.2.2 Particular Cases

Although we will study how to solve the general problem stated in Section 2.2.1,
in the present paper we will pay special attention to some particular cases that arise
in economic applications and, in particular, in the management of a natural resource.

Problem A: Non-Constant Discounting

The standard procedure in economics is to assume that the discount function
depends on the time distance between the moment t in which a decision is taken and
the moment s in which utility derived from that decision will be enjoyed. In that
case, d j(s, t) = θ j(s− t), for j ∈ {1,2,3}. Functions θ j(τ), τ ∈ [0,∞), are assumed
to be continuously differentiable. The corresponding instantaneous discount rates
are given by

ρ j(τ) =−
θ ′

j(τ)

θ j(τ)
.

As usual, we assume that ρ j(τ) > 0, for all τ , and lim
τ→∞

ρ j(τ)> 0. Present-biased

preferences are represented by a nonincreasing discount rate (ρ ′(s)≤ 0).

In addition, it is commonly assumed that the discount rate is unique, so that
θ j(τ) = θ(τ) and ρ j(τ) = ρ(τ), for all τ ∈ [0,∞). As a result, the intertemporal
utility function (2.7) becomes∫ T

t
θ(s− t)F1(x,u)ds +

∫
∞

T
θ(s− t)F2(x,u)ds−θ(T − t)Ω(x(T ),T ) . (2.8)

Problem A consists in looking for time-consistent strategies maximizing (2.8) sub-
ject to (2.3) and to the future behavior of the agent. If the discount rate is constant
and given by ρ > 0, then the discount function is an exponential, θ(τ) = e−ρτ , and
we recover the so-called Discounted Utility model that has been widely used in
Economics. In that case, time preferences are time-consistent and we simply have
to find the optimal switching time for a standard optimal control problem. How-
ever, the problem becomes much more complicated in the case of (time-distance)
non-constant discounting.
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Problem B: Modified Non-Constant Discounting

Problem A describes the standard model of non-constant discounting. Note that
the decision-maker, at time t < T , discounts future enjoyments at time s > T by
taking as a reference point the initial time t, so that d2(s, t) = θ(s− t). This is, we
think, the natural approach in a setting with non-constant discounting in which the
agent discounts the future by using the same discount rate. In Problem B we make a
slight modification of this approach, by writing d2(s, t) = θ(T − t) ·θ(s−T ). Then,
the intertemporal utility function (2.7) becomes

∫ T

t
θ(s− t)F1(x,u)ds +θ(T − t)

∫
∞

T
θ(s−T )F2(x,u)ds−θ(T − t)Ω(x(T ),T ) .

(2.9)
Although this approach is, we think, questionable, it will serve us to better under-

stand the differences between non-constant and constant discounting. Note that, if
the discount rate is constant, the discount function in Problems A and B is the same,
θ(s− t) = θ(T − t) ·θ(s−T ) = e−ρ(s−t), and both problems become equivalent.

Problem C: Heterogeneous Discounting

As a third particular case, we consider a situation in which the decision-maker
has a constant discount rate, but it is non-unique. In the present paper, Problem
C is represented by the use of two different discount functions. More precisely,
d1(s, t) = e−ρ1(s−t), d2(s, t) = e−ρ2(s−t) and d3(T, t) = e−ρ2(T−t), with ρ1,ρ2 > 0.
Hence, the intertemporal utility function (2.7) becomes

∫ T

t
e−ρ1(s−t)F1(x,u)ds +

∫
∞

T
e−ρ2(s−t)F2(x,u)ds−e−ρ2(T−t)

Ω(x(T ),T )= (2.10)

∫ T

t
e−ρ1(s−t)F1(x,u)ds + e−ρ2(T−t)

[∫
∞

T
e−ρ2(s−T )F2(x,u)ds−Ω(x(T ),T )

]
.

Several justifications on the employment of heterogeneous discount rates in the
problem of extraction of a natural resource with a regime switch (due to the imple-
mentation of a new technology) were presented in the Introduction. We refer to,
e.g., Marín-Solano and Patxot (2012) and De-Paz et al. (2013) for the discussion
of the rationale and quantitative and qualitative implications of the introduction of
these time preferences in more general problems. As illustrated in those papers,
there are some relevant qualitative effects appearing in real life situations that can
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be explained by the use of heterogeneous discount functions for goods of a different
nature.

In the present paper, for simplicity, we will assume that both the cost of imple-
menting the new technology and future utilities are discounted at the same discount
rate ρ2. For the derivation of the theoretical results we will not make assumptions
on the sign of ρ1 −ρ2.

2.3 Preliminary Results

The standard switching conditions for our problem in standard optimal control
theory are usually formulated in terms of the Hamiltonian functions (in present
or current value forms) corresponding to the two regimes. Unfortunately, there is
no easily manageable version of the Pontryagin maximum principle in problems
with non-constant discounting.2 In the present paper we will follow an alternative
approach. The idea consists of transforming the problem with a switching time
into a finite horizon problem with free terminal time and time-inconsistent prefer-
ences. More precisely, we will divide the problem into several steps, described in
Section 2.4.1. In these steps, we will need to make use of conditions for finding
strategies in both the control variable u and the terminal time T . In this section we
collect the main theorems that will be used at the different steps.

2.3.1 Dynamic Programming Equation in Infinite Horizon

We summarize in this section some results presented in Marín-Solano and Shevko-
plyas (2011). Let us consider the problem with an intertemporal utility function

J =
∫

∞

t
d(s, t)F(x(s),u(s),s)ds (2.11)

subject to
ẋ(s) = f (x(s),u(s),s) , with x(t) = x . (2.12)

Functions d(s, t), F(x,u,s) and f (x,u,s) are assumed to be continuously differen-
tiable in all their arguments.

If u∗(s) = φ(x(s),s) is a decision rule, then the corresponding payoff is given by

V (x, t) =
∫

∞

t
d(s, t)F(x(s),φ(x(s),s),s)ds . (2.13)

2As illustrated in Karp (2007), a problem with non-constant discounting can be rewritten as a
standard problem with a constant discount rate by introducing an auxiliary term in the Hamiltonian
function. However, such a term incorporates the solution to the problem in feedback form.
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Following Ekeland and Lazrak (2010), for ε > 0, let us define

uε(s) =

{
v if s ∈ [t, t + ε) ,

φ(x(s),s) if s ≥ t + ε .
(2.14)

If the t-agent can precommit her behavior during the period [t, t + ε), the payoff
along the perturbed control path uε is given by

Vε(x, t) = max
{v}

{∫ t+ε

t
d(s, t)F(x(s),v,s)ds+

∫
∞

t+ε

d(s, t)F(x(s),φ(x(s),s),s)ds
}

.

If we expand Vε(x, t) in ε , we obtain Vε(x, t) =V (x, t)+P(x,φ ,v, t)ε +o(ε), i.e.,

P(x,φ ,v, t) = lim
ε→0+

Vε(x, t)−V (x, t)
ε

. (2.15)

Definition 2.1. A decision rule u∗(s) = φ(x(s),s) is called an equilibrium rule if
function P(x,φ , c̄) given by (2.15) attains its maximum for v= φ(x, t). Alternatively,
equilibrium rules are characterized by the condition P(x,φ ,v, t)≤ 0.

From Theorem 6 in Marín-Solano and Shevkoplyas (2011), let the value function
be given by (2.13), with φ(x(s),s) as the equilibrium rule. If the value function is
of class C1, then the solution u = φ(x, t) to

max
{u}

{F(x,u, t)+∇xV (x, t) · f (x,u, t)} (2.16)

is an equilibrium rule. Alternatively, the solutions to

−∂V (x, t)
∂ t

+
∫

∞

t

∂d(s, t)
∂ t

F(x(s),φ(x(s),s),s)ds = (2.17)

max
{u}

{F(x,u, t)+∇xV (x, t) · f (x,u, t)}

are equilibrium rules.

2.3.2 Dynamic Programming Equation in Finite Horizon

Next, let us consider the problem of a sophisticated agent maximizing

J =
∫ T

t
d(s, t)F(x(s),u(s),s)ds+d(T, t)G(x(T ), t,T ) (2.18)
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subject to (2.12), with functions d(s, t), F(x,u,s), f (x,u,s), and G(x, t,T ) contin-
uously differentiable in all their arguments. This problem is similar to the one
studied in Section 4.1 in Marín-Solano and Shevkoplyas (2011), but now function
G can also depend explicitly on t.

For a decision rule u∗(s) = φ(x(s),s), let

V (x, t) =
∫ T

t
d(s, t)F(x(s),φ(x(s),s),s)ds+d(T, t)G(x(T ), t,T ) . (2.19)

As above, for ε > 0, let us consider the variations (2.14). If the t-agent can pre-
commit her behavior during the period [t, t + ε), the valuation along the perturbed
control path uε is given by

Vε(x, t) = max
{v}

{∫ t+ε

t
d(s, t)F(x(s),v,s)ds+

∫ T

t+ε

d(s, t)F(x(s),φ(x(s),s),s)ds+d(T, t)G(x(T ), t,T )
}

. (2.20)

Then, equilibrium rules for the problem (2.18)–(2.12) are defined as in Definition
2.1.

Proposition 2.1. If the value function V (x, t) is of class C1 in all their arguments,
then it satisfies the functional equation

1
d(T, t)

∂d(T, t)
∂ t

V (x, t)− ∂V (x, t)
∂ t

+d(T, t)
∂G(x, t,T )

∂ t
+

∫ T

t

[
∂d(s, t)

∂ t
− d(s, t)

d(T, t)
∂d(T, t)

∂ t

]
F(x(s),φ(x(s),s),s)ds =

[F(x,φ(x, t), t)+∇xV (x, t) · f (x,φ(x, t), t)] .

Proof: See Appendix 2.8. ■

In the previous proposition we have assumed that the equilibrium rule is already
given. Next, we prove that the equilibrium rule can be obtained by solving the
right-hand term of the functional equation

1
d(T, t)

∂d(T, t)
∂ t

V (x, t)− ∂V (x, t)
∂ t

+

∫ T

t

[
∂d(s, t)

∂ t
− d(s, t)

d(T, t)
∂d(T, t)

∂ t

]
F(x(s),φ(x(s),s),s)ds+d(T, t)

∂G(x, t,T )
∂ t

=

max
{u}

[F(x,φ(x, t), t)+∇xV (x, t) · f (x,φ(x, t), t)] . (2.21)
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Equation (2.21) is the Dynamic Programming Equation for the problem (2.18)–
(2.12).

Proposition 2.2. If the value function is of class C1, then the solution u = φ(x, t) to
the dynamic programming Equation (2.21) is an equilibrium rule.

Proof: See Appendix 2.8. ■

2.3.3 A Free Terminal Time Problem

Finally, we study the problem with intertemporal utility function (2.18) subject
to the dynamics (2.12), but now we consider that the final time T is also a decision
variable. We will analyze the problem under different degrees of sophistication of
the decision-maker.

First, let us consider that the terminal time T can be decided by the agent at initial
time, according to her time-preferences. Although this means that the terminal
time can be precommited by the 0-agent and this is not in the spirit of looking for
time-consistent decision rules, we will start with this simple approach to center the
problem.

For t ≤ T , let V T (x, t) denote the valuation along the equilibrium rule of the
t-agent starting at initial state x(t) = x with terminal time T . If the 0-agent can
decide the terminal time, she will simply maximize in T the function V T (x,0). For
this standard optimization problem, it is rather straightforward to adapt the proof in
Hartl and Sethi (1983) for ordinary optimal control problems to our setting with a
general discount function.

Proposition 2.3. Let us consider Problem (2.18)–(2.12) for a time-consistent (or
sophisticated) agent, with the terminal time T free. If the agent can decide the
terminal time at t = 0, then a necessary condition for the optimality of T ∗ from the
perspective of the 0-agent is[

F(x,φ(x(t), t))+
∂G(x,0,T )

∂x
· f (x,u)+ (2.22)

1
d(T,0)

∂d(T,0)
∂T

·G(x,0,T )+
∂G(x,0,T )

∂T

]∣∣∣∣
x=x(T ∗),T=T ∗

= 0 .

Proof: It is similar to the proof of Proposition 4 in Marín-Solano and Navas (2009)
for the case of non-constant discounting. ■

Under no commitment in the terminal time, each T -agent—who can be seen, for
every T , as a different player in our setting with time-inconsistent preferences—will
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have to decide if it is convenient for her to stop the problem (so the terminal time
is T ) or to continue. In order to make this decision, the T -agent has to compare the
payment received if she finishes the problem at time T , with the payment received
in the future moment at which she will stop if she decides to continue at time T .
Next we formalize this idea.

Definition 2.2. A terminal strategy for sophisticates is a set I ⊂ [0,∞) defined as
follows: τ ∈ I if, and only if, V τ(x,τ)≥V τ ′(x,τ), where τ ′ = inf{s ∈ I | s > τ}.

The idea is that elements τ ∈ I are the terminal times at which the agent at time
τ decides to stop if the problem has not finished previously. Then, the final time for
a sophisticated agent T ∗ is characterized as follows: T ∗ = inf{τ ∈ I}.

Assume that T ∗ is the terminal time. Then, for every s ∈ [t,T ∗), every s-agent
obtains higher profits by finishing the problem at time T ∗ compared with finishing
the problem at time s, i.e., V s(x(s),s)<V T ∗

(x(s),s).

Proposition 2.4. If T ∗ ∈ (0,∞) is the final time for a sophisticated agent, then[
F(x,u)+

∂G(x, t,T )
∂x

· f (x,u)− ∂d(T, t)
∂ t

·G(x, t,T )+ (2.23)

∂G(x, t,T )
∂T

]
x=x(T ∗),t=T ∗,T=T ∗

≥ 0 .

Proof: See Appendix 2.8. ■

Next, if there exists ε > 0 such that the interval [T ∗,T ∗+ ε)⊂ I, and if the prob-
lem does not finish at time T ∗, it will finish immediately later. Since T ∗ is the
terminal time then, for all τ ∈ (T ∗,T ∗+ ε), V T ∗

(x(T ∗),T ∗)≥V τ(x(T ∗),T ∗). This
suggests the following definition.

Definition 2.3. We say that the agent is ε-sophisticated if candidates to the terminal
time T satisfy the following conditions: There exists δ > 0 such that:

1. For all τ ∈ (T −δ ,T ), V τ(x(τ),τ)<V T (x(τ),τ), and

2. For all τ ′ ∈ (T,T +δ ), V T (x(T ),T )≥V τ ′(x(T ),T ).

If U is the set of points verifying these conditions, ε-sophisticated agents finish the
problem at time T ∗ = inf{T ∈U}.

ε-sophisticated agents are partially myopic, in the sense that they analyze if it
is convenient for them to stop at time T ∗ or to continue during a very short time
period. The following proposition provides a necessary condition for a terminal
time for ε-sophisticated agents.
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Proposition 2.5. If T ∗ ∈ [0,∞), T ∗ < ∞, is the final time for an ε-sophisticated
agent, then

• If T ∗ > 0,[
F(x,u)+

∂G(x, t,T )
∂x

· f (x,u)− ∂d(T, t)
∂ t

·G(x, t,T )+ (2.24)

∂G(x, t,T )
∂T

]
x=x(T ∗),t=T ∗,T=T ∗

= 0 .

• If T ∗ = 0, then[
F(x,u)+

∂G(x, t,T )
∂x

· f (x,u)− ∂d(T, t)
∂ t

·G(x, t,T )+ (2.25)

∂G(x, t,T )
∂T

]
x=x(T ∗),t=T ∗,T=T ∗

≤ 0 .

Proof: See Appendix 2.8. ■

Concerning the search of the terminal time for (fully) sophisticated agents, if T ∗

is the terminal time for ε-sophisticated agents and there exists ε > 0 such that the
interval [T ∗,T ∗+ ε)⊂ I, then T ∗ is also the terminal time for sophisticated agents.
This is indeed the situation that we find in the numerical resolution of the model of
Section 2.5. In that model, if T ∗ is the terminal time (corresponding to the switching
time in the original model) for an ε-sophisticated agent, for problems with an initial
state lower than x(T ∗) we obtain a corner solution (condition (2.25) is satisfied),
so that the agent decides to implement the new technology at initial time. Since
the state dynamics x(s) is (strictly) decreasing, every T -agent, for all T > T ∗, will
choose to stop at time T .

2.4 Solving the Model: Decision Rules and Switching
Times

In this section we present a general procedure to solve Problem (2.7) subject to
the state dynamics (2.3). The underlying idea consists in applying first the results
presented in Section 2.3.1 in order to solve the problem for t ≥ T . Later on, the
original problem with a regime switch is transformed into a finite horizon problem
with final function and free terminal time. For that problem, we compute first the
decision rule for arbitrary T , and finally find the switching time to be chosen by
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ε-sophisticated agents (we refer to the discussion in Section 2.3.3). We will assume
that the regime switch can take place just one time. This will be the case, indeed, in
our setting in which the decision-maker (e.g., a firm) has to decide when to change
to a new and better technology. Once the firm has paid the cost of implementing
the new technology, it will be profitable to maintain the improvement along the
remaining whole planning horizon. After presenting the general procedure, we will
make some remarks of some particularities that appear in our problems with non-
constant discounting (Problem A), modified non-constant discounting (Problem B),
and heterogeneous discounting (Problem C).

2.4.1 The General Model

We will solve the problem in several steps.

Step 1. The first step consists in solving the problem for t > T . Hence, we must
solve the problem with intertemporal utility function (2.5) subject to (2.6). By ap-
plying the results presented in Section 2.3.1, the equilibrium decision rule can be
derived by solving (2.16) or (2.17). Let u∗(s) = φ2(x(s),s) denote the equilibrium
decision rule for t ≥ T , and let

V2(x, t) =
∫

∞

t
d2(s, t)F2(x(s),φ2(x(s),s))ds (2.26)

be the corresponding value function.

Step 2. Once we have derived the equilibrium rule u(s) = φ2(x(s),s), for s ≥ T , we
can solve the corresponding dynamical equation with initial condition x(T ) = xT ,
i.e.,

ẋ(s) = f2(x(s),φ2(x(s),s)) , x(T ) = xT , for s ≥ T .

Let x∗(s) = ϕ2(xT ,s) be its solution, and define φ̄2(xT ,s) = φ2(ϕ2(xT ,s),s). By
substituting in (2.7), along this trajectory, the payoff function can be rewritten as∫ T

t
d1(s, t)F1(x,u)ds +

∫
∞

T
d2(s, t)F2(ϕ2(xT ,s), φ̄2(xT ,s))ds−

d3(T, t)Ω(xT ,T ) =
∫ T

t
d1(s, t)F1(x,u)ds +

d1(T, t)
[∫

∞

T

d2(s, t)
d1(T, t)

F2(ϕ2(xT ,s), φ̄2(xT ,s))ds− d3(T, t)
d1(T, t)

Ω(xT ,T )
]
.

By defining
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G(xT , t,T ) =
∫

∞

T

d2(s, t)
d1(T, t)

F2(ϕ2(xT ,s), φ̄2(xT ,s))ds− d3(T, t)
d1(T, t)

Ω(xT ,T ) , (2.27)

the intertemporal utility function can be rewritten as

J1 =
∫ T

t
d1(s, t)F1(x(s),u(s))ds +d1(T, t)G(xT , t,T ) (2.28)

subject to
ẋ(s) = f1(x(s),u(s)) , with x(t) = x . (2.29)

Step 3. Problem (2.28)–(2.29) is a non-standard optimal control problem with time-
inconsistent preferences in a finite planning horizon. Hence, we can solve it for an
arbitrary “final” time T . Unlike the problem studied by Marín-Solano and Shevko-
plyas (2011), the present problem exhibits a “calendar effect”, in the sense that the
final function depends explicitly on t. By applying Proposition 2.2 we know that
equilibrium rules u(s) = φ1(x(s),s) for s ∈ [0,T ) are the solutions to

max
u

[
F1(x,u)+

∂V1(x, t)
∂x

· f1(x,u)
]
. (2.30)

For the calculation of the value function V1(x, t) we can solve the dynamic pro-
gramming Equation (2.21). Alternatively, if we can solve explicitly (in closed
form) the differential equation given by the state dynamics along the equilibrium
rule, it can be more convenient to proceed as follows. Given the equilibrium rule
u(s) = φ1(x(s),s), for s < T , let x(s) = ϕ1(x,s) be the solution to

ẋ(s) = f1(x(s),φ1(x(s),s)) , x(t) = x , for t < s < T .

By defining φ̄1(x,s) = φ1(ϕ1(x,s),s) and substituting in (2.28), we obtain

V1(x, t) =
∫ T

t
d1(s, t)F1(ϕ1(x,s), φ̄1(x,s))ds +d1(T, t)G(xT , t,T ) , (2.31)

where xT =ϕ1(x,T ). In practice, for the computation of the equilibrium rule and the
corresponding value function, equations (2.30) and (2.31) have to be solved jointly.

Step 4. It remains to compute the switching time T ∗. Note that we have transformed
the problem of finding the switching point into that of looking for the “optimal”
terminal time in a finite horizon problem with a final function. Hence, we can use
Proposition 2.5 to solve the problem for ε-sophisticated decision-makers, as defined
in Definition 2.3.
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2.4.2 Particular Cases

Under non-constant discounting (Problem A), the decision rule after the switch-
ing point (i.e., for t ≥ T ) is stationary. Hence, since the problem is autonomous, we
can restrict our attention to stationary convergent Markovian strategies, i.e., strate-
gies u(s) = φ(x(s)) for which there exists x∞ < ∞ and a neighborhood U of x∞

such that, for every xT ∈ U , the solution to (2.6) along u(s) = φ(x(s)) converges
to x∞. For stationary convergent strategies, the integral (2.5) converges. Later on,
in the implementation of Step 2, the final function G(xT , t,T ) depends explicitly on
t and T . This fact can complicate some calculations, such as those related to the
derivation of the terminal time corresponding to the switching point. Before the im-
plementation of the new technology (t < T ) the decision rules are non-stationary, in
general. However, in the model of the following Section we will present a situation
(with a constant cost function) in which the equilibrium strategies are stationary
along the whole planning horizon.

In Problem B, the decision rule after the switching point (i.e., for t ≥ T ) coincides
with that in Problem A and is, therefore, stationary. Concerning the final function, it
is independent from t. If, in addition, the cost function Ω does not depend explicitly
on T , then the final function G is also independent from T , simplifying in this way
the search of the terminal or switching time. Later on, in the implementation of Step
2, as in the case of nonconstant discounting, the final function G(xT , t,T ) depends
explicitly on t and T . Before the implementation of the new technology (t < T ) the
decision rules are non-stationary, also for the case of constant (or null) cost.

Under heterogeneous discounting (Problem C) things are similar to Problem B.
Equilibrium decision rules are stationary for t > T and non-stationary for t < T .
Although the final function (2.27) depends explicitly on t and T for this model, its
dependence is such that it can be removed, as we show in Section 2.5.3 when we
solve a resource extraction model with technology adoption.

2.5 A Resource Extraction Model with Technology
Adoption

In this section we illustrate the previous results by applying them to the man-
agement of a natural resource whose owner has to decide when to adopt a new
technology improving the extraction process. In the model, we assume that the util-
ity function in both periods is the same, so that F1(x,u) = F2(x,u). In particular, we
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take F1 = F2 = lnu. Concerning the state dynamics, it is given by

ẋ(s) =

{
ax− γ1u if t < T
ax− γ2u for t ≥ T

For a = 0 we recover the simplest model of the extraction of a nonrenewable re-
source, which is probably the most interesting case in our setting. If a > 0, the
production function presents constant returns to scale. However, it implies an expo-
nential, unlimited, growth of the resource, a property that is ecologically unrealistic
in the setting of natural resources. In any case, we will solve the model for an ar-
bitrary a ≥ 0 (it can be easily checked that, under the assumptions made regarding
Problems A, B, and C, the integrals converge). Concerning the remaining parame-
ters, the improvement in the technology is represented by taking γ1 > γ2 > 0. For a
two-player game discounting the future at constant (and unique) discount rates (and
a = 0), this problem was studied in Van Long et al. (2017).

The cost function is assumed to be Ω(x) = α lnx+β , with α,β ≥ 0. This choice
can be justified economically in several ways. As we will illustrate later when we
solve the model, it could correspond to a situation in which the cost is paid in units
of the resource. Since, as we will show, the expression of the value function for time
t ≥ T is V (xT ) = A lnxT +B, with A a positive number, if a fraction δ ∈ (0,1) of the
resource is paid in order to implement the technology, then the valuation becomes
V ((1−δ )xT ) = A lnxT +A ln(1−δ )+B. In this case, α = 0 and β =−A ln(1−δ ).
For our model with logarithmic utilities, paying in units of the resource implies that
the cost is constant and independent from the amount of the resource. Probably,
it would be more realistic to pay a fraction δ of the sum of discounted utilities
after the implementation of the improvement, represented by the value function at
time T . In that case, after paying the cost, the valuation would be (1− δ )V (xT ) =

A lnxT +B−δA lnxT −δB. Therefore, α = δA and β = δB in this setting.
In the following we will solve the above problem for the three discount functions

described in Section 2.2: nonconstant discounting, modified nonconstant discount-
ing, and heterogeneous discounting. In the final step, we will derive the conditions
for interior solutions, by making use of (2.24). Conditions for corner solutions can
be written in a similar way.

2.5.1 Problem A

First, we will solve the problem stated in Section 2.2.2, corresponding to non-
constant discounting. This is indeed the most interesting case. We proceed accord-
ing to the following steps.
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Solution for t ≥ T . In that case, the t-agent has to solve the problem with the
intertemporal utility function given by∫

∞

t
θ(s− t) lnuds (2.32)

subject to

ẋ(s) = ax− γ2u , with x(t) = xt . (2.33)

This problem has been already addressed in several papers (see, e.g., Marín-
Solano and Navas (2009)). It can be easily shown that a stationary linear decision
rule exists for this problem, and it is given by

u(s) = φ(x(s)) =
1

γ2
∫

∞

0 θ(s)ds
x(s) . (2.34)

By substituting (2.34) in (2.33) and solving the differential equation, we obtain

x(s) = ϕ(xt ,s) = e

(
a− 1∫

∞
0 θ(s)ds

)
(s−t)

xt .

Therefore,

u(s) = φ̄(xt ,s) = φ(ϕ(xt ,s)) =
1

γ2
∫

∞

0 θ(s)ds
e

(
a− 1∫

∞
0 θ(s)ds

)
(s−t)

xt . (2.35)

Transforming the switching time problem into a finite horizon problem. From
(2.8), the payoff function of the t-agent at time t < T is given by

J =
∫ T

t
θ(s− t) lnuds +

∫
∞

T
θ(s− t) lnφ(x(s))ds−θ(T − t)Ω(x(T )) =

∫ T

t
θ(s− t) lnuds +θ(T − t)

[∫
∞

T

θ(s− t)
θ(T − t)

ln φ̄(xT ,s)ds−α lnxT −β

]
.

By taking (2.35) for t = T , substituting and simplifying, the functional above can
be written as

J =
∫ T

t
θ(s− t) lnuds +θ(T − t)G(xT , t,T ) , (2.36)

where

G(xT , t,T ) =
(∫

∞

T

θ(s− t)
θ(T − t)

ds−α

)
lnxT+ (2.37)
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(
a− 1∫

∞

0 θ(s)ds

)∫
∞

T

θ(s− t)
θ(T − t)

(s−T )ds−ln
(

γ2

∫
∞

0
θ(s)ds

)∫
∞

T

θ(s− t)
θ(T − t)

ds−β .

Finally, the dynamics for s < T is given by

ẋ(s) = ax− γ1u , with x(t) = xt . (2.38)

Solving the problem for t < T . From Proposition 2.2 for the case d(s, t) = θ(s−t),
first we solve

max
{u}

{
lnu+

∂V1(x, t)
∂x

(ax− γ1u)
}

,

hence,
1
u
= γ1

∂V1(x, t)
∂x

.

By guessing V1(x, t) = g(t) lnx+h(t), then

u(s) = φ(x(s),s) =
x(s)

γ1g(s)
. (2.39)

By solving (2.38) for u(s) = φ(x(s)) given as in (2.39), we obtain

x(s) = xte
∫ s

t

(
a− 1

g(τ)

)
dτ

. (2.40)

Therefore,

u(s) = φ̄(xt ,s) =
e
∫ s

t

(
a− 1

g(τ)

)
dτ

γ1g(s)
xt . (2.41)

By substituting (2.41) in (2.36), taking s = T in (2.40) and substituting

lnxT =
∫ T

t

(
a− 1

g(τ)

)
dτ + lnxt

in (2.37), we obtain

V1(x, t) =
(∫

∞

0
θ(s)ds−θ(T − t)α

)
lnx− ln

(
γ2

∫
∞

0
θ(s)ds

)∫
∞

T
θ(s− t)ds+

∫ T

t
θ(s− t)

[∫ s

t

(
a− 1

g(τ)

)
dτ − ln(γ1g(s))

]
ds+(

a− 1∫
∞

0 θ(s)ds

)∫
∞

0
(s−T )θ(s− t)ds+
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∞

T
θ(s− t)ds

)(∫ T

t

(
a− 1

g(τ)

)
dτ

)(∫
∞

T
θ(s− t)ds−θ(T − t)λ

)
−θ(T −t)β .

Therefore,
g(t) =

∫
∞

0
θ(s)ds−θ(T − t)α

and, from (2.39) and (2.41), the decision rule becomes

u(s) = φ(x(s),s) =
x(s)

γ1 (
∫

∞

0 θ(τ)dτ −θ(T − s)α)
, (2.42)

i.e.,

u(s) = φ̄(xt ,s) =
exp

∫ s
t

(
a− 1

(
∫

∞

0 θ(τ)dτ−θ(T−s)α)

)
dτ

γ1 (
∫

∞

0 θ(τ)dτ −θ(T − s)α)
xt . (2.43)

Note that if the cost is paid in units of resource, so that α = 0 (the cost is constant),
the decision rule is stationary.

Derivation of the switching time. It remains to compute the switching time for ε-
sophisticated agents. We apply the results in Section 2.3.3 to problem (2.36)–(2.37)
for the case in which the discount function is d(s, t) = θ(s− t). In Problem A, the
terminal condition becomes

[
lnu+

∂G(x, t,T )
∂x

· (ax− γ1u)−ρ(0) ·G(x, t,T )+
∂G(x, t,T )

∂T

]
x=x(T ∗),t=T ∗,T=T ∗

= 0 .

(2.44)

It remains to compute the four terms appearing in Equation (2.44).

First, note that, taking t = 0 and s = T ∗ in (2.43),

lnu|x=x(T ∗),t=T ∗,T=T ∗ = (2.45)

∫ T ∗

0

(
a− 1

(
∫

∞

0 θ(τ)dτ −α)

)
dτ − ln

[
γ1

(∫
∞

0
θ(τ)dτ −α

)]
+ lnx0 .

Concerning the second term, since

∂G(x, t,T )
∂x

∣∣∣∣
x=x(T ∗),t=T ∗,T=T ∗

=

∫
∞

0 θ(s)ds−α

x(T ∗)

and

ax− γ1u|x=x(T ∗),t=T ∗,T=T ∗ =

(
a− 1∫

∞

0 θ(s)ds−α

)
x(T ∗) ,

therefore
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∂G(x, t,T )
∂x

· (ax− γ1u)
∣∣∣∣
x=x(T ∗),t=T ∗,T=T ∗

= a
(∫

∞

0
θ(s)ds−α

)
−1 . (2.46)

Next,
ρ(0) ·G(x, t,T )|x=x(T ∗),t=T ∗,T=T ∗ =

ρ(0)
(∫

∞

0
θ(s)ds−α

)
lnx(T ∗)+ρ(0)

(
a− 1∫

∞

0 θ(s)ds

)∫
∞

0
sθ(s)ds−

ρ(0) ln
(

γ2

∫
∞

0
θ(s)ds

)∫
∞

0
θ(s)ds−ρ(0)β = ρ(0)

(∫
∞

0
θ(s)ds−α

)
lnx0+

ρ(0)
(∫

∞

0
θ(s)ds−α

)∫ T ∗

0

(
a− 1∫

∞

0 θ(s)ds−θ(T ∗− τ)α

)
dτ+

ρ(0)
(

a− 1∫
∞

0 θ(s)ds

)∫
∞

0
sθ(s)ds−ρ(0) ln

(
γ2

∫
∞

0
θ(s)ds

)∫
∞

0
θ(s)ds−ρ(0)β .

(2.47)
Finally, after several calculations, the fourth term in Equation (2.44) is given by

∂G(x, t,T )
∂T

∣∣∣∣
x=x(T ∗),t=T ∗,T=T ∗

=

[
ρ(0)

(∫
∞

0
θ(s)ds−α

)
−1
]

lnx0+

[
ρ(0)

(∫
∞

0
θ(s)ds−α

)
−1
]∫ T ∗

0

(
a− 1∫

∞

0 θ(s)ds−θ(T ∗− τ)α

)
dτ+

ρ(0)
(

a− 1∫
∞

0 θ(s)ds

)∫
∞

0
sθ(s)ds−ρ(0) ln

(
γ2

∫
∞

0
θ(s)ds

)∫
∞

0
θ(s)ds−ρ(0)β−(

a− 1∫
∞

0 θ(s)ds

)∫
∞

0
θ(s)ds+ ln

(
γ2

∫
∞

0
θ(s)ds

)
. (2.48)

By substituting (2.45)–(2.48) in (2.44), the switching condition is derived.

2.5.2 Problem B

Next, let us solve the problem stated in Section 2.2.2, corresponding to a modified
version of nonconstant discounting. We proceed as in the previous case.

Solution for t ≥ T . The t-agent has to solve the problem with payments given by
(2.32) and dynamics (2.33), whose solution is (2.34)–(2.35). In addition, for t ≥ T ,
the value function is given by

V2(x) =
(∫

∞

0
θ(s)ds

)
lnx+

(
a− 1∫

∞

0 θ(s)ds

)∫
∞

0
sθ(s)ds− (2.49)
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ln
(

γ2

∫
∞

0
θ(s)ds

)∫
∞

0
θ(s)ds .

Transforming the switching time problem into a finite horizon problem. From
(2.9) and (2.49), the intertemporal utility function of the t-agent at time t < T is
given by ∫ T

t
θ(s− t) lnuds +θ(T − t)G(xT ) , (2.50)

where

G(xT ) =

(∫
∞

0
θ(s)ds−α

)
lnx+ (2.51)(

a− 1∫
∞

0 θ(s)ds

)∫
∞

0
sθ(s)ds− ln

(
γ2

∫
∞

0
θ(s)ds

)∫
∞

0
θ(s)ds−β .

Solving the problem for t < T . As in the previous case, by applying Proposition 2.2
and guessing V2(x, t) = g(t) lnx+ h(t), we obtain (2.39)–(2.41). By following the
same procedure as in Problem A we easily derive

V2(x, t) =
[∫ T

t
θ(s− t)ds+θ(T − t)

(∫
∞

0
θ(s)ds−α

)]
lnx+

∫ T

t
θ(s− t)

[∫ s

t

(
a− 1

γ1g(τ)

)
dτ − ln(γ1g(s)

]
ds+

θ(T −t)
[(∫

∞

0
θ(s)ds−α

)∫ T

t

(
a− 1

γ1g(τ)

)
dτ +

(
a− 1∫

∞

0 θ(s)ds

)∫
∞

0
sθ(s)ds−

ln
(

γ2

∫
∞

0
θ(s)ds

)(∫
∞

o
θ(s)ds

)
−β

]
.

Therefore,

g(t) =
∫ T

t
θ(s− t)ds+θ(T − t)

(∫
∞

0
θ(s)ds−α

)
and from (2.39) and (2.41), the decision rule becomes

u(s) = φ(x(s),s) =
x(s)

γ1

(∫ T
s θ(τ − s)dτ +θ(T − s)(

∫
∞

0 θ(τ)dτ −α)
) , (2.52)

i.e.,

u(s) = φ̄(xt ,s) =
exp

∫ s
t

(
a− 1∫ T

s θ(τ−s)dτ+θ(T−s)(
∫

∞

0 θ(τ)dτ−α)

)
γ1

(∫ T
s θ(τ − s)dτ +θ(T − s)(

∫
∞

0 θ(τ)dτ −α)
)xt . (2.53)
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Derivation of the switching time. For the calculation of the switching time for
ε-sophisticated agents, note that in Problem B the final function depends just on the
state variable. Hence, the terminal condition simplifies to[

lnu+
∂G(x)

∂x
· (ax− γ1u)

]
x=x(T ∗),t=T ∗,T=T ∗

= [ρ(0) ·G(x)]x=x(T ∗),t=T ∗,T=T ∗ .

(2.54)
Next we compute the three terms appearing in Equation (2.54).

Taking t = 0 and s = T ∗ in (2.53),

lnu|x=x(T ∗),t=T ∗,T=T ∗ =
∫ T ∗

0

(
a− 1∫ T ∗

τ
θ(s− τ)ds+θ(T ∗− τ)(

∫
∞

0 θ(s)ds−α)

)
dτ−

(2.55)

ln
[

γ1

(∫ T ∗

0
θ(s)ds+

(∫
∞

0
θ(s)ds−α

)
θ(T ∗)

)]
+ lnx0 .

Next,
∂G(x)

∂x

∣∣∣∣
x=x(T ∗),t=T ∗,T=T ∗

=

∫
∞

0 θ(s)ds−α

x(T ∗)

and

ax− γ1u|x=x(T ∗),t=T ∗,T=T ∗ =

(
a− 1∫

∞

0 θ(s)ds−α

)
x(T ∗) ,

hence,

∂G(x)
∂x

· (ax− γ1u)
∣∣∣∣
x=x(T ∗),t=T ∗,T=T ∗

= a
(∫

∞

0
θ(s)ds−α

)
−1 . (2.56)

Finally,

ρ(0) ·G(x)|x=x(T ∗),t=T ∗,T=T ∗ = ρ(0)
(∫

∞

0
θ(s)ds−α

)
lnx0+ (2.57)

ρ(0)
(∫

∞

0
θ(s)ds−α

)∫ T ∗

0

(
a− 1∫ T ∗

τ
θ(s− τ)ds+θ(T ∗− τ)(

∫
∞

0 θ(s)ds−α)

)
dτ+

ρ(0)
(

a− 1∫
∞

0 θ(s)ds

)∫
∞

0
sθ(s)ds−ρ(0) ln

(
γ2

∫
∞

0
θ(s)ds

)∫
∞

0
θ(s)ds−ρ(0)β .

By substituting (2.55)–(2.57) in (2.54), we obtain the switching condition.

2.5.3 Problem C

Finally, we solve the problem with heterogeneous discounting presented in Section 2.2.2.
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Solution for t ≥ T . In this case, the optimal decision rule for the problem (2.32)–
(2.33) with θ(s) = e−ρ2s is u(s) = φ(x(s)) = ρ2x(s), i.e., u(s) = φ̄(xT ,s) = e(a−ρ2)(s−T )xT ,
and the corresponding value function is

V2(x) =
1
ρ2

lnx+
1
ρ2

(
a
ρ2

−1− ln
γ2

ρ2

)
. (2.58)

Transforming the switching time problem into a finite horizon problem. From
(2.10) and (2.58), the payoff function of the t-agent at time t < T can be written as∫ T

t
e−ρ1(s−t) lnuds+ e−ρ2(T−t)Ḡ(xT ) , (2.59)

where

Ḡ(xT ) =

(
1
ρ2

−α

)
lnxT +

1
ρ2

(
a
ρ2

−1− ln
γ2

ρ2

)
−β . (2.60)

Solving the problem for t < T . By proceeding as in the previous cases, if the value
function is V1(x, t) = g(t) lnx+h(t), we obtain (2.39)–(2.41). By substituting these
expressions in (2.59) and (2.60), we obtain

g(t) =
1
ρ1

(
1− e−ρ1(T−t)

)
+

(
1
ρ2

−α

)
e−ρ2(T−t) , (2.61)

h(t) =
∫ T

t
e−ρ1(s−t)

[∫ s

t

(
a− 1

g(τ)

)
dτ − ln(γ1g(s))

]
ds+

e−ρ2(T−t)
[(

1
ρ2

−α

)∫ T

t

(
a− 1

g(τ)

)
dτ +

1
ρ2

(
a
ρ2

−1− ln
γ2

ρ2

)
−β

]
.

Derivation of the switching time. For the calculation of the switching time for
ε-sophisticated agents, in order to apply the results in Section 2.3.3, we can write

e−ρ2(T−t)Ḡ(xT ) = e−ρ1(T−t)G(xT , t,T ) ,

with
G(xT , t,T ) = e(ρ1−ρ2)(T−t)Ḡ(xT ) ,

for Ḡ(xT ) given as in (2.60). Alternatively, we can apply Proposition 3 in Marín-
Solano and Patxot (2012) to function Ḡ(xT ). It is straightforward to check that both
procedures are equivalent. Indeed, note that, in the switching time T ∗,
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[
lnu+

∂G(x, t,T )
∂x

· (ax− γ1u)−ρ1 ·G(x, t,T )+
∂G(x, t,T )

∂T

]
x=x(T ∗),t=T ∗,T=T ∗

= 0 ,

(2.62)
where[

∂G(x, t,T )
∂x

· (ax− γ1u)
]

x=x(T ∗),t=T ∗,T=T ∗
=

[
∂ Ḡ(x)

∂x
· (ax− γ1u)

]
x=x(T ∗),t=T ∗,T=T ∗

,

[
ρ1 ·G(x, t,T )− ∂G(x, t,T )

∂T

]
x=x(T ∗),t=T ∗,T=T ∗

=
[
ρ2 · Ḡ(x)

]
x=x(T ∗),t=T ∗,T=T ∗

and[
∂G(x, t,T )

∂x
· (ax− γ1u)

]
x=x(T ∗),t=T ∗,T=T ∗

=

[
∂ Ḡ(x)

∂x
· (ax− γ1u)

]
x=x(T ∗),t=T ∗,T=T ∗

.

Since the decision rule is given by (2.41) with g(τ) given by (2.61), taking t = 0
and s = T ∗,

lnu|x=x(T ∗),t=T ∗,T=T ∗ =
∫ T ∗

0

(
a− 1

g(τ)

)
ds− ln(γ1g(T ∗))+ lnx0 . (2.63)

In a similar way,

∂ Ḡ(x)
∂x

· (ax− γ1u)
∣∣∣∣
x=x(T ∗),t=T ∗,T=T ∗

= a
(

1
ρ2

−α

)
−1 (2.64)

and
ρ2 · Ḡ(x)

∣∣
x=x(T ∗),t=T ∗,T=T ∗ = (2.65)

(−ρ2α) lnx0 +(1−ρ2α)
∫ T ∗

0

(
a− 1

g(τ)

)
dτ +

(
a
ρ2

−1− ln
γ2

ρ2

)
−ρ2β .

From (2.63)–(2.65) we derive the switching condition.

2.6 Numerical Illustration

Next, we illustrate numerically some of the previous results for the case of a
nonrenewable natural resource (a = 0) by focusing on the two main settings cor-
responding to the non-constant discounting case (Problem A) and to the hetero-
geneous discounting case (Problem C). Additionally, we will include the case of
standard exponential discounting, where temporal preferences are time-consistent
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(Problem S), which can be obtained from any of the other analyzed cases by elim-
inating the temporal bias. In the case of non-constant discounting, we take as a
discount function a convex linear combination of two exponential functions, i.e.,
θ(τ) = νe−ρ1τ +(1−ν)e−ρ2τ ,with ν ∈ (0,1), and ρ1 < ρ2, for which the instanta-
neous discount rate is given by

r(τ) =−θ ′(τ)

θ(τ)
=

νρ1e−ρ1τ +(1−ν)ρ2e−ρ2τ

νe−ρ1τ +(1−ν)e−ρ2τ
,

that decreases from r(0) = νρ1 + (1 − ν)ρ2 to ρ1 = limτ→+∞ r(τ). Regarding
the heterogeneous discounting case (Problem C), we take as discount functions
θ1(t − s) = e−ρ1(s−t) for the instantaneous utility before the introduction of the
innovation and θ2(t − s) = e−ρ2(s−t), ρ1 ̸= ρ2, for utility after the regime switch.
In our benchmark case, we take the values of the parameters ν = 0.5, ρ1 = 0.05,
ρ2 = 0.15 defining the temporal preference of the decision-maker. Regarding the
efficiency in the exploitation process, we assume γ1 = 1.3 and γ2 = 1.1. Note that
parameters γ1 and γ2 determine the efficiency in extraction before and after the in-
troduction of the innovation, respectively. The lower the value of γi, i ∈ {1,2}, the
more efficient is the extraction process. Regarding the cost of innovation, we as-
sume that it is a fraction δ% of the value of the project (given by the value function)
for the decision-maker at the switching time T ∗, and in particular we set δ = 0.045.
Moreover, as initial resource stock, we take x0 = 1000. Finally, for the standard dis-
counting case (Problem S), we will use as a discount function θ(τ) = e−ρ̂τ , where
ρ̂ = ρ1ρ2/(ρ1−νρ1 +νρ2) is obtained as the solution of∫

∞

0

{
νe−ρ1τ +(1−ν)e−ρ2τ

}
dτ =

∫
∞

0
e−ρ̂τdτ. (2.66)

The intuition behind (2.66) is to find a constant rate of time preference, ρ̂ , that
shows a similar overall level of impatience to the one given by the non-constant
discount function, an idea that was proposed in Strulik (2015).

Table 2.1 collects the switching times and the resource stock left at that time
for non-constant, heterogeneous and standard discounting cases. We can observe
that the existence of some bias in the temporal preferences negatively affects the
early adoption of the new technology, especially under non-constant discounting.
In that case, the introduction of the innovation lasts almost twice compared with
the standard case. Looking now at Figure 2.1, it is interesting to observe that the
evolution of the resource stock under non-constant and standard discounting is very
similar. However, despite this coincidence in the extraction rates, note that since
the decision-maker in Model S introduces the innovation at a significant earlier
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time, she will consume more from that moment up to the time at which a decision-
maker with non-constant discounting preferences will do it. This can be easily seen
in the plot of the evolution of the consumption rate at Figure 2.2. In the case of
heterogeneous discounting, due to the particular bias in this setting, we can observe
that at initial periods the decision-maker undervalues all of the payoffs she will earn
after the regime shift, so there is a significant overconsumption during these initial
periods, which can be observed in the consumption rate. As the switching time
approaches, this undervaluation decreases, and disappears at T ∗. Consequently, the
time-consistent consumption rule will coincide with that of a decision-maker with
standard discounting at a rate of time preference of ρ2.

Problem A Problem C Problem S
T ∗ 12.39 8.96 6.86

x(T ∗) 384.68 293.40 586.81

Table 2.1: Switching time and resource stock at the time of the innovation

Figure 2.1: Evolution of the resource stock.
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Figure 2.2: Evolution of the consumption.

Finally, we analyze results from Table 2.2, where a sensibility analysis with re-
spect to some parameter values is included. In the setting of non-constant discount-
ing, higher values of ρ2 are associated with a higher impatience for short run deci-
sions, while in the heterogeneous discounting setting it implies an overvaluation of
payoffs before the introduction of the innovation compared with payoffs after T ∗.
Similarly, in the case of standard discounting, with an overall constant impatience
rate, the level of impatience increases with ρ2, although in this last case there is
no particular bias in the temporal preferences. In all three settings we can observe
that an increase of ρ2 negatively affects the timing of the innovation, especially in
the case of Problem A. Moreover, note that with non-constant discounting, the long
term rate of time preference is always the same (ρ1 = 0.05), so all of the resulting
delays in T ∗ can be attributed to the increase in the impatience degree in the short
term. With regards to changes in the efficiency improvement associated with the in-
novation, lower values of γ2 represent larger improvements in efficiency. When this
happens, in the three cases we can see a reduction in the timing of the innovation.
On the contrary, by increasing the cost of the innovation (augmenting the value of
δ ) the effect is the opposite, and in all the cases the decision-maker will delay the
regime shift. In conclusion, in terms of sustainability of the resource, it is clear that
the sooner an improvement in the exploitation process is introduced, the larger the
saving in wasted resources (note that one unit of consumption requires γi units of
the resource).
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Problem A Problem C Problem S (ρ̂)
T ∗ x(T ∗) T ∗ x(T ∗) T ∗ x(T ∗)

ρ2

0.075 6.06 685.58 6.94 586.80 4.96 733.51
0.10 8.74 547.19 8.29 440.10 6.00 660.16
0.25 16.32 249.29 8.95 176.04 7.40 528.12

γ2

1.25 38.87 52.02 46.95 19.47 42.64 39.08
1.20 30.40 98.44 32.09 46.29 31.17 92.61
1.15 21.57 191.71 19.06 114.23 19.21 228.45

δ

5% 16.07 290.61 12.49 201.88 11.69 403.75
7.5% 26.91 124.79 26.40 65.39 26.22 130.79
10% 32.25 81.41 35.05 36.94 33.42 74.00

Table 2.2: Sensitivity Analysis.

2.7 Conclusions

In this paper we have studied the switching conditions between two different
regimes, characterized by a possible change in the objective function and/or in the
system dynamics, when the decision-maker shows time-inconsistent temporal pref-
erences. In particular, we have focused on the cases of non-constant discounting and
heterogeneous discounting. Each of these two settings induce a different bias in the
temporal preferences. The main objective has been to analyze this framework from
the perspective of a sophisticated agent, by transforming our original infinite hori-
zon problem with a switching time into a finite horizon problem with free terminal
time. After this, we derived the necessary conditions on the terminal time to be sat-
isfied by decision-makers with different degrees of sophistication (or rationality).
Finally, the proposed procedure has been applied to a natural resource extraction
model in which the decision-maker has the option of implementing a more efficient
exploitation technology.

There are several possible extensions of this work. In our resource extraction
model we have focused on the case of log utility and a linear natural growth func-
tion. The extension to general isoelastic utilities or to non-linear growth functions
would allow a richer analysis of the resource management problem. Another exten-
sion that we consider of special interest is the case of two agents where only one or
both can decide on a regime shift.
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2.8 Appendix

Proof of Proposition 2.1: When the equilibrium decision rule u∗(s) = φ(x(s),s)
is applied for s ∈ [t, t + ε), the state variable changes to x(t + ε) = xt+ε . From the
definition of the value function,

V (xt+ε , t + ε) =
∫ T

t+ε

d(s, t + ε)F(s,x(s),φ(x(s),s))ds+d(T, t + ε)G(x(T ), t,T ) .

(A.1)
By performing a Taylor expansion in ε , we obtain

V (xt+ε , t + ε) =V (x, t)−
∫ T

t
d(s, t)F(x(s),φ(x(s),s),s)ds+

[
∂V (x, t)

∂x
· ∂xt+ε

∂ε

∣∣∣∣
ε=0+

+
∂V (x, t)

∂ t
+F(x,φ(x, t), t)−

∫ T

t

∂d(s, t)
∂ t

F(x(s),φ(x(s),s),s)ds
]

ε +o(ε) = d(x(T ), t)G(x(T ), t,T )+[
∂d(T, t)

∂ t
G(x(T ), t,T )+d(T, t)

∂G(x(T ), t,T )
∂ t

]
ε +o(ε) .

By dividing by ε and taking the limit ε → 0+ we obtain

∂V (x, t)
∂x

f (x,φ(x, t), t)+
∂V (x, t)

∂ t
+F(x,φ(x, t), t)−

∫ T

t

∂d(s, t)
∂ t

F(x(s),φ(x(s),s),s)ds

=
∂d(T, t)

∂ t
G(x(T ), t,T )+d(T, t)

∂G(x(T ), t,T )
∂ t

. (A.2)

From (2.19),

G(X(T ), t,T ) =
1

d(T, t)

[
V (x, t)−

∫ T

t
d(s, t)F(x(s),φ(x(s),s),s)ds

]
and substituting in (A.2), the result follows. ■

Proof of Proposition 2.2: It is very similar to the proof of Theorem 4 in Marín-
Solano and Shevkoplyas (2011). By proceeding as in that paper, after several cal-
culations we obtain

P(x,φ ,v, t) = lim
ε→0+

Vε(x, t)−V (x, t)
ε

=

[F(x,v(t), t)+∇xV (x, t) · f (x,v(t), t)]− [F(x,φ(x, t), t)+∇xV (x, t) · f (x,φ(x, t), t)]
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and, from Definition 2.1, the result follows. ■

Proof of Proposition 2.4: Assume that T ∗ is the terminal time. Then, for every
s ∈ [t,T ∗), every s-agent obtains higher profits by finishing the problem at time T ∗

compared with finishing the problem at time s, i.e., V s(x(s),s)<V T ∗
(x(s),s). In

particular, for ε > 0, the (T ∗−ε)-agent will decide to continue until T ∗. Therefore,

V T ∗−ε(x(T ∗− ε),T ∗− ε)<V T ∗
(x(T ∗− ε),T ∗− ε) .

Note that

V T ∗−ε(x(T ∗− ε),T ∗− ε) = G(x(T ∗− ε),T ∗− ε,T ∗− ε) . (A.3)

In addition, if u = φ(x(s),s) is the equilibrium rule and x(s) is the corresponding
path of the state variable,

V T ∗
(x(T ∗− ε),T ∗− ε) = (A.4)

∫ T ∗

T ∗−ε

d(s,T ∗− ε)F(x(s),φ(x(s),s)ds+d(T ∗,T ∗− ε)G(x(T ∗),T ∗− ε,T ∗) .

Next, for sufficiently small ε , from (A.3),

V T ∗−ε(x(T ∗− ε),T ∗− ε) = G(x(T ∗),T ∗,T ∗)− (A.5)

ε ·
[

∂G(x, t,T )
∂x

· f (x(s),φ(x(s),s))+
∂G(x, t,T )

∂ t
+

∂G(x, t,T )
∂T

]
x=x(T ∗),t=T ∗,T=T ∗

+o(ε)

and, from (A.4), -4.6cm0cm

V T ∗
(x(T ∗− ε),T ∗− ε) = G(x(T ∗),T ∗,T ∗)− (A.6)

ε ·
[
−L(x(t),φ(x(t), t))+

∂d(T, t)
∂ t

·G(x(t), t,T )+
∂G(x, t,T )

∂ t

]
x=x(T ∗),t=T ∗,T=T ∗

+o(ε) .

By identifying (A.5) and (A.6), dividing by ε and taking the limit ε → 0+, condition
(2.23) follows. ■

Proof of Proposition 2.5: Let 0 < ε < δ . From condition 1 in Definition 2.3, by
taking τ = T −ε , we can replicate the proof of Proposition 2.4 to obtain the inequal-
ity (2.23) if T ∗> 0. From condition 2, if we write τ ′= T +ε , then V T ∗

(x(T ∗),T ∗)≥
V T ∗+ε(x(T ∗),T ∗), i.e.,

G(x(T ∗),T ∗,T ∗)≥
∫ T ∗+ε

T ∗
d(T ∗+ ε,T ∗)F(x(s),φ(x(s),s)ds+
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d(T ∗+δ ,T ∗)G(x(T ∗+ ε),T ∗,T ∗+ ε) = G(x(T ∗),T ∗,T ∗)+

ε ·
[

L(x(t),φ(x(t), t)+
∂d(T, t)

∂ t
·G(x(t), t,T )+

∂G(x, t,T )
∂x

· f (x(s),φ(x(s),s)+

∂G(x, t,T )
∂T

]
x=x(T ∗),t=T ∗,T=T ∗

+o(ε) .

By simplifying, dividing by ε and taking the limit ε → 0+, Equation (2.25) is de-
rived. If T > 0, (2.24) follows from (2.23) and (2.25). ■
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3 What is my Neighbor Doing?
Heterogeneous agents under Free
Trade with Renewable Resources

Abstract

This chapter delves into the intricate relationship between status concerns, re-
newable resource extraction, and the strategic implications of autarky and free trade,
under a dynamic game framework. We examine situations where agents care about
their relative position and compare themselves to others, incorporating behavioral
factors such as relative extraction and profit comparison. By analyzing symmetric
and heterogeneous agents representing countries, we offer novel insights into the
role of status concerns in shaping strategic decision-making. Our analysis highlights
the importance of considering these behavioral factors when developing policies re-
lated to renewable resource extraction, trade, and sustainable development. By ex-
ploring the strategic interactions among nations, this research emphasizes the need
to understand status-driven behavior in crafting effective policies that balance sus-
tainability and competition in global resource management and international eco-
nomics.

Keywords: Renewable Resources; Differential Games; Environment and Trade;
Autarky; Free Trade; Heterogeneous agents; Status Concern; Social Status; Relative
Performance.

JEL Codes: C73; D9; Q56
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3.1 Introduction

In the past years, the proper management and extraction of natural resources,
which will surely be an essential part of our green and sustainable economy in
a not-too-distant future, has significantly influenced economic research. One of
the most powerful approaches researchers have in order to analyze the impact of
natural resources in the economy with different actors is the one of dynamic games.
This framework enables us to explore the strategic interactions between different
players over time, i.e., to study how different agents can extract and consume a
natural resource and how their actions affect other agents’ payoffs as well as the
environment.

In the era of the Sustainable Development Goals (SDGs)1 driven by the United
Nations and widely promoted by the OECD (2016), the knowledge and correct
management of natural resources would help to directly or indirectly achieve sev-
eral objectives.2 The tragedy of the commons, a concept well-established in the
literature since Lloyd (1833) and further expounded by ecologist Hardin (1968),
occurs when access to a common pool resource leads to its overexploitation. Com-
mon goods are characterized by their rivalry in consumption and non-excludability.
The rivalry aspect implies that when an agent consumes, extracts, or harvests one
unit of the resource, it reduces the stock available to all other agents (the group),
which will turn out to have a negative effect. This negative externality arises from
the combination of open access and resource depletion through use. The primary
explanation for the tragedy of the commons lies in the strategic behavior of indi-
viduals in the game, wherein each agent considers their own private marginal costs
of use, leading to excessive resource extraction without accounting for the impact
on others. The aggregate behavior of all agents in this environment may lead to
overexploitation and eventual exhaustion of the resource. Consequently, the use of
a methodology that introduces the interaction between the dynamic strategies of the
agents is required. This need arises from two key factors: first, current behavior has
instantaneous effects on other agents; second, today’s actions significantly impact
future generations (Nordhaus, 2019). Considering all of the above, in this chapter
we study a differential game, first with two symmetric players, and later we inves-
tigate the asymmetric game, in which agents exploit a renewable natural resource.
We consider that agents have social status or relative performance preferences, i.e.,
they care about and are influenced by what their neighbors are doing. Moreover,

1https://sdgs.un.org/
2These are objectives 6, Clean Water and Sanitation; 7, Affordable and Clean Energy; 8, Decent

Work and Economic Growth; 11, Sustainable Cities and Communities; 12, Responsible Consump-
tion and Production; 13, Climate Action; 14, Life Below Water and 15, Life On Land.
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we study the implications of moving from Autarky to Free Trade, where agents sell
and buy under an integrated common market.

Recently, Benchekroun et al. (2020) analyzed the implications of multiple sym-
metric agents exploiting a common property renewable resource under an oligopoly
framework. The authors study the differences between autarky, and when they
allow countries to trade in a common market. They use a renewable resource
of the form studied first in Benchekroun (2003), where a piecewise reproduction
function for the renewable resource was introduced, and later further developed in
Benchekroun (2008). The findings of the recent work by Benchekroun et al. (2020)
offer surprising insights from an international economics perspective, as they show
that “free trade may lead to a lower discounted sum of consumer surplus and of
social welfare than autarky. [...] A priori, this finding is not straightforward; a
move from Autarky to Free Trade causes industry output to first increase and then
decrease over time”. However, will this result hold if players present status concern
preferences, and compare their actions with other players?

Additionally, countries are not only concerned about their consumption/extrac-
tion of a natural resource, but also consider their relative position compared to other
actors in international geopolitics. Relatively recent work trying to understand these
consequences is the work by Benchekroun and Long (2016), where they study how
agents with status concern extract a common pool renewable resource (their utili-
ties do not take just their consumption or profits into account, but also the relative
consumption or profits with respect to other agents in the game). Moreover, it is
well known in the literature that agents’ utility is also influenced by other agents’
performance, wealth, income, or consumption. These positional externalities are
also known as “Catching Up with the Joneses” (Abel, 1990). The main idea is that
agents care about their consumption relative to that of their neighbor (see, for in-
stance, Galí (1994), Katayama and Van Long (2010), Ljungqvist and Uhlig (2000),
Chan and Kogan (2002), Alvarez-Cuadrado et al. (2004), and Alonso-Carrera et al.
(2005)).

According to Benchekroun and Long (2016), “because of status concern, private
decisions on consumption or asset accumulation generate externalities, and as a
result, one can no longer presume that a competitive equilibrium is Pareto efficient”.
Thus, one may wonder how the status concern will affect trade between players and
if they could act strategically to influence other countries’ welfare, which affects
the utility of that country. This raises questions about how status concerns affect
trade between countries, their competitiveness in the autarky scenario, and their
extraction and consumer and producer surplus. Countries may act strategically to
influence the welfare of others and, consequently, their own extraction and utility.
To investigate these issues, we combine the framework proposed by Benchekroun
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et al. (2020), in which agents trade a common property renewable resource, with
a model where countries care about their relative performance as in Benchekroun
and Long (2016). Our findings demonstrate that introducing status concerns can
lead to different outcomes than previous research, and agents can achieve higher
discounted sums of consumer and producer surplus under free trade due to this
behavioral component.

In this chapter, we present two players (first symmetric and later asymmetric),
representing two countries, considering the consequences of joining or staying in a
commonly integrated market versus staying under autarky. Each country is assumed
to have a monopolist that exploits a natural resource. This could be thought of as a
country per se extracting the asset. Thus, under autarky, only the monopolist in such
a country is supplying that internal market. However, under free trade firms compete
in quantities under an integrated common market, and choose their extraction time
path {qi(t)}t∈R+

. To capture the fact that firms’ extraction strategy is influenced
by the current state of the resource stock, we employ Markovian (feedback/closed
loop) strategies. We focus on finding the Markov Perfect Nash Equilibrium of the
game, which is subgame perfect.3

A real-life example of this problem can be found in the management of fisheries.
The extraction and management of fish stocks are a classic example of a common-
pool renewable resource. In this context, multiple countries have access to the re-
source (fish stocks), and their actions in extracting the resource have consequences
for other countries as well. Countries may have a status concern, comparing their
fishery industry’s extraction levels and profits to those of other nations. This com-
parison can lead to overfishing as countries try to maintain or improve their relative
status, resulting in the depletion of fish stocks and long-term negative consequences
for the industry and environment. This situation illustrates the complex interplay
between renewable resource extraction, trade policies, and status concerns among
nations.

Trade policies, such as bilateral or multilateral agreements, can play a role in this
context. For example, countries can decide to keep their fishing industries separate
(autarky), or they may establish agreements to manage fish stocks jointly and en-
gage in trade (free trade). The European Union’s Common Fisheries Policy is one
such example of an attempt to manage shared fish stocks through joint management
and trade agreements among member countries. Incorporating the dynamic behav-
ior of countries with status concerns in the analysis of fishery management and trade
policies can provide valuable insights into the real-world complexity of renewable
resource extraction and management.

3See, for instance, Dockner et al. (2000) and Van Long (2010).
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One prominent real-life example is the dispute between Canada and the European
Union over Atlantic cod fishing in the Grand Banks of Newfoundland in the early
1990s, which was part of a larger issue of overfishing that led to the collapse of the
Atlantic northwest cod fishery. In 1992, John Crosbie, the Canadian Federal Minis-
ter of Fisheries and Oceans, announced a moratorium on the Northern Cod fishery.
This fishery had been a central driver of life and community development along the
eastern coast of Canada for the previous half-millennium.4 Since the early 1990s,
Atlantic cod populations in the waters off the northeast coast of Newfoundland have
been in a critical state.5 The dispute between Canada and Spain over fishing rights
for turbot in international waters off Canada’s east coast began in 1995. Eventually,
direct negotiations between the EU and Canada resumed, culminating in an agree-
ment on April 5th of that same year. Despite this, Spain dismissed the deal and
sought more favorable conditions. In response to the threat of forcibly removing
Spanish fishing vessels, the EU persuaded Spain to reach a compromise on April
15th.6

Another example of resource conflict is the “Scallop Wars” between French and
British fishermen in 2018. The dispute arose over access to scallop-rich waters in
the English Channel near the Bay of Seine. While British fishermen were allowed
to fish for scallops year-round, French law restricted their fishermen to a season
that runs from October 1st to May 15th to protect the scallop population. Tensions
escalated as French and British fishing vessels clashed at sea, with reports of stone-
throwing, flare-shooting, and aggressive maneuvers. The situation led to diplomatic
talks between the two countries, resulting in an agreement that provided UK vessels
larger than 15 meters with compensation for staying out of the disputed area during
the closed French scallop fishing season. Smaller British boats retained their right
to fish in the area year-round.7

The potential of this study to shape future discussions on sustainable development
and resource conservation is significant and may capture the attention of policymak-
ers. By examining real-world examples such as the management of fisheries, or any
renewable resource, the analysis presented in this chapter sheds light on the com-
plexities of natural resource extraction, trade policies, and status concerns among
nations.

4See https://en.wikipedia.org/wiki/Collapse_of_the_Atlantic_northwest_
cod_fishery

5https://www.cbc.ca/news/canada/newfoundland-labrador/cod-return-1.
5992916

6See https://en.wikipedia.org/wiki/Turbot_War and https://www.britannica.
com/topic/exclusive-economic-zone#ref1308083

7See https://www.bbc.com/news/world-europe-45337091 and https://en.
wikipedia.org/wiki/English_Channel_scallop_fishing_dispute
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This chapter is organized as follows. In Section 3.2, we introduce the general
models for both autarky and free trade scenarios. In Section 3.3 we study the game
when players are symmetric (both autarky vs free trade). Later in section 3.4, we de-
part from the symmetric extraction costs and explore the heterogeneous agent case
under autarky and free trade. Questions related to welfare analysis are developed in
Section 3.5. Finally, Section 3.6 concludes the chapter.

3.2 The Model

Building upon Benchekroun et al. (2020), we modify the utility function to an-
alyze how different players/countries are influenced by the performance of other
players in the game, incorporating the status concern à la Benchekroun and Long
(2016). We first study the symmetric scenario studied in the previous papers, and
further extend it to the asymmetric case. Next, for the heterogeneous case, we will
follow the ideas of the asymmetric game of agents extracting a renewable resource
as in Benchekroun et al. (2014).

We consider a common pool of renewable resources where two players have ac-
cess to it. We first analyze the symmetric game where the marginal extraction costs
are the same for both players, but may differ under different regimes. We will call
these our “symmetric” games. In contrast, Benchekroun et al. (2020) consider that
the costs are symmetric and identical under autarky (A) and free trade (FT). In this
chapter, we will distinguish two economic regimes/cases. We always study first the
case where countries do not trade with each other, known as autarky, which means
that countries harvest the resource and sell it at home. Later, we will allow them to
trade under a common market, labeled as free trade. Furthermore, we later depart
from the symmetric assumption and consider the asymmetric game, where there can
be a big (b) and efficient player, and a small (s) and inefficient agent extracting both
the resource, so we allow “efficiency differences” for the extraction between players.
Thus, the marginal extraction cost for player i under regime k is given by ck

i ∈ R+.
Note, that we also depart from the assumption that a given player has the same
marginal cost under autarky as under free trade, which is the reason why the label k
appears in the marginal cost. One could think of this as an improvement one country
experiences from the efficiency point of view when they switch to free trade, due to,
for instance, improvements in market efficiency processes, increased competition,
access to new technology by opening its borders, etc. The idea could be that given
that players are selling the resource in a common market (FT), they have access to
new and better technology, which would be, for example, internationally available
due to a free trade agreement.
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The set of players is N = {i, j}. We assume that there is one firm per country;
intuitively, one could think of it as the country exploiting the resource. We define
qk

i (t) ∈ R+ as player i’s extraction at time t under the regime k ∈ {A,FT}. There-
fore, the total extraction of the resource at time t under regime k (autarky or free
trade) is given by the aggregate extraction, defined as

Qk(t) = qk
i (t)+qk

j(t).

As a result, we define two types of demand, one for each case (A and FT). The
main reason for this is that under autarky, the extraction of the resource can be “sold
just at home”. If countries are allowed to trade, they face a “global demand”, where
all the players offer in the same integrated market. Having different demands for
autarky and free trade, one should notice that the price under autarky reflects the
price of a given market i, which is influenced just by the extraction of that player.
However, under free trade, the price is influenced by the extraction of both players,
as they offer their harvest in a common market. Thus,

PA
i = BA −bqA

i (t)

PFT = BFT − b
2

QFT (t),
(3.1)

where QFT (t) is the total extraction, and the demands are the standard forms in the
literature.

According to the demand structure in each regime, instantaneous profits for agent
i at time t are given by

π
A
i (q

A
i (t)) =

[
aA

i −bqA
i (t)

]
qA

i (t),

π
FT
i (qFT

1 (t),qFT
2 (t)) =

[
aFT

i − b
2
(
qFT

i (t)+qFT
j (t)

)]
qFT

i (t),
(3.2)

where we define ak
i ≡ Bk − ck

i , for all k ∈ {A,FT}. In each scenario, it is evident
that the disparities arising from players’ asymmetries have a direct impact on their
immediate gains. When a player exhibits greater efficiency, characterized by a re-
duced marginal cost, this advantage translates into an elevated payoff. Moreover,
due to the varying profits across different regimes, players’ utilities will differ based
on the specific regime in which they are engaged.
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The utility for player i under autarky is given by:

uA
i (q

A
i ,q

A
j ) =

(
aA

i −bqA
i

)
qA

i +θ
A
(

qA
i −qA

j

)
+γ

A
[(

aA
i −bqA

i

)
qA

i −
(

aA
j −bqA

j

)
qA

j

]
,

where qk
j defines the consumption of the other player. Utilities in both autarky and

free trade are composed of three terms. The first one is the utility agent i gets from
her own profits. The second term with θ k reflects the fact that agent i is comparing
her extraction/harvest with the other player. The third term with γk corresponds to
the case where each player compares her profits with the profit of another agent in
the game. In this two players case, they compare their extraction and their profits
with the other player.

The utility for player i under free trade is given by:

uFT
i (qFT

i ,qFT
j ) =

[
aFT

i − b
2
(
qFT

i (t)+qFT
j (t)

)]
qFT

i (t)+θ
FT (qFT

i −qFT
j
)

+γ
FT
[(

aFT
i − b

2
(
qFT

i (t)+qFT
j (t)

))
qFT

i (t)−
(

aFT
j − b

2
(
qFT

j (t)+qFT
i (t)

))
qFT

j (t)
]
.

Furthermore, in this chapter we will use the piecewise differential equation first
introduced in Benchekroun (2003), where the growth of the renewable resource is
firstly linearly increasing, until it arrives to the maximum sustainable yield of the
asset Sy, and then decreases until it crosses the horizontal axis from above, meaning
that a stable steady state is reached without harvest. This reproduction function of
the resource is given by

F(S(t)) =


δS(t) f or S(t)≤ Sy

δSy

(
S̄−S(t)
S̄−Sy

)
f or S(t)> Sy,

(3.3)

where δ > 0 reflects the intrinsic growth rate of the population. When the resource
arrives to the level Sy, the growth rate starts to decline. For this reason, level δSy is
called the maximum sustainable yield (MSY).
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Agent i will solve the following game under autarky and free trade, i.e. k ∈
{A,FT}:

Max
{qk

i (t)}i∈N

∫
∞

0
e−ρtuk

i (q
k
i ,q

k
j)dt

s.t. Ṡ(t) = F(S(t))−qk
i −qk

j,

qk
i (t)≥ 0,

S(0) = S0,

(3.4)

where ρ is the discount factor, and the amount of resource at the initial time is
given by S0. In this chapter, we begin by examining a symmetric game, followed
by an analysis of an asymmetric scenario in which both agents employ Markovian
strategies to extract the resources. Having previously discussed the utility functions
for autarky and free trade, we will now explore these market structures in-depth,
delving into their respective impacts on agent behavior and welfare outcomes.

3.3 Symmetric Game

In this section, we initiate our investigation into the symmetric game, character-
ized by equal marginal extraction costs for both players. Our approach deviates
from the assumption in Benchekroun et al. (2020), which posits identical extraction
costs for both players across both regimes—specifically, cA

i = cA
j = cFT

i = cFT
j . In-

stead, we preserve symmetry only within the extraction costs of a specific regime,
while allowing for distinct extraction costs between autarky and free trade, rep-
resented as cA

i = cA
j ̸= cFT

i = cFT
j . Additionally, Benchekroun and Long (2016)

examines a differential game focused on status concerns, wherein countries extract
renewable resources and sell them in a common market, corresponding to our free
trade framework. We introduce regime-specific status concern parameters, which
remain symmetric across both players: γk

i = γk
j = γk and θ ik = θ jk = θ k.

3.3.1 Symmetric Autarky

To study the feedback equilibrium, we will focus on Markovian strategies, com-
monly used in continuous-time dynamic games. For the 2 symmetric players game,
we define the vector of control (decision) variables under autarky as φφφ

A :=(φ Sym,A∗
1 ,

φ
Sym,A∗
2 )∈R2

+, which form a Subgame Perfect Markov Nash Equilibrium (SPMNE).
The state variable in this chapter is the renewable resource, S(t) ∈ R+. Then, the
Hamilton-Jacobi-Bellman equation for player i associated with problem (3.4) is
given by:
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ρV Sym,A
i (S) = Max

{qSym,A
i }



(
aSym,A

i −b qSym,A
i

)
qSym,A

i +θ
A
(

qSym,A
i −φ

Sym,A
j

)

+γ
A
[(

aSym,A
i −b qSym,A

i

)
qSym,A

i −
(

aSym,A
j −b φ

Sym,A
j

)
φ

Sym,A
j

]

+
∂V Sym,A

i (S)
∂S

[
F(S)−qSym,A

i −φ
Sym,A
j

]


.

(3.5)

Symmetric players extract the renewable resource according to the strategy shown
in Proposition 3.1.

Proposition 3.1. The vector of symmetric strategies (φ Sym,A∗,φ Sym,A∗) constitutes
a Subgame Perfect Markov Nash Equilibria for each agent i ∈ N, where

φ
Sym,A∗ =



0 if S ∈ [0,SSym,A
1 )

wSym,A + zSym,AS(t) if S ∈ [SSym,A
1 ,SSym,A

2 ]

qSym,Cou,A = aSym,A(1+γA)+θ A

2b(1+γA)
if S ∈ (SSym,A

2 ,∞)

(3.6)

with

wSym,A =
aSym,A(1+γA)[2(1+γA)ρ−δ ]+θ A(δ+2γAρ+ρ)

2bδ (1+γA)(4γA+3) , zSym,A = (1+γA)(2δ−ρ)
4γA+3 ,

and the “endogenously threshold levels of stock” are given by

SSym,A
1 =

aSym,A(1+γA)[2(1+γA)ρ−δ ]+θ A(δ+2γAρ+ρ)

2bδ (1+γA)2(ρ−2δ )
,

SSym,A
2 = 2aSym,A(1+γA)2+θ A(1+2γA)

2bδ (1+γA)2 .

Proof. See Appendix 3.7.1. ■

Assumption 3.1. We assume that the intrinsic growth rate is sufficiently large

δ > max
{

ρ

2
,
2aSym,A(1+ γA)2 +θ A(1+2γA)

2b(1+ γA)2Sy

}
, (3.7)

and the status concern parameter is small enough,
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θ
A ≤

aSym,A(1+ γA)
[
δ −2ρ(1+ γA)

]
[δ +ρ(1+2γA)]

. (3.8)

The first condition (equation 3.7) in the previous assumption ensures that the
slope of the extraction is positive when agents extract using a linear strategy for
S ∈ [SSym,A

1 ,SSym,A
2 ], which is defined as the affine part. This captures the fact that

the more resource there is, the more the players extract. Moreover, this also guar-
antees the existence of a positive steady state. This can be seen from zSym,A =
(1+ γA)(2δ −ρ)

4γA +3
, which is the slope of the strategy. As γA is a positive parame-

ter, the condition that must hold for zA to be positive is 2δ > ρ . The second part
of the inequality ensures that the second switching point SSym,A

2 is smaller than the
maximum-sustainable-yield stock, Sy, which is commonly assumed in the literature.
Inequality (3.8) ensures that the threshold SSym,A

1 is nonnegative.
Additionally, the distance between the two thresholds is:

SSym,A
2 −SSym,A

1 =
(3+4γA)

[
θ A +aSym,A(1+ γA)

]
2b(1+ γA)2(2δ −ρ)

. (3.9)

Out[ ]=

b

θA

γA

δ

r

a1A

a2A

m1

m2

Smax

Ymin

Ymax

ϕSym,A
*

S

ϕ

S1
Sym,A

S2
Sym,A

Figure 3.1: Symmetric Extraction Strategy under Autarky.

As in Benchekroun (2003), the strategy consists of three parts. In the first one,
for S(t) ∈ [0,SA,Sym

1 ), both players extract zero when there is too little resource.
It can be interpreted that the best strategy for both agents is not to extract, since
they are “investing” in the resource for the future. Waiting when there is too little
resource is a good strategy because if they were to extract a positive amount, the re-
source would be exhausted.8 The second term, when S(t) ∈ [SA,Sym

1 ,SA,Sym
2 ] reflects

the increasing linear strategy, i.e., the affine part of the agent’s strategy, reflecting

8See Benhabib and Radner (1992) and Fershtman and Kamien (1987), where players also cease
consumption and production respectively when the stock or price is below a given threshold.
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that when there is more resource, agents extract more. When resources are abun-
dant, S(t) ∈ (SA,Sym

2 ,∞), the last horizontal part of the strategy corresponds to the
Cournot equilibrium, as if agents would play a one-shot game duopoly. This can be
understood as if there were no resource constraints, players would extract as much
as possible to maximize their profit or utility. If they extract too much, they would
pump the market with a lot of resources, and the price would be so low that their
profit would be even lower.9

The value function of the present problem for each player is,

V Sym,A(S) =



(
S

SSym,A
1

) ρ

δ

W (SSym,A
1 ;γA,θ A)Sym,A if S ∈ [0,SSym,A

1 ),

W (S;γA,θ A)Sym,A if S ∈ [SSym,A
1 ,SSym,A

2 ],

(aSym,A)2(1+γA)2−(θ A)2

4bρ(1+γA)2 if S ∈ (SSym,A
2 ,∞),

(3.10)

where W (S;γA,θ A)Sym,A = αSym,A

2 S2 + β Sym,AS + µSym,A. The coefficients of the
value function and its derivations are developed in Appendix 3.7.1.

Now we will study the sensitivity analysis of the status-concern parameters, first
analyzing the effects of changing the weight of importance in relative extraction
(θ A), and later the effects of changing the weight of importance in relative profits
(γA).

Effect of changing the weight of the relative extraction under the symmetric
autarky game (θ A)

As we incorporate the status concern to both players, an interesting question is
how a key parameter of the model influences the behavior of both agents. One can
show that the extraction strategies of players move upwards in parallel when we
increase θ A (see Figure 3.2). To see this, observe that the slope of the strategy does
not change,

9As hightailed by Benchekroun (2003), “When the asset is “abundant” S ≥ S2 firms can simply
adopt the production they would adopt under a static Cournot game. Therefore, when firms play
the equilibrium strategies of a static Cournot game, it does not necessarily mean that it is due to
short-term foresight: it can be the outcome of a subgame perfect equilibrium of an infinite horizon
game”.
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∂

∂θ A

zSym,A︸ ︷︷ ︸
Slope

= 0, (3.11)

and the Cournot extraction is higher,

∂qSym,Cou,A

∂θ A =
1

2b(1+ γA)
> 0. (3.12)

Old θA

Higher θA

S(t)

ϕ
Increase in θA

Figure 3.2: Extraction Strategy for both players under Autarky when θ A increases.

To show that the affine part moves upward, given that the slope does not change,
we have to show that SA

1 decreases and SA
2 increases,

∂SSym,A
1

∂θ A =− δ +ρ(1+2γA)

2bδ (1+ γA)2(2δ −ρ)
< 0, (3.13)

which means it goes to the left, and

∂SSym,A
2

∂θ A =
1+2γA

2bδ (1+ γA)2 > 0, (3.14)

which means it goes to the right. Thus, it is straightforward to show that the distance
SA

2 −SA
1 in (3.9) increases,

∂

∂θ A

[
SSym,A

2 −SSym,A
1

]
=

3+4γA

2b(1+ γA)2(2δ −ρ)
> 0. (3.15)

For this reason, in Figure 3.2, we show how the extraction strategies for both
players move upwards when we increase θ A ( ∂θ Aφ

A∗(S)> 0 ). This means that now
agents care more about their relative extraction, which results in players extracting
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more resources at any given point for all S(t)> SSym,A,new θ

1 . When agents care more
about their relative extraction, both start extracting sooner, i.e., SA

1 decreases. On
the contrary, both agents move to the right their second switching point SA

2 , which
means they now wait a little longer before they start playing the Cournot strategy.

This behavior is driven by the fact that the relative importance of the profits in the
utility has decreased. Thus, agents now care relatively more about the difference
in extraction than the profits themselves, and have the incentive to harvest more
because it increases their utility. Thus, one can see that the strategy moves upwards,

∂

∂θ A

[
φ

Sym,A∗
]
=



0 if S(t) ∈ [0,SSym,A,New θ

1 )

δ+ρ(1+2γA)

bδ [8(γA)2+14γA+6]
> 0 if S(t) ∈ [SSym,A,New θ

1 ,SSym,A,New θ

2 ]

1
2b(1+γA)

> 0 if S(t) ∈ (SSym,A,New θ

2 ,∞)

(3.16)
Finally, one should note that there is the trade-off effect that keeps their extraction

down to “preserve the resource” and pushes up to “maximize their profits”.

Effect of changing the weight of the relative profit under the symmetric
autarky game (γA)

When agents care more about their relative profits (higher γA), we observe they
start extracting with the Cournot strategy sooner (SA

2 moves to the left), and SA
1 can

move to the left or to the right,

∂

∂γA

[
SSym,A

1

]
=

2θ A(δ + γAρ)−aSym,Aδ (1+ γA)

2bδ (1+ γA)3(2δ −ρ)
≶ 0,

∂

∂γA

[
SSym,A

2

]
=− γAθ A

bδ (1+ γA)3 < 0.

The first switching point could increase or decrease. One can see that SSym,A
1

moves to the left if 2θ A(δ +γAρ)< aSym,Aδ (1+γA). The distance between the two
thresholds SSym,A

2 −SSym,A
1 could be positive or negative,

∂

∂γA

[
SSym,A

2 −SSym,A
1

]
=

aSym,A(1+ γA)−2θ A(1+2γA)

2b(1+ γA)3(2δ −ρ)
≶ 0. (3.17)

The distance between SA
2 and SA

1 increases in the free trade scenario studied in
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Benchekroun and Long (2016)10 when players care more about the relative profits.
However, in our model under autarky, we can get both situations. Moreover, the
slope of the affine strategy goes down,

∂

∂γA

[
(1+ γA)(2δ −ρ)

4γA +3

]
=− 2δ −ρ

(4γA +3)2 < 0, (3.18)

which is negative, as 2δ > ρ by assumption (3.7). The fact that SSym,A
2 moves to

the left, and SSym,A
1 can go both directions, is different from the free trade result in

Benchekroun and Long (2016). This is mainly due to the fact that we are now ex-
ploring the autarky case while they study the free trade scenario (integrated market).
Besides, the Cournot part of both players goes down when agents care more about
the relative profits,

∂

∂γA

[
qSym,Cou,A =

aSym,A(1+ γA)θ A

2b(1+ γA)

]
=− θ A

2b(1+ γA)2 < 0, (3.19)

unlike the result under free trade analyzed by the previous authors. The symmetric
case for a 2− players scenario in their paper,11 compares to our extraction under
the Cournot part in a particular term. The strong effect comes from the demand
parameter b, which captures the slope of the demand in the market. This parameter
is also in the recent investigation carried out by Benchekroun et al. (2020), where
the Cournot strategy under the autarky scenario is given by qA,Cournot

i =
a

2b
, while in

our model we see the effect of the status concern parameters under autarky γA and

θ A in the third term of the extraction, qSym,Cou,A =
aSym,A(1+ γA)+θ A

2b(1+ γA)
. Increasing

γA in our case has a contrary effect to the one obtained by the mentioned authors
in terms of the Cournot strategy. This behavior can be seen from the derivative of
the Cournot strategy part (3.19), which is negative. This shows the reduction for
the Cournot part of the strategy analytically. Moreover, if one eliminates the effects
of the status concert, i.e., γA = θ A = 0, we recover the same Cournot strategy as in
Benchekroun et al. (2020). In the following table, we show the results in a compact
form.

Figure 3.3 shows the graphical analysis of a change in this parameter for the case
when SSym,A

1 moves to the left. The graphical representation when SSym,A
1 increases

is shown in Figure 3.4, and agents will always be extracting fewer resources. This
case will happen when aSym,A is small enough, i.e., when agents have large marginal

10In their paper, this result follows immediately, as SA
1 decreases and SA

2 increases.
11For comparison, the Cournot strategy in the paper by Benchekroun and Long (2016) is

qBen.,Long =
a(1+ γ)

1+2(1+ γ)
.
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extraction costs.

SA
1 SA

2 qSym,Cou,A
i Slope

Benchekroun and Long (2016) (FT) ⇓ ⇑ ⇑ ⇓
Our Model under Autarky ⇑ × or ⇓✓ ⇓ × ⇓ × ⇓✓

Table 3.1: Changes in the switching point in comparison when γ increases.

Old γA

Higher γA

S(t)

ϕ

Increase in γA

Figure 3.3: Extraction Strategy under Autarky when γA increases and SSym,A
1 de-

creases.

Symmetric Autarky Steady States

In order to study the symmetric autarky steady states of the game, we define
ΦSym,A∗ := φ

Sym,A
1 (S) + φ

Sym,A
2 (S) = 2φ Sym,A(S) as the total extraction of the re-

source. Considering ΦSym,A∗ and using the reproduction function of the resource
given byequation (3.3), we obtain an extra steady state compared to Benchekroun
et al. (2020), where the authors obtain two equilibria, the first one stable from the
left and unstable from the right, and a second steady state which is stable. In our
model, we obtain three steady states as shown in Figure 3.5. The first steady state
is stable, corresponding to the point where the extraction is linearly increasing and
cutting the increasing part of the reproduction function. The second steady state
corresponds to the intersection of the Cournot part of the extraction strategy and
the section where the resource grows exponentially. Finally, the third steady state
under autarky is given by the locus where the Cournot part cuts the decreasing part
of the reproduction function. This extra steady state emerges purely from the status
concern parameters γA and θ A.

Under autarky, one can see that the first two steady states emerge from the one
in Benchekroun et al. (2020), which was stable from the left and unstable from the

72



Symmetric Game

Old γA

Higher γA

S(t)

ϕ

Increase in γA

Figure 3.4: Extraction Strategy under Autarky when γA increases and SSym,A
1 in-

creases.

right, and the extraction strategy was just touching the differential equations and
never crossing it. If we set all the status concerns parameters to 0 such that we re-
cover the results in Benchekroun et al. (2020), one can see that the first two steady
states collapse to the one in their study. Thus, we obtain an extra equilibrium with
our framework. The study of the stability of the equilibria can be easily seen in the
evolution of the resource, which is the figure on the right. This figure shows the dis-
tance between the reproduction of the resource and the total extraction. Therefore,
if the image of the function is positive, it means that the resource is moving to the
right and increasing. The steady state is stable if the function crosses the horizon-
tal axis from above. An interesting novel result is driven by the fact that now we
obtain an extra steady state, which we can define as a “Natural Resource Poverty
Trap (NRPT)”. This concept borrowed from the economic growth/development lit-
erature can be extrapolated to our framework.12 As one can see, starting from the
first stable steady state, if there is a small perturbation to the right in the resource, it
will come back to the left, as agents are extracting more than what the resource can
regenerate itself. However, if policy-makers, for instance, forbid the extraction of
the resource for a certain period such that the resource can regenerate until the point
where it passes the NRPT, i.e., pushing further point S2,∞, then the “poverty trap”
will have been overcome, since for any value of S(t) ∈ (S2,∞,S3,∞), the resource
will regenerate faster than what agents extract, increasing the stock until it reaches
the stationary state S3,∞. Thus, this “big push”, or “do not extract for a while”, will
allow the resource to grow until it arrives to a stationary state considered as the “rich
equilibrium”.

As one can see, the linearly increasing part of the total extraction that intersects

12See, for instance, Banerjee et al. (2011) and Banerjee and Duflo (2005)
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Figure 3.5: Total Extraction and Evolution of the Resource under Autarky.

the reproduction function is the one given by the sum of both linearly increasing
parts of the strategy of both players (the part where the strategies are affine). Thus,
this “vertical integration” is no more than the sum of the linear parts which is given
by

wA
1 +

A S(t)︸ ︷︷ ︸
affine strategy for P1

+ wA
2 + zAS(t)︸ ︷︷ ︸

affine strategy for P2

= 2wSym,A +2zSym,AS(t).

Therefore, the intersection between 2wSym,A+2zSym,AS(t) and δS(t) gives the first
steady state SSym,A

1,∞ . Furthermore, the second steady state is given by the intersection

of the sum of both Cournot strategies (qSym,Cou,A
1 +qSym,Cou,A

2 = qSym,Cou,A), and the
increasing part of the reproduction function of the resource, i.e., δS(t), defining this
equilibrium as SA

2,∞. Finally, the last steady state can be found by the intersection
of the sum of both Cournot strategies and the decreasing part of the reproduction
function, which gives SA

3,∞. Easily described, one can find stable equilibria when
the graph on the right cuts the horizontal axis from above, and unstable states when
it cuts from below.

Remark 3.1. Under the Autarky regime and agents playing their MPNE strategies,
there are three positive steady states:

SA
1,∞ =

2wSym,A

δ −2zSym,A , SA
2,∞ =

2qSym,Cou,A

δ
,

SA
3,∞ = S̄−

(S̄−Sy)(2qSym,Cou,A)

δSy
.
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3.3.2 Symmetric Free Trade

In the following section, we study the effect of changing one rule of the game,
i.e., allowing players to trade between them in a common market. In order to see
how this “institutional change” affects the discounted utilities of both countries, we
study first how free trade affects their extraction strategy. Thus, our main target
is to compare when we allow countries to trade with the base case scenario (au-
tarky). In the case with two symmetric agents, the common market consists of two
oligopolistic firms who supply their extraction to an integrated market.

As in the autarky case, we need the following assumption.

Assumption 3.2. We assume that the intrinsic growth rate is sufficiently large

δ > max

{
ρ

2
,
2aSym,FT [5+4γFT (2+ γFT )

]
+4θ FT (1+4γFT )

b(2γFT +3)2Sy

}
, (3.20)

and the status concern parameter is small enough,

θ
FT ≤

aSym,FT (2δ −ρ
[
5+4γFT (2+ γFT )

]
)

2 [2δ +ρ(1+2γFT )]
. (3.21)

Condition 3.1. If the reproduction rate of the resource is big enough,

δ >
ρ

8aSym,FT (1+ γA)2 −aA(1+ γA)(3+2γFT )2 −16(1+ γA)2θ FT +(3+2γFT )2θ A×

{
4aSym,FT (1+ γ

A)2[4(2+ γ
FT )γFT +5]−2aSym,A(γA +1)2(3+2γ

FT )2

+8(1+ γ
A)2(1+2γ

FT )θ FT − (1+2γ
A)(3+2γ

FT )2
θ

A} , (3.22)

then, SSym,FT
1 < SSym,A

1 .

The first part of Assumption 3.20 ensures that the slope of the affine strategy
is positive (as in the autarky case), and the second part guarantees that the sec-
ond switching point SSym,FT

2 , is smaller than the maximum-sustainable-yield stock,
Sy. Inequality (3.21) ensures that the threshold SSym,A

1 is nonnegative. If Condi-
tion 3.1 holds, it will implies that when agents trade, they start extracting the re-
source sooner, i.e., SSym,FT

1 < SSym,A
1 , and one would obtain the same behavior as

in Benchekroun et al. (2020). However, this is not a straightforward result in our
model, and one should impose conditions. Our numerical simulations show that this
is true when the efficiency parameters aSym,A and aSym,FT are closed enough, while
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the opposite is true if a large change in extraction efficiencies is allowed when the
two countries trade the natural resource.

As before, we now solve problem (3.4), where player i chooses her Markovian
strategies given the strategies of the other player. In order to solve the optimization
problem, we solve the following Hamilton-Jacobi-Bellman equation for player i is,

ρV FT
i (S) =

Max
{qSym,FT

i }



(
aSym,FT − b

2
(qSym,FT

i (t)+φ
Sym,FT
j (t))

)
qSym,FT

i (t)+θ
FT
(

qSym,FT
i −φ

FT
j

)

+γ
FT
[(

aSym,FT − b
2
(qSym,FT

i (t)+φ
Sym,FT
j (t))

)
qFT

i (t)

−
(

aSym,FT − b
2
(qSym,FT

i (t)+φ
Sym,FT
j (t))

)
φ

FT
j (t)

]

+
∂V FT

i (S)
∂S

[
F(S)−qFT

i −φ
FT
j
]


(3.23)

Defining φφφ
FT∗ := (φ FT∗

i ,φ FT∗
j ) ∈ R2

+ as the stationary Markovian strategy, and
the vector of Subgame Perfect Markov Nash Equilibrium, we can obtain an analyt-
ical expression for the strategies of the players. The symmetric vector of strategies
(φ Sym,FT∗,φ Sym,FT∗) is shown in the following proposition.

Proposition 3.2. The following vector of symmetric strategies under free trade
(φ FT∗,φ FT∗) constitutes a Subgame Perfect Markov Nash Equilibria for each agent
i, where

φ
Sym,FT∗ =



0 if S ∈ [0,SSym,FT
1 )

wSym,FT + zSym,FT S(t) if S ∈ [SSym,FT
1 ,SSym,FT

2 ]

qSym,Cou,FT = 2(θ FT+aSym,FT (1+γFT ))
b(3+2γFT )

if S ∈ (SSym,FT
2 ,∞)

(3.24)

with
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wSym,FT =
ρaSym,FT [4γFT (2+γFT )+5]+2θ FT (2δ+2γFT ρ+ρ)−2δaSym,FT

4bδ (1+γFT )(3+2γFT )
,

zSym,FT = (3+2γFT )(2δ−ρ)
8(1+γFT )

,

and the “endogenously threshold levels of stock” are given by

SSym,FT
1 =

4δaSym,FT−2ρaSym,FT [5+4γFT (2+γFT )]−4θ FT [2δ+ρ(1+2γFT )]
bδ (3+2γFT )2(2δ−ρ)

,

SSym,FT
2 =

2aSym,FT [5+4γFT (2+γFT )]+4θ FT (1+4γFT )

bδ (2γFT+3)2 .

Proof. See Appendix 3.7.2. ■

The value function of the symmetric free trade game is,

V Sym,FT (S) =



(
S

SSym,FT
1

) ρ

δ

W (SSym,FT
1 ;γFT ,θ FT )Sym,FT if S ∈ [0,SSym,FT

1 )

W (S;γFT ,θ FT )Sym,FT if S ∈ [SSym,FT
1 ,SSym,FT

2 ]

2(aSym,FT−2θ FT )[aSym,FT (1+γFT )+θ FT ]
bρ(3+2γFT )2 if S ∈ (SSym,FT

2 ,∞)

(3.25)

where W (S;γFT ,θ FT )Sym,FT = αSym,FT

2 S2+β Sym,FT S+µSym,FT . The coefficients of
the value function and its derivations are developed in Appendix 3.7.2.

As under the autarky game, when we now allow players to trade, the strategies of
both players are defined by a piecewise function composed of three terms (eq. 3.24).
The first one represents where agents harvest nothing when there is not enough
resource. Thus, they allow the asset to regenerate until a certain threshold SSym,FT

1 .
The second term reflects the affine strategy, linearly increasing, which emulates the
idea that the more there is, the more they extract. Finally, they use the Cournot
strategy.13 Keeping the same parameters as before,14 i.e., same cost structure and
status concern as in the autarky case, we can compare both extraction strategies
under autarky vs. free trade in Figure 3.6.15 Plotting them together help us visually
understand the free trade effect. As one can observe, allowing trade between players

13See the autarky section for the economic interpretation.
14b = 7,θ FT = 0.2,γFT = 0.08,δ = 0.25,r = 0.02,aFT

1 = 5,aFT
2 = 4

15We intentionally kept this combination of parameters to isolate and see (only) the effect of
allowing players to trade.
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has a significant change in their strategies. When players are allowed to trade, they
start extracting the resource when there is less of it, i.e., SSym,FT

1 moves to the left
by assumption (3.2).

Moreover, we can see that if we generalize and impose the following condition,
we get the same result as in Benchekroun et al. (2020), where the second switching
point moves to the right when players are allowed to trade (when they switch from
the affine to the Cournot strategy) i.e., SSym,A

2 < SSym,FT
2 ,

Condition 3.2. If the status concern parameter θ FT is big enough,

θ
FT ≥ 1

8(1+ γA)2(1+2γFT )
×
{

2aSym,A(1+ γ
A)2(3+2γ

FT )2

−4aSym,FT (1+ γ
A)2[5+4γ

FT (γFT +2)]+(1+2γ
A)(3+ γ

FT )2
θ

A} , (3.26)

then, SSym,A
2 < SSym,FT

2 .

If Condition 3.2 holds, then we get SSym,A
2 < SSym,FT

2 , which is the same result
as in Benchekroun et al. (2020). However, either if the status concern parameter
θ A is big enough, or aSym,A >> aSym,FT , we would obtain a different result from
the one obtained by the above-mentioned authors. An example of this new result
driven by the status concern parameter θ can be seen in Figure 3.7. Moreover, also
the Cournot extraction could be higher under autarky. These new results are driven
by the status concern parameters and extraction costs that we allow to be different
under autarky and free trade.

As status concern behavior was not present in Benchekroun et al. (2020), they can
prove that SSym,A

1 > SSym,FT
1 and SSym,A

2 < SSym,FT
2 without any further assumption

as we have done (see their Proposition 3). If we would not consider Condition 3.2,
any result could be possible (see Figure 3.7).

While in Benchekroun and Long (2016) the authors analyze the effect of the sta-
tus concern in the players’ strategy and welfare, we also include the possibility of
moving from autarky to free trade à la Benchekroun et al. (2020). Furthermore, in
contrast to the approach followed by the former authors, where they analyze in iso-
lation each status concern force, we study the problem with both status parameters
at the same time, i.e., the relative output gap (our γk) and the relative profit gap (our
θ k) interacting at the same time.

Turning back to the consequences of a regime change, one can see that both
players always extract more under free trade if, and only if, Condition 3.2 holds.
One can see that the gap (distance between the free trade and autarky strategies)
increases as there is more resource available. This implies that,
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Autarky

Free Trade

S(t)

ϕ

Autarky vs Free Trade

S1
Sym,A

S2
Sym,A

S1
Sym,FT

S2
Sym,FT

Figure 3.6: Extraction Strategy under Autarky and Free Trade as in Benchekroun
et al. (2020).

Remark 3.2. The slope under free trade will be higher than the slope under autarky
if, and only if,

zFT > zA ⇔ (3+2γFT )

8(1+ γFT )
>

(1+ γA)

(3+4γA)
⇐⇒ γ

A >
2γFT −1

4
. (3.27)

Remark 3.2 shows that the slope of the strategy is higher when players switch to
free trade. This could be interpreted as the agents being more aggressive in their
extraction.

Remark 3.3. When players have the same status concern under autarky and free
trade, i.e., γA = γFT = γ , the slope under free trade will be higher than the slope
under autarky,

zFT > zA ⇔ 2γ +1 > 0. (3.28)

Additionally, the distance between the two switching points is given by

SSym,FT
2 −SSym,FT

1 =
16(1+ γFT )[θ FT aSym,FT (1+ γFT )]

b(3+2γFT )2(2δ −ρ)
. (3.29)

Effect of changing the weight of the relative extraction under symmetric free
trade (θ FT )

Following the same structure as in the autarky regime, we now expose the case
when agents care more about their relative extraction. This results in an increase in
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Autarky

Free Trade

S(t)

ϕ
Autarku vs Free Trade

S1
Sym,A

S2
Sym,A

S1
Sym,FT

S2
Sym,FT

Figure 3.7: Extraction Strategy under Autarky and Free Trade when Condition 3.2 is
not considered. All results are changed, SSym,A

1 < SSym,FT
1 , and SSym,A

2 >

SSym,FT
2 , and qSym,Cou,FT < qSym,Cou,A. This is caused by having different

status concern parameters and different marginal costs in autarky and
free trade.

θ FT . As in the autarky case, both players extract more, which means
∂φ FT

i
∂θ FT ≥ 0,

for all S(t) as seen in Figure 3.8. As shown earlier, this increase in the parameter
captures the fact that players now care more about relative extraction, which results
in players extracting more resources. Looking at the switching values of the strate-
gies, we observe that SFT

1 moves to the left, capturing the idea that both players
start extracting earlier. Moreover, as in the previous section, SFT

2 moves to the right,
implying that they prefer to wait until there are more resources to adopt the Cournot
strategy. The economic causes of this behavior were exposed in the autarky case
and hold in the free trade scenario (Section 3.3.1). Moreover, as pointed out in the
autarky regime, we see that the slope of the strategies do noes change since zFT

does not depend on θ FT , as in Benchekroun et al. (2020),

∂

∂θ FT

zSym,FT︸ ︷︷ ︸
Slope

= 0, (3.30)

and the Cournot extraction is higher,

∂qSym,Cou,FT

∂θ FT =
2

b(3+2γFT )
> 0. (3.31)

To show that the affine part moves upward, given that the slope does not change,
we have to show that SFT

1 decreases and SFT
2 increases,
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Old θFT

Higher θFT

S(t)

ϕ
Increase in θFT

Figure 3.8: Extraction Strategy for both player under Autarky when θ FT increases.

∂SSym,FT
1

∂θ FT =− 4[2δ +ρ(1+2γFT )]

bδ (3+2γFT )2(2δ −ρ)
< 0, (3.32)

which means it goes to the left, and

∂SSym,FT
2

∂θ FT =
4+8γFT

bδ (3+2γFT )2 > 0, (3.33)

which means it goes to the right. Thus, it is straightforward to show that the distance
SFT

2 −SFT
1 in (3.29) increases,

∂

∂θ FT

[
SSym,FT

2 −SSym,FT
1

]
=

16(1+ γFT )

b(3+2γFT )2(2δ −ρ)
> 0. (3.34)

For this reason, one can see in Figure 3.8 how the extraction strategies move
upwards when we increase θ FT . This means that agents now care more about their
relative extraction, resulting in players extracting more resources at any given point
for all S(t) > SSym,A,new θ

1 . When agents care more about their relative extraction,
both start extracting sooner, i.e., SSym,FT

1 decreases. On the contrary, both agents
move to the right their second switching point SFT

2 , which means they now wait a
little longer before they start playing the Cournot strategy.

This behavior is driven by the fact that the relative importance of the profits in
the utility has decreased. Thus, they now care relatively more about the difference
in extraction than profits itself, having incentives to harvest more as it will increase
their utility. Thus, one can see that the strategy moves upward,
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∂

∂θ FT

[
φ

Sym,A∗]=


0 if S(t) ∈ [0,SSym,FT,New θ

1 )

2δ+ρ(1+2γFT )
2bδ [2(γFT )2+5γFT+3] > 0 if S(t) ∈ [SSym,FT,New θ

1 ,SSym,FT,New θ

2 ]

2
b(3+2γFT )

> 0 if S(t) ∈ (SSym,FT,New θ

2 ,∞)

(3.35)

As in the autarky case, there is the trade-off effect that keeps their strategy down
in order to “preserve the resource” and to “maximize their profits”. The more they
extract, the more happiness they get from extracting more than the other player, but
profits could be lower if they sell too much.

In Table 3.2 we show the comparison between symmetric autarky and free trade
scenarios when θ k increases.

Sk
1 Sk

2 qSym,Cou,k
i Slope zk

Autarky ⇓ ⇑ ⇑ =
Free Trade ⇓ ⇑ ⇑ =

Free Trade in Benchekroun and Long (2016) ⇓ ⇑ ⇑ =

Table 3.2: Changes when θ k increases.

Effect of changing the weight of the relative profit under symmetric free trade
( γFT )

Considering now the effect of an increase in γFT on players’ strategies, we obtain
an interesting result and different behavior from the one we saw under autarky.
When players care more about relative profits under free trade (Figure 3.9), they
behave differently with respect to the autarky regime when they pay more attention
to their relative profits. One can see that players now extract more under the Cournot
part if the following condition holds.

Condition 3.3. The Cournot strategy moves upwards when players care more about
the relative profits (increase in γFT ) if, and only if,

aSym,FT > 2θ
Sym,FT . (3.36)

Therefore, Condition 3.3 implies that agents extract more under the Cournot part
when γFT increases as in Benchekroun and Long (2016). However, if θ FT is large
enough so that the above assumption is not met, we see a different result than the
previous authors.
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∂

∂γFT

[
qSym,Cou,FT =

2(θ FT +aSym,FT (1+ γFT ))

b(3+2γFT )

]
=

2(aSym,FT −2θ FT )

b(3+2γFT )2 ≶ 0.

(3.37)

The behavior of the switching points and the distance between SSym,FT
1 and SSym,FT

2
are

∂

∂γFT

[
SSym,FT

1

]
=−8 · aSym,FT [2δ +ρ(1+2γFT )]+θ FT (ρ −4δ −2γFT ρ)

bδ (3+2γFT )3(2δ −ρ)
,

∂

∂γFT

[
SSym,FT

2

]
= 8 · aSym,FT (1+2γFT )+θ FT (1−2γFT )

bδ (3+2γFT )3 .

Condition 3.4. The first switching point SSym,FT
1 will move to the left, and the second

switching point SSym,FT
2 will move to the right, when players care more about the

relative profits (increase in γFT ) if, and only if,

θ
FT < min

{
aSym,FT [2δ +ρ(1+2γFT )]

4δ +2γFT ρ −ρ
,
aSym,FT (1+2γFT )

2γFT −1

}
, (3.38)

where the first element is derived from the condition that SSym,FT
1 moves to the left,

and the second element is obtained imposing the condition that SSym,FT
2 moves to

the right.
The distance between the first and the second switching points when agents care

more about the relative profits is,

∂

∂γFT

[
SSym,FT

2 −SSym,FT
1

]
=−16

θ FT (1+2γFT )−2aSym,FT (1+ γFT )

b(3+2γFT )3(2δ −ρ)
, (3.39)

which will be positive when using Condition 3.4. Moreover, the slope of the affine
strategy goes down,

∂

∂γFT

[
zSym,FT =

(3+2γFT )(2δ −ρ)

8(1+ γFT )

]
=− 2δ −ρ

(1+8γFT )2 < 0, (3.40)

since 2δ > ρ .
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Old γFT

Higher γFT

S(t)

ϕ

Increase in γFT

Figure 3.9: Extraction Strategy under Free Trade when γFT increases.

When agents care more about the relative profits (increasing γk), it reduces the
slope of both agents under autarky and free trade. Under autarky, the strategy with
higher γA crosses the old strategy just once, in the increasing part (see Figure 3.3) or
never crosses (see Figure 3.4). However, under free trade, the strategy with higher
γFT , crosses the old strategy (lower γFT ) twice, one in the affine part, and another
in the Cournot part (see Figure 3.9), or it could just cross one, in the Cournot strat-
egy, as SSym,FT

1 could increase as in Figure 3.4. Intuitively, this means that under
free trade, due to the pressure of catching up with the profits of the other agent
(higher γFT ), or even increasing the gap (which directly reports more utility), both
decision-makers extract more in the first part of the affine strategy. Later on, in the
last part of the affine strategy, they harvest less in comparison to a lover γFT , before
they switch to the Cournot extraction. When agents play the Cournot strategy, with
higher γFT , they now extract more. In contrast, under autarky when players care
more about their relative profits (higher γA), they extract less in the Carnot part with
respect to strategies with lower values of γA. This free trade behavior is exactly the
one obtained in Benchekroun and Long (2016), when the parameter capturing the
relative profit increases. However, the behavior under autarky is different. Thus,
one could say that the result the previous researchers obtained comes from the free
trade force. The results are summarized in Table 3.3.16

Symmetric Free Trade Steady States

As we proceed before, we first define ΦSym,FT∗ := φ FT
1 (S)+φ FT

2 (S)= 2φ Sym,FT (S)
as the total extraction under free trade. Both total extractions under autarky and free

16We compare our results with the ones obtained in Benchekroun and Long (2016), shown as BL
(2016) for space constraints.
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Sk
1 Sk

2 qSym,Cou,k
i Slope zk

Autarky ⇑ × or ⇓✓ ⇓ × ⇓ × ⇓✓
Free Trade ⇑ × or ⇓✓ ⇑✓ or ⇓ × ⇑✓ or ⇓ × ⇓✓

Free Trade in BL (2016) ⇓ ⇑ ⇑ ⇓

Table 3.3: Changes when γk increases.

trade are shown in Figure 3.10. comparing the total extractions under both regimes,
it becomes evident that players harvest more resources in the free trade scenario
than in autarky, using Condition 3.1. Nevertheless, the fact that the gap between the
two strategies grows as the resource increases (as seen in the figure, which aligns
with the findings in ?), requires additional assumptions not previously considered
by the aforementioned authors due to the introduction of status concern parameters.
Theoretically, one can have a higher, the same, or a lower slope. In order to get a
higher slope under free trade, see Remark 3.2. To have the same slope, one should
need a certain relationship between γA and γFT shown in Remark 3.4.

Remark 3.4. The affine strategies under the symmetric autarky and free trade
would have the same slope iff,

zSym,FT = zSym,A ⇐⇒ γ
A =

2γFT −1
4

. (3.41)

Note that we need new extra conditions to ensure that the slope under free trade is
higher, in contrast to the immediate result obtained by the previous authors. If both
status parameters would be the same under autarky and free trade, γA = γFT = γ ,
it is easy to see that the slope of free trade is higher as 2γ +1 > 0. Thus, when we
add up the strategies of both players to study the total extraction, we observe that

the free trade one increases at a higher rate
(

∂ΦFT

∂S(t)
>

∂ΦA

∂S(t)

)
under Remark 3.2.

Having analyzed the shape of the total extraction under free trade, we should
study whether this strategy has stable points or not. In order to obtain these inter-
esting points, in Figure 3.11 we first show the total extraction with the reproduction
of the resource on the left-hand side, and the evaluation of the resource under such
strategy on the right-hand side. Each time the total extraction crosses the repro-
duction function, we obtain a steady state. We observe that where there is little
resource, the reproduction function is above both autarky and free trade extraction
strategy, thus, allowing the natural resource to reproduce and grow until a certain
level of stock is reached.

As explained under the autarky scenario, we observe three steady states also un-
der autarky, two of them stable (SFT

1,∞ and SFT
3,∞) and one unstable (SFT

2,∞). The two
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ΦSym,A

ΦSym,FT

S(t)

Total Extraction A vs FT

Symmetric

S1
Sym,A

S2
Sym,A

S1
Sym,FT

S2
Sym,FT

Figure 3.10: Symmetric Total Extraction under Autarky vs Free Trade

Figure 3.11: Total Extraction and Evolution of the Resource under Symmetric Au-
tarky and Free Trade

stable equilibrium points are easily recognizable in both plots. They can be ob-
tained when the slope of the extraction is higher than the one of the reproduction

function on the plot of the left
(

∂Φk

∂S(t)
>

∂F (S(t))
∂S(t)

)
, or when the evolution of the

resource (right-hand side) crosses the horizontal axes from above (with negative
slope).

As before we define the “total affine strategy” under free trade as the sum of both
affine strategies:

wFT
1 + zFT S(t)︸ ︷︷ ︸

affine strategy for P1

+ wFT
2 + zFT S(t)︸ ︷︷ ︸

affine strategy for P2

= 2wSym,FT +2zSym,FT S(t).

The intersection of 2wSym,FT +2zSym,FT S(t) and δS(t) shows the first steady state
SFT

1,∞. The seconds steady state (SA
2,∞), which is unstable, is the intersection of the

total symmetric Cournot strategies (qCou,FT
1 + qCou,FT

2 = 2qSym,Cou,FT ) and the in-
creasing part of the reproduction function (δS(t)). The third steady state, which is
stable (SFT

3,∞), can be characterized as the intersection of the sum of both Cournot
strategies and the decreasing part of the reproduction function. All the equilibrium
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points are defined in the following Remark.

Remark 3.5. Under the Free Trade regime and agents playing their MPNE strate-
gies, there are three positive steady states:

SSym,FT
1,∞ =

2wSym,FT

δ −2zSym,FT
, SFT

2,∞ =
2qSym,Cou,FT

δ
,

SSym,FT
3,∞ = S̄−

(S̄−Sy)2qSym,Cou,FT

δSy
.

Once we have studied the behavior of both agents in the game and its equilibrium
points, we can compare it with the autarky case, to see how changing one rule of
the game (allowing them to trade) has effects on the evolution of the resource and
the equilibria of the game (see Figure 3.11). Starting at the highest steady state
under autarky (SA

3,∞), we study the effect of allowing trade between players. While
in the short-run, agents move upwards from autarky to free trade (extract more un-
der the symmetric Cournot in free trade), which is translated as an increase in the
immediate extraction, one can observe that this point is no longer an equilibrium.
This means that players were extracting SA

3,∞ using their free trade total extraction
strategy at the instant they immediately moved to free trade. Thus, as the extraction
is higher than the reproduction under the free trade scenario, this will reduce the re-
source until it reaches the free trade highest steady state SFT

3,∞. With this reasoning,
we observe that both agents are extracting more in the short-run with abundant re-
source, but in the long-run, end up extracting more at a lower stock of the resource.
For this reason, the impact of allowing players to trade will be determined by the
discounted sum of producer and consumer surplus, which will take into account the
increase in their utility in the short-run, and the impact of their utility in the long-run.

3.4 Asymmetric Game

As shown in Benchekroun et al. (2014), where the authors study the effects of
asymmetries in a common pool natural resource with the dynamics given by equa-
tion (3.3), having different marginal costs leads to a “drastic effect on the nature
of the equilibria that may be expected as compared to the identical cost case” (see
Propositions 1 and 2 in their paper). In their paper, the strategy for player i consists
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of four distinct intervals. Initially, there is a period during which no firm engages
in extraction. Following this, only the more efficient (big) firm proceeds to ex-
tract resources in a nonlinear manner. Subsequently, both agents extract resources
using affine strategies within the endogenous thresholds of the less efficient (small)
player, denoted as S1,s and S2,s. Lastly, the authors prove that a stock larger than S2,s

is not sustainable. Therefore, for the region where the resource is more abundant,
as the authors write, “playing the static Cournot strategies beyond some endoge-
nously determined interval of the stock over which linear strategies are played is
not sustainable as an equilibrium.” Following their approach, we define a big player
with marginal cost ck

b and a small player with marginal cost ck
s under both regimes

k ∈ {A,FT}, and assume that

ck
s > ck

b,

capturing the idea that big firms have a cost advantage over small firms. By the
reason given above, in this chapter we will focus on the region where both agents
play their affine strategies (Proposition 1 in Benchekroun et al. (2014), that is in our
case, for all S ∈ [Sk

1,s,S
k
2,s].

3.4.1 Asymmetric Autarky

For the case of 2-asymmetric players, the vector of control (decision) variables is
φφφ

A := (φ A∗
s ,φ A∗

b ) ∈ R2
+. The corresponding Hamilton-Jacobi-Bellman equation for

player i associated with the asymmetric problem (3.4) is given by:

ρV A
i (S) = Max

{qA
i }



(
aA

i −bqA
i

)
qA

i +θ
A
(

qA
i −φ

A
j

)

+ γ
A
[(

aA
i −bqA

i

)
qA

i −
(

aA
j −bφ

A
j

)
φ

A
j

]

+
∂V A

i (S)
∂S

[
F(S)−qA

i −φ
A
j

]


. (3.42)

The interior solution of the right-hand side must satisfy,

qA
i =

aA
i (1+ γA)−θ A −∂SV A

i (S)
2b(1+ γA)

, for i ∈ {s,b} . (3.43)

With the corresponding guessing for the value function for player i of the form

V A
i (S) = αA

i
2 S(t)2 +β A

i S+µA
i , one gets the following result:
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Proposition 3.3. The vector (φ A∗
s ,φ A∗

b ) given by the following affine strategies, con-
stitutes a Subgame Perfect Markov Nash Equilibria for each agent i ∈ {s,b}, where

φ
A∗
i = wA

i + zAS(t), for S(t) ∈ [SA
1,s,S

A
2,s], (3.44)

with

wA
i =

aA
i (1+γA)[δ (1+2γA)+ρ(1+γA)]−aA

j (1+γA)2(2δ−ρ)+θ A[δ+ρ(1+2γA)]

2bδ (1+γA)(3+4γA)
,

zA
i = zA = zSym,A = (1+γA)(2δ−ρ)

4γA+3 ,

and the “endogenously threshold levels of stock” are given by

SA
1,s =−aA

s (1+γA)[δ (1+2γA)+ρ(1+γA)]−aA
b (1+γA)2(2δ−ρ)+θ A[δ+ρ(1+2γA)]

2bδ (1+γA)2(2δ−ρ)
,

SA
2,s =

(1+γA)2(aA
s +aA

b )+θ A(1+2γA)

2bδ (1+γA)2 = SA
2,b.

Proof. See Appendix 3.7.3. ■

Observe that the slope of the strategy of the asymmetric players is the same as
the slope for symmetric agents, together with the fact that SA

2,s = SA
2,b = SA

2 .

Assumption 3.3. We assume that the intrinsic growth rate under the autarky asym-
metric game is large enough,

δ > max
{

ρ

2
,
(1+ γA)2(aA

s +aA
b )+θ A(1+2γA)

2b(1+ γA)2Sy

}
, (3.45)

and the status concern parameter is small enough,

θ
A ≤

(1+ γA)
{

aA
b (1+ γA)(2δ −ρ)−aA

s [δ (1+2γA)+ρ(1+ γA)]
}

δ +ρ(1+2γA)
. (3.46)

The first condition (3.45) in Assumption 3.3 ensures that the slope of the ex-
traction is positive, which means, the more resource there is, the more they ex-
tract. Moreover, this also guarantees the existence of a positive steady state, where

zA =
(1+ γA)(2δ − r)

(3+4γA)
> 0 is the slope of the strategy. As γA is a positive parameter,

the conditions that must hold for zA to be positive is 2δ > r. The second condition
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ϕs
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A*, ϕs
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S1,s
A S2,s

A

Figure 3.12: Extraction of two asymmetric players under autarky.

of inequality (3.45) ensures that the second switching point SA
2,s is smaller than the

maximum-sustainable-yield stock, Sy, as explained in the symmetric case. Condi-
tion (3.46) ensures that the threshold SA

1,s is nonnegative.

Remark 3.6. As the right-hand side of (3.46) is greater or equal to zero, it implies
that aA

b should be sufficiently large, or

aA
b

aA
s
≥ δ (1+2γA)+ρ(1+ γA)

(1+ γA)(2δ −ρ)
.

The distance between the two switching thresholds is:

SA
2,s −SA

1,s =
(3+4γA)

[
θ A +aA

s (1+ γA)
]

2b(1+ γA)2(2δ −ρ)
, (3.47)

which is very similar to the symmetric case, except that now the marginal cost is
player specific. The extraction of both players can be seen in Figure 3.12.

The value function of the autarky game under asymmetries for S ∈ [SA
1,s,S

A
2,s] is

V A
i (S) =

αA
i

2
S2 +β

A
i S+µ

A
i , (3.48)

with the coefficients shown in Appendix 3.7.3.

Effect of changing the weight of the relative extraction under the asymmetric
autarky game (θ A)

As in the symmetric case, we now study the effect when agents care more about
relative extraction. First, one should notice that the slope of the strategy does not
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change (as in the symmetric case),

∂

∂θ A

 zA︸︷︷︸
Slope

= 0. (3.49)

To show that the affine part moves upward, one can see that the following result
is positive,

∂φ A∗
i

∂θ A =
δ +ρ(1+2γA)

2bδ [4(γA)2 +7γA +3]
> 0. (3.50)

Moreover, SA
1,s decreases, and SA

2,s increases, moving in the same direction as in
the symmetric case,

∂SA
1,s

∂θ A =− δ +ρ(1+2γA)

2bδ (1+ γA)2(2δ −ρ)
< 0, (3.51)

∂SA
2,s

∂θ A =
1+2γA

2bδ (1+ γA)2 > 0. (3.52)

Thus, the distance SA
2,s −SA

1,s increases,

∂

∂θ A

[
SA

2,s −SA
1,s

]
=

3+4γA

2b(1+ γA)2(2δ −ρ)
> 0. (3.53)

Note that the effect of θ A is the same for symmetric and asymmetric players. For
an economic interpretation, see the symmetric case.

Effect of changing the weight of the relative profit under the asymmetric
autarky game (γA)

When agents care more about their relative profits (higher γA), we observe that
they move SA

2,s to the left, and SA
1,s can move in both directions as in the symmetric

game,

∂

∂γA

[
SA

1,s

]
=− aA

s δ (1+ γA)−2θ A(δ + γAρ)

2bδ (1+ γA)3(2δ −ρ)
≶ 0,

∂

∂γA

[
SA

2,s

]
=− γAθ A

bδ (1+ γA)3 < 0.

The distance between the two thresholds SA
2,s−SA

1,s could be positive or negative,

91



What is my Neighbor Doing?

∂

∂γA

[
SA

2,s −SA
1,s

]
=

aA
s (1+ γA)−2θ A(1+2γA)

2b(1+ γA)3(2δ −ρ)
≶ 0. (3.54)

The behavior of both switching points is the same as in the symmetric case. SA
2,s

moves to the left, and the first switching point SA
1,s can also go in both directions,

which is different to the result in Benchekroun and Long (2016). This is mainly
due to the fact that we are exploring now the autarky case, while they study the free
trade game. Regarding the question of what happens to the distance between the
points of change when γA increases, the previous authors obtain an increase in the
distance between the new second and first switching point. However, as one can see
in 3.54, we could get the opposite result. To obtain the same result as the previous
authors one should consider the following condition.

Condition 3.5. The distance between the first and second switching points will
increase when players care more about the relative profits (increase in γA) if, and
only if,

aA
s > 2θ

A
(

1+2γA

1+ γA

)
, (3.55)

that is, when the marginal cost is small enough (big aA
s ) or when the parameter

capturing the importance of relative extraction is low enough.

Additionally, the slope of the affine strategy goes down,

∂

∂γA

[
zA
]
=− 2δ −ρ

(4γA +3)2 < 0, (3.56)

(recall that 2δ > ρ), which is the same behavior as in the symmetric autarky case.
The affine strategy acts as in symmetric cases in Figures 3.3 or 3.4 in the symmetric
autarky case.

Asymmetric Autarky Steady States

As in the previous sections, we define ΦA∗ := φ A
b (S)+φ A

s (S) as the total extrac-
tion of the resource carried out by both players. Thus,

Φ
A∗ = (wA

i +wA
j )+2zAS(t).

Considering the total extraction and using the reproduction function of the re-
source given by equation (3.3), we obtain a stable steady state, in comparison to the
unstable steady state in Benchekroun et al. (2020) when affine strategies are played.
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The steady state of the previous authors is stable from the left and unstable from the
right.

An interesting result is driven by the fact that now we obtain a steady state that
is stable from both sides. We could define it as a “Natural Resource Poverty Trap”
(NRPT). This concept borrowed from the economic growth/development literature
can be extrapolated to our framework.17 This is the unique stable steady state, which
would correspond to a level of low natural resources. When a minor perturbation to
the right occurs in the resource, it reverts to the left, since agents extract more than
the resource can regenerate.

Although policymakers could temporarily ban resource extraction to allow re-
generation beyond the NRPT, our analysis, which focuses on the region where both
players use affine strategies, indicates that this hypothetical second steady state re-
mains unattainable. Consequently, no higher steady state exists with heterogeneous
agents, and players are trapped in the low NRPT. Implementing policies like the
“big push” will not lead to a richer equilibrium, presenting a paradoxical situation
where a higher steady state could be reached under symmetric agents instead.

The intersection between (wA
i +wA

j )+2zAS(t) and δS(t) gives the stable steady
state SA

1,∞. In the heterogeneous case, there is just one steady state, losing the other
two that were derived by the Cournot strategies in the symmetric case (as proved in
Benchekroun et al. (2014), where the Cournot part does not belong to the Markov
Perfect Nash Equilibrium strategy).

Corollary 3.1. Under the asymmetric autarky regime when agents play their MPNE
strategies, there is just one positive steady state for S(t) ∈

[
SFT

1,s ,S
FT
2,s

]
:

SA
1,∞ =

wA
i +wA

j

δ −2zA .

3.4.2 Asymmetric Free Trade

Regarding the study of heterogeneous agents under free trade, we solve the fol-
lowing Hamilton-Jacobi-Bellman equation for each player i ∈ {s,b},

17See, for instance, Banerjee et al. (2011) and Banerjee and Duflo (2005).
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ρV FT
i (S) = Max

{qFT
i }



(
aFT

i − b
2
(qFT

i (t)+φ
FT
j (t))

)
qFT

i (t)+θ
FT (qFT

i −φ
FT
j
)

+γ
FT
[(

aFT
i − b

2
(qFT

i (t)+φ
FT
j (t))

)
qFT

i (t)

−
(

aFT
j − b

2
(qFT

i (t)+φ
FT
j (t))

)
φ

FT
j (t)

]

+
∂V FT

i (S)
∂S

[
F(S)−qFT

i −φ
FT
j
]



.

(3.57)

The interior solution of the right-hand side must satisfy the system of equations

qFT
i =

aFT
i (1+ γFT )+θ FT −∂SV FT

i (S)
b(1+ γFT )

+
1

2(1+ γFT )
φ

FT
j , for i∈{s,b} , i ̸= j,

(3.58)

which gives

qFT
i = 2 ·

(1+ γFT )
[
2aFT

i (1+ γFT )−aFT
j

]
+θ FT (1+ γFT )−2(1+ γFT )∂SV FT

i +∂SV FT
j

b [4(γFT )2 +8γFT +3]
.

(3.59)

With the corresponding guessing for the value function for player i of the form

vFT
i (S) =

αFT
i
2

S(t)2 +β
FT
i S+µ

A
i , one gets the following result.

Proposition 3.4. The vector (φ FT∗
s ,φ FT∗

b ) given by the following affine strategies,
constitutes a Subgame Perfect Markov Nash Equilibria for each agent i ∈ {s,b}
under the asymmetric free trade game, where

φ
FT∗
i = wFT

i + zFT S(t), for S(t) ∈ [SFT
1,s ,S

FT
2,s ], (3.60)

with

wFT
i =

1
8bδ (1+ γFT )(r−δ )[4(γFT +2)γFT +3]

×
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×



aFT
i
{
(1+2γ

FT )(4γ
FT (2+ γ

FT )+5)ρ2 −4δ
2(1+ γ

FT )[1+4γ
FT (2+ γ

FT )]

+2δρ(1+2γ
FT )[(2γ

FT +7)γFT +4]
}

+aFT
j
{

4δ
2[γFT (4γ

FT (3+ γ
FT )+11)+2]+ (1+2γ

FT )ρ2[5+4γ
FT (2+ γ

FT )]

−2δρ(1+2γ
FT )[3γ

FT (2γ
FT +5)+11]

}
+ 4θ

FT (ρ −δ )(1+2γ
FT )(2δ +2γ

FT
ρ +ρ)


,

︸ ︷︷ ︸
:=MFT

(3.61)

zFT
i = zFT = zSym,FT =

(1+ γFT )(2δ −ρ)

4γFT +3
,

and the “endogenously threshold levels of stock” are given by

SFT
1,s =− 1

bδ (1+2γFT )(3+2γFT )2(2δ −ρ)(ρ −δ )
×MFT ,

SFT
2,s =

1
bδ (1+2γFT )(3+2γFT )2(r−δ )

×

{
aFT

s (1+2γFT )ρ[4γFT (2+ γFT )+5]−2δaFT
s (1+ γFT )[4γFT (2+ γFT )+7]

−2δaFT
b [γFT (4γFT (2+ γFT )+3)−2]+aFT

b (1+ γFT )ρ[4γFT (2+ γFT )+5]

+4(1+2γFT )2θ FT (ρ −δ )
}
.

Proof. See Appendix 3.7.4. ■

Assumption 3.4. We assume that the intrinsic growth rate is sufficiently large

δ > max
{

ρ

2
,CFT

2,δ

}
, (3.62)

and the status concern parameter is small enough,

θ
FT ≤ 1

4(1+2γFT )(ρ −δ )[2δ +ρ(1+2γFT )]
×{

4δ
2{aFT

s (1+ γ
FT )(4γ

FT (2+ γ
FT )+1)−aFT

b [2+ γ
FT (4γ

FT (3+ γ
FT )+11)]

}
−ρ

2(aFT
s +aFT

b )(1+2γ
FT )[4γ

FT (2+ γ
FT )+5]
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−2ρδ (1+2γ
FT )[aFT

s (γFT (2γ
FT +7)+4)−aFT

b (3γ
FT (2γ

FT +5)+11)]
}
.

(3.63)

Parameter CFT
2,δ is defined as

CFT
2,δ =

1
bδ (1+2γFT )(3+2γFT )2(r−δ )

×

{
±
[{

2aFT
s (1+ γ

FT )[4γ
FT (2+ γ

FT )+7]+2aFT
b [γFT (4γ

FT (2+ γ
FT )+3)−2]

+(1+2γ
FT )
[
bρSy(3+2γ

FT )2 +4θ
FT (1+2γ

FT )
]}2

−4bρSy[4γ
FT (2+ γ

FT )+3]2
[
(4γ

FT (2+ γ
FT )+5)(aFT

s +aFT
b )+4θ

FT (1+2γ
FT )
]]1/2

+2aFT
s (1+ γ

FT )[4γ
FT (2+ γ

FT )+7]+8aFT
b (γFT )3 +16aFT

b (γFT )2 +6aFT
b γ

FT −4aFT
b

+bρSy
[
8(γFT )3 +28(γFT )2 +30γ

FT +9
]
+4θ

FT (1+2γ
FT )
}
. (3.64)

The first and second elements in (3.62) capture, as before, that the slope of the
strategy is positive, and that the second switching point happens before the maxi-
mum sustainable yield. Inequality (3.63) ensures that the threshold SA

1,s is nonneg-
ative. It is clear that the study of heterogeneous agents involves dealing with very
cumbersome expressions. The previous assumptions are feasible with reasonable
parameter values.

The distance between the two switching thresholds is

SFT
2,s −SFT

1,s =
16(1+ γFT )

[
2aFT

s (1+ γFT )2 −aFT
b (1+ γFT )+θ FT (1+2γFT )

]
b(3+2γFT )2(2δ −ρ)(1+2γFT )

,

(3.65)
which is quite different from the symmetric case.

The value function of the asymmetric free trade game under for all S ∈ [SFT
1,s ,S

FT
2,s ]

is,

V FT
i (S) =

αFT
i
2

S2 +β
FT
i S+µ

FT
i , (3.66)

with the coefficients shown in Appendix 3.7.4.
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Figure 3.13: Affine strategies of two heterogeneous players under autarky and free
trade.

Having presented how player’s strategies look like under autarky and free trade,
we can plot them together to visually understand the free trade effect in Figure
3.13. As one can observe, allowing trade between players has a significant change
in their strategies. The big (efficient) player always harvests more than the small
(inefficient) player, both under autarky and free trade. When players switch to free
trade, the slope of the affine strategy increases.

As in the symmetric free case, we have a more general result regarding the evo-
lution of the second switching point. Benchekroun et al. (2020) observe that when
agents trade the resource, they move the second switching point to the left (see their
Proposition 3). However, in our heterogeneous free trade game, we would need
extra conditions to obtain this result.

Condition 3.6. If the status concern parameter θ FT is big enough, that is,

θ
FT ≥ 1

8(1+2γFT )2 ×

(1+2γFT )(3+2γFT )2
[
(1+ γA)2(aA

i +aA
j )+θ A(1+2γA)

]
(1+ γA)2 +

4δ

{
aA

i (1+ γFT )[4γFT (2+ γFT )+7]+aA
j (γ

FT [4γFT (2+ γFT )+3)−2]
}

r−δ
(3.67)

−2ρ(aA
i +aA

i )(1+2γFT )[42γFT (2+2γFT )+5]
r−δ

}
,

then, SA
2,s < SFT

2,s .

If inequality (3.67) in the previous condition does not hold, then we get a different
result than the one obtained by Benchekroun et al. (2020). The conditions for SFT

1,s <
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SA
1,s are several pages long for the asymmetric free trade game, making it impractical

to write it in this chapter. However, one should notice that SFT
1,s could be higher,

lower, or equal to SA
1,s if one finds the suitable parameters, which is a more general

result than the one obtained by the previous authors (see their Proposition 3). The
economic intuition is the same as in the symmetric free trade section, where we
compared the movement of both switching points when agents move from autarky
to free trade. This difference in their behavior is driven by having introduced status
concern.

SA→FT
1 SA→FT

2
Benchekroun et al. (2020) Symmetric ⇓ ⇑

Our Model Asymmetric ⇑ × or ⇓✓ ⇑ × or ⇓✓

Table 3.4: Changes in the switching point when free trade is allowed.

As in the symmetric game, when one studies the consequences of a regime
change, one can see that both players extract more under free trade if the param-
eter capturing the importance of the relative profits under autarky (γA) is bigger
than a given threshold (see Remark 3.2).

Effect of changing the weight of the relative extraction under the asymmetric
free trade game (θ FT )

As in the symmetric case, we now study the effect when agents care more about
relative extraction. First, one should notice that the slope of the strategy does not
change (as in the symmetric case),

∂

∂θ FT

 zFT︸︷︷︸
Slope

= 0, (3.68)

To show that the affine part moves upward, one can see that the following result
is positive,

∂φ FT∗
i

∂θ FT =
2δ +2ρ(1+ γFT )

2bδ [2(γFT )2 +5γFT +3]
> 0. (3.69)

Moreover, SFT
1,s decreases,

∂SFT
1,s

∂θ FT − 4[2δ +ρ(1+2γFT )]

bδ (2δ −ρ)(3+2γFT )2 =
∂SSym,FT

1
∂θ FT < 0, (3.70)
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and SFT
2,s increases,

∂SFT
2,s

∂θ FT =
4+8γFT

bδ (3+2γFT )2 =
∂SSym,FT

2
∂θ FT > 0, (3.71)

which give exactly the same algebraic expressions (for both SFT
2,s and SFT

2,s ) as in the
symmetric free trade game.

The distance SFT
2,s −SFT

1,s increases,

∂

∂θ FT

[
SFT

2,s −SFT
1,s
]
=

16(1+ γFT )

b(3+2γFT )2(2δ −ρ)
=

∂

∂θ FT

[
SSym,FT

2 −SSym,FT
1

]
> 0.

(3.72)
Note that the effect of θ FT is the same for symmetric and asymmetric players.

Effect of changing the weight of the relative profit under the asymmetric free
trade game (γFT )

When agents care more about their relative profits (higher γFT ), we observe that
now SFT

2,s can move to the right or to the left (in comparison to the symmetric free
trade game where it moved to the left), and SFT

1,s can also move in both directions as
in the symmetric game, but now we obtain a very complicated expression,

∂

∂γFT

[
SFT

1,s
]
=− 2

bδ (3+2γFT )3(2δ −ρ)(1+2γFT )2(r−δ )
×{

aFT
s
[
2ρ

2(1+2γ
FT )3 −2δ

2(2γ
FT [2γ

FT (9+2γ
FT )+21]+17)−δρ(2γ

FT −5)(1+2γ
FT )2]

+aFT
b
[
2δ

2(2γ
FT [2γ

FT (5+2γ
FT )+13]+13)+2ρ

2(1+ γ
FT )3 −δρ(1+6γ

FT )(1+2γ
FT )2]

−4θ
FT (1+2γ

FT )2(r−δ )[4δ +ρ(2γ
FT −1)]

}
≶ 0,

and

∂

∂γFT

[
SFT

2,s
]
=− 2

bδ (3+2γFT )3(1+2γFT )2(r−δ )
×{

δaFT
s
[
2γ

FT (−4(γFT )2 +6γ
FT +21

)
+25

]
+2ρaFT

s (1+2γ
FT )3

−δaFT
b
[
6γ

FT (2γ
FT (5+2γ

FT )+11)+29
]

+2ρaFT
b (1+2γ

FT )3 −4θ
FT (2γ

FT −1)(1+2γ
FT )2(r−δ )

}
≶ 0.

Thus, when we allow agents to care about what their neighbors and consider het-
erogeneity, we do not get a clear result, and all behaviors in terms of the switching
points are feasible.

The distance between the two thresholds SFT
2,s −SFT

1,s could be positive or negative,
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∂

∂γFT

[
SFT

2,s −SFT
1,s
]
=

16(1+ γFT )
{

2aFT
s (1+ γFT )2 −aFT

b (1+ γFT )+θ FT (1+2γFT )
}

b(1+2γFT )(3+2γFT )2(2δ −ρ)
≶ 0.

(3.73)

Remark 3.7. The distance between the first and second switching points will in-
crease when players care more about the relative profits (increase in γFT ) if, and
only if,

aFT
s >

aFT
b

2(1+ γFT )
− θ FT (1+2γFT )

2(1+ γFT )2 . (3.74)

Asymmetric Free Trade Steady States

As in the previous sections, we define ΦFT∗ := φ FT
b (S) + φ FT

s (S) as the total
extraction of the resource carried out by both players under the asymmetric free
trade game. Thus,

Φ
FT∗ = (wFT

i +wFT
j )+2zFT S(t).

As we are working with the affine strategies, there is one steady state, which will
be obtained when the total extraction intersects the reproduction function of the
resource.

Corollary 3.2. Under the asymmetric free trade regime when agents play their
MPNE strategies, there is just one positive steady state for S(t) ∈

[
SFT

1,s ,S
FT
2,s

]
:

SFT
1,∞ =

wFT
i +wFT

j

δ −2zFT .

3.5 Welfare Analysis

In the previous sections, we studied the behavior of both players under different
regimes, i.e., how they harvest the resource under autarky and free trade. Due to
their asymmetries, it has been seen how they extract differently. Departing from au-
tarky to free trade can cause an increase in the utility in the short-run, but a decrease
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in the utility in the long-run. This is explained by the fact that players jump imme-
diately upwards and extract more under free trade in the short-run, which is greater
than the reproduction function, moving to a lower steady state in the long-run. For
this reason, in this section we study the discounted sum of instantaneous aggregate
consumer and producer surplus, allowing us to see if overall, players are better off
or if one of them is worse off.

3.5.1 Aggregate Consumer Surplus

In our model, policy recommendations will be driven by welfare variations, and
therefore, we need to study the change in consumer and producer surplus. Con-
sumer surplus for player i is defined as the area bounded by the demand curve and
the equilibrium price. Thus, due to our linear inverse demand function, this takes
the form of a triangle, with base φ A

i for the autarky case and ΦFT for the free trade
scenario.18 Moreover, the height of the triangle will also be different in each regime
for each player, i.e., bφ A

i under autarky, and b
2(φ

FT∗
s +φ FT∗

b ) under free trade as one
can see in the figures below. This is driven by the fact that there are two different
market structures in each regime as we show in Figures 3.14 and 3.15. Thus, the
area corresponding to the consumer surplus of player i under autarky is given by

b ·h
2

=
φ A∗

i ·
(
BA − (BA −bφ A

i )
)

2
=

φ A∗
i ·
(
bφ A

i
)

2
=

b
(
φ A

i
)2

2
,

which can bee easily seen in Figure 3.14.

0
qA

i0

PA
i

PA
i = BA −bqA

i (t)

BA

BA −bφ A∗
i

φ A∗
i

CSA
i

Figure 3.14: The Marshallian measure of Consumer Surplus under Autarky

18Remember that what drives the demand for a given market under autarky is the amount supplied
to such a market by one player, while under free trade, what drives the demand is the total extraction
sold. Therefore, we should use the total extraction ΦFT .
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0
qFT

i0

PFT

PFT = BFT − b
2

(
qFT

1 (t)+qFT
2 (t)

)
BFT

BFT − b
2

(
φ FT∗

1 +φ FT∗
2
)

ΦFT∗

CSFT
i

Figure 3.15: The Marshallian measure of Consumer Surplus under Free Trade

Figure 3.15, illustrates the demand that consumers in both countries experience
within the integrated market. When countries engage in trade, it can potentially lead
to lower prices for consumers in both nations, as a result of increased competition
brought forth by the integration of their respective markets. However, it is important
to note that this analysis does not yet account for the impact on producers, which
will be examined later. The area corresponding to the consumer surplus of both
countries under free trade is given by

b ·h
2

=
ΦFT∗ ·

(
BFT −PFT∗(ΦFT∗)

)
2

=
ΦFT∗ ·

(
BFT − (BFT − b

2

(
φ FT∗

1 +φ FT∗
2
)
)
)

2
=

ΦFT∗ ·
(b

2ΦFT)
2

=
b
4

Φ
FT∗.

An interesting difference between our model and Benchekroun et al. (2020) in
the study of the consumer surplus under free trade is that their area takes the form

of bh
2 =

n·φ FT ∗( b
n ·(nφ FT ))
2 = nφ FT ·(bφ FT )

2 and given that all the players are symmetric

each player consumer surplus is φ FT ·(bφ FT )
2 .19 Thus, we define the consumer surplus

for player i in regime k ∈ {A,FT} as

CSk
i :=

∫
∞

0

b
2

[
qk

i (S(t))
]2

e−ρtdt, (3.75)

where S(t) solves

Ṡ(t) = F(S)−qk
1 −qk

2

19Interested readers can see this in Appendix 3.7.5.
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S(0) = S0.

We will proceed as in Benchekroun et al. (2020), focusing on the Markovian
extraction strategy of the form qk

i (S).Thus, the CSi satisfies the following differential
equation:

ρCSk
i =

b
2

(
qk

i (S)
)2

+
∂CSk

i
∂S(t)

[
F(S)−qk

i −qk
j

]
.

Following the previous authors, we study the region characterized by affine strate-
gie, i.e., when qk

i = wk
i + zkS(t), and the function CSk

i takes the form CSk
i = Ak

i S2 +

Bk
i S+Gk

i for both players under both regimes.

The symmetric games k ∈ {A,FT} have

ASym,k =
b(zSym,k)2

2ρ −4δ +8zSym,k ,

BSym,k =
bwSym,kzSym,k(ρ +2zSym,k −2δ )

(ρ +4zSym,k −2δ )(ρ +2zSym,k −δ )
,

GSym,k =
b(wSym,k)2 (2δ 2 +ρ2 −3δρ +2ρzSym,k)
2ρ(ρ +4zSym,k −2δ )(ρ +2zSym,k −δ )

.

Under the symmetric games k ∈ {A,FT} one gets

Ak
i =

b(zk)2

2ρ −4δ +8zk = ASym,k,

Bk
i =

bzk[wk
i (r+3zk −2δ )−wk

jz
k]

(r+4zk −2δ )(r+2zk −δ )
,

Gk
i = b

ρ2(wk
i )

2 + rwk
i (4wk

i zk −3δwk
i −2wk

jz
k)+2[wk

i (δ − zk)+wk
jz

k]2

2ρ(ρ +4zk −2δ )(ρ +2zk −δ )
.

If we impose symmetry we recover the results in Benchekroun et al. (2020) for
n = 2 players. Using the expressions above one can compute consumer surplus
under both regimes for both players when they are playing their affine strategies,
by plugging (wA

i ,z
A) for autarky or (wFT

i ,zFT ) for free trade. For the symmetric
game,20 this leads to the following results under autarky

20The asymmetric case gives very long value function parameters.
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ASym,A =
b(3+2γA)2(2δ −ρ)

8γA +6
, (3.76)

BSym,A =
(1+2γFT )(ρ −2δ )

{
aA(1+ γA)[2ρ(1+ γA)−δ ]+θ A[δ +ρ(1+2γA)]

}
2δ (3+4γA)[δ +ρ(1+2γA)]

,

(3.77)

CSym,A =− [ρ(1+2γA)−δ (4γA +3)][aA(1+ γA)[2ρ(γA +1)−δ ]+θ A(δ +ρ(1+2γA))]2

8bρδ 2(γA +1)2(4γA +3)[δ +ρ(1+2γA)]
.

(3.78)

Under the symmetric free trade game, one gets

ASym,FT =
b(3+2γFT )2(2δ −ρ)

64(1+ γFT )
, (3.79)

BSym,FT =− (1+2γFT )(2δ −ρ)

16δ (1+ γFT )[2δ +ρ(1+22γFT )]
×{

ρaFT [4γ
FT (2+ γ

FT )+5]−2δaFT +2θ
FT [2δ +ρ(1+22γ

FT )]
}

(3.80)

CSym,FT =− [ρ(1+2γFT )−4(γFT +1)δ ]
16bδ 2ρ(1+ γFT )(2γFT +3)2(2δ +2γFT ρ +ρ)

×

[aFT
ρ(4(γFT +2)γFT +5)−2aFT

δ +2θ
FT (2δ +2γ

FT
ρ +ρ)]2. (3.81)

As we now allow status concerns to be regime specific (θ A,θ FT ,γA,γFT ), and
agents can have different extraction costs under autarky and free trade, the consumer
surplus in our model is not that straightforward. Consequently, we can get a novel
result where agents can be better off under free trade. In contrast, Benchekroun et al.
(2020) claimed that “[w]hen n =2 we can show analytically that for S ∈ [SA

1 ,S
A
2 ] we

have CSA(S)>CSFT (S): while Free Trade always results in an increase (a decrease)
in instantaneous consumer surplus in the short-run (long-run), the overall impact of
Free Trade on consumer surplus when the transition dynamics is taken into account
is to decrease aggregate consumer surplus. Numerical simulations for n > 2 yield
the same conclusion.” Theoretically, one could obtain a value of γA such that the
opposite is true, so that consumer surplus is higher under free trade. However, we
do not include here such expression, as it is several pages long.

To determine whether consumers are better off under autarky or free trade, one
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can compare CSA(S) and CSFT (S) using the inequality CSA(S) ≶ CSFT (S), which
yields

CSA(S)≶CSFT (S)⇔ ASym,AS2+BSym,AS+GSym,A ≶ AFT S2+BSym,FT S+GSym,FT .

Collecting terms, one can write

(ASym,A −ASym,FT )S2 +(BSym,A −BSym,FT )S+(GSym,A −GSym,FT )≶ 0 ⇔

b
2

(
(zSym,A)2

4zSym,A − (2δ −ρ)
− (zSym,FT )2

4zSym,FT − (2δ −ρ)

)
·S2

+b
(

wSym,AzSym,A[2zSym,A − (2δ −ρ)]

(4zSym,A − (2δ −ρ))(2zSym,A +ρ −δ )
− wSym,FT zSym,FT (2zSym,FT − (2δ −ρ))

(4zSym,FT − (2δ −ρ))(2zSym,FT +ρ −δ )

)
·S

+
b

2ρ

(
(wSym,A)2

(
2δ 2 +ρ2 −3δρ +2ρzSym,A

)
(4zSym,A − (2δ −ρ))(2zSym,A +ρ −δ )

−
(wSym,FT )2

(
2δ 2 +ρ2 −3δρ +2ρzSym,FT

)
(4zSym,FT − (2δ −ρ))(2zSym,FT +ρ −δ )

)
≶ 0.

(3.82)

One can find values of the status concern parameters γA and θ A for a very par-
ticular case, such that both strategies under symmetric autarky and free trade would
have the same slope zSym,A = zSym,FT and same intersection point wSym,A = wSym,FT

(see equation (3.41) in Remark 3.4). Under those specific circumstances, they will
have the same consumer surplus under autarky and free trade. It is straightforward
to see that expression 3.82 collapses to zero and consequently, CSA =CSFT .

Plugging in the slopes (zSym,k) and intersections in the vertical axes (wSym,A) from
their optimal strategies into the respective consumer surplus (see Propositions 3.1
and 3.2 ), we can plot (CSSym,k) for both regimes. Taking into account Assumptions
3.1 and 3.2, from autarky and free trade respectively, one can see that depending
on the values of the status concern, agents can have higher consumer surplus under
autarky (Figure 3.16) or under free trade (Figure 3.17). For values in Table (3.5),
one gets the result in Figure 3.16 where consumer surplus under autarky is higher,
i.e., CSA(S)>CSFT (S) for S ∈ [max{SA

1 ,S
FT
1 },min{SA

2 ,S
FT
2 }].

One can see that Assumptions 3.1 and 3.2 hold,
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δ > max
{

ρ

2
,
2aSym,A(1+ γA)2 +θ A(1+2γA)

2b(1+ γA)2Sy
,

2aSym,FT [5+4γFT (2+ γFT )
]
+4θ FT (1+4γFT )

b(2γFT +3)2Sy

}
⇔ 0.25 > max{0.1, 0.127273, 0.164763} ,

together with the inequality (3.8) under autarky

θ
A ≤

aSym,A(1+ γA)
[
δ −2ρ(1+ γA)

]
[δ +ρ(1+2γA)]

⇔ 0.1 ≤ 3.30803,

and the inequality (3.21) under free trade,

θ
FT ≤

aSym,FT (2δ −ρ
[
5+4γFT (2+ γFT )

]
)

2 [2δ +ρ(1+2γFT )]
⇔ 0.2 ≤ 1.84771.

However, if agents now have a higher value of θ A, for instance, θ A = 1.68, then
consumer surplus under free trade is higher, CSA(S)<CSFT (S) for S∈ [max{SA

1 ,S
FT
1 },

min{SA
2 ,S

FT
2 }], (Figure 3.17). The conditions still hold, δ = 0.25 > max{0.1,

0.151896, 0.164763} , θ A ≤ 3.30803 and θ FT ≤ 1.84771. Interestingly, there
is also a value of θ̃ A where both consumer surpluses intersect, which means that
for lower values of resource, consumer surplus is higher under free trade, and for
higher levels of resource, consumer surplus is higher under autarky (see Figure
3.18). For instance, for a value of θ̃ A = 1.2, the assumptions also hold, 0.25 >

max{0.1, 0.144416, 0.164763} , θ A ≤ 3.30803 and θ FT ≤ 1.84771.

Although it seems demanding to have such a high level of importance in the rela-
tive extraction, the economic intuition suggests that agents or nations should attach
considerable importance to their comparative extraction levels under autarky. This
scenario might arise in contexts of elevated geopolitical tensions, where outper-
forming the extraction of a systemic competitor becomes an imperative objective,
regardless of the costs involved.

We also get the same numerical result for the asymmetric games, where agents
under free trade can have higher levels of consumer surplus than those under au-
tarky, in contrast to Benchekroun et al. (2020). We use aFT

b = 5,aFT
s = 4,aA

b =

b δ ρ θ A θ FT γA γFT aSym,A aSym,FT

7 0.25 0.02 0.1 0.2 0.1 0.08 4 5

Table 3.5: Parameters.
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4.5,aA
s = 3.2 (remember that player s is the small agent, with higher extraction

costs, thus, smaller values of a). Obviously, the corresponding Assumptions 3.3
and 3.4 hold. We first show the case when both players have higher consumer sur-
plus under autarky (Figure 3.19). However, it is also feasible that both agents have
higher levels of consumer surplus under free trade as shown in Figure 3.20. As in
the symmetric case, one would need a high level of θ A. Finally, as in the symmetric
case, there exists also a value of θ̂ A = 1.39, where consumer surplus for player i
under free trade is higher for low levels of resource, and for high levels of S, con-
sumer surplus is higher under autarky. Again, we have seen that introducing status
concerns generalize the result in Benchekroun et al. (2020) and allows us to get
different results, such as agents having higher consumer surplus under free trade, in
contrast to the result obtained by the previous authors. Therefore, the novelty lies in
the fact that CSA

i can be lower or higher that CSFT
i , depending on the status concern

of the players.
Finally, one interesting result shown in Figure 3.21 is that consumers in the ef-

ficient (big) country are mostly happier under autarky (higher consumer surplus),
while consumers in the inefficient (small) country would prefer to stay under free
trade most of the part. Observe how in most of the region, CSA

b > CSFT
b and

CSA
s <CSFT

s . This is a new result caused by the heterogeneity of the players.

3.5.2 Aggregate Producer Surplus

Producer surplus consists of the discounted sum of instantaneous producer sur-
plus over the infinite horizon, as represented by the value function of each respective
game (see equations 3.10, 3.25, 3.48, 3.66). Following Benchekroun et al. (2020),
we also study the region for S ∈ [Sk

1,S
k
2].

For the symmetric case, we compare V Sym,A(S) and V Sym,FT (S). Subtracting
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Consumer Surplus when CSA> CSFT

Figure 3.16: Consumer Surplus when CSA >CSFT .
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Consumer Surplus when CSA< CSFT

Figure 3.17: Consumer Surplus when CSA <CSFT .
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Figure 3.18: Consumer Surplus when CSA <CSFT for low values of S, and CSA >
CSFT for high values of S .
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Figure 3.19: Asymmetric Consumer Surplus when both asymmetric players have
CSA

i >CSFT
i .
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Figure 3.20: Asymmetric Consumer Surplus when both asymmetric players have
CSA

i <CSFT
i .
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Figure 3.21: Asymmetric Consumer Surplus for asymmetric players.
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Figure 3.22: Symmetric Producer Surplus when PSA
i > PSFT

i .

V Sym,FT (S) to V Sym,A(S), and collecting terms leads to

(αSym,A −α
Sym,FT )S2 +(β Sym,A −β

Sym,FT )S+(µSym,A −µ
Sym,FT )≶ 0,

which can be positive or negative and where (αSym,A−αSym,FT ), (β Sym,A−β Sym,FT )

and (µSym,A −µSym,FT ) are very long expressions shown in Appendix 3.7.6. As the
expressions for the symmetric surplus are already too complicated, we will analyze
this problem numerically, checking that all assumptions are satisfied and keeping
the same parameters as before. One can observe in Figure 3.22 that producer surplus
is higher under autarky. Moreover, if we keep the same parameters under autarky
and free trade, γFT = γA, θ FT = θ FT , and aFT = aA, we still see the same result,
where producer surplus is higher under autarky.

As before, we see that Assumptions 3.1 and 3.2 hold,

δ > max
{

ρ

2
,
2aSym,A(1+ γA)2 +θ A(1+2γA)

2b(1+ γA)2Sy
,

2aSym,FT
[
5+4γFT (2+ γFT )

]
+4θ FT (1+4γFT )

b(2γFT +3)2Sy

}
⇔ 0.25 > max{0.1, 0.127273, 0.164763} ,

together with the inequality (3.8) under autarky

θ
A ≤

aSym,A(1+ γA)
[
δ −2ρ(1+ γA)

]
[δ +ρ(1+2γA)]

⇔ 0.1 ≤ 3.30803,

and the inequality (3.21) under free trade,

θ
FT ≤

aSym,FT (2δ −ρ
[
5+4γFT (2+ γFT )

]
)

2 [2δ +ρ(1+2γFT )]
⇔ 0.2 ≤ 1.84771.
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Figure 3.23: Symmetric Producer Surplus when PSA
i > PSFT

i .

Interestingly, as in our model we allow for different extraction costs under au-
tarky and free trade, in contrast to the same extraction cost under autarky and free
trade in Benchekroun et al. (2020), we can obtain a different result to that obtained
by the authors cited above. One specific case arises when aA > aFT , which im-
plies that countries have lower marginal costs under autarky for any possible rea-
son. For instance, for a value of aA = 6, one gets V Sym,FT (S) > V Sym,A(S) shown
in Figure 3.23. The assumptions remain valid for aA > aFT , where δ = 0.25 >

max{0.1, 0.19013, 0.164763}, θ A = 0.1 ≤ 4.96204, and θ FT = 0.1 ≤ 1.84771.
When aA > aFT , but the difference is relatively small, such as aA = 5.55, we

observe a scenario where producer surplus is higher under autarky when resources
are scarce, and as the resource availability increases, producer surplus is higher
(see Figure 3.24). This outcome may also arise if players assign significant weight
to relative extraction under free trade, i.e., large θ FT , in conjunction with lower
marginal costs. All the aforementioned results are consistent with the conditions
specified in the assumptions.

Finally, we should mention that similar results are obtained for the asymmetric
games.
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Figure 3.24: Symmetric Producer Surplus when PSA
i > PSFT

i .

3.6 Conclusions

In this chapter, we have studied a dynamic game model where agents extract re-
newable resources from a common pool. Players have status concern preferences,
i.e., they see what their neighbor is doing, and it affects them. In addition to caring
about their own profits, we also account for two types of status concerns simultane-
ously: players’ comparison of relative extraction levels and players’ comparison of
relative profits.

Our model examines two players/countries that can extract the resource and sell it
domestically (known as the autarky scenario) or trade with the other country (known
as free trade). We have analyzed first the symmetric case (identical extraction cost),
and later the heterogeneous/asymmetric case. In this last case, we have seen that
the efficient (big) player extracts more resources than the inefficient (small) and has
higher levels of consumer and producer surplus.

Our study has revealed that incorporating behavioral factors such as status con-
cerns leads to more nuanced and general conclusions that augment and broaden the
findings of previous studies (e.g., Benchekroun et al. (2020)). Incorporating status
concern preferences into our analysis enables us to identify an additional steady
state in the symmetric autarky game, which is fully stable. Moreover, we found
that the impact of status concerns on the behavior of players can result in nuanced
effects on the strategic outcomes of the game. Specifically, increasing the impor-
tance of relative extraction (θ k) has similar effects on the switching points, Cournot
strategy, and slope of the affine strategy under both free trade and autarky, consis-
tent with the findings of the free trade model analyzed in Benchekroun and Long
(2016). However, when players care more about relative profits (γk), we obtain
more general results that differ from the previous authors’ work. In such cases, the
switching points and Cournot strategy may move in either direction, depending on
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the status concern parameters of the players, while the slope of the affine strategy
decreases in both free trade and autarky, consistent with previous findings.

Additionally, our analysis reveals that both consumer and producer surplus can be
higher or lower under autarky or free trade depending on the behavioral character-
istics of the players. By allowing for status concern preferences, our study provides
more generalizable outcomes, and it is not possible to conclude that producers or
consumers will always have higher levels of surplus under a particular regime. Our
analysis yielded additional results where consumer (producer) surplus was initially
higher under free trade (autarky) when natural resources were scarce. However, as
the availability of natural resources increased, consumer (producer) surplus became
higher under autarky (free trade) instead. This finding suggests that the optimal
trade policy for maximizing surplus may depend on the level of natural resource
availability, as well as the behavioral aspects such as status concerns, that influ-
ence how agents compare their strategies. Our research highlights the complex and
dynamic interplay between natural resource availability, trade policies, and behav-
ioral factors, underscoring the need for a multifaceted approach when formulating
policies in this context.
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3.7 Appendix

3.7.1 Autarky Symmetric

Proof. For S ∈ [0,SSym,A
1 ), with zero extraction one gets an instantaneous value of

zero. However, when the initial stock is lower than SSym,A
1 , one knows that not

extracting will allow the resource to grow exponentially (first linearly increasing
part of the reproduction function) until it reaches the first threshold SSym,A

1 . Thus the
evolution of the resource for S ∈ [0,SSym,A

1 ) is S(t) = S0eδ t . One obtains the time

t1 = ln
(

S1
S0

) 1
δ when the resources reaches SSym,A

1 . Therefore, the value for any initial

amount of resource S ∈ [0,SSym,A
1 ) is

V Sym,A(S) = e−ρ ln
(

S1
S

) 1
δ

W (S;γ
A,θ A)Sym,A =

(
S

SSym,A
1

) ρ

δ

W (S;γ
A,θ A)Sym,A.

(A.1)
For the affine strategy, when S ∈ [SSym,A

1 ,SSym,A
2 ], plugging the maximized ex-

pression equation (3.6) into the HBJ (eq. (3.5)) and applying the undetermined
coefficient technique, one gets the value function

W (S;γ
A,θ A)Sym,A =

αSym,A

2
S2 +β

Sym,AS+µ
Sym,A, (A.2)

where

α
Sym,A =−2b(1+ γA)2(2δ −ρ)

4γA +3
, (A.3)

β
Sym,A =

(2δ −ρ)
(
2aSym,A(1+ γA)2 +θ A(1+2γA)

)
δ (4γA +3)

(A.4)

and

µ
Sym,A = [aSym,A(1+ γ

A)(δ −2(1+ γ
A)ρ)−θ

A(δ +2γ
A
ρ +ρ)]

× aSym,A(1+ γA)[(4γA +3)δ −2(1+ γA)ρ]+θ A((4γA +3)δ −2γAρ −ρ)

4bδ 2ρ(1+ γA)2(4γA +3)
. (A.5)

For S ∈ [SSym,A
2 ,∞), one gets the corresponding part of the value function inte-

grating the discounted stream of profits using the Cournot strategy,
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∫
∞

0
e−ρt

π
Sym,Cou,Adt =

(aSym,A)2(1+ γA)2 −θ A

4bρ(1+ γA)2 .

We must prove now that (i) the value function is continuously differentiable with
respect to S, and that (ii) the policy function φ Sym,A∗ in (3.6) is a solution to the HJB
equation (3.5) where V1(S) =V2(S) =V (S) .

(i) Proof that V Sym,A(S) is continuously differentiable in S:

It is straightforward to see that the value function is clearly continuously differen-
tiable over the intervals [0,SSym,A

1 ), [SSym,A
1 ,SSym,A

2 ], [SSym,A
2 ,∞). We now show that

it is also continuously differentiable at the critical points SSym,A
1 and SSym,A

2 .

We first observe that the function is continuous at the switching points:

lim
S→SSym,A −

1

V Sym,A(S) =W (SSym,A
1 ;γ

A,θ A)Sym,A = lim
S→SSym,A +

1

V Sym,A(S),

where

lim
S→SSym,A −

1

V Sym,A(S) =W (SSym,A
1 ;γ

A,θ A)Sym,A

⇐⇒

(
SSym,A

1

SSym,A
1

) ρ

δ

︸ ︷︷ ︸
=1

W (SSym,A
1 ;γ

A,θ A)Sym,A =W (SSym,A
1 ;γ

A,θ A)Sym,A,

and for the second limit condition, one can also check that the two sides are the
same,

αSym,A

2
(SSym,A

2 )2 +β
Sym,ASSym,A

2 +µ
Sym,A =

(aSym,A)2(1+ γA)2 −θ A

4bρ(1+ γA)2 .

This shows that the value function V Sym,A(S) is continuous at SSym,A
1 and SSym,A

2 .

We need to show now that ∂SV Sym,A(S), which is the derivative of the value func-
tion with respect to the state S is continuous. Obviously, the function is differen-
tiable over the intervals [0,SSym,A

1 ), [SSym,A
1 ,SSym,A

2 ], [SSym,A
2 ,∞), as we have polyno-

mials,
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∂SV Sym,A(S) =



ρ

δ ·SSym,A
1

(
S

SSym,A
1

) ρ

δ
−1

W (SSym,A
1 ;γA,θ A)Sym,A if S ∈ [0,SSym,A

1 )

∂SW (S;γA,θ A)Sym,A if S ∈ [SSym,A
1 ,SSym,A

2 ]

0 if S ∈ (SSym,A
2 ,∞)

(A.6)

For the first switching point, we can check

lim
S→SSym,A −

1

∂V Sym,A(S)
∂S

=
∂W (S;γA,θ A)Sym,A

∂S

∣∣∣∣
S=SSym,A

1

= lim
S→SSym,A +

1

∂V Sym,A(S)
∂S

.

The first equality leads to

ρ

δ ·SSym,A
1

W (SSym,A
1 ;γ

A,θ A)Sym,A = α
Sym,A ·SSym,A

1 +β
Sym,A,

which is true, showing that the value function is differentiable at SSym,A
1 . Moreover,

for the second switching point SSym,A
2 ,

lim
S→SSym,A −

2

∂V Sym,A(S)
∂S

= lim
S→SSym,A +

2

∂V Sym,A(S)
∂S︸ ︷︷ ︸

=0

,

which gives,

α
Sym,A ·SSym,A

2 +β
Sym,A = 0,

which is true, showing that the value function is differentiable at SSym,A
2 . Therefore,

the value function V Sym,A(S) is is continuously differentiable for all S ∈ [0,∞).

(ii) We now prove that the policy function φ Sym,A∗ in (3.6) is a solution to the HJB
equation (3.5) where the value function for both players are symmetric, V1(S) =
V2(S) = V (S). For positive amounts of extraction of the resource S > SSym,A

1 , the
HJB admits an interior solution. From the first order condition one obtains the
function φ

Sym,A ∗
i , which gives for the symmetric equilibrium

φ
Sym,A
i = φ

Sym,A
j = φ

Sym,A =
aSym,A(1+ γA)+θ A −∂SV Sym,A(S)

2b(1+ γA)
. (A.7)
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Substituting into the HJB (3.5) gives

ρV Sym,A(S) =
(

aSym,A −b φ
Sym,A

)
φ

Sym,A +
∂V Sym,A(S)

∂S

[
F(S)−2φ

Sym,A
]
. (A.8)

It can be checked that the proposed value function satisfies the differential equa-
tion for S ≥ SSym,A

1 . Substituting ∂SV (.) into (A.7) yields exactly φ Sym,A in (3.6).
For S < SSym,A

1 , the HJB has a corner solution with zero extraction, i.e., φ Sym,A∗ =

0. It is straightforward to obtain this result by substituting the value function in
(3.10) and ∂SV (.) in (A.6) into the HJB and see that φ Sym,A∗ = 0 is a solution of the
differential equation.

Finally, for S > SSym,A
2 , plugging qSym,Cou,A from (3.6) into the HJB and using the

value function and its derivative, one gets that the value function V Sym,A(S) satisfies
the differential equation above for all S > SSym,A

2 . This concludes the proof.
■

3.7.2 Free Trade Symmetric

Proof. The structure of the proof is the same as the symmetric autarky case. For
S ∈ [0,SSym,FT

1 ), with zero extraction one gets an instantaneous value of zero. How-
ever, when the initial stock is lower than SSym,FT

1 , one knows that not extracting will
allow the resource to grow exponentially (first linearly increasing part of the repro-
duction function) until it reaches the first threshold SSym,FT

1 . Thus the evolution of

the resource for S ∈ [0,SSym,FT
1 ) is S(t) = S0eδ t . One obtains the time t1 = ln

(
S1
S0

) 1
δ

when the resources reaches SSym,FT
1 . Therefore, the value for any initial amount of

resource S ∈ [0,SSym,FT
1 ) is

V Sym,FT (S) = e−ρ ln
(

S1
S

) 1
δ

W (S;γ
FT ,θ FT )Sym,FT

=

(
S

SSym,FT
1

) ρ

δ

W (S;γ
FT ,θ FT )Sym,FT . (A.9)

For the affine strategy, when S ∈ [SSym,FT
1 ,SSym,FT

2 ], plugging the maximized ex-
pression equation (3.24) into the HBJ (equation (3.23)) and applying the undeter-
mined coefficient technique, one gets the value function

W (S;γ
FT ,θ FT )Sym,FT =

αSym,FT

2
S2 +β

Sym,FT S+µ
Sym,FT , (A.10)

where
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α
Sym,FT =− b(3+2γFT )2(2δ −δ )

16(1+ γFT )
, (A.11)

β
Sym,FT =

(2δ −ρ)
[
2θ FT (1+2γFT )+aSym,FT (5+8γFT +4(γFT )2]

8δ (1+ γFT )
(A.12)

and

µ
Sym,FT =

[
aSym,FT ·ρ(5+4γ

FT (2+ γ
FT ))−2aSym,FT

δ +2θ
FT (2δ +2γ

FT
ρ +ρ)

]
× ρ ·aSym,FT [5+4γFT (2+ γFT )]−8δaSym,FT (1+ γFT )2 +2θ FT (2ργFT +ρ −4δ (1+ γFT ))

8bδ 2ρ(1+ γFT )(3+2γFT )2 .

(A.13)

For S ∈ [SSym,FT
2 ,∞), one gets the corresponding part of the value function inte-

grating the discounted stream of profits using the Cournot strategy,

∫
∞

0
e−ρt

π
Sym,Cou,FT dt =

2(aSym,FT −2θ FT )[aSym,FT (1+ γFT )+θ FT ]

bρ(3+2γFT )2 .

We must prove now that (i) the value function is continuously differentiable with
respect to S, and that (ii) the policy function φ Sym,FT∗ in (3.24) is a solution to the
HJB equation (3.23) where V1(S) =V2(S) =V (S) .

(i) Proof that V Sym,FT (S) is continuously differentiable in S:
It is straightforward to see that the value function is clearly continuously differen-

tiable over the intervals [0,SSym,FT
1 ), [SSym,FT

1 ,SSym,FT
2 ], [SSym,FT

2 ,∞). We now show
that it is also continuously differentiable at the critical points SSym,FT

1 and SSym,FT
2 .

We first observe that the function is continuous at the switching points:

lim
S→SSym,FT −

1

V Sym,FT (S) =W (SSym,FT
1 ;γ

FT ,θ FT )Sym,FT

= lim
S→SSym,FT +

1

V Sym,FT (S),

where

lim
S→SSym,FT −

1

V Sym,FT (S) =W (SSym,FT
1 ;γ

FT ,θ FT )Sym,FT
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⇐⇒

(
SSym,FT

1

SSym,FT
1

) ρ

δ

︸ ︷︷ ︸
=1

W (SSym,FT
1 ;γ

FT ,θ FT )Sym,FT =W (SSym,FT
1 ;γ

FT ,θ FT )Sym,FT ,

and for the second limit condition, one can also check that the two sides are the
same,

αSym,FT

2
(SSym,FT

2 )2 +β
Sym,FT SSym,FT

2 +µ
Sym,FT

=
2(aSym,FT −2θ FT )[aSym,FT (1+ γFT )+θ FT ]

bρ(3+2γFT )2 .

This shows that the value function V Sym,FT (S) is continuous at SSym,FT
1 and SSym,FT

2 .

We need to show now that ∂SV Sym,FT (S), which is the derivative of the value
function with respect to the state S is continuous. Obviously, the function is differ-
entiable over the intervals [0,SSym,FT

1 ), [SSym,FT
1 ,SSym,FT

2 ], [SSym,FT
2 ,∞), as we have

polynomials,

∂SV Sym,FT (S) =



ρ

δ ·SSym,FT
1

(
S

SSym,FT
1

) ρ

δ
−1

W (SSym,FT
1 ;γFT ,θ FT )Sym,FT if S ∈ [0,SSym,FT

1 )

∂SW (S;γFT ,θ FT )Sym,FT if S ∈ [SSym,FT
1 ,SSym,FT

2 ]

0 if S ∈ (SSym,FT
2 ,∞)

(A.14)

For the first switching point, we can check

lim
S→SSym,FT −

1

∂V Sym,FT (S)
∂S

=
∂W (S;γFT ,θ FT )Sym,FT

∂S

∣∣∣∣
S=SSym,FT

1

= lim
S→SSym,FT +

1

∂V Sym,FT (S)
∂S

.

The first equality leads to

ρ

δ ·SSym,FT
1

W (SSym,FT
1 ;γ

FT ,θ FT )Sym,FT = α
Sym,FT ·SSym,FT

1 +β
Sym,FT ,
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which is true, showing that the value function is differentiable at SSym,FT
1 . Moreover,

for the second switching point SSym,FT
2 ,

lim
S→SSym,FT −

2

∂V Sym,FT (S)
∂S

= lim
S→SSym,FT +

2

∂V Sym,FT (S)
∂S︸ ︷︷ ︸

=0

,

which gives,

α
Sym,FT ·SSym,FT

2 +β
Sym,FT = 0,

which is true, showing that the value function is differentiable at SSym,FT
2 . Therefore,

the value function V Sym,FT (S) is is continuously differentiable for all S ∈ [0,∞).

(ii) We now prove that the policy function φ Sym,FT∗ in (3.24) is a solution to
the HJB equation (3.23) where the value function for both players are symmet-
ric, V1(S) = V2(S) = V (S). For positive amounts of extraction of the resource
S > SSym,FT

1 , the HJB admits an interior solution. From the first order condition
one obtains the function φ

Sym,FT ∗
i , which gives for the symmetric equilibrium,

φ
Sym,FT
i = φ

Sym,FT
j = φ

Sym,FT =
2[θ FT +aSym,FT (1+ γFT )−∂SV Sym,FT (S)]

b(3+2γFT )
.

(A.15)
Substituting into the HJB (3.23) gives

ρV Sym,FT (S) =
(

aSym,FT − b
2

φ
Sym,FT

)
φ

Sym,FT +
∂V Sym,FT (S)

∂S

[
F(S)−2φ

Sym,FT ] .
(A.16)

It can be checked that the proposed value function satisfies the differential equa-
tion for S ≥ SSym,FT

1 . Substituting ∂SV (.) into (A.15) yields exactly φ Sym,FT in
(3.24).

For S< SSym,FT
1 , the HJB has a corner solution with zero extraction, i.e., φ Sym,FT ∗=

0. It is straightforward to obtain this result by substituting the value function in
(3.25) and ∂SV (.) in (A.14) into the HJB and see that φ Sym,FT ∗ = 0 is a solution of
the differential equation.

Finally, for S ≥ SSym,FT
2 , plugging qSym,Cou,FT from (3.24) into the HJB and using

the value function and its derivative, one gets that the value function V Sym,FT (S)
satisfies the differential equation above for all S ≥ SSym,FT

2 . This concludes the
proof.

■
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3.7.3 Autarky Asymmetric

Proof. The structure of the proof is the same as the symmetric autarky case. For
S ∈ [SA

1,s,S
A
2,s], plugging the maximized expression (3.43) into the HBJ (3.42) and

applying the undetermined coefficient technique, one gets the value function

V A
i (S) =

αA
i

2
S2 +β

A
i S+µ

A
i , if S ∈ [SA

1,s,S
A
2,s] (A.17)

where

α
A
i =−2b(1+ γA)2(2δ −ρ)

4γA +3
= α

Sym,A, (A.18)

β
A
i =

(2δ −ρ)
[
(aA

i +aA
j )(1+ γA)2 +θ A(1+2γA)

]
δ (4γA +3)

(A.19)

and

µ
A
i =

1
4b(1+ γA)2ρ

×
{
(aA

i )
2(1+ γ

A)3 −2aA
i (1+ γ

A)2(β A
i −θ

A)− (aA
j )

2
γ

A(1+ γ
A)2

−2aA
j (1+ γ

A)2(β A
i +θ

A)+(β A
i )

2
γ

A +(β A
i )

2 +2β
A
i β

A
j γ

A +2β
A
i β

A
j −4β

A
i γ

A
θ

A −4β
A
i θ

A+

(β A
i )

2
γ

A +2β
A
j θ

A − (θ A)2} . (A.20)

We must prove now that (i) the value function is continuously differentiable with
respect to S, and that (ii) the policy function φ A∗

i in (3.43) is a solution to the HJB
equation (3.42) .

(i) Proof that V A
i (S) is continuously differentiable in S: It is straightforward to

see that the value function is clearly continuously differentiable over the intervals
[SA

1,s,S
A
2,s], since it is a polynomial of degree 2.

(ii) We now prove that the policy function φ A∗ in (3.43) is a solution to the HJB
equation (3.42). From the first order condition one obtains the function φ A ∗

i , which
gives,

φ
A
i =

aA
i (1+ γA)−θ A −∂SV A

i (S)
2b(1+ γA)

. (A.21)

Substituting into the HJB (3.42) leads to
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ρV A
i (S) =



(
aA

i −bφ
A
i

)
φ

A
i +θ

A
(

φ
A
i −φ

A
j

)

+ γ
A
[(

aA
i −bφ

A
i

)
φ

A
i −

(
aA

j −bφ
A
j

)
φ

A
j

]

+
∂V A

i (S)
∂S

[
F(S)−φ

A
i −φ

A
j

]


. (A.22)

After a series of tedious calculations, one can see that the proposed value func-
tion satisfies the differential equation. Therefore, substituting ∂SV A

i (S) into (A.21)
solves the HJB.

■

3.7.4 Free Trade Asymmetric

Proof. The structure of the proof is the same as the symmetric free trade case. For
S ∈ [SFT

1,s ,S
FT
2,s ], plugging the maximized expression (3.60) into the HBJ (3.57), and

applying the undetermined coefficient technique, one gets the value function

V FT
i (S) =

αFT
i
2

S2 +β
FT
i S+µ

FT
i , if S ∈ [SFT

1,s ,S
FT
2,s ], (A.23)

where

α
FT
i =− b(3+2γFT )2(2δ −δ )

16(1+ γFT )
= α

Sym,FT , (A.24)

β
FT
i =

2δ −ρ

16(1+ γFT )δ (ρ −δ )
×{

ρaFT
i [4(2+ γ

FT )γFT +5]−2δaFT
i [(2γ

FT +5)γFT +4]−2δaFT
j (1+ γ

FT )(1+2γ
FT )

+aFT
j ρ[4γ

FT (2+ γ
FT )+5]+4θ

FT (1+2γ
FT )(r−δ )

}
, (A.25)

and
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µ
FT
i =

2
bρ(1+2γFT )(3+2γFT )2 ×

{
(aFT

i )2(1+ γ
FT )2[γFT (2γ

FT +5)+4]−aFT
i (1+ γ

FT )

×
{

aFT
j [(2γ

FT +5)γFT +4]+β
FT
i [4γ

FT (2+ γ
FT )+5]−4β

FT
j (1+ γ

FT )− [4γ
FT (2+ γ

FT )+7]θ FT}
−(aFT

j )2(1+ γ
FT )2[γFT (3+2γ

FT )−1]

−aFT
j
{

β
FT
i [(4γ

FT (3+ γ
FT )+11)γFT +2]+2β

FT
j (1+ γ

FT )+(γFT [4γ
FT (4+ γ

FT )+19]+8)θ FT}
+(1+ γ

FT )(1+2γ
FT )(β FT

i +β
FT
j )2 −2θ

FT
β

FT
i [4γ

FT (2+ γ
FT )+5]

+8θ
FT

β
FT
j (1+ γ

FT )−2(1+2γ
FT )(θ FT )2} . (A.26)

We must prove now that (i) the value function is continuously differentiable with
respect to S, and that (ii) the policy function φ FT∗

i in (3.60) is a solution to the HJB
equation (3.57).

(i) Proof that V (S,γFT ,θ FT )FT is continuously differentiable in S: It is straight-
forward to see that the value function is clearly continuously differentiable over the
intervals [SFT

1,s ,S
FT
2,s ], since it is a polynomial of degree 2.

(ii) We now prove that the policy function φ FT∗
i in (3.60) is a solution to the HJB

equation (3.57). From the first order condition and solving the system formed by
the strategy of both players, one obtains the function φ FT ∗

i , which gives,

φ
FT
i = 2 ·

(1+ γFT )
[
2aFT

i (1+ γFT )−aFT
j

]
+θ FT (1+ γFT )−2(1+ γFT )∂SV FT

i +∂SV FT
j

b [4(γFT )2 +8γFT +3]
.

(A.27)

Substituting into the HJB (3.57) leads to

ρV FT
i (S) =



(
aFT

i − b
2
(φ FT

i (t)+φ
FT
j (t))

)
φ

FT
i (t)+θ

FT (
φ

FT
i −φ

FT
j
)

+γ
FT
[(

aFT
i − b

2
(φ FT

i (t)+φ
FT
j (t))

)
φ

FT
i (t)

−
(

aFT
j − b

2
(φ FT

i (t)+φ
FT
j (t))

)
φ

FT
j (t)

]

+
∂V FT

i (S)
∂S

[
F(S)−φ

FT
i −φ

FT
j
]



.

(A.28)
After a series of tedious calculations, one can see that the proposed value function

satisfies the differential equation. Therefore, substituting ∂SV (.) into (A.27) solves
the HJB. ■
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3.7.5 Consumer Surplus

Under the asymmetric case scenario the result does not seem that straightforward.
The integrated market structure of different demands is the horizontal sum of the
demand of the form Q(P), due to the rivalry of the good, where there could be
continuous but not differentiable parts, showing segments where just one demand
was in play.21 In our case, the free trade demand could be rewritten as QFT (P) =
2BFT

b − 2
bP.

Thus, as the integrated demand (FT) is the horizontal sum of demands, and there
is not a point such that the demand is not differentiable (as it may happen when
adding horizontal demands), that implies that the intercept in the vertical axes of
both country demands is the same. Therefore, as under free trade, the two countries
merge their demand, one could write it as follows:

q1 = α −β1P
q2 = α −β12

}
⇒ q1 +q2 = QFT

α −β1P+α −β2 p =
2B
b

− 2
b

P ⇒ 2α = 2B
b

β1 +β2 =
2
b

}
,

where α and β are the intercept and slope of the demand respectively. Remember
that both demand functions under free trade cut the vertical axes at the same point,
from where we obtain the slope α = B

b . Moreover, as under autarky, both players
share the same slope of the demand, when they merge they still share the same
parameter, i.e., b, which implies that under free trade both players also have the
same slope, i.e. β = 1

b . Furthermore, it should be pointed out that both countries
are populated by a large number of consumers, and the market power comes from
the producer, who is extracting the resource. One can easily see now that if we sum
both demands horizontally we get our free trade demand for the integrated market,

QFT = qFT
1 +qFT

2 = α −βP+α −βP = 2α −2βP = 2
(

B
b

)
−2
(

1
b

)
P,

which is exactly the free trade demand. Thus, the consumer surplus for country i is
the area enclosed by the inverse demand P = BFT −bqFT

i .

21See, for instance, pag. 194-199 in Pindyck and Rubinfeld (2018)
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3.7.6 Producer Surplus

The difference V Sym,A(S)−V Sym,FT (S) leads to

(αSym,A −α
Sym,FT )×S2 +(β Sym,A −β

Sym,FT )×S+(µSym,A −µ
Sym,FT ),

with

(αSym,A −α
Sym,FT ) =−

(
b(2δ −ρ)[4γA −2γFT +1][8γA(1+ γFT )+6γFT +5]

32(3+4γA)(1+ γFT )

)
,

(β Sym,A −β
Sym,FT ) =− (2δ −ρ)

8δ (4γA +3)(γFT +1)
{

aSym,FT (4γ
A +3)[4γ

FT (2+ γ
FT )+5]

−16aSym,A (1+ γ
A)2 (

1+ γ
FT )−8θ

A(1+2γ
A)
(
1+ γ

FT )+2θ
FT (3+4γ

A)
(
1+2γ

FT )} ,

and

(µSym,A −µ
Sym,FT ) =

1
8bδ 2ρ(4γA +3)(2γFT +3)2(1+ γA)2(1+ γFT )

×

{
2(aA)2(γA +1)2(γFT +1)(2γ

FT +3)2[2ρ(γA +1)−δ ][2ρ(γA +1)− (4γ
A +3)δ ]

−8(2δ −δ )aA
θ

A
ρ(2γ

A +1)(γA +1)2(γFT +1)(2γ
FT +3)2

+(aFT )2(4γ
A +3)(γA +1)2 (−16(γFT +1)2

δ
2 +(4(γFT +2)γFT +5)2(−ρ

2)+2(4(γFT +2)γFT +5)2
δρ
)

−4aFT (4γ
A +3)(γA +1)2(2γ

FT +1)θ FT [−4(γFT +1)δ 2 +(4(γFT +2)γFT +5)ρ2 −2δρ(4(γFT +2)γFT +5)
]

+2(γFT +1)(2γ
FT +3)2

θ
A2(δ +2γ

A
ρ +ρ)(−(4γ

A +3)δ +2γ
A

ρ +ρ)

−4(4γ
A +3)(γA +1)2

θ
FT 2(2δ +2γ

FT
ρ +ρ)(−4(γFT +1)δ +2γ

FT
ρ +ρ)

}
.
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4 Being Human: Endogenous
Growth, Pollution and Natural
Resources under Time Inconsistent
Preferences

Abstract

How does being time-inconsistent affect economic growth, the extraction of nat-
ural resources, and pollution? In this chapter we study an endogenous growth
model of the expanding variety class, with exhaustible natural resources and pol-
lution under non-constant discounting. We study the naive agent case, who is
time-inconsistent under a general discount function and tends to procrastinate. We
compare the solutions obtained with a general discount function versus the canon-
ical time-consistent exponential discounting. This self-control component leads
the analysis to a Behavioral Macroeconomics problem (willpower and the planner-
doer). A firm in the resource sector extracts the non-renewable natural resource
needed to produce the final good. Final producer uses labor, non-renewable re-
source, and a different number of intermediate inputs (machines) produced by a
continuum of monopolists. Both economic activity and the extraction of the re-
source generate pollution, which negatively affects households. We then compare
the behaviors under different discount functions and the implications on the sum
of discounted utilities (“welfare”) under the strong observational equivalence prin-
ciple. We show that time-consistent agents with constant elasticity of intertem-
poral substitution (CEIS) lower than one have higher levels of economic growth.
However, if households have a CEIS bigger than one, the economy with time-
inconsistent decision-makers has higher growth rates. Paradoxically, we find that
for any CEIS level, agents behaving time-inconsistently have higher discounted util-
ities than time-consistent agents. This gap becomes more significant as the CEIS
level increases. Finally, we observe that time-consistent agents have higher levels
of economic growth with a CEIS lower than one. However, with CEIS bigger than
one, time-inconsistent agents have higher growth rates.
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4.1 Introduction

Questions related to the study of economic growth have been of interest to social
scientists since its inception. Unsurprisingly, the field has become highly special-
ized. Nevertheless, it is widely assumed in Macroeconomic models that agents have
time-consistent preferences, i.e., when they decide on their future plan today, they
will behave accordingly to such a plan. The main contribution of this chapter is the
introduction of a general discount function into a model of endogenous growth with
exhaustible natural resources and pollution. Pollution is a by-product of economic
activity that negatively affects agents. Does being time-inconsistent make decision-
makers better off? Curiously, we observe that when individuals have tendencies to
procrastinate, i.e., human behaviors according to Thaler (2015), time-inconsistent
agents with a general discount function have higher levels of well-being than time-
consistent ones (who discount the future under the canonical exponential frame-
work). This result is obtained under the strong observational equivalence principle,
also known as “assumption of identical overall impatience” (Strulik, 2015; Cabo
et al., 2015, 2020a). Would time-consistent agents influence the resource extrac-
tion firm to extract the resource more gently than time-inconsistent players? Who
will pollute more, an economy populated by time-consistent or time-inconsistent
agents? Who will experience lower growth rates and end up at lower levels of de-
velopment? A priori, one could expect that rational agents who are time-consistent
pollute less, extract the resource more sustainably, and have higher growth rates.
However, as we will show in the chapter, this is not the case. Therefore, model-
ing time preferences in a general setting allows us to contribute to the Behavioral
Macroeconomics literature and its consequences on the development of different
economies.

The economic growth literature experienced a new momentum after major break-
throughs in the 1980s and 1990s when the revolution of endogenous growth models
started. Moreover, the interaction and compatibility of exhaustible resources and
economic growth have been the subject of several studies. Pioneering works in
this area are Solow (1974), Stiglitz (1974) and Dasgupta and Heal (1974). The
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story behind the big impetus and the beginning of the growth-resource literature
in the 1970s was a response by Stiglitz, Solow, and other economists to the book
The Limits to Growth published by ecologists Meadows et al. (1972), where a pes-
simistic Malthusian view was presented. As a matter of course, the economists
mentioned above asked the natural question of what the technological conditions
would be such that we avoid a decrease in per capita consumption in the long-run,
as the non-renewable resource would inevitably decline. The answer given by this
group of economists was founded on three pillars that showed that the decline in the
exhaustible resource could be counterbalanced by i) input substitution, ii) increas-
ing returns to scale and iii) resource augmenting technical progress. Nevertheless, it
was in the work by Benchekroun and Withagen (2011) where the authors character-
ized the closed-form solution to the Dasgupta-Heal-Solow-Stiglitz (DHSS) model
and explicitly derived the dynamics along the optimal trajectory of all the variables
in the model and from all possible initial values of the stocks. Besides, the authors
show that for some initial states, consumption may rise, reach a peak, and finally
decrease. The constant positive discount rate drives this behavior.

However, the previous authors worked under a framework of exogenous growth
models. One of the first researchers trying to reduce this gap was Suzuki (1976),
where the author attempted to introduce endogenous technical progress together
with non-renewable resources and R&D activities that absorb part of the output,
which ultimately is the driver of technical progress. Later on, Chiarella (1980)
built upon the previously mentioned paper endogenizing the consumption-saving
decision. However, these papers studied the market solutions without monopolistic
competition or externalities. An attempt to improve on the existing growth litera-
ture to date was the work published by Judd (1985), where a model of expanding
product variety was first suggested. In the same decade, a set of papers changed
the macroeconomics research and gave huge momentum to the new theory of en-
dogenous growth. The pioneering work of Romer (1986), Lucas (1988) and Rebelo
(1991) used previous ideas in Arrow (1962), Sheshinski (1967) and Uzawa (1965).1

Growth theories using the incentives of R&D and imperfect competitions started
with Romer (1987, 1990) together with Aghion and Howitt (1992) and Grossman
and Helpman (1991)[Chapters 3-4], where the R&D activity was the main driver
of the creation of new ideas (technological advances). The incentives to invest in
this sector were the future monopolistic reward of a given blueprint. In our chap-

1As written by Helpman (2004), “[t]he key argument advanced by Arrow was that informa-
tion, unlike ordinary goods, can be repeatedly used by individuals and business firms without being
depleted, and that individuals and business firms cannot be excluded from the use of information
that becomes public. For this reason, the benefits of new knowledge are not limited to its original
creators: hence the externality.”

129



Being Human

ter, we will follow the expanding variety approach. As exemplified in Helpman
(2004), “[f]or some versions of this model [expanding variety] the reduced-form
equations - which describe the links between an economy’s features and its rate of
growth - are almost identical to a version of Romer’s model, despite the differences
in approach. For this reason, Romer’s model of expanding product variety exhibits
similar dynamics to the expanding quality [Schumpeterian] models of Grossman
and Helpman and of Aghion and Howitt.” In Romer (1990), he developed a model
where firms invest in R&D to develop new products. A system of patents protects
the details of how to produce such innovations. Thus, the inventors get monopoly
power, allowing them to get higher profits. Consequently, such additional profits
create incentives to invest in R&D.

A paper combining both previous ideas, endogenous growth, and exhaustible
resources is the work by Scholz and Ziemes (1999), where the authors highlight
“[...] indeterminacy of equilibrium trajectories arises when the Romer (1990) model
is extended for exhaustible resources. Two types of inefficiencies are responsible
for this result: inefficiencies owing to (i) monopolistic behavior and (ii) information
spillovers.” That paper is very close to our chapter on the production side of the
economy.

Regarding the study of biases in intertemporal decision processes, the signifi-
cance of discounting has been underscored in the introduction of this dissertation
(Chapter 1). In this chapter, we investigate a naive/time-inconsistent agent under a
general non-constant discount function, which according to the definitions in the in-
troduction of the thesis, would not fit into the rational agent paradigm. For this rea-
son, we compare the result with the exponential discounting agent (time-consistent),
which would fall into the definition of rational agents.2

Recent papers joining both previous fields on non-constant discounting and en-
dogenous growth are Strulik (2015), Cabo et al. (2015), Cabo et al. (2016), Cabo
et al. (2020a), and Cabo et al. (2020b), where a basic AK model is used in the
production side. Our framework follows the approach of the aforementioned Ex-

2As stated in the book by Kahneman (2011), “[t]he evidence presents a profound challenge to
the idea that humans have consistent preferences and know how to maximize them, a cornerstone
of the rational-agent model. An inconsistency is built into the design of our minds”. Furthermore,
as highlighted by Thaler (2015), “since my time as a graduate student, I have been preoccupied by
these kinds of stories about the myriad ways in which people depart from the fictional creatures that
populate economic models. It has never been my point to say that there is something wrong with
people; we are all just human beings-[H]omo [S]apiens. Rather, the problem is with the model be-
ing used by economists, a model that replaces homo sapiens with a fictional creature called [H]omo
[E]conomicus, which I like to call an Econ for short. Compared to this fictional world of Econs,
Humans do a lot of misbehaving, and that means that economic models make a lot of bad predic-
tions[...].” Bulging upon Thaler’s comment, in this chapter we study the naive solution, this is, the
human solution using his notation.
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panding Variety Models.3 In contrast, Strulik (2015) follows an approach where
intermediate good firms operate under perfect competition, whereas we here con-
sider monopolistic competition and an additional sector (resource extraction). This
implies that firms can charge their markup due to their monopolistic power and the
resource sector takes into account the dynamics of the resource. Furthermore, pol-
lution in Cabo et al. (2020b) is extended to be a byproduct of the production of the
final good and the extraction of the exhaustible resource. Additionally, Dugan and
Trimborn (2020) study the effects of a declining social discount rate on the opti-
mal extraction of non-renewable resources and economic growth with hyperbolic
discounting. In their work, they show that resource use is more conservative un-
der hyperbolic discounting in the medium and long-run. However, they study the
Dasgupta-Heal-Solow-Stiglitz (DHSS), which is an exogenous growth model and
do not consider pollution. We generalize this idea, and will obtain different re-
sults depending on the value of the constant elasticity of intertemporal substitution
(CEIS). In our analysis of medium and long term behaviors, we find contrasting re-
sults for agents with a constant elasticity of intertemporal substitution (CEIS) lower
than one compared to those with a CEIS greater than one. Notably, agents with
non-constant discounting and a CEIS lower than one begin extracting resources
more aggressively in the short-run, which differs from their long-run behavior. This
increased short term extraction implies a reduced availability of natural resources
for the medium and long term.

Thus, combining the previous knowledge in the literature, we study an endoge-
nous growth model with monopolistic competition, natural resources, and pollution
in conjunction with non-constant discounting. We allow pollution to be a byprod-
uct of the economic activity and extracting the exhaustible resource. Interestingly, if
one allows having a CEIS bigger than one, all the results obtained for values lower
than one are reversed.

Finally, the limited amount of natural resources and pollution problems derived
from economic activity provide the basis for fundamental questions of human de-
velopment. These issues concern the existence of sustainable development, the
growth of such (in per capita welfare terms), and how to define (and consequently
measure) the good evolution of the economy as a whole. Nonetheless, before even
trying to answer these questions and related inquiries, one should recall the idea of
“sustainable development”, which was described by the Brundtland Commission,
a report by the UN (1987) as “development that meets the needs of present gener-
ations without compromising the ability of future generations to meet theirs”. In
canonical economic terms, this is translated as a time path over which per capita

3See, for instance , Romer (1987, 1990) or chapter 13 inAcemoglu (2009).

131



Being Human

“welfare” is not-decreasing along generations forever. Following Smulders (1995),
“welfare” should be understood broadly as “quality of life, “living conditions”, or
“well-being”. Thus, questions of high interest are i) Is sustainable development
possible with non-renewable resources? or ii) How could we design environmental
policies to improve the prospects of sustainable development or even sustainable
economic growth?

This chapter is organized as follows. Section 4.2 describes the production side
of the economy. Section 4.3 studies how households behave. Section 4.4 show the
General (Market) Equilibrium. The numerical illustrations are carried out in Section
4.5 and the sum of discounted utilities (welfare) implications are investigated in
Section 4.6.

4.2 Production Sector

The production side of our model closely follows the work by Scholz and Ziemes
(1999), where the expanding variety endogenous model in Romer (1990) is ex-
tended and a new sector of non-renewable resources is introduced.

4.2.1 Representative firm of the Resource Sector

In this chapter, time s is continuous and defined by the unbounded set s ∈ T ≡
[t0,∞), where t0 ≤ t ≤ s. We consider the natural resource to be an asset with
well-defined property rights, abstracting from the problems of common pool re-
sources. We follow the work by Scholz and Ziemes (1999), the resource sector
initially buys the existing stocks from households and maximizes its profits. Later
on, these profits generated by the single firm in the resource sector will be acquired
by households, who are the owners of this sector. This extraction is later supplied to
the final-good sector at a price pR(s). The dynamics of the non-renewable resource
S(t) at time s is

dS(s)
ds

=−R(s), (4.1)

which gives the intuition that the resource will be all extracted in the whole time
horizon, which is the sum of all the extractions R(s) over time,∫

∞

t0
R(s)ds ≤ S(t0). (4.2)

As noted here, t0 will be the initial time at which the resource sector starts extract-
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ing the exhaustible natural resource. There are no extraction costs.4 The discounted
profit of the resource extraction firm is defined as

Π
RS ≡

∫
∞

t0
e−

∫ s
t0

r(h)dh pR(s)R(s)ds, (4.3)

where r(s) denotes the interest rate at time s and pR(s) is the price of the resource.
One can see why the firm in the resource sector does not extract the whole resource
today and get rich immediately, as it has to think about its future selves and leave
resources underground to extract tomorrow and keep generating profits. Therefore,
the optimization problem yields the equilibrium condition

γPR ≡ ṖR(s)
PR(s)

= r(s), (4.4)

which is the well-known Hotelling rule, stating that the growth rate of the price
of the resource is equal to the interest rate (see Appendix 4.8.1 for its derivation).
Thus, with a given initial price at the initial time s = t0, the price evolution will be
given by

PR(s) = PR,t0 · e
∫ s

t0
r(ξ )dξ

. (4.5)

4.2.2 Representative Firm of the Final-Good Sector

The unique final good5 is produced competitively at time s with the following
production function:

Y (s) =
1

1−β1 −β2

(∫ N(s)

0
x(ν ,s)1−β1−β2dν

)
LF(s)β1R(s)β2, (4.6)

where LF(s) ∈ (0,1) is the labor used to produce the final good, R(s) ∈ (0,S(s)) is
the amount of resource used by the final-good producer and supplied by the resource
sector, N(s) is the different number varieties of inputs, and x(ν ,s) is the amount of
input of variety ν ∈ [0,N(s)] used at time s. Moreover, the elasticities of labor and
exhaustible resource used in the final production are β1 and β2 respectively.6 The

4However, this could be interpreted as a reduced price. If there were a constant marginal cost c0
and a price Pcost

R , the instantaneous profit would be (Pcost
R −c0)R(s). One could define this difference

as the price we use.
5In the book Big Ideas in Macroeconomics: A Nontechnical Wiew, Kartik B. Athreya writes,

“[...] an industry of price-taking, profit-maximizing firms will look as if it had set out to solve
the profit maximization of a fictitious single firm that embodies the entire economy’s production
capabilities. Of course, no one is doing any”.

6This follows ideas in Acemoglu (2002), where the author writes “[n]otice that given [N(s)],
the production functions [...] exhibit[s] constant returns to scale. There will be aggregate increasing
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final good production function can be rewritten as,

Y (s) =
1

1−β1 −β2
X̃(s)1−β1−β2LF(s)β1R(s)β2, (4.7)

where

X̃(s)≡

(∫ N(s)

0
x(ν ,s)

ε
β
−1

ε
β dν

) ε
β

ε
β
−1

, (4.8)

with εβ ≡ 1
β1+β2

being the elasticity of substitution between machines. The main
reason for writing the production function (4.7) in such a form is that it is possible
to appreciate both parallelisms between the Dixit-Stiglitz model and the constant
returns to scale of the production function, i.e., the production function is homoge-
neous of degree 1. The parameter εβ can be interpreted as the elasticity of substitu-
tion between different varieties, and we assume εβ > 1.

The exact demand of machine x(ν ,s) of variety ν ∈ [0,N(s)] is obtained by max-
imising net aggregate profits of the final-good producer. The intermediate monopo-
list supplies such variety of machine and sets a price px(ν ,s) at time s of machine
ν to maximize her profits. This could be seen as a “rental price” or the cost of that
machine ν . The final producer will also use labor with a wage rate w(s), and the
extracted exhaustible resource R(s) for which she will pay pR. We normalise the
price of the final good at every time s to 1.

The instantaneous profits of the final producer at time s are defined by

Π
FP ≡ 1

1−β1 −β2

(∫ N(s)

0
x(ν ,s)1−β1−β2dν

)
LF(s)β1R(s)β2

−
∫ N(s)

0
px(ν ,s)x(ν ,s)dν −w(s)LF(s)− pRR(s).

(4.9)

Thus, the final producer will maximize the discounted present value of future
cash flows,

max
{[x(ν ,s)]ν∈[0,N(s)],LF (s),R(s)}

∫
∞

t0
e−

∫ s
t0

r(h)dh

×
{

1
1−β1 −β2

(∫ N(s)

0
x(ν ,s)1−β1−β2dν

)
LF(s)β1R(s)β2

−
∫ N(s)

0
px(ν ,s)x(ν ,s)dν −w(s)LF(s)− pRR(s)

}
ds.

(4.10)

returns, however, when [N(s) is] endogenized.”
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However, given that this problem does not include intertemporal elements, as it
has no adjustment costs and no goods can be accumulated, the maximization of this
problem is equivalent to the maximization of current profits at each point in time.
Therefore, the optimization problem is given by:

max
{[x(ν ,s)]ν∈[0,N(s)],LF (s),R(s)}

Π
FP ≡ 1

1−β1 −β2

(∫ N(s)

0
x(ν ,s)1−β1−β2dν

)
LF(s)β1R(s)β2

−
∫ N(s)

0
px(ν ,s)x(ν ,s)dν −w(s)LF(s)− pR(s)R(s).

(4.11)

The first order conditions yield

∂ΠFP

∂x(ν ,s)
⇔ x(ν ,s)−β1−β2LF(s)β1R(s)β2 = px(ν ,s), (4.12)

∂ΠFP

∂LF(s)
= 0 ⇔ β1

Y (s)
LF(s)

= w(s), and (4.13)

∂ΠFP

∂R(s)
= 0 ⇔ β2

Y (s)
R(s)

= pR(s), (4.14)

where equation (4.12) is the demand for machine ν ∈ [0,N(s)] by the final good
producer. This demand can be expressed in the following isoelastic form:

x(ν ,s) = px(ν ,s)−1/(β1+β2)LF(s)β1/(β1+β2)R(s)β2/(β1+β2). (4.15)

Therefore, the demand for machinery ν depends negatively on the price of the
machine, and positively on labor and the amount of natural resources used in equi-
librium, but not on the wage, the price of the natural resource or the total amount
of machines used N(s). Intuitively, this demand shows directly the elasticity of de-

mand for different intermediate inputs, i.e., εβ ≡ 1
β1 +β2

, which would allow us to

rewrite the previous expression as x(ν ,s) = px(ν ,s)εβ LF(s)β1εβ R(s)β2εβ .
Pollution is generated by the previous two sectors, i.e., by the extraction of the

non-renewable resource R(s) and the production of final good Y (s),

P(R(s),Y (s)) = R(s)µ1 ·Y (s)µ2 . (4.16)

In Cabo et al. (2020a) and Cabo et al. (2020b), pollution is positively related
only to the input capital K, while in our setting, we consider that extracting a non-
renewable resource and producing the final good generates pollution with intensities
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µ1 and µ2 respectively. Although one might be tempted to interpret the parameters
as the elasticities of pollution, i.e., when production increases in 1%, pollution in-
creases by µ1%, and when the extraction of the resource increases in 1%, pollution
increases by µ2%, this will not be accurate. Note that an increase in the extraction
of the resource will directly affect the final production and therefore, it will also
affect pollution. Later, we will disentangle the effect of the extraction of the natural
resource on pollution. The reason why we have both behaviors affecting pollution,
i.e., how much the natural resource sector extracts, and how much the final producer
produces, reflects the fact that pollution comes directly from the production of the
final good, and from the extraction of each unit of natural resource. It is uncontro-
versial to assume that the mere activity of extracting a natural resource generates
pollution per se. Note, however, that if one is only interested in studying the di-
rect effect of the final production on pollution, we should “turn off” the parameter
µ2. In this chapter we decide to study the general case where extracting the natural
resource and producing the final good generates pollution.

4.2.3 Representative firm of the Intermediate-Good Sector

In this subsection, we present the intermediate-good sector, responsible for the
supply of machines or capital of type ν ∈ [0,N(s)] used by the final sector. Such
a machine of variety ν ∈ [0,N(s)] is assumed to fully depreciate after use. This
assumption ensures that “the amount of theses machines used in the past are not
additional state variables”(Acemoglu, 2009, p.434), considerably simplifying the
model. Thus, px(ν ,s) could be seen as the cost of using this machine or a “rental
price”. Intermediate good x(ν ,s) is only produced by firm ν and the design for such
goods is invented/produced in the R&D sector.

Each intermediate input ν ∈ [0,N(s)] is produced by a monopolist who charges a
price px(ν ,s). The present discounted value of owning the blueprint of a machine
type ν is given by

V (ν ,s) =
∫

∞

s
exp
(
−
∫

τ

s
r(ξ )dξ

)
π(ν ,τ)dτ, (4.17)

where r(ξ ) is the discount rate risk-free interest rate of the monopolist. The profit
of monopolist ν at time s is defined as

π(ν ,s) := px(ν ,s)x(ν ,s)− rx(ν ,s). (4.18)

In this case, we assume that one unit of machine ν can be produced at marginal
cost r > 0 units of the final good as in Scholz and Ziemes (1999). Thus, any monop-
olist ν ∈ [0,N(s)] maximizes its profits defined in equation (4.18). We also assume
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that the firm that discovers a new blueprint will receive a perpetual patent for this
new invention, as it is normally assumed in the literature (Romer, 1990; Acemoglu,
2002). Using the demand for a machine of type ν in equation (4.15) and plugging
it into the monopolist profit function gives the optimal price condition:

px(ν ,s) =
r

1−β1 −β2
≡ px ∈ R+ for all ν and s. (4.19)

Thus, any monopolist ν ∈ [0,N(s)] charges a constant rental price which is equal
to a markup over the marginal cost r. Alternatively, one can write the first order
condition of the monopolist ν as

∂π(ν ,s)
∂x(ν ,s)

= 0 ⇔ r = (1−β1 −β2)x(ν ,s)−β1−β2LF(s)β1R(s)β2 . (4.20)

Therefore, the profits of the monopolist producing input ν can be written as

π(ν ,s) = r
(β1 +β2)

1−β1 −β2
· x(ν ,s)

= (β1 +β2) · px︸︷︷︸
∈R+

·x(ν ,s),
(4.21)

which is the same for all intermediate producers. Alternatively, one could write the
profits of the intermediate firm ν at time s as

π(ν ,s) = (β1 +β2)

(
r

1−β1 −β2

)− 1−β1−β2
β1+β2

︸ ︷︷ ︸
≡B0∈R+

LF(s)β1/(β1+β2)R(s)β2/(β1+β2). (4.22)

Before entering the intermediate-good market, the monopolist ν needs to obtain
a patent that will allow her and only her to produce good x(ν ,s). However, the entry
decision will take the form of a two-step decision process. First, the monopolist will
decide if she enters the intermediate-good sector, and second, if she decides to enter,
she will choose the optimal price for the blueprint ν . Thus, monopolist ν buys a
patent at the initial time t0 < s from a firm in the R&D sector of infinite duration at
a price of pRD that allows her to produce the intermediate-good x(ν). Monopolist
ν issues bonds at the capital market for a price pRD to finance the acquisition of a
patent, which yields an interest r at each time s. If the intermediate firm ν wants to
produce the monopolistic machinery, she has to pay the entry cost pRD. Thus, the

137



Being Human

threshold for entry into the intermediate-good market for monopolist ν is given by
the condition when the price she will pay for a patent is equal to the discounted flow
of profits:

∫
∞

t0
π(ν ,s)e−

∫ s
t0

r(ξ )dξ ds︸ ︷︷ ︸
V m(ν ,s)=Value Function of the Monopolist ν at initial time t0

= pRD(t0).︸ ︷︷ ︸
Entry cost / Patent price

(4.23)

Alternatively, one could write the previous expression as

r(t0) pRD(t0)−
d

dt0
[pRD(t0)] = π(ν , t0), (4.24)

which leads the free entry conditions

r(t0) = γpRD +
π(ν , t0)
pRD(t0)

. (4.25)

Therefore, plugging the optimal profits of the monopolist ν (equation 4.22) into
equation (4.17), we get the net present value of profit at time s,

V m(ν ,s) =
∫

∞

s
e−

∫ s
t r(ξ )dξ (β1 +β2)

(
ψ

1−β1 −β2

)− 1−β1−β2
β1+β2

︸ ︷︷ ︸
≡B0∈R+

×LF(τ)
β1/(β1+β2)R(τ)β2/(β1+β2)dτ,

= (β1 +β2)B0

∫
∞

s
e−

∫ s
t r(ξ )dξ LF(τ)

β1/(β1+β2)R(τ)β2/(β1+β2)dτ.

(4.26)

4.2.4 Representative firm of the R&D Sector

Before developing how new ideas are generated in this sector and how techno-
logical progress evolves, we need to explain how this process takes place. In the
economics of ideas, technology or recipes are very different goods from raw ma-
terials or finished tangible goods such as a MacBook Air or a table. By technol-
ogy, one should understand the “formula" or knowledge that allows companies to
“combine" labor and capital to produce a product. Ideas are particular goods in eco-
nomics, as they are non-rival and partially excludable as Romer (1990) pointed out.
Here we follow the “growth with knowledge spillovers” approach by the previous
author. However, it is crucial to bear in mind, as Scholz and Ziemes (1999) em-
phasize, that the introduction of exhaustible resources in the former paper generates
indeterminacy of equilibrium trajectories.
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In this framework, scientists and researchers (labor force LR) are the key cre-
ators of R&D. This implies a “scarce factor” used in the development and research
of new intermediate goods. Therefore, economic growth under this specification
will be driven by knowledge spillovers from past R&D. This could be seen as the
well-known “standing on the shoulders of Giants”. Mathematically, the former (in-
novation possibilities frontier) takes the expression

Ṅ(s) = ηN(s)LRD(s), (4.27)

where η > 0 is constant over time and LRD(s) is the amount of labor assigned to
R&D in a broader sense. The spillover effect is captured by the right-hand side
(RHS) of the expression, as the greater the stock of ideas, the more ideas will be
created. Put differently, the more knowledge available to a worker in the R&D
sector, the more productive she will be.7 This expression will be the key factor in
understanding the source of endogenous growth since the spillover effects are linear
or proportional.

In this chapter, we assume that the regular labor force is employed in both sectors,
i.e., in the final good sector and the R&D sector. Total labor is normalized to one
without loss of generality. Therefore, the corresponding market-clearing condition
is

LRD(s)+LF(s)≤ L ≡ 1,

where LRD(s) is the amount of labor employed in the R&D sector and LF(s) is the
labor used in the final sector.

Furthermore, the behavior of the R&D sector is characterized by the maximiza-
tion of the following profit function

π
RD = pRD(s) ·ηN(s) ·LRD(s)−w(s)LRD(s), (4.28)

where households supply labor to this sector and are compensated by wages w(s).
The price this sector charges for a produced patent is pRD(s).The previous profit of
the R&D gives the following equilibrium condition,

w(s) = η · pRD(s)N(s). (4.29)

7However, in this context, we should understand this creation of new ideas in a broader sense.
As pointed out by Bhide (2003) in his book The Origin and Evolution of New Business, 72% of
the ideas come from workers, 20% from people such as students and professors, and only 7% come
directly from the R&D. Additionally, recent empirical papers study if new ideas are harder to find
(Bloom et al., 2020) in contrast to the scheme previously exposed. This extension is left for future
research.
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4.3 Households

In this Section, we present the behavior of the agents in the economy. It is as-
sumed that households have the following separable8 CRRA instantaneous utility
function,

U (c(s),P(s)) =


c(s)1− 1

σ −1
1− 1

σ

−ψ
P(s)1+b−1

1+b if σ ̸= 1∧b ̸=−1,

lnc(s)−ψ lnP(s) if σ = 1∧b =−1,
(4.30)

where c(s) is the level of consumption at time s and P(s) is the emission of pollu-
tant particles in the economy at time s. Additionally, σ ∈R+ represents the constant
elasticity of intertemporal substitution (CEIS), ψ ∈ R+ captures the environmental
concern or how strongly pollution influences (damages) utility, and b shows the
curvature degree of pollution. Alternatively, one could interpret this pollution/emis-
sions as the extra pollution generated by human beings due to the economic growth
experienced after the Industrial Revolution. A classical way of studying this prob-
lem in models of climate change in economics is to introduce a damage function in
the utility where the damage is bigger the larger the difference between current and
pre-industrial pollution levels (see Nordhaus and Boyer (2003) and Golosov et al.
(2014)). Intuitively, it could be thought of as a deviation from the pre-industrial
level, i.e., the anthropogenic extra pollution.

In this context, households will decide how much to consume and save. As one
can observe, the more polluted the environment is, the worse for the households.
Furthermore, households hold capital and bonds. Due to the structure of the model,
and following Scholz and Ziemes (1999), there exist N(s) monopolists, which im-
plies that households’ wealth/assets, denoted as a(s), consists of N bonds multiplied
by their price pRD, in addition to the total demand for the capital of the N monopo-
lists, i.e.,

a(s)≡ N(s) · pRD(s)+N(s) · k(ν ,s)︸ ︷︷ ︸
≡x(ν ,s)

. (4.31)

Besides, it is assumed that capital and bonds are perfect substitutes “as stores of

8Grimaud and Rougé (2005) and Aghion and Howitt (1998, Chapter 5) also use separable util-
ities in the framework of endogenous growth models and pollution. If one considers non-separable
utility, pollution will be included in the modified Ramsey rule with the time distance and we would
not be able to obtain analytical results. For pedagogical reasons, we believe that it is convenient to
obtain as many mathematical expressions as possible and thus be able to derive theoretical results
from them.
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value”, implying that they must yield the same interest rate. Moreover, monopolists
use capital stock to produce intermediate goods. Each monopolist ν issues bonds to
finance the purchase of a patent. Consequently, total household income comes from
holding bonds (rN(s) · pRD), capital income rK(s) ≡ rN(s)k(s), income from the
monopolistic resource sector (pR(s) ·R(s)), and labor income, which comes from the
final income sector wLF(s) and from the research and development sector wLRD(s).
Thus, as the labor force is normalized to one, total labor income is given by wage
w, i.e., wLF(s)+wLR(s) = w. On the other side, all inflow of income can be saved
or consumed. Households save in capital K(s) and bonds.9

As explained in the introduction of the dissertation, the discount function θ(s−
t)≥ 0, is not just a function of the time when the control (consumption) is enjoyed,
i.e., at time s, but a function of the time distance from the present t (when the
decision is made). Let j ≡ s− t be the time distance between when consumption
is enjoyed and when the decision is made. The discount function θ( j) has the
following properties: θ( j) > 0, θ̇( j) < 0 for all j > 0, and θ(0) = 1. It is also
assumed that the instantaneous discount rate ρ( j)≡−θ̇( j)/θ( j) is non-increasing
with the time distance from the present (Laibson, 1997; Barro, 1999).10 When
ρ( j) is constant, this ensures time-consistency in standard inter-temporal problems
(Strotz, 1955). In Figure 4.1 we show several discount functions. First, we have the
classical exponential discount function popularized in Samuelson (1937),

θ
Exp.( j) = e−ρ̂ j, (4.32)

with a constant instantaneous discount rate ρ̂ ∈ R++.
Later we show the discount function used in Tsoukis et al. (2017), Luttmer and

Mariotti (2003) and Cabo et al. (2020a)

θ
T souk.( j) = (1+δ j)−ϕ/δ e−ρ j, (4.33)

where ρ > 0, 0 < ϕ < 1, δ > 0 and ϕ/δ < 1. It combines a “generalized hyperbolic
discount function” with the exponential discount.11

9See Scholz and Ziemes (1999) for a discussion of the budget constrain.
10As mentioned in the introduction of the thesis, It can also be defined as the (negative) growth

rate of the discount function. Intuitively, this means that the further an event is in the future, the
“less important” it is for the present agent at time t. In contrast, under the standard time distance
exponential discounting popularized in Samuelson (1937), where θ(s−t) = e−ρ(s−t) = e−ρ j ≡ θ( j),

one can observe that ρ( j) =−θ̇( j)/θ( j) =− (−ρ)e−ρ j

e−ρ j = ρ ∈ R++ is constant in comparison to a
general discount function. Put differently, the logarithmic rate of change of the discount is constant
and equal to −ρ .

11As explained in Luttmer and Mariotti (2003), “[i]t generalizes the hyperbolic discount function
proposed by Ainslie (1975) to interpret experiments that indicate reversals over time of preferences
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One can observe that the discount function θ( j) decreases with the time distance

j,
∂

∂ j

[
(1+δ j)−ϕ/δ e−ρ j

]
= ρ +

ϕ

1+δ j
< 0 and

∂ 2

∂ j2

[
(1+δ j)−ϕ/δ e−ρ j

]
< 0.

Furthermore, if ϕ tends to 0, this discount function converges to the exponential
discount function. The instantaneous discount rate is given by ρ( j) = ρ +

ϕ

1+δ j
.

Rising ρ increases the discount rate at all horizons, and rising ϕ increases the sub-
jective discount rate more in the short-run than at long horizons.

The third discount function showed is a “convex linear combination of two expo-
nentials”, as for instance in Karp (2007),

θ
Conv.Exp( j) = ze−ρ1 j +(1− z)e−ρ2 j, (4.34)

where z ∈ (0,1) and ρ1 < ρ2, with a decreasing instantaneous discount rate

ρ
Conv.Exp( j) =

zρ1e−ρ1 j +(1− z)ρ2e−ρ2 j

ze−ρ1 j +(1− z)e−ρ2 j . With this discount function, ρ1 captures

the level of impatience in the long-run, and ρ2 influences the level of impatience
in the short-run. Consequently, higher values of ρ2 imply higher impatience in
the short-run. This function decreases from ρ(0) = zρ1 +(1− z)ρ2 to its level of
impatience in the long-run lim j→∞ ρConv.Exp( j) = ρ1, as ρ1 < ρ2.

However, in order to compare the standard exponential discounting with non
constant-discounting, and following the ideas in Myerson et al. (2001),12 we im-
pose that discounting parameters are such that the discounted infinite stream gives
the same present value,

∫
∞

0
e−ρ̂ jd j !

=
∫

∞

0
θ( j)d j, ⇐⇒ ρ̂ =

[∫
∞

0
θ( j)d j

]−1

. (4.35)

This is also known as the “strong observational equivalence principle” or the
“assumption of identical overall impatience”. The previous discount functions are
shown in Figure 4.1, where as pointed out in Cabo et al. (2020a), “under non-
constant discounting the short-run is less valued and the long-run more valued than
under exponential discounting”. This result comes from the fact that the instanta-
neous discount rate ρ( j) is large at first and decreases with the time distance, jointly
with the equivalence principle in (4.35). From now on, when we refer to the expo-
nential discount rate, we refere to ρ̂ . Moreover, they also claim that equation (4.35)
is important, as “in order to compare non-constant discounting with the standard re-
sults with exponential discounting, we need to guarantee that the dissimilarities are
not due to different degrees of impatience [see, for example, Strulik (2015); Cabo
et al. (2015)].”

for rewards at different horizons.”
12See also Strulik (2015), Cabo et al. (2015), Cabo et al. (2020a) and Mañó-Cabello et al. (2021).
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Figure 4.1: Discount Functions θ( j) and Instantaneous Discount Rate ρ( j) ≡
−θ̇( j)/θ( j).

The naive agent makes the decision at every (initial) time t. The optimization
problem is,

Max
{ct(s)}

∫
∞

t
θ(s− t)U (ct(s),Pt(s))ds

s.t. ȧt(s) = rt(s) ·at(s)+wt(s)+ pRt (s) ·Rt(s)− ct(s)

at(t) = at ∈ R+,

(4.36)

where wealth or savings a(s) was defined in equation (4.31). We now compute
the Naive Solution of the problem. This is also known in the literature as t-agent
problem. As pointed out by Marín-Solano and Navas (2009), “[n]aive t-agent will
solve [the] problem [...] as a standard optimal control problem, using Pontryagin’s
Maximum Principle”.13 Henceforth, superscript N will denote naive consumers.

13See also Strulik (2015) and Cabo et al. (2015).
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4.3.1 CES utility function

The Hamiltonian for the general CES function (σ ̸= 1) is given by:

H N (s, t) = θ(s− t)

[
c(s)1− 1

σ −1
1− 1

σ

−ψ
P(s)1+b −1

1+b

]
+λt(s) [rt(s)at(s)+wt(s)+ pRt (s)∗Rt(s)− ct(s)] (4.37)

The optimal consumption behavior is (see Appendix (4.8.2) for its derivation),

cN
t (t) =

(
at +

∫
∞

t [wt(s)+ pR(s)∗R(s)] · exp{−
∫ s

t rt(ξ )dξ}ds∫
∞

t θ(s− t)σ · exp{−(1−σ)
∫ s

t rt(ξ )dξ}ds

)
. (4.38)

The solution is written in feedback form. This result is similar to the one obtained
in Cabo et al. (2015), but we now consider a broader income that also comes from
the resource sector. Expression (4.38) represents the optimal consumption of short-
sighted households under non-constant discounting. The numerator captures the
total wealth (physical and human) TW (s), and the denominator represents the in-
verse of the propensity to consume (MPc) out of total wealth (Farzin and Wendner,

2014). Thus, the consumption strategy looks very simple, cN
t (t) =

1
MPc

×TW (s).
Implicitly, one can see the linear Markovian strategy, i.e., consumption (control) is
a linear function of the wealth (state). Taking natural logs on both sides, differenti-
ating with respect to initial time t (when the decision is made), and making use of
the Leibniz rule, one gets the following modified Ramsey rule for naive agents:

ċN(t)
cN(t)

= σ


rt −

∫
∞

t θ(s− t)σ

≡ρ( j)︷ ︸︸ ︷[
−

dθ(s−t)
dt

θ(s− t)

]
·exp{−(1−σ)

∫ s
t rt(ξ )dξ}ds∫

∞

t θ(s− t)σ exp{−(1−σ)
∫ s

t rt(ξ )dξ}ds


.

(4.39)

Taking into account the the temporal distance between when the action occurs (s)
and when the decision is made (t), is denoted as j ≡ s− t, and considering that the
instantaneous discount rate is ρ( j) ≡ −θ̇( j)/θ( j), the previous expression can be
reformulated as
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ċN(t)
cN(t)

= σ

rt −

∫
∞

0 ρ( j)θ( j)σ exp
{
−(1−σ)

∫ t+ j
t rt(ξ )dξ

}
d j∫

∞

0 θ(i)σ exp
{
−(1−σ)

∫ t+i
t rt(ξ )dξ

}
di

 . (4.40)

Hence,

γ
Na,ces
c ≡

˙cNa,ces(t)
cNa,ces(t)

= σ

[
rt −λ

ces
Na,θ

]
, (4.41)

where

λ
ces
Na,θ =

∫
∞

0 ρ( j)θ( j)σ exp{−(1−σ)
∫ s

t rt(ξ )dξ}d j∫
∞

0 θ(i)σ exp{−(1−σ)
∫ s

t rt(ξ )dξ}di
. (4.42)

This term λ ces
Na,θ is the effective rate of time preference and it is constant. It could

be interpreted as a “weighted mean of the instantaneous discount rates ρ( j)” (Cabo
et al., 2015), or as in Barro (1999), “weighted average of the instantaneous rates of
time preference”.14 It is worth noting that effective rates of time preference λ ces

Na,θ
are specific to each discount function θ(s− t). The weights are captured by ωN( j)
with

∫
∞

0 ωN( j)d j = 1, which can be seen as

λ
ces
Na,θ =

∫
∞

0
ρ( j)

θ( j)σ exp{−(1−σ)
∫ s

t rt(ξ )dξ}∫
∞

0 θ(i)σ exp{−(1−σ)
∫ s

t rt(ξ )dξ}di︸ ︷︷ ︸
≡ωces

N ( j)

d j. (4.43)

Thus, the effective rate of time preference is a weighted mean with expression

λ
ces
Na,θ =

∫
∞

0
ρ( j)ωces

N ( j)d j. (4.44)

If one plugs in an exponential discount function, we recover the canonical Ram-
sey rule where λ ces

Na,θ = ρ̂ . Furthermore, if one considers a constant interest rate,
the household problem in Cabo et al. (2015) is recovered (even if one considers
pollution and income from the resource sector). Furthermore, one could interpret
equation (4.41) rearranging it as follows,

λ
ces
Na,θ +

1
σ

ċN(t)
cN(t)

= rt , (4.45)

where the left-hand side (LHS) captures the benefit derived by consumption and
λ ces

Na,θ expresses the increase in utility derived by consuming now and not postpon-

14Luttmer and Mariotti (2003) also call this the “weighted average of the subjective discount
rates”.
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ing consumption to the “next period”. Moreover, the term
1
σ

ċN(t)
cN(t)

captures the

desire by households to smooth consumption.15 Furthermore, the RHS term is the
yield or net benefit obtained from saving. Thus, this expression shows the threshold
(margin) where agents would be indifferent between consuming or saving.

Proposition 4.1. Under CES utility, for σ < 1 (σ > 1) we have λ ces
Na,θ > ρ̂ ( λ ces

Na,θ <

ρ̂).

Proof. See Appendix 4.8.4. ■

This shows that working with a general utility function of the CES form leads to
rich and different results, capturing the fact that agents are time-inconsistent.

4.3.2 Logarithmic utility function

Finally, for the logarithmic utility function case, following the same procedure,
one gets the consumption strategy cN,log

t (t),

cN,log
t (t) =

(
at +

∫
∞

t [wt(s)+ pR(s) ·R(s)] · exp{−
∫ s

t rt(ξ )dξ}ds∫
∞

t θ(s− t)ds

)
, (4.46)

which gives place to the following modified Ramsey rule for the logarithmic case
in consumption and pollution,

ċNa,log(t)
cNa,log(t)

= rt −
∫

∞

0 ρ( j)θ( j)d j∫
∞

0 θ(i)di︸ ︷︷ ︸
≡λ

log
Na,θ

. (4.47)

Observe that the modified Ramsey rule for the logarithmic case could also be
interpreted as a weighted sum since λ

log
Na,θ can be expressed as

λ
log
Na,θ =

∫
∞

0
ρ( j)

θ( j)∫
∞

0 θ(i)di︸ ︷︷ ︸
ω

log
N ( j)

d j =
∫

∞

0
ρ( j)ω log

N ( j)d j, (4.48)

which gives the opportunity to rewrite expression (4.47) as

15When ċN(t)
cN(t) > 0, households would prefer to increase consumption today. Since households

have the desire to smooth consumption, if they know that in the future they will consume more
(ċN(t)/cN(t) > 0), driven by the behavior force to smooth their consumption, they will have incen-
tives to increase consumption today.
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γ
N,log
c ≡ ċN,log(t)

cN,log(t)
= rt −λ

log
Na,θ . (4.49)

As pointed out in Barro (1999), if agents have logarithmic utility, then, λ
log
Na,θ , the

“weighted mean of the instantaneous discount rates ρ( j)”, or “weighted average
of the instantaneous rates of time preference” for any general discount rate θ( j)

is exactly
[∫

∞

0
θ(i)di

]−1

= ρ̂ , where ρ̂ is given by the equivalent present value

expression (4.35). Thus, under a logarithmic utility function, the problem with
constant and non-constant discounting collapses to the same result (Marín-Solano
and Navas, 2010; De-Paz et al., 2014, 2013).

Lemma 1. Under logarithmic utility (σ = 1),

λ
log
Na,θ = ρ̂. (4.50)

Proof. See Appendix 4.8.3. ■

This result shows that under logarithmic utilities, the effective rate of time prefer-
ence collapses to the constant discount parameter of the exponential function. Thus,
time-consistent (exponential) and time-inconsistent agents behave the same. This is
what Barro (1999) called “observationally equivalent” albeit within the context of
a neoclassical growth model that does not incorporate endogenous growth. Conse-
quently, all the rich and interesting behavior that occurs under general CES utilities
is lost when working with logarithmic utilities.

On the contrary, the effective rate of time preference λ ces
Na,θ can be bigger or

smaller than the constant discount rate of the exponential function ρ̂ under a general
CES utility, as shown in Proposition 4.1.

4.4 General (Market) Equilibrium

In the economy described so far, an allocation is defined by the time paths of
consumption, total number of varieties, and the extraction of the natural resource,
[C(s),N(S),R(s)]∞s=t ; time paths of quantities of each intermediate good and prices,
[x(ν ,s), px(ν ,s)]∞s=t ; and the time paths of wages, interest rate, and price of the
natural resource, [w(s),r(s), pR(S)]

∞

s=t .
Furthermore, the equilibrium E in this economy is defined by an allocation pre-

viously defined where all monopolists choose their quantities and price of the in-
termediate machine [x(ν ,s), px(ν ,s)]∞s=t to maximize their discounted profits; the
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evolution of prices clean the market [w(s),r(s), pR(S)]
∞

s=t ; the evolution of the num-
ber of varieties [N(s)]∞s=t is determined by the free entry condition; and the evolution
of [C(s),R(s)]∞s=t is consistent with the household and resource problem.16 Thus,
one could write the equilibrium as

E = [x(ν ,s), px(ν ,s),w(s),r(s), pR(S),N(s),C(s),N(S),R(s)]∞s=t . (4.51)

Following Scholz and Ziemes (1999), we assume that monopolists have the fol-
lowing capital production

x(ν ,s) = k(ν ,s) for all ν ∈ [0,N(s)] and s, (4.52)

which describes a linear relationship between output of the monopolist ν , x(ν ,s),
and the input man-made capital, k(ν ,s). Substituting the demand for machinery
(4.15), machine prices and the production function of the monopolist (4.52) into the
production function (4.6) yields

Y (s) =
1

1−β1 −β2

 r
1−β1 −β2︸ ︷︷ ︸

px∈R+


− 1−β1−β2

β1+β2

N(s)LF(s)
β1

β1+β2 R(s)
β2

β1+β2 . (4.53)

Alternatively, the final production function can be rewritten as

Y (s) =
1

1−β1 −β2
K(s)1−β1−β2 [N(s)LF(s)]

β1 [N(s)R(s)]β2 , (4.54)

where K(s)≡ N(s) x(ν ,s) = N(s) k(ν ,s). From this expression, it can be seen that
when N(s) increases, the productivity of labor and the productivity of the resource
increase.

4.4.1 Properties of the Balanced Growth Path

We now study the Balanced Growth Path (BGP). Using Hotelling’s rule (4.4)
from the natural resource sector, the resource FOC of the final producer equation
(4.14), and the FOC of the monopolist ν equation (4.20), together with the growth
rate for the prices of the resource from (4.14) and then equating the resulting ex-
pression with the Hotelling rule, one gets

16Due to the market power of the monopolist, the equilibrium is not competitive.
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r(s) = γPR︸ ︷︷ ︸
Hotelling equation (4.4)

= γY − γR.

Making use of equation (4.20), and the definition of K(s), the following condition
holds,

γY − γR︸ ︷︷ ︸
r

= (1−β1 −β2)︸ ︷︷ ︸
Inefficiency terms

K(s)−β1−β2 [N(s)LF(s)]
β1 [N(s)R(s)]β2 . (4.55)

From the final production function (4.54), one gets the expression for the econ-
omy’s marginal productivity of total capital,

∂Y (s)
∂K(s)

= K(s)−β1−β2 [N(s)LF(s)]
β1 [N(s)R(s)]β2 . (4.56)

As pointed out by the Scholz and Ziemes (1999, p.176), the market solution vio-
lates the Solow-Stiglitz condition, that is, γY −γR =K(s)−β1−β2 [N(s)LF(s)]

β1 [N(s)R(s)]β2 ,
where the RHS would correspond to the interest rate, and marginal productiv-
ity of capital in the social planner problem. One can notice that there is a mis-
match between the efficient solution and condition (4.55), diminished by the term
(1−β1−β2). As discussed by the mentioned authors, “[t]his inefficiency is caused
by the monopolistic sector that pays an interest rate lower than the marginal pro-
ductivity of capital”. Thus,

γPR = r = γY − γR︸ ︷︷ ︸
Marginal Productivity of the Resource

< K(s)−β1−β2 [N(s)LF(s)]
β1 [N(s)R(s)]β2︸ ︷︷ ︸

Marginal Productivity of Capital

(4.57)

The economic interpretation of equation (4.57) is as follows. The LHS repre-
sents the additional production obtained by not extracting one additional unit of the
resource today and extracting it in the future. The RHS shows the additional pro-
duction that could be reached in the future by obtaining an additional unit of the
resource today. This extra extraction would be used in production, and adding this
extra unit to the capital stock will increase the output in the future.

Proposition 4.2. The equilibrium conditions of the BGP for the Naive agent with
CES utility are given by

γ
Na,ces
c
K

=
Y (s)
K(s)

[
σ(1−β1 −β2)

2 −1
]
−σλ

ces
Na,θ +

cNa,ces(s)
K(s)

, (4.58)
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γ
Na,ces
R =(β1+β2)

Y (s)
K(s)

− cNa,ces(s)
K(s)

+η(1−LF(s))
β2

1−β1−β2
+ηLF(s)(β1+β2),

(4.59)

γ
Na,ces
LF

= (β1 +β2)
Y (s)
K(s)

− cNa,ces(s)
K(s)

+η(1−LF(s))
[

β2 − (1−β1 −β2)

1−β1 −β2

]

+ηLF(s)
(β1 +β2)(1−β2)

β1
, (4.60)

γ
Na,ces
Y
K

=(β1+β2)ηLF(s)−(1−β1−β2)(β1+β2)
Y (s)
K(s)

+
β2

1−β1 −β2
η (1−LF(s)) .

(4.61)

Proof. See Appendix 4.8.5. ■

Corollary 4.1. The equilibrium conditions of the BGP for the Naive agent with
LOG utility are given by

γ
Na,log
c
K

=
Y (s)
K(s)

[
(1−β1 −β2)

2 −1
]
−λ

log
Na,θ +

cNa,log(s)
K(s)

, (4.62)

γ
Na,log
R =(β1+β2)

Y (s)
K(s)

− cNa,log(s)
K(s)

+η(1−LF(s))
β2

1−β1−β2
+ηLF(s)(β1+β2),

(4.63)

γ
Na,log
LF

= (β1 +β2)
Y (s)
K(s)

− cNa,log(s)
K(s)

+η(1−LF(s))
[

β2 − (1−β1 −β2)

1−β1 −β2

]

+ηLF(s)
(β1 +β2)(1−β2)

β1
, (4.64)

γ
Na,log
Y
K

=(β1+β2)ηLF(s)−(1−β1−β2)(β1+β2)
Y (s)
K(s)

+
β2

1−β1 −β2
η (1−LF(s)) .

(4.65)

Proof. It is straightforward to derive the results when σ → 1 and together with its
corresponding effective rate of time preference (or weighted average of the instan-
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taneous rates of time preference) λ
log
Na,θ , which collapses to ρ̂ for the logarithmic

case. ■

At every moment, the BGP for this economy is described by the system of differ-
ential equations just described for both utilities h ∈ {log,ces}. Jointly solved, these
equations give information of the steady state and properties of its stability.

4.4.2 Properties of the Steady State

In the steady state, consumption ch
N(s), final output Y (s) and aggregate capital

K(s) grow at the same constant rate, γ .17 Labor used in the final production sector
LF and capital productivity remains constant, i.e., their growth rates are zero in the
steady state. One could write the amount of the labor force used in the final sector
in the steady state as lim

s→∞
LF(s)≡ L∗

F . Thus,

γ = γK = γc = γY . (4.66)

Proposition 4.3. In the steady state, when agents are Naive and have CES utility,
the equilibrium labor force used in the final good sector LNa,ces

F , the growth rate of
the extraction of the exhaustible resource γ

Na,ces
R , the growth rate of the intermediate

inputs γ
Na,ces
N , and the growth rate of the entire economy γNa,ces are given by

LNa,ces∗
F =

β1

[
η +λ ces

Na,θ −
(

σ−1
σ

)
γNa,ces

]
η [β1 +(β1 +β2)(1−β1 −β2)]

, (4.67)

γ
Na,ces
R = η(1−LNa,ces∗

F )−ηLNa,ces∗
F

(β1 +β2)(1−β1 −β2)

β1
, (4.68)

γ
Na,ces
N = η −

β1

[
η +λ ces

Na,θ −
(

σ−1
σ

)
γNa,ces

]
β1 +(1−β1 −β2)(β1 +β2)

 , (4.69)

γ
Na,ces =σ ·

λ ces
Na,θ

{
β 2

1 (1−β2)+β1β2(3−2β2)+(1−β2)β
2
2
}
−η(1−β1 −β2)(β1 +β2)

2

β 2
1 [β1σ +β2(2σ +1)− (σ +1)]+β1β2 [β2(σ +2)−3]−β 2

2 (1−β2)
.

(4.70)

Proof. See Appendix 4.8.6. ■

Corollary 4.2. In the steady state, when agents are Naive and have LOG utility, the
equilibrium labor force used in the final good sector LNa,log

F , the growth rate of the

17This was noted in Kaldor (1961), where he observed that output per capita increases, while the
ratio capital/output remains practically constant. This is known as the Kaldor facts.
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extraction of the exhaustible resource γ
Na,log
R , the growth rate of the intermediate

inputs γ
Na,log
N , and the growth rate of the entire economy γNa,log are given by

LNa,log∗
F =

β1

[
η +λ

log
Na,θ

]
η [β1 +(β1 +β2)(1−β1 −β2)]

, (4.71)

γ
Na,log
R = η(1−LNa,log∗

F )−ηLNa,log∗
F

(β1 +β2)(1−β1 −β2)

β1
, (4.72)

γ
Na,log
N = η −

 β1

[
η +λ

log
Na,

]
β1 +(β1 +β2)(1−β1 −β2)

 , (4.73)

γ
Na,log = η +

β1(η +λ
log
Na,)

β 2
1 −2β1(1−β2)− (1−β2)β2

−
β2λ

log
Na,

β1 +β2
. (4.74)

Proof. It is easy to prove it when σ → 1 and together with its corresponding effec-
tive rate of time preference (or weighted average of the instantaneous rates of time
preference) λ

log
Na,θ . ■

Thus, plugging in the corresponding growth rates γNa,h into LNa,h∗
F , γ

Na,h
N and

γ
Na,h
R , for h ∈ {ces, log}, gives their corresponding steady state values. However,

it is not possible to make a general statement on the sign of the growth rate of the
economy as a whole.

Furthermore, since the interest rate is constant in the steady state, one can take
logs in expression (4.20) and differentiate with respect to time, and noting that the
growth rate of the labor force used in the final good sector in the steady state is zero,
it leads to

(β1 +β2) · γx(ν ,s) = β2 · γR, (4.75)

which is valid for both types of utilities h ∈ {ces, log}. From this expression, one
can notice that the growth rate of the extraction will decline in a framework with
exhaustible resources (i.e., the RHS will decline over time), which, in turn, implies
a decline in the LHS. Consequently, the growth rate of the demand for a specific
intermediate good ν ∈ [0,N] will decline over time. It is essential to note that this
decline pertains only to the particular demand for a given intermediate input, rather
than the total quantity of intermediate inputs, as the latter will increase over time.

Remark 4.1. The declining in the extraction rate of the resource (expressed by
γR) is proportional to the decline in the demand for intermediate good ν ∈ [0,N]
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(expressed by γx), (
β2

β1 +β2

)
γR = γx. (4.76)

Therefore, all monopolists ν , knowing that their demand for their production will
decline, will decrease their production to keep prices px(ν ,s) = px ∈ R+ constant
over time, as shown in equation (4.19). Plugging (4.75) into the growth rate of
the final production given in (A.29), we get the growth rate of the economy γ i,h as
the sum of the growth rate of the intermediate inputs γN , which is positive, and the
growth rate of the production of the monopolist ν , γx(ν ,s), which is negative:

γ
h = γ

h
N︸︷︷︸

>0

+γ
h
x(ν ,s)︸ ︷︷ ︸
<0

for all h ∈ {ces, log} . (4.77)

Assumption 4.1. The growth rate of the entire economy in the steady state will be
positive.

Assumption 4.1 implies that the rate of new entrants (new monopolists) in the
market (γ i,h

N ) is greater than the rate of decrease in the supply of a monopolist.
Consequently, there will be growth as long as new monopolists enter the market to
compensate for the decrease in supply by the old monopolists. If this will not be
the case, then the growth rate in the BGP will be negative and the economic activity
will disappear in the long-run. From equation 4.77,

γ
h > 0 ⇐⇒ γ

h
N︸︷︷︸

>0

>−γ
h
x(ν ,s)︸ ︷︷ ︸
<0

for all h ∈ {ces, log} . (4.78)

We now focus on the evolution of the natural resource. Knowing that the growth
rate of the extraction R(s) is given by expressions (4.68) for the naive agent with
CES utility and (4.72) with log utility, we can solve the corresponding differential
equations. For the sake of simplicity, let us define the RHD of both equations as

the constants γ
Na,ces
R = η(1−LNa,ces∗

F )−ηLNa,ces∗
F

(β1 +β2)(1−β1 −β2)

β1
< 0 and

γ
Na,log
R = η(1 − LNa,log∗

F )− ηLNa,log∗
F

(β1 +β2)(1−β1 −β2)

β1
< 0, which are neg-

ative due to the dynamics of the exhaustible resource. Thus, the corresponding
solutions of the differential equations lead to

Rh
Na(s) = R0︸︷︷︸

∈R+

exp

γ
Na,h
R︸︷︷︸
<0

·s

 , for h ∈ {ces, log} . (4.79)

Having the evolution of the extraction strategy R(s), we can plug it into the dy-
namics of the non-renewable resource (4.1) and solve the corresponding differential
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equation. This process results in the evolution of the natural resource, with an initial
quantity of S(0) = S0 given. Then,

Sh
Na(s) =

(
γ

Na,h
R ·S0 +R0

γ
Na,h
R

)
︸ ︷︷ ︸

constant

− R0

γ
Na,h
R

e
(

γ
Na,h
R ·s

)
.

(4.80)

In order to fulfill the transversality condition (TVC) of the natural resource, i.e.,
that the resource will be all exhausted over the whole time horizon, lims→∞ S(s) = 0,
one gets the condition

R0 =−γ
Na,h
R ·S0︸ ︷︷ ︸
>0

. (4.81)

Thus the exhaustible resource evolves as

Sh
Na(s) = S0eγ

Na,h
R ·s for h ∈ {log,ces} . (4.82)

Consequently, the extraction rate R(s)/S(s) is

Rh
Na(s)

Sh
Na(s)

=−γ
Na,h
R︸︷︷︸
<0

for h ∈ {log,ces} . (4.83)

Remark 4.2. The extraction of the resource follows a Markovian strategy,18

φ
h
Na(S(s))≡ Rh

Na(s) =−γ
Na,h
R Sh

Na(s), for h ∈ {log,ces} . (4.84)

See the simulations in the qualitative analysis Section for an easy visualization of
the results. It can be proved that for the logarithmic case, the negative instantaneous
discount rate (ρ̂) of the exponential discount function coincides with the growth
rate of the extraction of the resource γ

Na,log
R , which also coincides with the negative

“effective rate of time preference” λ
log
Na,θ . However, this is not the case for the CES

utility scenario.

Proposition 4.4. For the naive agent, the growth rate of the extraction of the re-
source under different utilities and any arbitrary discount function θ( j) along the

18However, as highlighted by Groth (2015), “along any economic development path, the aggre-
gate input of non-renewable resources must in the long-run asymptotically approach zero. From a
physical point of view, however, there must be some minimum amount of the resource below which
it can not fulfill its role as a productive input. Thus, strictly speaking, sustainability requires that in
the “very long run”, non-renewable resources become inessential”.
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BGP is given by

γ
Na,h
R = γ

Na,h ·
(

σh −1
σh

)
−λ

h
Na,θ , (4.85)

where

σh =

σ if h = ces,

1 if h = log.
(4.86)

Proof. See equation (A.30) in the Appendix. ■

Remark 4.3. For the naive agent with logarithmic utility and any discount func-
tion θ(s− t) along the BGP, the Markovian extraction rate collapses to the same
strategy,

φ
log
Na (S(s))≡ Rlog

Na(s) =−γ
Na,log
R Slog

Na (s) = ρ̂ ·Slog
Na (s). (4.87)

Proof. All that needs to be proved is that γ
Na,log
R =−ρ̂ . See Appendix (4.8.7). ■

Next, we prove that agents have a higher (lower) extraction rate under CES (log)
utility with a CEIS σ < 1 (σ = 1). However, if we consider the CES case with CEIS
σ > 1, we get lower extraction rate than under the log case (σ = 1). Therefore, this
captures the fact that the greater the CEIS, the lower the extraction rate.

Proposition 4.5. For the naive agent, if σ < 1 (σ > 1) she has a higher (lower)
extraction rate under the general CES utility function than under the log case (σ =

1),

For σ < 1 ⇔
Rlog

Na(s)

Slog
Na (s)

<
Rces

Na(s)
Sces

Na(s)

For σ > 1 ⇔
Rlog

Na(s)

Slog
Na (s)

>
Rces

Na(s)
Sces

Na(s)
(4.88)

Proof. See Appendix 4.8.8. ■

One can prove that for σ < 1, the extraction rate of time-consistent agents (ex-
ponential discounting) is lower than those with a general time-inconsistent discount
θ(s− t).

Proposition 4.6. For σ < 1 (σ > 1), agents employing exponential discounting ex-
hibit a lower (higher) extraction rate compared to those utilizing a general discount
function θ(s− t).

RCes,σ<1
Na,Exp (s)

SCes,σ<1
Na,Exp (s)

<
RCes,σ<1

Na,θ (s)

SCes,σ<1
Na,θ (s)

(4.89)
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Proof. See Appendix (4.8.9). ■

Moreover, from equation (4.83) one can show that along the BGP, the extraction
rate R(s)/S(s) will be constant, i.e., agent will have the same extraction rate.

4.4.3 Stability of the Steady State

In order to study the stability properties of the steady state, we use the system
of differential equations that describe the BGP. However, before driving into the
technical details, the ratio of extraction over the amount of resource left R(s)/S(s)
has its own growth rate. From the dynamics of the non-renewable resource (4.1),
one gets

γ R
S
= γR +

R(s)
S(s)

. (4.90)

See Appendix 4.8.10 for its derivation.
Working now with the system of differential equations that characterize the BGP

and plugging in the previously derived equation (4.90) into the growth rate of the
resource γR, one gets

γ
Na,ces
c
K

=
Y (s)
K(s)

[
σ(1−β1 −β2)

2 −1
]
−σλ

ces
Na,θ +

cNa,ces(s)
K(s)

, (4.91)

γ
Na,ces
R
S

=
R(s)
S(s)

+(β1 +β2)
Y (s)
K(s)

− cNa,ces(s)
K(s)

+η(1−LF(s))
β2

1−β1−β2
+ηLF(s)(β1 +β2)︸ ︷︷ ︸

=γ
Na,ces
R

,

(4.92)

γ
Na,ces
LF

= (β1 +β2)
Y (s)
K(s)

− cNa,ces(s)
K(s)

+η(1−LF(s))
[

β2 − (1−β1 −β2)

1−β1 −β2

]

+ηLF(s)
(β1 +β2)(1−β2)

β1
, (4.93)

γ
Na,ces
Y
K

=(β1+β2)ηLF(s)−(1−β1−β2)(β1+β2)
Y (s)
K(s)

+
β2

1−β1 −β2
η (1−LF(s)) .

(4.94)
Solving the steady state of the system, one gets the values in equilibrium shown

in Appendix (4.8.11) due to space constraints. Furthermore, as the ratio extraction
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over the amount of resources left, (R(s)/S(s)), just appears in the first differen-
tial equation, the system is partially recursive. The evolution of the whole system
is described jointly by all the differential equations. However, the dynamics of
c(s)/K(s),LF(s) and Y (s)/K(s) are captured by the other three differential equa-
tions (all except the one of the growth rate of R(s)/S(s)). Therefore, in order to
study the stability properties we will work with the linearized system around the
steady state.

Let m(s) be the column vector of the difference between variables and their
steady state values (with a star),

m(s) =


Y (s)
K(s) −

(Y
K

)∗
cNa,ces(s)

K(s) −
(

cNa,ces

K

)∗
LF(s)−L∗

F

 .

Thus, the linearized system around the steady state can be written as

d
dt

m(s) =


∂

˙(Y
K )

∂ (Y/K)

∂
˙(Y
K )

∂ (c/K)

∂
˙(Y
K )

∂ (LF )

∂
˙( c
K )

∂ (Y/K)

∂
˙( c
K )

∂ (c/K)

∂
˙( c
K )

∂ (LF )
∂ ˙(LF )

∂ (Y/K)
∂ ˙(LF )

∂ (c/K)
∂ ˙(LF )
∂ (LF )


︸ ︷︷ ︸

≡J
(
(Y

K )
∗
,
(

cNa,ces
K

)∗
,L∗

F

)


Y (s)
K(s) −

(Y
K

)∗
cNa,ces(s)

K(s) −
(

cNa,ces

K

)∗
LF(s)−L∗

F

 , (4.95)

Since J
((Y

K

)∗
,
(

cNa,ces

K

)∗
,L∗

F

)
is the Jacobian matrix evaluated at the fixed point,

J(.)=



−
(Y

K

)∗
(1−β1 −β2)(β1 +β2) 0

(
β1 +β2 − β2

1−β1−β2

)
η
(Y

K

)∗
(

cces
Na
K

)∗ [
σ(1−β1 −β2)

2 −1
] (

cces
Na
K

)∗
0

L∗
F(β1 +β2) −L∗

F ηL∗
F

(
(1−β2)(β1+β2)

β1
− β2

1−β1−β2
+1
)


.

(4.96)

where the trace of the matrix J is the sum of its eigenvalues ζi in the diagonal,
Trace(J) = ∑

n
i=1 ζi. Thus, we have
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Trace(J) =
3

∑
i=1

ζi

=

(
cces

Na
K

)∗
−
(

Y
K

)∗
(1−β1 −β2)(β1 +β2)

+ηL∗
F

(
(1−β2)(β1 +β2)

β1
− β2

1−β1 −β2
+1
)
.

(4.97)

As in a stable dynamical system all the eigenvalues of the Jacobian matrix should
have real negative parts, i,e., Re(ζi) < 0, it implies that the trace, which is the sum
of the eigenvalues, should be negative in order to show a convergent and stable
equilibrium. However, no general statement can be made about the sign of the trace.
The reason is that the last term,

(
(1−β2)(β1+β2)

β1
− β2

1−β1−β2
+1
)

, can be positive or
negative depending on the combination of parameters.

As the determinant is the product of all its eigenvalues |J|= ∏
n
i=1 ζi, then,

Det(J) =
3

∏
i=1

ζi,

=−η

(
Y
K

)∗(cces
Na
K

)∗
L∗

F

×
{
(1−β1 −β2)(β1 +β2)

[
(1−β2)(β1 +β2)

β1
− β2

1−β1 −β2
+1
]

+

(
β1 +β2 −

β2

1−β1 −β2

)[(
σ(1−β1 −β2)

2 −1
)
+β1 +β2

]}
.

(4.98)

In the steady state, the values of
(

Y
K

)∗(cces
Na
K

)∗
L∗

F will be positive. Thus,

the first term −η

(
Y
K

)∗(cces
Na
K

)∗
L∗

F is negative. Therefore, if one is interested

in getting all the real parts of the eigenvalues negative, it implies that
3

∏
i=1

ζi <

0. If one could get such a condition, it should imply that the term in brackets
would be positive. However, no general statement can be made about the sign of

the determinant. As before, the terms
(
(1−β2)(β1 +β2)

β1
− β2

1−β1 −β2
+1
)

and(
β1 +β2 −

β2

1−β1 −β2

)
can be negative or positive depending on the combination

of parameters.

This is why we will study the stability properties numerically by analyzing the
sign of the eigenvalues. Nonetheless, we can state that we obtain the same qualita-
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tive results as Scholz and Ziemes (1999), with one negative real eigenvalue and two
positive real eigenvalues. Nevertheless, our result is much more general, as house-
holds contemplate any general non-constant discount function. The system has a
saddle path behavior. The unique real and negative eigenvalue will correspond to
the labor force (see Section 4.5).

4.4.4 Pollution

In the steady state, taking logs and differentiating with respect to time for the
final production (4.54) gives

γ
h ≡ γ

h
Y = γ

h
K = γ

h
N +

β2

β1 +β2
γ

h
R, (4.99)

which is translated to expression (4.70) for the CES case, and to expression (4.74)
for the log case. As pollution (equation (4.16)) is generated by both final good
production and by the extraction of the exhaustible resource, which takes the form
P(s) = Y (s)µ1R(s)µ2 , we can express its growth rate in two forms.

• The first one comes directly from log-differentiating the expression,

γP = µ1γ +µ2γR. (4.100)

One should keep in mind that the first term µ1γ already includes the force of the
decline in the extraction strategy R(s) implicitly (as final production is a function of
the extraction). This is the reason why the growth rate of the economy is a function
of the growth rate of the resource, γ = γ(γR). Thus, the evolution of the pollution
P(s) is given by

P(s) = Y (0)µ1R(0)µ2︸ ︷︷ ︸
≡P(0)

e[µ1γ+µ2γR]·s (4.101)

• The second form is much clearer, as one can disentangle the specific driving
forces of pollution. Using the final production (4.53), which is also a function
of the extraction R(s) and plugging it into the pollution expression, it leads to

P(s) = Y (s)µ1R(s)µ2
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=


1

1−β1 −β2

 r
1−β1 −β2︸ ︷︷ ︸

px∈R+


− 1−β1−β2

β1+β2

N(s)LF(s)
β1

β1+β2


µ1

·R(s)
(

µ1
β2

β1+β2
+µ2

)
.

(4.102)

Proposition 4.7. As in the steady state γLF = 0, the growth rate of pollution is

γP = µ1 · γN +

(
µ1

β2

β1 +β2
+µ2

)
· γR. (4.103)

Proof. It is straightforward by taking logs and differentiating expression (4.102)
with respect to time s. ■

We now have three different scenarios. Depending on the parameters of the
model, pollution could increase, stay constant, or decrease over time:

• UN/ Humankind Goal: γP < 0,

• Business as Usual (BAU): γP = 0,

• Crazy Humans will Kill Themselves: γP > 0.

Assuming that humankind succeeds in achieving its pollution targets, set by vari-
ous international agreements, one would expect that all pollution derived from eco-
nomic activity would decrease and that only the so-called “natural pollution” would
exist. One might consider pre-industrial pollution, for instance, generated by vol-
canic eruptions or by the environment itself. This would be the effect of decreasing
pollution until it converges to its natural earth level or its pre-industrial level. Thus,
the fact that pollution decreases towards zero in our model should be interpreted as
converging to its natural level or no extra pollution from human beings. To get this
behavior, we need γP < 0. There are three potential scenarios.

Scenario 4.1. Human-made pollution decreases, γP < 0.

In order to reduce human-made pollution (extra pollution), we need

γP < 0 ⇐⇒ µ1 · γN <−
(

µ1
β2

β1 +β2
+µ2

)
· γR︸︷︷︸

<0

. (4.104)

Scenario 4.2. Pollution is constant over time, γP = 0.
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In order to have constant pollution, we need

γP = 0 ⇐⇒ µ1 · γN =−
(

µ1
β2

β1 +β2
+µ2

)
· γR︸︷︷︸

<0

. (4.105)

Scenario 4.3. Pollution increases over time, γP > 0.

In order to have increasing pollution, we need

γP > 0 ⇐⇒ µ1 · γN >−
(

µ1
β2

β1 +β2
+µ2

)
· γR︸︷︷︸

<0

. (4.106)

For all the cases, the evolution of pollution P(s) with any discount function19 is

P(s) = Y (0)µ1R(0)µ2︸ ︷︷ ︸
≡P(0)

eγP·s, (4.107)

where γP is given by expression (4.103).
Before moving to the numerical results, one should note that although the math-

ematical structure of the expanding variety model and the AK model (where the
economy grows at a constant rate) are similar, the economics of both models differ
considerably. In the expanding variety model, research firms spend their funds on
developing (inventing) new machines. The incentive behind this behavior is mo-
tivated by the search for profit, guaranteed by their patents and their monopolistic
power, which allows them to sell their machines to the final good producer. There-
fore, motivated by this search for profit, companies impulse R&D, and it is this
R&D that ultimately generates economic growth. Thus, as pointed out by Romer
(1994), “monopoly profits motivate innovation”. Consequently, in contrast to the
AK model, here we have a change in the technology frontier driven by incentives.

4.5 Quantitative Analysis

In this section we parameterize the model for the US economy. The elasticity of
the exhaustible resource is β2 = 0.04, in line with the work of Golosov et al. (2014)
(see their parameter ν = 0.04 in Table 1 of their paper), and Hassler and Krusell
(2012). Furthermore, we set the elasticities of the intermediate machines X̃(s) in
equation (4.7) to 1−β1 −β2 = 0.4 (see for instance Englander and Gurney (1994),
and Maddison (1987)). The previous implies an elasticity of the labor force used in
the final sector of β1 = 0.56.

19This is why we do not write a discount function θ in the growth rates to simplify notation.
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Focusing now on the calibration of the intertemporal elasticity of substitution, we
consider two cases. First, we try to contribute to the current debate on the actual
value of the CEIS. As noted in Cabo et al. (2020b), it is normal to assume in theoret-
ical models of economic growth a log-utility, as it simplifies the analysis when one
studies “complexities like non-constant time preferences”. However, whether the
CEIS value σ should be greater or lower than one has recently been questioned. As
pointed out in Thimme (2017), the default assumption in macroeconomic models of
using a CEIS between 0.5 and 1 (prevailed by Hall (1988)’s early CEIS estimates
close to zero) has been challenged by recent literature. For instance, Havranek et al.
(2015) and Gruber (2013) mention values of the constant elasticity of intertemporal
substitution σ greater than one. Values greater than one are correlated with higher
wealth, education and are country-specific (see Havranek et al. (2015), Ben-Gad
(2012) Thimme (2017)). For this reason, we study both scenarios, i.e., σ = 0.5
and σ = 1.2. Interestingly enough, it turns out that this has big implications. For
σ < 1, log agents (that is σ = 1) will have higher sum of discounted consumer
utilities than CES agents, but for σ > 1, log agents will be worst than CES agents.
For the case of σ = 0.5, we follow the meta-analysis carried out by Havranek et al.
(2015),20where they collect 2735 estimates of the elasticity of intertemporal substi-
tution in consumption from 169 published studies for 104 countries during different
periods.

Regarding the instantaneous discount rate of the exponential discount function
(4.32), we choose a value of ρ̂ = 2%, which is the “Medium Future” (26 to 75 years)
value in the data by Weitzman (2001). Furthermore, we set the parameter η = 0.12
(which is a parameter of the innovation possibilities frontier). All parameters are
summarized in Table 4.1.

We work with different discount functions to see their effects on how agents
make decisions and the impact on economic growth. We also investigate how agents
extract exhaustible resources and delve into numerous aspects of our model. First,
we show the results under the discount function (4.33), which appears in Tsoukis
et al. (2017) and Cabo et al. (2020a). Thus, we need to find the right parameters for
the non-constant discounting as in expression (4.35), where the discounted infinite
stream of both discount functions gives the same present value. This last expression
will be used to compare all the different discount functions to be equivalent to the
exponential discount.

• For the discount function used in Tsoukis et al. (2017), this implies the fol-
lowing relationship

20Dugan and Trimborn (2020) also use this meta-analysis for their parametrization.
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Parameters Description Value
β1 Output Elasticity of Final Labor 0.56
β2 Output Elasticity of Resource 0.04

1−β1 −β2 Output Elasticity of Intermediate Machines 0.4
σ Intertemporal elasticity of substitution 0.5 and 1.2
ρ̂ Instantaneous Discount Rate for the Exponential 0.02
η Parameter of the Innovation Possibilities Frontier 0.12

µ1,γP<0 Final Production Intensity in Pollution 0.2

µ
θ ,log,σ=1
1,γP=0 Final Production Intensity in Pollution 0.00483871

µ
Exp,Ces,σ<1
1,γP=0 Final Production Intensity in Pollution 0.0135484

µ
Exp,Ces,σ>1
1,γP=0 Final Production Intensity in Pollution 0.0033871

µ
T s,Ces,σ<1
1,γP=0 Final Production Intensity in Pollution 0.0151788

µ
T s,Ces,σ>1
1,γP=0 Final Production Intensity in Pollution 0.00283772

µ
ConEx
1,γP=0 Final Production Intensity in Pollution 0.0162283

µ
ConEx,Ces,σ>1
1,γP=0 Final Production Intensity in Pollution 0.00268484

µ1,γP>0 Final Production Intensity in Pollution 0.3
µ2,γP<0 Resource Extraction Intensity in Pollution 0.5
µ2,γP=0 Resource Extraction Intensity in Pollution 0.005
µ2,γP>0 Resource Extraction Intensity in Pollution 0.005

ψ Environmental concern (pollution) 0.005
b Curvature degree of Pollution in the utility 0.001

Table 4.1: Structural Parameter Values
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e−ρ̂ e−ρ j(1+δ j)−ϕ/δ ze−ρ1 j +(1− z)e−ρ2 j

Parameters ρ̂ ρ δ ϕ z ρ2 ρ1
Values 0.02 0.001 0.021 0.0178607 0.5 0.05 0.0125

Table 4.2: Parameter values for different Discount Functions θ( j).

∫
∞

0
e−ρ̂ jd j !

=
∫

∞

0
(1+δ j)−ϕ/δ e−ρ jd j, ⇐⇒ ρ̂ =

e−
ρ

δ δ
ϕ

δ ρ
1−ϕ

δ

Γ
(
1− ϕ

δ
, ρ

δ

) , (4.108)

where Γ(a,b) =
∫

∞

b xa−1e−xdx is the incomplete gamma function, which is easy to
manipulate nowadays with algebraic software. The intuition behind this expression
is to capture a constant rate of time preferences ρ̂ such that it gives the same overall
level of impatience with the exponential discount (time-consistent) as the overall
level of impatience under a non-constant discounting (see e.g., Barro (1999), Strulik
(2015) or Cabo et al. (2020a)).

Following the Stern Review (Stern, 2007, Box 6.3, p. 184), we set the parameter
ρ = 0.1% in the Tsoukis discount function. For the corresponding parameters ϕ and
δ , we follow the approach in Dugan and Trimborn (2020), where the parameters of
the discount function are driven by the data in Weitzman (2001), in which the author
studies a numerical example with data from a survey based on the opinions of 2,160
economists (see Table 2 in the mentioned work to see the different discount rates for
different distant times).21 With that data, Dugan and Trimborn (2020) obtain what
would be in our work a value of δ = 0.021. Together with ρ = 0.001, we can solve
for ϕ in equation (4.108), where ρ̂ = 0.02, obtaining a value of ϕ = 0.0178607. It
is worth noting that without specifying a parameter, a continuum of solutions would
exist for the pair of parameters. All parameters related to the discounting functions
are provided in Table 4.2. As previously emphasized, it becomes evident that both
integrals yield the same discounted value∫

∞

0
e−ρ̂ jd j =

∫
∞

0
(1+δ j)−ϕ/δ e−ρ jd j

⇔ 1
ρ̂
= eρ/δ

δ
−ϕ

δ ρ
ϕ

δ
−1

Γ

(
1− ϕ

δ
,
ρ

δ

)
= 50 (with the given parameters).

• For the “convex linear combination of two exponentials” discount function
(4.34), we have the following relationship

21The author asked the question “Taking all relevant considerations into account, what real in-
terest rate do you think should be used to discount over time the (expected) benefits and (expected)
costs of projects being proposed to mitigate the possible effects of global climate change?”.
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∫
∞

0
e−ρ̂ jd j !

=
∫

∞

0

[
ze−ρ1 j +(1− z)e−ρ2 j]d j ⇐⇒ ρ̂ =

ρ1ρ2

ρ1 − zρ1 + zρ2
,

(4.109)
with z = 0.5, i.e. an equal weight for the long-run and the short-run impatience.22

The short-run impatience is governed by ρ2 = 0.05 and the long-run impatience by
ρ1 = 0.0125. As before, given ρ̂ from the exponential discount, the weight z and ρ1,
one should look for the parameter governing the short-run impatience ρ2 to give the
same stream of the integral with an exponential discount, as it is shown in (4.109).
One can easily check that both integrals give the same value using the parameters
in Table 4.2.

Following Dugan and Trimborn (2020), we use their estimates to calibrate the
initial amount of capital K0 to 56 trillion dollars. Furthermore, they also get data
from the U.S. Energy Information Administration (EIA). Natural resources at initial
time S0, are defined as the sum of crude oil and natural gas reserves, with a given
value of 5 trillion dollars. Normalizing S0, and adjusting proportionally K0, one gets
the values of S0 = 1 and K0 = 11.

An interesting feature of this model with both utilities (log and CES) and with
any discount function θ( j), is that the interest rate in the equilibrium r is determined
endogenously in the model. One should notice that it is not possible to solve for all
discounts algebraically. Certainly, one should find the interest rate that satisfies
the BGP conditions of γ = γY = γc. This condition solves r implicitly. In this
section, we solve it numerically for all the discount functions we consider and both
utilities, which give rise to different interest rates in equilibrium. For the logarithmic
case one should solve for r using equations (4.74), which is the growth rate of
the economy, and (4.49), which gives the growth rate of consumption from the
modified Ramsey rule, where λ

log
Na,θ is given by expression (4.48) for any different

discount θ( j). For the CES case, one should solve for r using equations (4.70)
and (4.41) where λ ces

Na,θ is given the expression (4.43) for any different discount
θ( j). An interesting result is that for any discount function, all the interest rates
for the logarithmic case collapse to the same one. This is straightforward, as for
any discount function, with log utilities we have the same consumer behavior (as all
the λ

log
Na,θ are the same regardless of the discount function, see Lemma 1). All the

equilibrium interest rates are shown in Table 4.3. It can be seen that the higher the
desire to smooth consumption (CEIS), the lower the interest rate.

Focusing on the stationary equilibrium analysis, i.e., when the economy evolves
along its equilibrium path, we use Proposition 4.3 and 4.2 to illustrate the dynamics

22See also Mañó-Cabello et al. (2021).
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Parameters Description Value
rCesσ<1

Exp Equilibrium Interest rate, CES (σ < 1) & Exp 0.0433962

rlog
Exp Equilibrium Interest rate, Log & Exp 0.0406667

rCesσ>1
Exp Equilibrium Interest rate, CES (σ > 1) & Exp 0.0397452

rces,σ<1
T soukis Equilibrium Interest rate, CES (σ < 1) & Tsoukis 0.0436637

rlog
T soukis Equilibrium Interest rate, Log & Tsoukis 0.0406667

rces,σ>1
T soukis Equilibrium Interest rate, CES (σ > 1) & Tsoukis 0.0393219

rces,σ<1
ConvexExp Equilibrium Interest rate, CES (σ < 1) & ConvexExp 0.0438156

rlog
ConvexExp Equilibrium Interest rate, Log & ConvexExp 0.0406667

rces,σ>1
ConvexExp Equilibrium Interest rate, CES (σ > 1) & ConvexExp 0.0391952

Table 4.3: Equilibrium Interest Rates

of the parameterized model using our simulations. In Figure 4.2, one can see the
evolution of the extraction strategy of the economy R(s) and the corresponding
evolution of the resource S(s).

It is shown that with a constant elasticity of intertemporal substitution of σ =

0.5, which is equivalent to the elasticity of marginal utility {[−u′′(c) · c]/ [u′(c)]}=
1/σ = 2, agents are more impatient and extract the resource more aggressively (see
how they extract more in the near future).23 As σ < 1, it can be seen that the
lower the σ , the lower the willingness of households to substitute inter-temporally.
Consequently, naive agents with σ < 1 start extracting more first in comparison to
the logarithmic case, and later on when there are less resources, they extract less.
Therefore, the stock of the resource for σ < 1 decreases faster at first, and there
will always be more resource for the logarithmic agent at every point in time. The
opposite is true for σ > 1, where agents extract fewer resources in the short term
and as they have behaved more conservatively, they have access to more resource in
the long-run.

The extraction rate R(s)/S(s) given in equation (4.83) is shown in Figure 4.3 un-
der all the different discount functions, where one can see that agents always extract
a constant rate of the resource. This could be seen as an agent extracting a constant
percentage of the resource left. It can be clearly seen why agents extract differently

23A lower σ means agents are less patient
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(a) Evolution of the Extraction Strategy R(s)Na,h for h ∈ {Log,CES}.
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(b) Evolution of the Resource Stock S(s)Na,h for h ∈ {Log,CES}.

Figure 4.2: Evolution of the Extraction R(s) and dynamics of the Natural Resource
S(s) for the Naive agent.

under logarithmic and constant elasticity of substitution utilities. Notice that under
the log utility case, all the extraction under different discounts functions collapse
to the same strategy R(s)/S(s) =−γ

Na,log
R , which in turn coincides with the instan-
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taneous discount rate of the exponential function ρ̂ as shown in Proposition 4.3.
One can see its effects on Figure 4.2a, where all different discount functions for
the log case are the same, whereas for the cases with more general utility, each dis-
count function leads to different extraction strategies (note in Proposition 4.4 that

γ
Na,h
R = γ

h
Na ·
(

σh −1
σh

)
− λ

h
Na,θ , for h ∈ {log,ces}). The fact that under different

discount functions θ(s− t), agents extract differently is driven by their different
λ h

Na,θ , i.e., the effective rate of time preference or weighted mean of instantaneous
discount rates (see Proposition 4.4). At first, households with σ < 1 (σ > 1) ex-
tract more (less) in comparison to the log case, while in the future agents extract
less (more) under CES utility with σ < 1 (σ > 1). This behavior is driven by the
“Self-Control problem”(Thaler, 2015, Chapters 11-12), where agents have a huge
desire to consume now, and do not look after their future selves. The corresponding
“effective rate of time preference” for each non-constant discount function is given
in Table 4.4. It can be observed that the higher the constant elasticity of intertem-
poral substitution (CEIS, σ ), the lower the effective rate of time preference (λ h

Na,θ ).
This is intuitive (they represent both sides of the same coin), as an increase in the
level of patience (increase in σ ) means that agents are less impatient (decrease in
λ h

Na,θ ). Generally, it was proved in Proposition 4.5 that agents extract more (less)
under a CES utility with σ < 1 (σ > 1) in comparison to the log utility. These
differences in extractions are appreciated in Figure 4.3, where the discount function
plays a crucial role and it can be immediately seen that agents under CES utility
extract differently if they discount the future differently.

Exponential Tsoukis ConvexExp
CES (σ < 1) 0.02 0.0220253 0.0231754
Log (σ = 1) 0.02 0.02 0.02
CES (σ > 1) 0.02 0.0184177 0.0179438

Table 4.4: Effective Rate of time Preference, λ h
Na,θ for both utilities under different

discount functions.

For CES utility with σ < 1 (σ > 1), one can see that with exponential discount-
ing one extracts less (more) than under Tsoukis discounting, and less (more) under
Tsoukis than under a convex combination of exponentials. Under our specific pa-
rameterized model, for the logarithmic case, agents extract −γ

Na,
R = ρ̂ = 2% of the

resource (see Proposition 4.3), while for agents with σ < 1, they extract more, at
a 3.17%, 3.28%, and 3.35% for the Exponential Discounting, Tsoukis et al. (2017)
and Linear Convex Combination of Exponentials respectively. This shows that for
σ < 1, agents discounting exponentially have a lower extraction rate (3.17%) than
agents with a non-constant discount function (3.28%, and 3.35%). This numerical
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Figure 4.3: Evolution of the Extraction Rate with all different Discount under both
utilities {Log,CES}.

result is a nice representation of Lemma 4.6. Furthermore, one can summarize all
the important growth rates derived in Propositions (4.3) and (4.2) in Table 4.5.

Exponential Tsoukis ConvexExp

CES σ < 1

γ 1.17% 1.08% 1.03%
L∗

F 88.49% 89.15% 89.54%
γR -3.17% -3.28% -3.35%
γN 1.38% 1.30% 1.26%

LOG σ = 1

γ 2.07% = =
L∗

F 81.68% = =
γR -2% = =
γN 2.2% = =

CES σ > 1

γ 2.37% 2.51 % 2.56%
L∗

F 79.36% 78.31 % 77.89%
γR -1.61 % -1.42% -1.35%
γN 2.48% 2.60% 2.65%

Table 4.5: Relevant Growth Rates of the Economy.

Concerning the evolution of pollution, captured by equation (4.107), one needs
to calculate first the initial extraction and initial production under all different dis-
counts to get the initial amount of pollution P(0). A feasible set of parameters that
satisfy Scenarios 4.1, 4.2 and 4.3 is shown in Table 4.1. One can notice that in order
to have the BAU scenario (γP = 0) in Remark (4.2), a specific set of parameters
should be considered. Given µ

θ
2,γP=0, we should find the parameter µ

θ
1,γP=0 that sat-
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isfies such Remark/condition. One can notice that the logarithmic utility (σ = 1), all
µ

θ ,log,σ=1
1,γP=0 collapse to the same number. However, for different levels of the CEIS

different than one (σ ̸= 1) and different discount functions, we have different values
of µ

θ ,ces,σ ̸=1
1,γP=0 .

In Table 4.6 we show the corresponding values of the interesting variables and
the corresponding growth rates of pollution. As before, all the discount cases under
a logarithmic utility collapse to the same solution (in blue). However, under CES
utility, agents behave differently depending on how they discount the future.

It is interesting to see that under non-constant discounting with σ < 1 (σ > 1),
agents start extracting more (less) resource R(0) and producing more (less) Y (0)
which implies higher (lower) pollution levels at first P(0). However, when time
passes by, the non-constant discounting agents (with a general θ(s− t)) extract less
(more) (as they have already extracted a lot (little) in the beginning), and this im-
plies that they are producing less (more) in the future with lower (higher) pollution
levels. This can be clearly seen in Figures 4.2a, 4.4 and 4.5. It is worth mentioning
the previous behavior is driven by the fact that in the medium term non-constant
discounting agents with σ < 1 ( σ > 1) have less (more) resource to extract, which
helps to directly reduce (increase) pollution.

When households have a higher CEIS (higher σ ), they experience higher eco-
nomic growth (and higher growth of the intermediate machines γN , which is the
main driver of economic growth). Furthermore, the higher the CEIS, the less ag-
gressively the resource is harvested. Moreover, if agents have a human behavior (in
Thaler (2015)’s notation) where they procrastinate, with σ < 1 (σ > 1), the labor
allocation to the final sector L∗

F is higher (lower) if they have a general discount
function θ(s− t).

Finally, Figure 4.6 shows various scenarios with the different discount functions.
Large variations in the performance of the economy can be observed, derived from
the behavior of individuals, how patient they are, and how they make inter-temporal
decisions. The best scenario is achieved when agents have a higher constant elas-
ticity of intertemporal substitution. However, if households have CES utility with
σ > 1, the best outcome is obtained when they are time-inconsistent. However, if
σ < 1, exponential and time-consistent agents get higher levels of capital, produc-
tion, varieties of inputs, and consumption.
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CES σ < 1 Log CES σ > 1
γP < 0 γP = 0 γP > 0 γP < 0 γP = 0 γP > 0 γP < 0 γP = 0 γP > 0

Exponential

R(0) 0.0317 0.0317 0.0317 0.02 0.02 0.02 0.0161 0.0161 0.0161
Y (0) 15.579 15.579 15.579 14.638 14.638 14.638 14.262 14.262 14.262
P(0) 0.308 1.020 2.240 0.242 0.993 2.194 0.216 0.988 2.174
γP -1.351% 0% 0.335% -0.587% 0% 0.61% -0.329% 0% 0.703%

Tsoukis

R(0) 0.033 0.033 0.033 0.02 0.02 0.02 0.014 0.014 0.014
Y (0) 15.662 15.662 15.662 14.638 14.638 14.638 14.072 14.072 14.072
P(0) 0.314 1.025 2.244 0.242 0.993 2.194 0.202 0.986 2.164
γP -1.426% 0% 0.308 % -0.587% 0% 0.61% -0.210% 0% 0.745%

ConvexExp

R(0) 0.033 0.033 0.033 0.02 0.02 0.02 0.014 0.014 0.014
Y (0) 15.709 15.709 15.709 14.638 14.638 14.638 14.013 14.013 14.013
P(0) 0.317 1.028 2.246 0.242 0.993 2.194 0.198 0.986 2.161
γP -1.468% 0% 0.293% -0.587% 0% 0.61% -0.175% 0% 0.762%

Table 4.6: Values of initial extraction, production, pollution and growth rate of pollution.
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Figure 4.4: Evolution of pollution when γP < 0 with all different discount functions
under both utilities.
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Figure 4.5: Evolution of pollution when γP > 0 with all different discount functions
under both utilities.

Regarding the analysis of the stability of the steady state, one can focus on the
linearized system (4.95). However, before the linearization of the system, it is worth
noting that the system of equations (4.92), (4.93) and (4.94) form a 3D vector field
(see Section 4.4.3 for why just studying the three differential equations is enough, as
the system is partially recursive). We first show the Exponential-CES case. Later,
we will show the cases for non-constant discount functions and see how we get
different steady states driven by the fact that agents now are time-inconsistent.24

24Remember that for naive agents, the unique time-consistent behavior comes from an exponen-
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Figure 4.6: Evolution of relevant variables on the model under different Discount Func-
tions.

In Figure A.1 shown in Appendix (4.8.13), we show the 3D vector field. It can be
clearly seen that many arrows are pointing in the opposite direction of the steady
state. This is a visual indicator of an unstable equilibrium. However, to appreciate
such behavior, one must analyze the eigenvalues of the Jacobian matrix evaluated at
the steady state. Such eigenvalues confirm the unstable behavior seen in 3D vector
field (see Figure A.1). In Table 4.7 we show different values of the steady state
with different discount and utility functions (different CEIS) and its corresponding
eigenvalues.

Observe that for the log case (σ = 1), all the equilibrium outcomes collapse to
the same steady state and the same eigenvalues. This is driven by the fact that
we are using a particular utility function, i.e., the logarithmic function. Thus, here
the discount function does not matter. However, when we consider a more general
utility function with σ ̸= 1, we depart from the result of all steady states collaps-
ing to just one equilibrium. We now get different equilibria for different discount
functions. Working with a general utility function gives rise to different findings de-
pending on how individuals discount the future. It can be seen that for σ < 1, with
a non-constant discount function θ(s− t) agents have higher levels of production

tial discount. Using a general discount function θ(s− t) generates time-inconsistent behaviors.
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CES (σ < 1) LOG (σ = 1) CES (σ > 1)

Exponential

(Y
K

)∗ 0.271226 0.254167 0.248408( c
K

)∗ 0.259528 0.2335 0.224713
L∗

F 0.884906 0.816667 0.793631(R
S

)∗ 0.0316981 0.02 0.016051
λY/K 0.336876 0.304151 0.292996
λc/K 0.118878 0.114573 0.113257
λL -0.0565277 -0.0572236 -0.0574892

Tsoukis

(Y
K

)∗ 0.272898 0.254167 0.245762( c
K

)∗ 0.262079 0.2335 0.220677
L∗

F 0.891593 0.816667 0.783048(R
S

)∗ 0.0328445 0.2 0.0142369
λY/K 0.339763 0.304151 0.288507
λc/K 0.120001 0.114573 0.111339
λL -0.0568405 -0.0572236 -0.0569323

ConvexExp

(Y
K

)∗ 0.273848 0.254167 0.24497( c
K

)∗ 0.263528 0.2335 0.219468
L∗

F 0.895391 0.816667 0.779879(R
S

)∗ 0.0334955 0.02 0.0136935
λY/K 0.341403 0.304151 0.287163
λc/K 0.120639 0.114573 0.110765
λL -0.0570182 -0.0572236 -0.0567656

Table 4.7: Steady State and eigenvalues under different discounting and values of
Constant Elasticity of Intertemporal Substitution, σ (CEIS).

per capital, consumption per capital, and higher extraction rates (as shown also in
Figure 4.3) in comparison to agents discounting the future exponentially. However,
for higher values of the CEIS with σ > 1, the opposite is true. Focusing now on the
eigenvalues of the system, which show if the system is stable or not, one can observe
that just the eigenvalue associated with the labor allocation to the final producer has
negative (and real) value. The other two eigenvalues associated with output per
capital and consumption per capital are positive. This implies that we obtain a sad-
dle point. For values of σ < 1, |λ σ<1

L,θ | > |λ σ<1
L,exp|, which means that the trajectory

approaches the steady state along the saddle path quicker along the eigenvalue of
a general discount function space. However, for values of σ > 1, time-consistent
agents (those discounting exponentially) reach the steady state faster along the sad-
dle path as |λ σ>1

L,θ |< |λ σ>1
L,exp|. This is normally known as the speed of convergence of

a dynamical system. It can be seen that, simply because agents discount the future
differently and in a non-constant way, we obtain different equilibria in the steady
state.
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In Figure 4.7 we show the 3D vector field with the three steady states, one per
each discount function when households have a CEIS σ < 1. It can be seen that
the steady states of the exponential discounting is far away from that of the two
non-constant discount functions. This is a numerical/graphical manner of realizing
the effect of discounting the future on a non-constant basis. Interestingly, if one
keeps increasing the level of the constant elasticity of intertemporal substitution and
getting closer to one, all the steady states will collapse to the same one as shown in
Table 4.7.

Figure 4.7: 3D Vector Field for Exponential, Tsoukis and Convex combination of
exponential Discounting for σ < 1.

4.6 Sum of Discounted Utilities (Welfare)

In this section, we will focus on the implications of the sum of discounted utilities
of households, that is, those who can behave time-consistently (discounting expo-
nentially, i.e. θ(s−t) = e−ρ̂(s−t)) or time-inconsistently, discounting the future with
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a general discount function θ(s− t). Furthermore, we also study the implication of
having different degrees of elasticities of intertemporal substitution lower, greater
or equal to one. Note that the lower or greater CEIS scenario corresponds to a gen-
eral CES utility, while the case of the CEIS being one is the particular logarithmic
function. The consumer’s discounted utilities for the stationary equilibrium, that is,
along the balanced growth path, will be no more than the value function, i.e., the
discounted sum of the future stream of payoffs along the optimal paths,

W h
θ =

∫
∞

t
θ(s− t)U (c∗t (s),P

∗
t (s)) ds, (4.110)

Using the optimal path of consumption along the BGP, which is in c(s) = c0eγh
θ
·s

and pollution (4.107) for any discount function θ(s− t) and utility h ∈ {log,ces},
and using the strong observational equivalence (4.35),25 one can rewrite the previ-
ous expression as

W ces
θ =

1
ρ̂

[
σ

1−σ
+

ψ

1+b

]
− σ

1−σ
c
− 1−σ

σ

0

∫
∞

t
θ(s− t)e−γces

θ
·( 1−σ

σ )sds

− ψ

(1+b)
P(1+b)

0

∫
∞

t
θ(s− t)e(1+b)·γces

P,θ ·sds, (4.111)

for the general CES case, and

W log
θ

=
1
ρ̂
[ln(c0)−ψ · lnP0]+

[
γ

log
θ

−ψ · γ log
P,θ

]∫ ∞

t
θ(s− t) · s ds, (4.112)

for the logarithmic case. In Appendix 4.8.14 we show the results of the correspond-
ing integrals for different discount functions. One should notice that all the integrals
converge. Obtaining the corresponding closed-form solutions for consumers’ sum
of discounted utilities, one can observe that it leads to big differences depending
on how agents discount the future. In Table 4.8 we show the numerical results of
the sum of discounted utilities for different values of the constant elasticity of in-
tertemporal substitution (σ ) and different discount functions θ(s− t). One can im-
mediately see that the higher level of patience (σ ) the greater the sum of discounted
utilities. It was seen in Table 4.4 that agents with higher CEIS (σ ) had lower levels
of impatience (lower λ h

Na,θ ).26 Therefore, more patient agents can save more today
so they will enjoy a higher consumption tomorrow. This leads to better economic

25Recall that this concept is also referred to as the assumption of identical overall impatience.
26Remember that these were two sides of the same coin. The higher the level of patience (increase

in σ ) means that agents are obviously less impatient (decrease in λ h
Na,θ ).
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performance. This question of whether patient individuals become wealthier has
been recently studied for instance in Epper et al. (2020). As the authors explain
“[w]hy some people are rich while others are poor is of fundamental interest in
social science. Standard savings theory predicts that people who place a larger
weight on future payoffs will be wealthier throughout the life cycle than more impa-
tient people because of differences in savings behavior. Macroeconomic research
suggests that this relationship between time discounting and wealth inequality can
be quantitatively important and help explain why wealth inequality greatly exceeds
income inequality (Krusell and Smith 1998, Quadrini and Ríos-Rull 2015, Carrollet
al. 2017).”

It is therefore interesting to see how individuals have a higher level of well-being
with higher desire to smooth consumption (CEIS). This result is determined by the
fact that with CES utility with constant elasticity of intertemporal substitution of
σ = 0.5, individuals extract much more just in the short-run (see previous sections),
but much less in the middle and long-run. Is has been shown (for instance in Figure
4.2a) that the higher the level of patience (higher σ ), the more conservatively agents
start extracting the natural resource. The economic intuition is that since they are
more patient, they can wait and leave more natural resources for their future selves.
It is clear that for low levels of impatience, agents extract a lot of resources at the
beginning, which implies that they have access to fewer resources in the future.
Additionally, as with more patient agents (σ > 1) the extraction of the resource
is lower, we have also seen that levels of pollution are lower just within the first
few years. In the long-run, however, pollution levels are higher (in all cases, when
pollution has positive, negative or zero growth rates). One should keep in mind that
the channel through which this mechanism is propagated is not direct. A consumer-
specific behavior parameter (σ ) affects the extraction of the resource carried out by
the representative firm of the resource sector. However, this effect is not direct and
comes from the general equilibrium property of the model.

The policy implications of the idea “the more patient you are, the better off you
are” follow interestingly. If a nation is better off when its society has a high desire
to smooth consumption (high CEIS), this leads to higher levels of economic well-
being and living standards. Nonetheless, questions related to how to help society
being more impatient are beyond the scope of this chapter. However, one could
be interested in the policy implications of such results. It has been obvious that
the higher the constant elasticity of intertemporal substitution, the higher sum of
discounted household utilities.

Focusing now on the role of different discount functions (how individuals dis-
count the future), it can be observed that with discount functions other than time-
consistent (exponential), agents have a higher level of discounted utilities (“wel-
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CES (σ < 1) LOG (σ = 1) CES (σ > 1)

Exponential
γP < 0 39.688 < 107.025 < 149.125
γP = 0 39.4791 < 106.599 < 148.925
γP > 0 38.0611 < 106.325 < 148.33

Tsoukis
γP < 0 40.0111 < 120.031 < 197.133
γP = 0 39.798 < 119.586 < 196.931
γP > 0 39.3531 < 119.292 < 196.03

ConvexExp
γP < 0 40.1418 < 125.652 < 215.675
γP = 0 39.9264 < 125.199 < 215.473
γP > 0 39.4771 < 124.897 < 214.492

Table 4.8: Sum of Discounted Utilities under different utility functions, discount
functions θ( j) and pollution environments.

fare”). This may sound paradoxical and counterintuitive. How can having time-
inconsistent preferences lead to a higher sum of discounted utilities? The intuition
is as follows. For values of a CEIS σ < 1, we have seen that capital, final produc-
tion, consumption, and the number of varieties are higher when agents discount the
future exponentially. However, for more patient agents with a CEIS σ > 1, the op-
posite is true, i.e., agents discounting the future exponentially have lower levels of
capital, production, consumption, and the number of varieties. To understand why
the sum of discounted consumer utilities is lower under exponential discounting we
should look at the other variable affecting “welfare”, i.e., pollution. For the case
with σ < 1, the levels of pollution for the exponential discounting are lower at first,
but higher in the long-run. Thus, the total effect in the long-run if agents discount
exponentially will be that they are exposed to larger levels of pollution, and will be
harmed the most. However, for more patient agents with σ > 1, again the opposite
is true, and exponential discounting agents pollute more in the short-run but in the
long-run, they are exposed to lower levels of pollution, suffering less harm. This
argument holds because the period of time in the short term before the situation is
reversed is limited compared to the long term situation. Consequently, for σ < 1 the
harm caused by pollution under exponential discounting effect dominates, while for
σ > 1 the fact that agents can consume more exceeds the harm caused by pollution.

Hence, it is true that exponential agents (time-consistent), have a higher level
of discounted utilities in the short-run, but lower levels in the long-run. This intu-
itive story can be appreciated in Figure 4.8, where for any value of the CEIS (σ ),
time-consistent agents (exponential) have higher “sums of discounted utilities” in
the short-run but lower levels in the long-run. We plot the discounted utility over
time. Thus, the image of the function in a future time τ will be the “welfare” at τ

for today’s agent. Therefore, the sum of discounted consumer utilities will be no
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more than the area (integral) under each curve (see equation 4.110). It can be seen
that the higher the level of patience (σ ), the higher the levels of discounted utilities
at any point in time. One should compare each discount function with themselves.
Thus, Wθ (with σ < 1) < Wθ (with σ > 1). Interestingly, agents discounting expo-
nentially have higher discounted utilities at first but in the long-run, they have lower
levels of discounting utility. Therefore, as the sum of discounted consumer utilities
is defined by the area under the convergent functions, and the exponential instanta-
neous welfare in the future declines dramatically, the sum (integral) will be lower
for exponential agents. This effect is more evident the higher the CEIS (σ ). This is
the intuition behind why agents are “better off” under non-constant discounting.

Exp, σ=1

Exp, σ<1

Exp, σ>1

Tsoukis , σ=1

Tsoukis , σ<1

Tsoukis , σ>1

ConvexExp, σ=1

ConvexExp, σ<1

ConvexExp, σ>1

0 50 100 150 200 250 300 350
Time s0.0

0.2

0.4

0.6

0.8

1.0

1.2

θ(s-t)*U(c*(s),P*(s))
Discounted Utility Streams, γP<0
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Figure 4.8: Stream of Utilities. The sum of discounted consumer utilities is the area
under the curve.

4.7 Conclusions

In this chapter we have analyzed an endogenous growth model with exhaustible
resources where agents have non-constant discounting preferences. Furthermore,
we study the effect of pollution and its dynamic behavior, as well as its detrimental
impact on households’ welfare. Introducing pollution into the utility captures the
damage function observed in classical climate change models, which could be con-
sidered as the deviation of pollution from pre-industrial levels, attributable to the
extra anthropogenic pollution.
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Incorporating this behavioral economics component, where agents exhibit greater
impatience in the short-run but claim to be more patience between decisions con-
cerning the future, yields a diverse array of results that are not observed in the stan-
dard endogenous growth models with exponential discounting. These new results
come from the fact that agents are time-inconsistent, as they discount the future in a
non-constant manner. One obtains a non-canonical Ramsey rule where the “effec-
tive rate of time preference” or “weighted average of the instantaneous rates of time
preferences” λ ces

Na,θ emerges as a generalization of the classical instantaneous dis-
count rate of the exponential discounting ρ̂ . Thus, if agents discount exponentially,
we recover the standard instantaneous discount rate ρ̂ . If agents have logarithmic
utilities, the effective rate of time preference λ

log
Na,θ collapses to the same canoni-

cal instantaneous discount rate ρ̂ . Thus, working with a more general CES utility
function together with a non-constant discount function leads to different results.

We have also shown the characteristics of the balanced growth path and the steady
state properties. Furthermore, due to the general equilibrium property, the extraction
of the exhaustible resource follows a feedback strategy, where a constant proportion
of the available resource is extracted. Moreover, it has been proven that households
with logarithmic utilities influence the production sector to have a lower (higher)
extraction rate in comparison to households with a CES function featuring a CEIS
less (greater) than one, across all distinct discount functions.

Regarding pollution, it has been considered that the extraction of an exhaustible
resource, such as oil or natural gas, together with the final production, generate
pollution. Analyzing the growth rate of such contamination, it has been observed
that agents with CES utilities with a CEIS smaller (greater) than one, coupled with
distinct discount functions, pollute much more (less) in the short term compared to
logarithmic agents possessing a CEIS equal to one. This higher (lower) pollution
levels under log agents in the short-run is derived from a greater (smaller) extraction
of natural resources, since more extraction of an exhaustible resource generates
more pollution. However, if pollution declines over time, it declines faster for agents
with CEIS lower than one. This is translated into less contamination for CES agents
with σ < 1 than with log agents in the long term. Consequently, in the long term,
CES agents with σ < 1 (σ > 1) will suffer less (more) from the harmful effects
of being exposed to these pollutants. This is also true when the levels of pollution
stay constant or increase over time. This last effect has huge consequences for
the well-being of the agents. An economy with less pollution in the future, where
agents “enjoy a cleaner environment”, will benefit the most and will be better off
than those who continue to suffer from high levels of pollution. Therefore, being
less patient has a positive side in the long-run, since there will be fewer resources
to extract, and it will lead to lower levels of pollution.
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We have analyzed the stability of all the different steady states. We show that
having a non-constant discount leads to different equilibrium outcomes. Further-
more, we have seen that the equilibrium is a saddle path. Paradoxically, we find
that agents behaving time-inconsistently are “better off” (higher sum of discounted
utilities) in comparison to time-consistent agents (who discount the future exponen-
tially). In Richard Thaler (2015)’s story, this means that Humans have a higher sum
of discounted utilities than Econs. Moreover, we also show how agents with a small
desire to smooth consumption over time (higher constant elasticity of intertemporal
substitution) lead to a higher level of “welfare”.

It has been shown that how agents discount the future has enormous implications
for how nations develop. Therefore, it is critical to take these types of issues into
account when designing public policies. Future developments include the study of
pollution as in Rubio and Escriche (2001), where the dynamics of such is related to
the production, and emissions are irreversible. Then, the model would not require
the incorporation of an additional state variable. Other extensions would include the
derivation of time-consistent equilibria with a general discount function as in Karp
(2007) and Marín-Solano and Navas (2009). Introducing stochastic movements to
the evolution of the wealth/savings of the agents in the setting of this chapter will
help to study business cycle properties in the short-run. Moreover, if we extend
the framework to one in which we have heterogeneity of agents, that is, each with
stochastic dynamics of their own wealth, we could study Mean Field Games as in
Achdou et al. (2022) or Laibson et al. (2021). This will allow us to see how the
distribution of wealth evolves over time and its implications on inequality when
agents behave like humans.
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4.8 Appendix

4.8.1 Problem of the Representative firm of the Resource Sector

The Hamiltonian of problem (4.1), with the dynamics constraint (4.3) is given by,

H nr = exp
(
−
∫ s

t
r(h)dh

)
PR(s)R(s)+λ (s) [−R(s)] , (A.1)

with the correspondent F.O.C:

∂H nr

∂R(s)
= 0 ⇔ exp

(
−
∫ s

t
r(h)dh

)
PR(s) = λ (s),

λ̇ (s) =−∂H nr

∂S(s)
⇔ λ̇ (s) = 0 ⇔ λ (s) = k1, ∀k1 ∈ R.

Combining both previous equations gives PR(s) = k1 exp(
∫ s

t r(h)dh). In order to
get the growth rate of the prices as in the Hotelling rule, we firsts take natural logs
and then differentiate with respect to time s, giving equation 4.4:

γPR ≡ ṖR(s)
PR(s)

= r(s). (A.2)

4.8.2 Derivation of the optimal consumption rule

Making use of the maximum principle, and following the approach in Strulik
(2015) and Cabo et al. (2015), the first order condition for a maximum and the
co-state variable give:

∂H N

∂ct(s)
!
= 0 ⇐⇒ ct(s) =

[
θ(s− t)

λt(s)

]σ

, (A.3)

λ̇t(s)
!
=−

(
∂H N

∂at(s)

)
⇐⇒ λ̇t(s) =−rt(s)λt(s), (A.4)

with the transversality condition (TVC) lims→∞ λ (s)a(s) = 0. Solving the differen-
tial equation (A.4), we obtain

λt(s) = λt(t)︸︷︷︸
≡λ (t)∈R

exp
{
−
∫ s

t
rt(ξ )dξ

}
. (A.5)

Now, plugging equation (A.5) into the FOC of consumption (A.3) gives,
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ct(s) =
[

θ(s− t)
λt

]σ

exp
[

σ

∫ s

t
rt(ξ )dξ

]
. (A.6)

Inserting equations (A.6) into the budget constraint, and solving the correspond-
ing differential equation for all s ∈ [t,T ), we get:

at(T )−at(t)︸︷︷︸
≡at

e
∫ T

t rt(ξ )dξ =
∫ T

t
[wt(τ)+ pR(τ)∗R(τ)]e

∫ T
τ

rt(ξ )dξ dτ

− 1
(λt)σ

∫ T

t
θ(τ − t)σ exp

{
σ

∫
τ

t
rt(ξ )dτ +

∫ T

τ

rt(ξ )dξ

}
dτ.

(A.7)

Dividing both sides of the equation by e
∫ T

t rt(ξ )dξ , one gets:

at(T )

e
∫ T

t rt(ξ )dξ
= at(t)+

∫ T

t
[wt(τ)+ pR(τ)∗R(τ)]

e
∫ T

τ
rt(ξ )dξ

e
∫ T

t rt(ξ )dξ
dτ

− 1
(λt)σ

∫ T

t
θ(τ − t)σ

exp
{

σ
∫

τ

t rt(ξ )dξ +
∫ T

τ
rt(ξ )dξ

}
exp
{∫ T

t rt(ξ )dξ

} dτ.

(A.8)

Taking the limit when time T →∞, using the TVC lim
T→∞

[
a(T )λte−

∫ T
t rt(ξ )dξ

]
= 0,

and simplifying the exponential terms, one gets,

0 = at +
∫

∞

t
[wt(τ)+ pR(τ)∗R(τ)] · e−

∫
τ

t rt(ξ )dξ dτ

− 1
(λt)σ

·
∫

∞

τ

θ(τ − t)σ · exp
{
−(1−σ)

∫
τ

t
rt(ξ )dξ

}
dτ.

Solving for λt leads to

λt =

[ ∫
∞

t θ(τ − t)σ · exp
{
−(1−σ)

∫
τ

t rt(ξ )dξ
}

dτ

at +
∫

∞

t [wt(τ)+ pR(τ)∗R(τ)] · e−
∫

τ

t rt(ξ )dξ dτ

] 1
σ

. (A.9)

Plugging equation (A.9) into the consumption expression (A.6), we get the fol-
lowing consumption expression,

ct(s)= θ(s−t)σ ·eσ
∫ s

t rt(ξ )dξ ·

(
at +

∫
∞

t [wt(τ)+ pR(τ)∗R(τ)] · exp
{
−
∫

τ

t rt(ξ )dξ
}

dτ∫
∞

t θ(τ − t)σ · exp
{
−(1−σ)

∫
τ

t rt(ξ )dξ
}

dτ

)
.

(A.10)
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As we are interested in the study of the naive agent, this means s = t which helps
with θ(s− t)σ = θ(0)σ = 1σ = 1 to get,27

cN
t (t) =

(
at +

∫
∞

t [wt(τ)+ pR(τ)∗R(τ)] · exp
{
−
∫

τ

t rt(ξ )dξ
}

dτ∫
∞

t θ(τ − t)σ · exp
{
−(1−σ)

∫
τ

t rt(ξ )dξ
}

dτ

)
. (A.11)

Observe that in the numerator, one could make use of the change of variable
τ = s, as time s does not appear and will be the decisions made in the future. This
result is similar to the one obtained in Cabo et al. (2015), but we now consider a
broader income that also comes from the resource sector,

cN
t (t) =

(
at +

∫
∞

t [wt(s)+ pR(s)∗R(s)] · exp{−
∫ s

t rt(ξ )dξ}ds∫
∞

t θ(s− t)σ · exp{−(1−σ)
∫ s

t rt(ξ )dξ}ds

)
. (A.12)

4.8.3 Proof of Lemma 1

Proof. Starting with the definition of λ
log
Na,θ ,

λ
log
Na,θ =

∫
∞

0
ρ( j)

θ( j)∫
∞

0 θ(i)di
d j, as ρ( j) =

[
− θ̇( j)

θ( j)

]
,

=
∫

∞

0

[
− θ̇( j)

θ( j)

]
θ( j)∫

∞

0 θ(i)di
d j, as

∫
∞

0
θ(i)di is not a function of j,

=
1∫

∞

0 θ(i)di

∫
∞

0

[
−dθ( j)

d j

]
d j,

=
1∫

∞

0 θ(i)di

[
−θ( j)

∣∣∣∣∞
0

]
=

1∫
∞

0 θ(i)di
,

Making use of the equivalent present value (4.35) where ρ̂ = [
∫

∞

0 θ( j)d j]−1one
gets

λ
log
Na,θ = ρ̂.

■

27When the Naive agent makes a plan at the beginning t, she does not know that she will “pro-
crastinate” or not follow the plan she had in mind. Thus, when thinking about the optimal path at
time t, she sets the plan, but later on, at s > t she will recalculate, and this new time will again be the
initial time of the planning horizon. This is why we set t = s.
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4.8.4 Proof of Proposition 4.1

Proof. We prove here the case for σ < 1. The study of σ > 1 is analogous. We
will prove that for σ < 1 ⇐⇒ λ ces

Na,θ > ρ̂ . From the definition of λ ces
Na,θ , in 4.42, and

making use of Lemma 1 we can write the former as

λ
ces
Na,θ =

∫
∞

0 ρ( j)θ( j)σ exp{−(1−σ)
∫ s

t rt(ξ )dξ}d j∫
∞

0 θ(i)σ exp{−(1−σ)
∫ s

t rt(ξ )dξ}di
>

∫
∞

0 ρ( j)θ( j)d j∫
∞

0 θ(i)di
= ρ̂

Knowing that the integral on the exponents will be finite, and writing it making
us of the First Mean Value Theorem for definite integrals, where rt : [t,s]→R++ is
a continuous function over the interval [t,s], then there exist an image of rt , r(c) =
r̄ ∈R++ such that t < c < s where

∫ s
t rt(ξ )dξ = r̄ · (s− t) = r̄ · j. Using this, we can

write the previous expression as∫
∞

0 ρ( j)θ( j)σ exp{−(1−σ)r̄ · j}d j∫
∞

0 θ( j)σ exp{−(1−σ)r̄ · j}di
>

∫
∞

0 ρ( j)θ( j)d j∫
∞

0 θ( j)di
.

First of all, one should mention that the integrals of all the previous expressions
do converge. One approach to prove the previous inequality could be to study which
function is bigger and then compare the ratios. As the image of ρ( j) ∈ (0,1), any
function multiplied by this will be smaller than the given function. Therefore, the
function ρ( j)θ( j)σ exp{−(1−σ)r̄ · j} is smaller than θ( j)σ exp{−(1−σ)r̄ · j}.
This means that the integral (area) of the function in the numeration of the LHS is
lower than the integral of the function in the denominator of the LHS. Therefore, the
ratio on the LHS is lower than one. However, the same is true for the RHS, where
the function in the numerator is smaller than the one on the denominator. Thus, the
ratio of the integrals is also lower than one but positive. Since this is not enough
argument to see that the ratio on the LHS is bigger than the ratio on the RHS, we
study which function in the numerator and denominator has the largest distance. If
the distance between two functions is big, then the area of the above function will
be much bigger than the area of the below function.

The distance between the function inside the integral in the numerator on the LHS
and the function inside the integral in the denominator on the LHS is

ρ( j)θ( j)σ exp{−(1−σ)r̄ · j}−θ( j)σ exp{−(1−σ)r̄ · j}=

θ( j)σ exp{−(1−σ)r̄ · j}(ρ( j)−1) .

Furthermore, the distance between the function inside the integral in the numer-
ator on the RHS and the function inside the integral in the denominator on the RHS
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is

ρ( j)θ( j)−θ( j) = θ( j)(ρ( j)−1) .

Therefore, it can be shown that the distance between the two functions on the
LHS is higher than the distance between the two functions on the RHS,

θ( j)σ exp{−(1−σ)r̄ · j}(ρ( j)−1)> θ( j)(ρ( j)−1) .

As the image of ρ( j) ∈ (0,1), it implies that (ρ( j)−1) is negative. Thus, multi-

plying both sides of the inequality by the negative term
1

(ρ( j)−1)
, which changes

the inequality direction, shows that

θ( j)σ exp{−(1−σ)r̄ · j}< θ( j),

which holds for all j. Thus, this shows that the sign of the inequality in the begin-
ning was the correct one. Therefore, the ratio of the areas (integrals) numerator-
denominator on the LHS is higher than the ratio of the areas (integrals) numerator-
denominator on the RHS. One can see that for the case σ > 1, we get the inequality
reversed, as now θ( j)σ exp{−(1−σ)r̄ · j}> θ( j).

■

4.8.5 BGP for the Naive Agent with CES Utility

From the FOC of the intermediate monopolist (4.20) and final production (4.54)
notice that we can write

r = (1−β1 −β2)
2 Y (s)

K(s)
, (A.13)

which will be constant over time. Thus, one can write it in terms of initial time t
or future time s. Consequently, the modified Ramsey rule (4.40) or (4.41), can be
rewritten as

˙cNa,ces(s) = cNa,ces(s) σ

[
(1−β1 −β2)

2 Y (s)
K(s)

−λ
ces
Na,θ

]
. (A.14)

From the definition of the aggregate capital accumulation

K̇(s) =
1

1−β1 −β2
K(s)1−β1−β2 [N(s)LF(s)]

β1 [N(s)R(s)]β2︸ ︷︷ ︸
=Y (s)

−cNa,ces(s), (A.15)
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and from the previous Ramsey rule, we get,

γ
Na,ces
c
K

=
Y (s)
K(s)

[
σ(1−β1 −β2)

2 −1
]
−σλ

ces
Na,θ +

cNa,ces(s)
K(s)

. (A.16)

Noting that the law of motion of the innovation possibilities frontier, γN , is given
by equation (4.27), we can derive a law of motion for the extraction of the natural
resource R(s). Plugging the finial production function (4.54) into (4.55) gives,

(1−β1−β2)γK +(β1+β2)γN +β1γLF −(1−β2)γR = (1−β1−β2)
2 Y (s)

K(s)
. (A.17)

Substituting the law of motion of aggregate capital equation (A.15) and the law
of motion of the innovation possibilities frontier equation (4.27) into the previous
expression (A.17), we get,

(1−β2)γ
Na,ces
R = (1−β1 −β2)(β1 +β2)

Y (s)
K(s)

− (1−β1 −β2)
cNa,ces(s)

K(s)

+η(β1 +β2)(1−LF(s))+β1γLF . (A.18)

Now, in order to get the law of motion of the labor used in the final sector, γLF ,
we proceed as follows. First, from the FOC of the final producer with respect to
labor equation (4.13) and the equilibrium condition from the R&D sector equation
(4.29) leads to

pRD = β1
Y (s)

ηN(s)LF(s)
. (A.19)

Taking logs and differentiating with respect to time one obtains,

γpRD = γY − γN − γLF . (A.20)

Now, plugging the free entry conditions of the representative firm of the Intermediate-
Good Sector (4.25), the FOC of the monopolist ν (4.20), the final production (4.54)
and the law of motion of the innovation possibilities frontier (4.27), into the previ-
ous expression A.20 gives

(1−β1 −β2)
2 Y (s)

K(s)
− π(ν ,s)

pRD(s)
= (1−β1 −β2)γK − (1−β1 −β2)η(1−LF(s))

−(1−β1)γLF +β2γR. (A.21)
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From the FOC of final good producer (4.12), which is the demand for machine
ν ∈ [0,N(s)] and the profits of the monopolist producing input ν , equation (4.21)
we get

π(ν ,s) = (1−β1 −β2)(β1 +β2)
Y (s)
N(s)

. (A.22)

Dividing the previous profits expression by the prices charged by the represen-
tative firm of the R&D sector pRD(s), i.e., price of a patent, equation (A.19) leads
to

π(ν ,s)
pRD(s)

= ηLF(s)
(1−β1 −β2)(β1 +β2)

β1
. (A.23)

Substituting the growth rate of aggregate capital in (A.15) and the previous ex-
pression (A.23) into (A.21) results in

(1−β1)γLF = (1−β1 −β2)(β1 +β2)
Y (s)
K(s)

− (1−β1 −β2)
cNa,ces(s)

K(s)

=−(1−β1 −β2)η(1−LF(s))+β2γR +ηLF(s)
(1−β1 −β2)(β1 +β2)

β1
.

(A.24)

We can now write a system of equations formed by (A.18) and (A.24) that will
define the growth rate of the extraction γR (equation 4.92) and the growth rate of the
amount of labor used to produce the final good γLF (equation 4.93):

γ
Na,ces
R = (β1 +β2)

Y (s)
K(s)

− cNa,ces(s)
K(s)

+ η(1−LNa,ces
F (s))

β2

1−β1−β2
+ηLNa,ces

F (s)(β1 +β2),

(A.25)

γ
Na,ces
LF

= (β1 +β2)
Y (s)
K(s)

− cNa,ces(s)
K(s)

+η(1−LNa,ces
F (s))

[
β2 − (1−β1 −β2)

1−β1 −β2

]

+ηLNa,ces
F (s)

(β1 +β2)(1−β2)

β1
. (A.26)

Finally, in order to get the growth rate of output per capital, γY
K

we proceed as
follows. From the final production (4.54), the law of motion of the aggregate capital
(A.15), the dynamics of the innovation possibilities frontier (4.27), and growth rate
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of the extraction of the natural resources (A.25) and the growth rate of the labor used
in the final good production (A.26), one can derive an expression for γY

K
. Dividing

(4.54) by K(s) taking logs and differentiating with respect to time s gives

γY
K
= (β1 +β2)γN − (β1 +β2)γK +β1γLF +β2γR. (A.27)

Plugging in equations (A.15), (4.27), (A.25) and (A.26 into the previous expres-
sion (A.27), we finally get

γY
K
= (β1 +β2)ηLF(S)− (1−β1 −β2)(β1 +β2)

Y (s)
K(s)

+
β2

1−β1 −β2
η(1−LF(s)).

(A.28)

4.8.6 Properties of the Steady State for the Naive Agent with
CES Utility

In the steady state, taking logs and differentiation with respect to time for the
final production (4.54) gives,

γ
i,h = γ

i,h
N +

β2

β1 +β2
γ

i,h
R , (A.29)

where this expression will be valid for agent i ∈ {Na} with utility h ∈ {ces,}.
Making use of the modified Euler equation (A.14), which gives the growth rate

of consumption and (4.55), i.e., the differences in growth rates between the final
output and the extraction of the resource, gives the growth rate of the extraction of
the natural resource

γ
Na,ces
R = γ

(
σ −1

σ

)
−λ

ces
Na,θ . (A.30)

Plugging in A.30 into the previous A.29 gives

γ
Na,ces =

[
(β1 +β2)γ

Na,ces
N −β2λ

ces
Na,θ

][
σ

β2 +σβ2

]
. (A.31)

Moreover, from the dynamics of the innovation possibilities frontier (4.27), and
noting that LR&D(s) = 1−LF(s), it follows that in the steady state28

γ
Na,ces
N −η =−ηLNa,ces∗

F . (A.32)

28Observe that in the steady state, labor used in the final sector and the R&D sector will be
stationary. This is why we will use the * notation.
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Using now the growth rates of the extraction of the resource (4.92) and the growth
rate of the labor used in the final output production (4.93), together with the fact that
in the steady state γLF = 0, one gets,

γ
Na,ces
R = η(1−LNa,ces∗

F )−ηLNa,ces∗
F

(β1 +β2)(1−β1 −β2)

β1
. (A.33)

Using the previous expression together with A.30 gives the value of the labor
force used in the final sector in the steady state

LNa,ces∗
F =

β1

[
η +λ ces

Na,θ −
(

σ−1
σ

)
γNa,ces

]
η [β1 +(β1 +β2)(1−β1 −β2)]

. (A.34)

Plugging now this expression (A.34) into A.32, leads to the growth rate of the
new intermediate machines,

γ
Na,ces
N = η −

β1

[
η +λ ces

Na,θ −
(

σ−1
σ

)
γNa,ces

]
β1 +(1−β1 −β2)(β1 +β2)

 . (A.35)

Finally, in order to get the growth rate of the economy, we substitute (A.30) and
(A.35) into (A.29), which gives

γ
Na,ces =σ ·

λ ces
Na,θ

{
β 2

1 (1−β2)+β1β2(3−2β2)+(1−β2)β
2
2
}
−η(1−β1 −β2)(β1 +β2)

2

β 2
1 [β1σ +β2(2σ +1)− (σ +1)]+β1β2 [β2(σ +2)−3]−β 2

2 (1−β2)
.

(A.36)

4.8.7 Proof of Proposition 4.3

Proof. One just need to prove that γ
Na,
R = −ρ̂ . From Proposition 4.2, the growth

rate of the extraction of the resource γ
Na,
R is given by equation (4.72). Substituting

the value of the labor force used in the final labor in the steady state equation (4.71)
and simplifying leads to

γ
Na,
R =−λ

log
Na,.

Therefore, all that remains now is to prove that λ
log
Na, = ρ̂ . This has been proved

in Lemma 1. ■
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4.8.8 Proof of Proposition 4.5

Proof. Here we will show the case for σ < 1. The case for σ > 1 is obtained
similarly.

Rlog
Na(s)

Slog
Na (s)

=−γ
Na,log
R︸ ︷︷ ︸
<0︸ ︷︷ ︸

>0

<
Rces

Na(s)
Sces

Na(s)
=−γ

Na,ces
R︸ ︷︷ ︸
<0︸ ︷︷ ︸

>0

,

and using Propositions 4.3 and 4.4,

ρ̂ < λ
ces
Na,θ − γ

ces
Na ·

(
σh −1

σh

)
.

As for σ < 1, ρ̂ < λ ces
Na,θ (see Proposition 4.1),

ρ̂ −λ
ces
Na,θ︸ ︷︷ ︸

<0

<−γ
ces
Na ·

(
σh −1

σh

)
︸ ︷︷ ︸

<0︸ ︷︷ ︸
>0

.

which proofs that the LHS is smaller than the RHS. ■

4.8.9 Proof of Lemma 4.6

Proof. In this proof, one should interpret a general discount function θ(s− t) dif-
ferent than the exponential function. From

RCes,σ<1
Na,Exp (s)

SCes,σ<1
Na (s)

<
RCes,σ<1

Na,θ (s)

SCes,σ<1
Na (s)

,

and using the Markovian strategy Remark (4.2), one can write

−γ
Exp,Ces,σ<1
R <−γ

θ ,Ces,σ<1
R ,

γ
θ ,Ces,σ<1
R < γ

Exp,Ces,σ<1
R .

Using Proposition 4.4 involving the growth rate of the economy γ
Ces
Na,θ , it leads to

γ
Ces,σ<1
Na,θ ·

(
σ −1

σ

)
−λ

Ces,σ<1
Na,θ < γ

Ces,σ<1
Na,Exp ·

(
σ −1

σ

)
−λ

Ces,σ<1
Na,Exp .

Using the fact that when agents have exponential discounting λCes
Na,Exp collapses
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to ρ̂ , we can write

ρ̂ −λ
Ces,σ<1
Na,θ < γ

Ces,σ<1
Na,Exp ·

(
σ −1

σ

)
− γ

Ces,σ<1
Na,θ ·

(
σ −1

σ

)

⇔ ρ̂ −λ
Ces,σ<1
Na,θ <

(
σ −1

σ

)[
γ

Ces,σ<1
Na,Exp − γ

Ces,σ<1
Na,θ

]
.

From (4.70), one can rewrite the growth rate of the economy γCes
Na,θ as γCes

Na,θ =

σ

A0

(
λCes

Na,θ ·B0 −C0

)
, where A0,B0 and C0 are shared positive constant. Thus,

⇔ ρ̂ −λ
Ces,σ<1
Na,θ < (σ −1) · B0

A0

[
λ

Ces,σ<1
Na,Exp −λ

Ces,σ<1
Na,θ

]
.

Using as before λCes
Na,Exp = ρ̂ , one gets

⇔ ρ̂ −λ
Ces,σ<1
Na,θ < (σ −1) · B0

A0

[
ρ̂ −λ

Ces,σ<1
Na,θ

]
.

Using Proposition 4.1 for the case σ < 1, we know that λ
Ces,σ<1
Na,θ > ρ̂ . Thus,

the LHS is negative. As on the RHD one has the negative term
[
ρ̂ −λ

Ces,σ<1
Na,θ

]
multiplied by a the negative (σ −1), one gets a positive RHD. Thus, we have proved
the inequality. The argument follows the same logic for the case of σ > 1 with the
inequality will reverse.

■

4.8.10 Derivation of the growth rate of Extraction over Resource
left

We now derive equation (4.90). From R(s)
S(s) , the time derivative of this quotient is

given by

˙(
R(s)
S(s)

)
≡ d

ds

[
R(s)
S(s)

]
=

Ṙ(s)S(s)−R(s)Ṡ(s)
S(s)2 =

Ṙ(s)
S(s)

− R(s)
S(s)

Ṡ(s)
S(s)

.

From the dynamics of the resource, dividing both sides by S(s) leads to Ṡ(s)
S(s) =

−R(s)
S(s) . Substituting it in the previous expressions gives

d
ds

[
R(s)
S(s)

]
=

˙R(s)
S(s)

+
R(s)
S(s)

R(s)
S(s)

.

Thus, the growth rate of R(s)
S(s) is given by
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γ R
S
≡

d
ds

[
R(s)
S(s)

]
R(s)
S(s)

=
Ṙ(s)
R(s)︸︷︷︸
≡γR

+
R(s)
S(s)

. (A.37)
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4.8.11 The Equilibrium Values of the Steady State

Solving the corresponding system of differential equations (4.91), (4.92), (4.93) and (4.94) gives the steady state solution (with an
asterisk ∗)

( c
K

)∗
=−

(β1 +β2)
(

σ ·λ ces
Na,θ

(
β 3

1 (1−β2)−3β 2
1 (1−β2)

2 +β1(((8−3β2)β2 −8)β2 +2)−β2(β2 −1)3
)
+ησ(β1 +β2)(β1 +β2 −1)3 +η(β1 +β2)(1−β1 −β2)

)
(β1 +β2 −1)2

(
β 3

1 σ +β 2
1 (2β2σ +β2 −σ −1)+β1β2(β2(σ +2)−3)+(β2 −1)β 2

2

) ,

(A.38)

(
R
S

)∗
=

(β1 +β2)
[
λ ces

Na,θ σ
(
β 2

1 −2β1(1−β2)− (1−β2)β2
]
+ησ(1−β1 −β2)(β1 +β2)−η(1−β1 −β2)(β1 +β2)

)
β 3

1 σ +β 2
1 [β2(1+2σ)− (1+σ)]+β1β2(β2(σ +2)−3)− (1−β2)β

2
2

, (A.39)

(LF)
∗ =−

β1

[
β1(η +λ ces

Na,θ ·σ)−β2η(σ −2)+β2λ ces
Na,θ ·σ

]
η
(
β 3

1 σ +β 2
1 [β2(1+2σ)− (1+σ)]+β1β2(β2(σ +2)−3)− (1−β2)β

2
2
) , (A.40)

(
Y
K

)∗
=

β1λ ces
Na,θ ·σ

(
2β1β2 − (1−β1)β1 +β 2

2
)
−η(1−β1 −β2)(β1 +β2)

2

(β1 +β2 −1)2
(
β 3

1 σ +β 2
1 [β2(1+2σ)− (1+σ)]+β1β2(β2(σ +2)−3)− (1−β2)β

2
2
) . (A.41)
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4.8.12 The Jacobian matrix of the dynamical system

The Jacobian matrix of the dynamical system is given by

J (.)=



−
(Y

K

)∗
(1−β1 −β2)(β1 +β2) 0

(
β1 +β2 − β2

1−β1−β2

)
η
(Y

K

)∗
(

cces
Na
K

)∗ [
σ(1−β1 −β2)

2 −1
] (

cces
Na
K

)∗
0

L∗
F(β1 +β2) −L∗

F ηL∗
F

(
(1−β2)(β1+β2)

β1
− β2

1−β1−β2
+1
)


(A.42)

In order to study the stability of the system, one should look at the behavior of the
Jacobian matrix analyzed at the equilibrium points. However, if one tries to plug
in all the equilibrium values (A.38- A.41) in the former matrix it gets extremely
demanding. This is why we proceed and study the sign of the eigenvalues of the
matrix numerically.29

4.8.13 3D Vector Field

Here we show the three dimensional vector field of the system of three differential
equations (4.91), (4.93) and (4.94).

In the following link, we have a video of the 3D vector field rotating, so the 3D
aspect of the field is much appreciated, https://drive.google.com/open?id=
1EthR72_Yvz--4o3Yi5tcYP7OxIeVPiMp&authuser=carbas15540gmail.com&usp=
drive_fs

4.8.14 Closed form expressions of consumer welfare

The expressions for the welfare under different discount functions θ(s − t) is
given by (4.111) for the general CES utility function and by (4.112) for the partic-
ular logarithmic case. One should notice that all the integrals converge. We now
show the closed-form expression of the welfare for the different discounts and dif-
ferent utility functions. We start with the log case under exponential discounting,
and with the condition {ρ̂ ≥ 0} for the integral to converge, we have

W log
exp =

1
ρ̂
[ln(c0)−ψ · lnP0]+

[
γ

log
exp −ψ · γ log

P,Exp

](1+ ρ̂

ρ̂2

)
.

The log consumer welfare under Tsoukis discounting with {δ ≥ 0} ∧ {ρ > 0}
gives

29However, theoretically one could get the eigenvalues algebraically, but it will require a few
pages of writing per eigenvalue, which we avoid for obvious practical reasons.
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Figure A.1: 3D Vector Field under Exponential Discounting

W log
T s =

1
ρ̂
[ln(c0)−ψ · lnP0]+

[
γ

log
T s −ψ · γ log

P,T s

]

× δ
− ϕ

δ
−3

ρ2Γ
(

ϕ

δ

) {(2δ −ϕ)Γ
(

ϕ

δ
−2
)[

ρ
2
δ

ϕ/δ +δeρ/δ
ρ

ϕ/δ (ρ +ϕ −δ )Γ
(

2− ϕ

δ

)

−δeρ/δ
ρ

ϕ/δ (ρ +ϕ −δ )Γ
(

2− ϕ

δ
,
ρ

δ

)]

−πδ
2
ρ

ϕ

δ e
ρ

δ (ρ +ϕ −δ )csc
(

πϕ

δ

)

+δ
2teρ/δ

ρ
δ+ϕ

δ

[
(ϕ −δ )Γ

(
ϕ

δ
−1
)

Γ

(
1− ϕ

δ
,
ρ

δ

)

+πδ csc
(

πϕ

δ

)
+(δ −ϕ)Γ

(
ϕ

δ
−1
)

Γ

(
1− ϕ

δ

)]}
.

The consumer welfare for log utility under the convex combination of two expo-
nentials with {ρ1 > 0}∧{ρ2 > 0} is,
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W log
ConExp =

1
ρ̂
[ln(c0)−ψ · lnP0]

+
[
γ

log
ConExp −ψ · γ log

P,ConExp

]
·
[

z
ρ2

1
+

(1− z)(1+ρ2 · t)
ρ2

2
+

z
ρ1

t
]
.

We now focus on the general CES utility function. Studying the exponential
discount function (time-consistent), with −γces

exp ·
(1−σ

σ

)
< ρ̂ for the first integral

term to converge and with the condition (1+ b) · γces
P,exp < ρ̂ for the second integral

involving the pollution growth rate we get

W ces
exp =

1
ρ̂

(
σ

1−σ
+

ψ

1+b

)
− σ

1−σ
c
−( 1−σ

σ )
0

[
σe(

1−σ

σ )·γces
exp·t

(1−σ)γces
exp +σρ̂

]

+ ψ
P(1+b)

0
1+b

exp
{
(1+b) · γces

P,exp · t
}

(1+b) · γces
P,exp − ρ̂

 .
For the Tsoukis discount function with the condition {δ ≥ 0}∧

{
−γces

T s
(1−σ

σ

)
< ρ

}
for the first integral and {δ ≥ 0}∧

{
(1+b) · γces

P,T s < ρ

}
for the second integral, we

get

W ces
T s =

1
ρ̂

(
σ

1−σ
+

ψ

1+b

)

− σ

1−σ
c
−( 1−σ

σ )
0

σδ
− ϕ

δ

[
γces

T s ·
(1−σ

σ

)
+ρ
]ϕ/δ exp

{
ρ+

γces
T s ·(1−σ)(1−δ t)

σ

δ

}
Γ

(
1− ϕ

δ
,
(1−σ)·γces

T s +ρ

δσ

)
γces

T s (1−σ)+σρ


−ψ

P(1+b)
0

1+b

[
δ
− ϕ

δ

[
ρ − (1+b)γces

P,T s
] ϕ

δ
−1 e

(1+b)·γces
P,T s·(δ t−1)+ρ

δ Γ

(
1− ϕ

δ
,
ρ − (1+b) · γces

P,T s

δ

)]
.

For the linear convex combination of exponentials, with the conditions{
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−ψ
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0
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]
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5 Concluding remarks

The research presented in this doctoral thesis has explored the multifaceted re-
lationships between dynamic games, environmental economics, economic growth,
and behavioral economics. It has highlighted the important role these fields play
in understanding the pressing challenges of our time, such as resource depletion,
economic growth and its environmental impacts, adaptation to more efficient tech-
nologies, and pollution-related issues. By adopting an interdisciplinary approach
and incorporating insights from behavioral economics, we have demonstrated the
importance of addressing time-inconsistencies, status concerns, and regime shifts,
paving the way for trying to get a more comprehensive and nuanced understanding
of the strategic interactions among economic agents. This thesis has not only at-
tempted to lay a foundation for future research, but has also sought to highlight the
importance of taking human behavior into account in the development of effective
and sustainable economic policies. Our findings emphasize the transformative po-
tential of integrating behavioral components into economic models, seeking to pro-
vide a more realistic representation of the decision-making processes and capturing
the essence of why this research may be of paramount importance to policymak-
ers, stakeholders, and researchers alike. In this final chapter, we highlight the key
findings and contributions of our research, discuss their potential implications for
policymakers and stakeholders, and offer suggestions for future research avenues.

5.1 Key Findings and Contributions

The following key findings and contributions have emerged from our research:
Optimal switching and time-inconsistency: Our analysis of the optimal switch-

ing problem in Chapter 2 demonstrated the importance of considering time-inconsis-
tency in decision-making processes. By accounting for agents with different degrees
of sophistication, we were able to derive conditions for the optimal switching time
and shed light on the consequences of time-inconsistency. Our theorems were ap-
plied to cases involving natural resource management and technology adoption, but
the potential applications of these technical tools extend far beyond these contexts.
Optimal switching models offer a diverse array of applications across numerous do-
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mains, helping decision-makers identify the ideal conditions and moments for tran-
sitioning between different processes or policies. For instance, manufacturing com-
panies can apply optimal switching to determine the best time to upgrade produc-
tion technologies or switch production methods, ensuring they remain competitive
while maximizing profits. In environmental economics, optimal switching mod-
els can inform the adoption of eco-friendly technologies that boost efficiency and
reduce emissions. These models also have intriguing applications in international
economics, such as guiding countries’ decisions on joining free trade agreements
or climate change treaties. Furthermore, macroeconomic contexts like adopting a
new currency and giving up control over monetary policy (e.g., European countries
transitioning to the Euro) can also benefit from optimal switching analysis. Health
economics is another field that can leverage optimal switching, with applications
such as deciding when to quit smoking or begin a fitness lifestyle. Additionally,
transport economics can employ optimal switching models to inform decisions re-
garding the adoption of more efficient, albeit costly, electric vehicles. All of the
problems above have a transversal idea: incurring a cost (psychological or finan-
cial) right now, in anticipation of potentially improved future outcomes.

Therefore, recognizing the impact of time-inconsistency on decision-making pro-
cesses can help policymakers design more effective policies and interventions. By
considering the evolving preferences of agents and their potential deviations from
long-term goals, policymakers can develop strategies that better align short-term
incentives with long-term objectives.

Status concerns: In Chapter 3, we studied the strategic behavior of first symmet-
ric players, and subsequently heterogeneous agents, in a dynamic game involving
the extraction of renewable resources. Our examination of autarky and free trade
scenarios revealed the profound impact of status concerns on resource exploitation,
and its welfare implications. The insights gleaned from our analysis may have far-
reaching implications for a diverse range of contexts, such as environmental poli-
cies, and international trade. In environmental policies, understanding the role of
status concerns can lead to more sustainable resource extraction practices, improve
our understanding of emissions by different actors, and facilitate the transition to
green technologies. This understanding has the potential to help policymakers de-
sign better conservation strategies that account for the strategic behavior of compet-
ing agents. In international trade, addressing status concerns can help reduce trade
imbalances and foster more equitable trading relationships between countries. In
light of the Sustainable Development Goals (SDGs) driven by the United Nations,
incorporating the role of status concerns in the analysis of renewable resource man-
agement and trade policies can provide valuable insights into the complex interplay
between economic incentives, competition, and sustainability.
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Consequently, understanding the role of status concerns in economic behavior
can assist policymakers in designing policies that address social and economic in-
equalities. By recognizing the strategic behavior driven by status concerns, poli-
cymakers can create targeted interventions that reduce the negative consequences
of status-seeking behaviors and promote economic prosperity and environmental
sustainability.

Endogenous growth and human behavior: In Chapter 4, we explored the impli-
cations of time-inconsistency on an endogenous growth model with non-renewable
resources and pollution. By incorporating human behaviors such as procrastination,
we found that agents with time-inconsistent preferences could achieve higher lev-
els of well-being than time-consistent agents under the observational equivalence
principle. This result has tried to contribute to the ongoing debate in behavioral
macroeconomics and offered valuable insights into the social implications of time-
inconsistency. Specifically, we show that time-inconsistent agents with a constant
elasticity of intertemporal substitution (CEIS) bigger than one have higher levels
of economic growth. However, if households have a CEIS lower than one, the
economy with time-consistent decision-makers has higher growth rates. Counterin-
tuitively, we find that for any CEIS level, agents behaving time-inconsistently have
higher discounted utilities than time-consistent agents. This gap becomes more sig-
nificant as the CEIS level increases.

This doctoral thesis highlights the importance of incorporating psychological fac-
tors such as status concern, procrastination and time-inconsistency into economic
models. By considering those factors that influence decision-making, we can better
understand the implications of such behaviors on economic outcomes, improve our
ability to make informed policy decisions, design more effective interventions, and
better promote economic growth, social equity, environmental sustainability, and
societal well-being.

The combination of dynamic games, environmental economics, and behavioral
economics in our research allowed us to better understand the complex issues we
investigated. By integrating these fields, we have tried to offer a more nuanced anal-
ysis of the strategic interactions among economic agents, as well as the implications
of human behavior on economic growth and environmental sustainability.
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5.2 Future Research Directions

Our interdisciplinary research has delved into the intersections of dynamic games,
environmental economics, behavioral economics, and economic growth. However,
as with any research, there are several potential avenues for future inquiry that can
further enhance our understanding of these fields.

Expanding the analysis of status concerns: Future research could examine the
role of status concerns in a broader range of economic contexts, such as agents
deciding wealth accumulation and comparing with other agents in the macroecon-
omy, or agents comparing with their peers the quantity and quality of education
they acquire, thus having relevance in contexts in labor markets and the study of
endogenous growth models. Another potential application is the systemic competi-
tion and race in indispensable investment to develop new ideas and technology that
keeps geopolitical powers in the lead and try to overtake their systemic rival. This
could provide additional insights into the consequences of status-seeking behaviors
and inform the design of more effective policies to address social and economic
inequalities.

Studying the interplay between time-inconsistency and status concerns: In-
vestigating the combined effects of time-inconsistency and status concerns on eco-
nomic behavior and strategic interactions would provide a more comprehensive un-
derstanding of the complex dynamics at play in economic systems. This research
could inform the development of policies that simultaneously address both time-
inconsistency and status concerns, thereby promoting more sustainable and equi-
table outcomes. This research could also shed light on the underlying mechanisms
driving behavior in various contexts, such as financial decision-making or the adop-
tion of sustainable practices. By considering the ways in which individuals are
influenced by their desire to keep up with others and their tendency towards time-
inconsistency, we can gain a more nuanced understanding of how and why saving
decisions are made. This knowledge can, in turn, inform the development of poli-
cies that promote greater financial stability and equal opportunities, by considering
the complex interplay of individual behavior, social norms, and economic outcomes.
Therefore, investigating the role of status concerns and time-inconsistency in sav-
ing decisions could represent an interesting area of research for those seeking to
understand and address economic inequalities in today’s societies.

Incorporating additional behavioral insights: Building on our interdisciplinary
approach, future research could integrate further insights from behavioral economics,
such as loss aversion, bounded rationality, or social preferences, into the analysis
of dynamic games and environmental economics. This would offer a more com-
plete picture of the psychological factors influencing economic behavior and could
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inform the design of policies that better account for human decision-making pro-
cesses.

Another promising area for future research is the study of Mean Field Games
with status concerns, which explores the implications of wealth evolution among
agents in an economy. By examining the interplay between status concerns and
wealth dynamics, this research could deepen our understanding of the dynamics of
inequality and inform the design of effective policies to mitigate its negative effects
in models with heterogeneous agents. Additionally, the development of climate
change games with climate coalitions, in conjunction with international trade mod-
els, represents another area of study that I plan to pursue during my postdoctoral
research at KU Leuven. The incorporation of political economy aspects into these
frameworks could contribute to our understanding of the choices made by hetero-
geneous countries in response to climate change, and may subsequently guide the
development of more effective climate policies.

In conclusion, our research has tried to contribute to the understanding of the
complex challenges faced by our world today, through the integration of dynamic
games, environmental economics, economic growth, and behavioral economics. By
building on these findings and exploring the suggested avenues for future research,
we can continue to advance our knowledge of the strategic interactions among eco-
nomic agents and the implications for policy design, ultimately promoting a more
sustainable and equitable future.

Finally, it is important to bear in mind that this PhD thesis is merely the beginning
of a research career and lays the foundation and seeds for future ideas. I hope that
my contributions can help answer the questions of the young student who witnessed
the evolution and economic consequences of the 2008 crisis, and sparked an interest
in the study of economics, without losing sight of the big questions and challenges
that humanity will face in the coming decades.
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