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Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Catalonia, Spain.

Advisor: Cristiano Germani†

Abstract: This work shows the possibility that the information loss paradox might be solved
when the higher order of the steepest descent expansion in the gravity path integral is taken into
account. The decaying behaviour of the correlation functions, which are the main signal of this
information paradox, is replaced by a linear growing at large Lorentzian times, which is a signal of
an information recovery. This has been shown in the 2D Jackiw-Teitelboim gravity.

I. INTRODUCTION

In 1974 Stephen Hawking found that Black Holes be-
have as a dissipative system so they evaporate in thermal
black body radiation.
This radiation only depends on the BH’s mass (consid-
ering uncharged and not rotating BH), and it is inde-
pendent of its initial configuration. If one considers the
complete evaporation of the BH through Hawking ra-
diation, it leads to the Information Paradox. This final
state, when the entire BH is evaporated, would only have
information about the total initial mass. Several states
have the same mass, so there are several compatible con-
figurations which could evolve into the final scenario we
are considering, which means that the complete infor-
mation about the BH before the evaporation would be
irretrievable. This clearly violates the quantum principle
asserting that information persists from the initial state
to the final. One way to see this is to compute correla-
tion functions of test fields on a BH spacetime. The main
characteristic of the Information Paradox is an exponen-
tial decay with time of those correlation functions.
We want to show a possible procedure which solves the
Information Paradox in 2D gravity, suggesting it could
be solved similarly in 4D gravity.
To achieve this, we will use the path integral formalism
to compute the correlation function at next to leading
order in the saddle point approximation and analyse the
behaviour obtained.
What we expect to find is an exponential decay at lead-
ing order and at next to leading order a manifestation of
the emergence of the information.
All this work has been done in the Jackiw-Teitelboim
gravity, a two dimensional dilaton gravity.
JT gravity is interesting because it captures some essen-
tial aspects of gravitational dynamics, within a simplified
setting. The analysis of gravitational properties in 2D
systems can be helpful in studying 4D features.
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II. PATH INTEGRAL FORMALISM

The path integral formalism is a mathematical formu-
lation based on functional methods which can be a pow-
erful tool to describe quantum systems and their proper-
ties.
Instead of describing the systems’ evolution by wave func-
tions, the path integral provides a different approach, in-
tegrating all possible paths that a system can take.
The object we will like to consider is the correlation func-
tion of the fields ϕ,

⟨ϕ(x′)ϕ(x)⟩ = N

∫
Dϕ ϕ(x′) ϕ(x) e iℏS[ϕ]. (1)

The normalization constant, N, is computed as

N =

(∫
Dϕ eiS[ϕ]

)−1

.

This constant’s purpose is to cancel the vacuum contri-
bution (which we know is an ill-defined object) to the
correlator.
To evaluate this integral we will first represent the field
values by discrete Fourier modes [9]

ϕ(x) =
∑
n

e−ikn·xϕ(kn).

And then, we will divide the continuous time interval
into short time slices and decompose the paths into
classical paths (which satisfies the boundary conditions,
ϕcl(x) = ϕi and ϕcl(x

′) = ϕf ) and a fluctuating part
(which vanishes at the boundaries), ϕ(x) = ϕcl(x)+ξ(x).
Doing this decomposition, the action can be expressed as
a sum of a classical and a fluctuating action up to second
order in the field.

S = Scl −
1

2

∫ x′

x

dx ξ

(
m
d2

dx2
+ V ′′(ϕcl)

)
ξ.

The first contribution is easy to evaluate. To compute the
contributions of this fluctuations we will expand them in
Fourier series, ξ(x) =

∑∞
n=1 anξn(x).

Where ξn(x), the eigenfunctions, must obey(
d2

ds2
+ V ′′(ϕcl)

)
ξn(x) = λnξn(x), (2)
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and λn are the eigenvalues.
With this decomposition, the correlation function takes
the form [10]

⟨ϕ(x′)ϕ(x)⟩ = N eiScl
∫

d4k

(2π)4
e−ik(x−x

′)

∫ ( ∞∏
n

dan

)
e−

−im
2

∑∞
n λna

2
n .

When we substitute the corresponding action and deter-
mine the eigenvalues of ξn this integral will be Gaussian
and easy to compute.
In curved spacetimes, the expression for the correlator is
slightly different. Aside from the contribution of the field
itself, we also have to consider the contribution from the
metric field,

⟨ϕ(x′)ϕ(x)⟩ = N

∫
Dϕ Dgµν ϕ(x′) ϕ(x) eiS[ϕ,g], (3)

here S denotes the scalar-gravity system’s action and N
is the normalization constant which is determined by

N =

(∫
Dϕ Dgµν eiS[ϕ,g]

)−1

.

For our study we will consider real scalar fields, specifi-
cally massless fields.

III. SADDLE POINT APPROXIMATION

Starting from the two point function expression (3),
the saddle point approximation can be used in the grav-
itational part of the action.
Suppose we want to evaluate an integral like

I(α) =

∫ ∞

−∞
dx g(x) eiαf(x),

in the limit of large α. Assume that x0 is the dominating
stationary point of f(x), expanding this function around
x0 and evaluating the test function g(x) at x0, we obtain

I(α) ≈ g(x0) e
iαf(x0)

∫ ∞

−∞
dx e

i
2αf

′′(x0)(x−x0)
2

,

we have neglected higher orders of the Taylor series. This
integral is Gaussian and

I(α) ≈

√
2π

|f ′′(x0)|
g(x0) e

iαf(x0)+i
π
4 sgn(f ′′(x0)).

Returning to the two point function, the saddle point
of the gravitational action, when we decoupled ϕ (we
consider ϕ as a test field), is the one that makes δSgrav =

0. This defines the semiclassical approximation [2]. So
the correlation function can be expressed as

⟨ϕ(x′)ϕ(x)⟩ ≃ N̄

∫
Dϕ Dgµν ϕ(x′) ϕ(x) eiS̄[ϕ,ḡ], (4)

where N̄ is the new normalization constant (computed
like the other one), S̄ is the action evaluated in the sad-
dle point metric, ḡµν .
The correlation function in the surroundings of a BH
with spherical symmetry can be computed considering

the metric ds2 = −f(r) dt2 + dr2

f(r) + r2dΩ2
2, the point

r0, which satisfies f(r0) = 0, indicates the horizon of the
BH.
Expanding this metric around the horizon, the Rindler

metric is obtained ds2 = −
(

2π
β

)2
x2dt2 + dx2 + dl22 with

x2 = 4
f ′(r0)

(r − r0), β ≡ 4π
f ′(r0)

and dl22 = r20dΩ
2
2.

Before continuing, let’s do some definitions:
The Rindler space is a Minkowski space adapted to an
accelerated observer.
The constant β is known as the inverse of the Bekenstein-
Hawking temperature which is the temperature associ-
ated to the Hawking radiation.
Following [3], the correlation function is computed by

rescaling the field ϕ̂ = x2ϕ , expanding in Fourier-Bessel

modes as ϕ̂(x, τ) =
∑
n,w ψw(x)e

−i2πnτ with

ψw(x) =

√
2w sinh (πw)

(2π)3/2π
epil

i

x Kiw(px),

where K is a Bessel function of second kind. Around the
horizon we can do a Wick rotation such that iS −→ −SE
[11] with SE =

∑
n,w = SE(n,w), and

SE = 4π2(n2 + w2) c2n,w.

Once we reached this point, the correlation function is
simply a product of Gaussian integrals. Evaluating at
coincident spatial points and large Lorentzian times (t′−
t≫ β):

⟨ϕ(t′, x)ϕ(t, x)⟩ t′−t−→∞−−−−−−−−→ e−
2π
β (t′−t). (5)

This exponential decay is the essence of the information
paradox.

IV. A 2D APPROACH: JT GRAVITY

When considering the leading order in the saddle point
approximation, the BH correlator decays exponentially.
Now, we want to suggest that the information encoded
in the correlation function starts to manifest when the
dominant term in the expansion of the gravitational path
integral, obtained through the steepest descent method,
becomes comparable to the next term in the expansion.
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In order to support this, we will consider the 2D Jackiw-
Teitelboim gravity. The reason to work with a 2D system
is that this allows us to understand many properties and
behaviour of gravity, but with a simplified point of view,
which with a 4D theory can result in a challenging and
complex work.
The Jackiw-Teitelboim gravity consists of a dilaton field
coupled to gravity in one spatial and one time dimension.
The JT gravity has the following action:

SJT =
1

16πG

[∫
d2x Φ

√
−g (R+ 2) + 2

∫
bdy

Φb K

]
,

(6)
where Φ is the dilaton field, and the second integral is
the Gibbons–Hawking term multiplied by Φb (the value
of the dilaton at the boundary). The dilaton’s role is
that of a Lagrange multiplier which fixes the metric to
be locally AdS2.
The BH metric we are considering, which is also a

solution of δS = 0, is ds2 = −4(r2 − π2

β2 ) dt̄
2 + dr2

r2−π2

β2

and the connection with the dilaton is made through

Φ2 = 1 + r. The points satisfying r = ±π2

β2 describe the

horizons of two copies of BH. By writing this metric in a
conformal form (with which we are going to work) and
rotating to Euclidean time, tE = i 2πβ t, it is obtained

ds2E =
4π2

β2

dt2E + dz2

sinh2 2π
β z

. (7)

We define, in Poincaré coordinates, the boundary as a
closed curve, (f(τ), ζ(τ)) with τ as the boundary time.
The proper length of the boundary curve is determined

by 1
ε2 = f ′(τ)2+ζ′(τ)2

ζ(τ)2 . [5]

We can approximate the JT action into a Schwarzian
one at leading order. Using the fact that we are in AdS2
space (imposed by the Φ equations of motion), the first
term in (6) vanishes and the action is reduced to the
boundary term. [5]

SJT ∼ 1

8πG

∫
dt

ϵ

Φr(t)

ϵ
K,

here the boundary value for the dilaton is Φb =
Φr
ϵ and

Φr the renormalized value of the dilaton, finite when
ϵ −→ 0. The extrinsic curvature, K, is related to the
Schwarzian derivative as K = 1 + ϵ2Sch(f, τ).
Doing the Wick rotation once more and substituting the
value of the extrinsic curvature, we get

SJT −→ i

2g2

∫
dτ Sch(f, τ), (8)

we have defined a new constant g2 = 4πG
ϕr

≪ 1 and

Sch(f, τ) = −1

2

f ′′2

f ′2
+

(
f ′′

f ′

)′

.

Varying the action, δSJT
δf , one finds a saddle point (a

periodic solution), f = tan ( τ2 ). With this solution the
bulk metric [6] can be rewritten as

ds2 =
f ′(u)f ′(v)

(f(u)− f(v))2
dudv, (9)

where u, v are the bulk Euclidean coordinates defined as
u = i 2πβ (t + z) and v = i 2πβ (t − z). Using the periodic

solution of f , we recover (7), the BH conformal metric.
The two point function we’d like to solve is

⟨ϕ(t′, z)ϕ(t, z)⟩ = N

∫
DϕDf ϕ(t′, z) ϕ(t, z) eiSJT eiSϕ[ϕ,f ],

where the Sϕ[ϕ, f ] refers to the massless scalar field ac-
tion.
The procedure will be to start by doing the path integral
of Φ, which will fix the metric gµν to be AdS2, and note
that AdS2 has different time reparametrizations that are
inequivalent due to the existence of a boundary. Then,
the integrals in the fields ϕ correspond to the AdS2 cor-
relators [6]. Finally, we will have to integrate over all
reparametrizations defined by f .
The result of all of this is

⟨ϕ(t′, z)ϕ(t, z)⟩ = −N
∫ u

v

dτ1

∫ u′

v′
dτ2

∫
Df f ′(τ1)f

′(τ2)

(f(τ1))− f(τ2))2
e
− 1

2g2

∫
du Sch(f,u)

. (10)

To evaluate the Schwarzian integral we have to define
two new variables, ψ(u) a bosonic variable and η(u) a

(Majorana) fermionic one, the latter is defined η = dψ
ψ′ ,

following the discussion of [4] about the measure of the
disk, which we won’t discuss here, we find the final ex-
pression we will use to compute the correlation function
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⟨ϕ(t′, z)ϕ(t, z)⟩ = −N
∫ u

v

dτ1

∫ u′

v′
dτ2

∫
DψDη
SL(2,R)

f ′(τ1)f
′(τ2)

(f(τ1))− f(τ2))2
e
− 1

2g2

∫
du

(
ψ′′2

ψ′2 −ψ′2+g2 η
′′η′

ψ′2 −g2η′η
)
. (11)

To calculate the bulk correlator, we will use the
steepest descent expansion up to g2 order.

V. CORRELATION FUNCTION WITH THE
STEEPEST DESCENT APPROXIMATION

As we already mentioned, we will compute the corre-
lation function, proposing the saddle ψ(τ) = τ and then
we will define the expansion ψ(τ) = τ + gγ(τ).
What we will find is an exponentially decay at leading
order in g and then at next to leading order, a linear
growth.[4]
At zeroth order in the expansion of (11), we take ψ(τ) =
τ , which is, in fact, the saddle point.

At this order, the correlator is

⟨ϕ(t′, z)ϕ(t, z)⟩ = −
∫ u

v

dτ1

∫ u′

v′
dτ2

e
− π
βg2

2− 2 cos (τ1 − τ2)
,

(12)
integrating and then applying the large Lorentzian times
limit, we obtain the exponential decay typical of the in-
formation paradox

⟨ϕ(t′, z)ϕ(t, z)⟩
2π
β ∆t−→∞

−−−−−−−−→
(
cosh

4πz

β
− 1

)
e−

2π
β ∆t,

(13)
where we have defined ∆t ≡ (t′ − t) > 0.
Doing the same procedure and expanding up to g2 and
defining G(∆t, z) ≡ Re(⟨ϕ(t′, z)ϕ(t, z)⟩) we find

G(∆t, z) = ⟨ϕ(t′, z)ϕ(t, z)⟩|g=0 −
g2

8

∫ u

v

dτ1

∫ u′

v′
dτ2 csc

(
τ1 − τ2

2

)4

·
((

⟨γ(τ1)2⟩+ ⟨γ(τ2)2⟩
) (

1− 1

2
cos (τ1 − τ2)

)
−

− sin (τ1 − τ2) (⟨γ(τ1)γ′(τ1)⟩+ ⟨γ(τ2)γ′(τ2)⟩+ ⟨γ(τ1)γ′(τ2)⟩+ ⟨γ(τ2)γ′(τ1)⟩)

+ ⟨γ′(τ1)γ′(τ2)⟩ (1− cos (τ1 − τ2))− ⟨γ(τ1)γ(τ2)⟩ (cos (τ1 − τ2) + 2) +O(γ4)

)
.

(14)

The first correlation function ⟨γ(τ1)γ(τ2)⟩ is computed
by expanding the Schwarzian action up to second order
as mentioned before ψ(τ) = τ + gγ(τ).
Specifically, if

I ≡ − 1

2g2

∫
du Sch(f, u),

then

I = − π

βg2
− 1

2g2

∫ 2π
β

0

du g2(γ′′2−γ′2+η′′η′−η′η). (15)

As already mentioned in previous sections, to calculate
the correlators one has to expand in Fourier modes of
the field. In particular, γ =

∑
n e

−inτkn ([5],[7]) and
then the integral is Gaussian

⟨γ(τ1)γ(τ2)⟩ =
1

2π

∑
n ̸=0,±1

e−
2π
β inτ

n4 − n2
=

1

2π

[
− (∆τ − π)2

2

+ (∆τ − π) sin (∆τ) + 1 +
π2

6
+

5

2
cos (∆τ)

]
.

(16)

The last three terms of the expression are proportional
to the SL(2) zero modes fixed as

∫ 2π
β

0

du γ(u) =

∫ 2π
β

0

du e±iuγ(u) = 0. (17)

The other two correlators can be computed similarly.
The exact expression of G(∆t, z) is not included because
of its length, but in the large Lorentzian times limit the
exponential decay behaviour is the one computed in (13)
and the linear growing one is

|G(∆t, z)| ∼ 32π2g2
z2 ∆t

β3
.

In Fig.1, we have plotted the behaviour of G(∆t, z) for
the same value of z

β , but different values of g, g=0.010

and g=0.005.
As we can see, there are two behaviours, the exponential
decay and the linear growth as mentioned before, that
implies the emergence of the information of the BH.
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FIG. 1: Behaviour of the correlation function at large
Lorentzian times. The blue line is for g=0.010 and the or-
ange line is for g=0.005, both for z

β
=0.1. We can see the two

behaviours mentioned, the exponential decay and then the
linear growth.

VI. CONCLUSIONS

First of all, we have developed the mathematical
framework to calculate the analytical expressions of gen-
eral correlation functions using the Path Integral formal-
ism.

In this report, we have considered a massless scalar field
and uncharged and not rotating Black Holes. We checked
that the correlation function in the vicinity of the BH
horizon (considering a 4D gravity), using the saddle point
approximation, leads to an exponential decay showing
the loss of information.
In a 2D JT gravity, we proposed that when the dominant
term in the expansion of the gravitational path integral,
obtained via the steepest descent method, becomes com-
parable to the subsequent term in the expansion, the cor-
relator starts to exhibit a linear growing behaviour, which
means, that the information emerges.
We, indeed, find that the leading order exhibits an ex-
ponential decay. However, the next-to-leading order dis-
plays a linear growth that eventually surpasses the decay,
despite being initially suppressed by a small coupling g.
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