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Objective: Wolfram syndrome (WFS) is an autosomal recessive disorder
associated with juvenile-onset diabetes mellitus, optic atrophy, diabetes
insipidus, and sensorineural hearing loss. We sought to elucidate the
relationship between genotypic and phenotypic presentations of Wolfram
syndrome which would assist clinicians in classifying the severity and prognosis
of Wolfram syndrome more accurately.

Approach: Patient data from the Washington University International Registry and
Clinical Study for Wolfram Syndrome and patient case reports were analyzed to
select for patients with two recessive mutations in theWFS1 gene. Mutations were
classified as being either nonsense/frameshift variants or missense/in-frame
insertion/deletion variants. Missense/in-frame variants were further classified as
transmembrane or non-transmembrane based on whether they affected amino
acid residues predicted to be in transmembrane domains of WFS1. Statistical
analysis was performed using Wilcoxon rank-sum tests with multiple test
adjustment applied via the Bonferonni correction.

Results: A greater number of genotype variants correlated with earlier onset and a
more severe presentation of Wolfram syndrome. Secondly, non-sense and
frameshift variants had more severe phenotypic presentations than missense
variants, as evidenced by diabetes mellitus and optic atrophy emerging
significantly earlier in patients with two nonsense/frameshift variants compared
with zero or one nonsense/frameshift variants. In addition, the number of
transmembrane in-frame variants demonstrated a statistically significant dose-
effect on age of onset of diabetes mellitus and optic atrophy among patients with
either one or two in-frame variants.
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Summary/Conclusion: The results contribute to our current understanding of the
genotype-phenotype relationship of Wolfram syndrome, suggesting that
alterations in coding sequences result in significant changes in the presentation
and severity ofWolfram. The impact of these findings is significant, as the results will
aid clinicians in predicting more accurate prognoses and pave the way for
personalized treatments for Wolfram syndrome.
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1 Introduction

Wolfram syndrome (WFS) is an autosomal recessive disorder
associated with juvenile-onset diabetes mellitus, optic atrophy,
diabetes insipidus, and sensorineural hearing loss (Barrett et al.,
1995). Diagnosis of Wolfram syndrome is usually ascertained due to
the occurrence of early onset type 1 diabetes mellitus with optic
atrophy, which occur in the first decade of life (Barrett et al., 1995; de
Heredia et al., 2013). Additionally, central diabetes insipidus and
sensorineural deafness occur in the second decade, dilated renal
outflow tracts occur in the third decade, and neurological symptoms
appear in the fourth decade (Barrett et al., 1995). Patients can also
develop a wide range of symptoms including, bladder and bowel
dysfunction, temperature regulation defects, gait ataxia, balance
deficits, and loss of sense of taste and smell (Barrett et al., 1995;
Doty et al., 2017; Samara et al., 2019). WFS symptoms have a
detrimental impact on patients’ quality of life and daily functioning
(Doty et al., 2017; Samara et al., 2019). The lifespan of patients is
expected to be around 30–40 years of age due to respiratory failure
caused by brainstem atrophy (Barrett et al., 1995; de Heredia et al.,
2013). The prevalence of the disorder is estimated to be 1 in
100,000 in North America and 1 in 770,000 in the
United Kingdom (Fraser and Gunn, 1977; Barrett et al., 1995).

Two causative genes,WFS1 and CISD2, have been implicated in
the development of Wolfram syndrome. WFS1 encodes for
wolframin, an endoplasmic reticulum (ER) membrane
glycoprotein, which plays a role in Ca2+ homeostasis and
regulates the ER stress response (Takei et al., 2006). Mutations in
wolframin lead to ER and mitochondrial dysfunction which cause
apoptosis and cell death (Samara et al., 2019). CISD2 encodes for an
ER intermembrane small protein (ERIS) which plays a role in Ca2+

homeostasis and mitochondrial function (Samara et al., 2019; Shen
et al., 2021). Mutations in CISD2 were initially described in
Jordanian patients with unique phenotypic presentations such as
bleeding tendency, defective platelet aggregation with collagen, and
peptic ulcer disease (Amr et al., 2007).

Additionally, pathogenic variants in WFS1 can cause the
development of WFS1-related disorders involving sensorineural
low frequency hearing loss, hearing loss and optic atrophy,
cataracts, and an autosomal dominant syndrome characterized by
neonatal diabetes, congenital cataracts, sensorineural deafness,
hypotonia, intellectual disability, and development delay (De
Franco et al., 2017). Dominant WFS1 variants potentiate ER
stress and result in pathophysiology that is distinct and less
severe than patients with recessive Wolfram syndrome (De
Franco et al., 2017).

The autosomal recessive syndrome has been characterized
widely in literature and a variety of pathogenic variants and
polymorphisms have been reported to date. In the WFS1 variants
present in the literature, alterations in coding sequences have
identified changes including deletions, insertions, nonsense and
missense mutations (Khanim et al., 2001). Associations between
genotype and phenotype characteristics can suggest the role that
gene alterations play in the variability of clinical phenotypes. We
sought to elucidate the relationship between genotypic and
phenotypic presentations of Wolfram syndrome. Additional
information about genotype and phenotype correlations would
allow clinicians to classify the severity of Wolfram syndrome
more accurately. This could aid in predicting more accurate
prognoses and pave the way for personalized treatments for
Wolfram syndrome.

The advantages to discovering genotype and phenotype
correlations are highlighted in the case of another autosomal
recessive disorder, cystic fibrosis. Typing the genotype-phenotype
relationship for cystic fibrosis is important as pathogenic variants
can alter the expression and function of CFTR via multiple
mechanisms (Wang et al., 2014; Veit et al., 2016; Noel et al.,
2022). Additionally, the diverse clinical consequences of cystic
fibrosis can be attributed to modifier genes and the environment
in combination with pathogenic variants (Cutting, 2015; Claustres
et al., 2017; Noel et al., 2022). As such, accurate classification of
CFTR variants, as well as causative WFS1 variants, is essential in
optimizing the treatment of individuals (Noel et al., 2022).

Prior studies have attempted to leverage Wolfram Syndrome
genotype information or even protein expression in patient-derived
fibroblasts (Smith et al., 2004; Hu et al., 2022; Majander et al., 2022)
as predictors or correlates of clinical severity of Wolfram Syndrome.
While these studies have successfully correlated biallelic variants
(Majander et al., 2022), variants in specific exons (Smith et al., 2004),
and low expression of WFS1 in patient fibroblasts (Hu et al., 2022)
with clinical severity of vision impairment and other clinical
phenotypes, they all represent smaller cohorts consisting of at
most, 37 patients. Consequently, genotype-phenotype correlations
made with larger cohorts of patients withWolfram Syndrome might
yield novel insights not just about individual causal variants, but
about higher level patterns and “rules” that could provide prognostic
information for patients, even for variants that have not yet been
observed clinically.

In this study, we aim to classify the range of severity of clinical
presentations of autosomal recessive Wolfram syndrome. We
classify genetic variants by age of onset, type of genetic variant,
and location of variant to identify associations with disease severity.

Frontiers in Genetics frontiersin.org02

Lee et al. 10.3389/fgene.2023.1198171

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1198171


Due to the rare prevalence of Wolfram syndrome, there is
fragmented data regarding the correlation between genotype and
phenotype presentations. To address this, we compiled patient data
from the Washington University International Wolfram Syndrome
and WFS1 Related Disorders Registry and patient data from
published case reports compiled in a systematic review by (de
Heredia et al., 2013). We performed meta-analysis on these data
and found significant correlations between pathogenic variant
characteristics and disease severity.

2 Materials and methods

2.1 Patients

Subjects, and their parents or legal guardians, as appropriate,
provided written, informed consent before participating in this
study, which was approved by the Human Research Protection
Office at Washington University School of Medicine in St. Louis,
MO (IRB ID #201107067). Patient data from the Washington
University International Registry and Clinical Study for Wolfram
Syndrome and patient case reports highlighted in Heredia et al. were
analyzed to select for patients with two recessive variants in the
WFS1 gene (de Heredia et al., 2013). Patients were excluded if they
lacked genetic information for either of their WFS1 allele variants.
Additionally, records were excluded if they did not have a numerical
age of onset for their respective clinical phenotype (diabetes
insipidus, optic atrophy, diabetes insipidus, hearing loss).
Pathogenic variants were then classified as being either nonsense/
frameshift variants or missense/in-frame insertion and deletion
variants. For patients with either one or two in-frame variants

(missense or in-frame insertion/deletions), their in-frame variant
was further classified as transmembrane or not based on whether the
amino acid position was in one of the transmembrane domains
provided on UniProt (UniProt Consortium, 2023), and age of onset
was noted.

2.2 Statistical analysis

Statistical analysis was performed by Wilcoxon rank-sum tests
with multiple test adjustment applied via the Bonferonni correction.
Statistical tests are specified in figure legends. p < 0.05 was
considered statistically significant. Box plots in all graphs
represent the median and quartiles, with whiskers representing
1.5x the interquartile range. Outlier points outside of 1.5x the
interquartile range are shown as individual points.

3 Results

3.1 Onset age of clinical manifestations of
Wolfram syndrome

Median age of onset of clinical manifestations for the combined
patient cohort was calculated for each of diabetes mellitus (DM),
optic atrophy (OA), diabetes insipidus (DI), and hearing loss (HL)
(Figure 1). The median age of onset was 6.0 years (lower and upper
quartiles: 4.0 and 9.0 years, respectively) for diabetes mellitus,
followed by 11.0 years (8.0 and 15.0 years) for optic atrophy,
13.0 years (10.0 and 16.0) for diabetes insipidus, and 14.0 years
(9.0 and 18.5 years) for hearing loss. The ages of onset are similar to
but slightly earlier than those in a similar cohort study of 67 Japanese
patients withWolfram Syndrome, which foundmedian age of onsets
to be 8.7 years, 15.8 years, 17.2 years, and 16.4 years for diabetes
mellitus, optic atrophy, diabetes insipidus, and hearing loss,
respectively (Matsunage et al., 2014).

3.2 Nonsense/frameshiftWFS1 alleles exhibit
a dose-dependent response on disease
severity

For each clinical manifestation of Wolfram syndrome, patients
who had information on both alleles as well as numerical age of
onset data were further classified based on whether they had zero,
one, or two nonsense/frameshift (NSFS) variant alleles. While
diabetes insipidus and hearing loss showed no association of
onset age with the number of NSFS variants, both diabetes
mellitus and optic atrophy demonstrated a dose-effect of number
of NSFS variants with respect to age of onset (Figure 2A). Both
diabetes mellitus and optic atrophy emerged earliest in patients with
two NSFS alleles, followed by patients with one NSFS allele, followed
by patients with zero NSFS alleles and only in-frame variants.
Diabetes mellitus emerged significantly earlier in patients with
two NSFS alleles compared with both zero and one NSFS alleles,
and emerged at a median age of 5.0 years (lower and upper quartile:
4.0 and 6.8 years), 7.0 years (4.35 and 9.0 years), and 8.0 years
(5.0 and 11.0 years) for two, one, and zero NSFS alleles,

FIGURE 1
Median age of onset of clinical manifestations of Wolfram
Syndrome. Diabetes mellitus, optic atrophy, diabetes insipidus, and
hearing loss emerged respectively at median ages of 6.0, 11.0, 13.0,
and 14.0 years. Box plots show the following for onset age of
each clinical manifestation: inner line, median; box edges, quartiles;
whiskers, 1.5x interquartile range; individual points, outliers (defined as
outside 1.5x interquartile range). The sample size (n) for each clinical
manifestation is shown along the x-axis.
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respectively. Optic atrophy emerged significantly earlier in patients
with two NSFS Alleles compared with both zero and one NSFS
alleles, and correspondingly emerged at a median age of 10.0 years

(lower and upper quartiles: 7.45 and 12.0 years), 12.0 years (9.0 and
16.0 years), and 11.0 years (8.0 and 19.0 years) for two, one, and zero
NSFS alleles. There was not a statistically significant difference in the

FIGURE 2
Analysis of genotype-phenotype correlations for number nonsense/frameshift variants. Age of onset of different clinical manifestations by number
of nonsense/frameshift (NSFS) variants vs. in-frame missense or insertion/deletion variants for the entire dataset (A) and split by patient sex (B). The
sample size (n) for each group for each clinical manifestation is shown along the x-axis. *, p < 0.05; **, p < 0.01; ***, p < 0.001; n.s., no significance.
p-values were assigned usingWilcoxon Rank SumTest withmultiple test correction applied via the Bonferroni method. Box plots show the following
for onset age of each clinicalmanifestationwithin each group: inner line,median; box edges, quartiles; whiskers, 1.5x interquartile range; individual points,
outliers (defined as outside 1.5x interquartile range).
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age of onset between patients with zero NSFS alleles and one NSFS
allele for either diabetes mellitus or optic atrophy. Themedian onset,
lower and upper quartiles, number of patients in each category, and
statistical test results are shown in Table 1.

One outlier to these findings is emphasized in an exceptional
case of typical wolfram syndrome. This patient has a phenotypical
clinical diagnosis of typical Wolfram Syndrome with the
development of diabetes mellitus at age 5 and optic atrophy at
age 8. However, we could only detect a frameshift pathogenic variant
in one allele with a corresponding normal allele. Since we could not
detect two pathogenic variant alleles, we hypothesized the normal
allele was not expressed. This prompted us to look at the expression
levels of wild-type and mutated alleles by next-generation

sequencing using RNA extracted from induced pluripotent stem
cells (iPSC) derived from this patient. Results showed no expression
of the wild-type allele, suggesting that there is suppression or
methylation in the gene regulatory region of the wild-type allele.

For diabetes mellitus, we observed that male patients had a
significantly earlier age of onset when looking at the entire patient
cohort with available clinical data (Figure 2B). These differences
were not observed at a statistically significant level for any subset of
patients based on their number of nonsense/frameshift variants. For
other clinical manifestations of Wolfram Syndrome, no statistically
significant differences were observed in age of onset between male
and female patients, either within the above number of NSFS variant
categories or for the cohort overall (Figure 2B).

TABLE 1 Age of onset and Wilcoxon Rank Sums test results for number of nonsense/frameshift variant analysis. (A) Sample size, median, and quartile age of onset
information for each clinical manifestation for different numbers of nonsense/frameshift variants. (B) Wilcoxon Rank Sums test P- values and Bonferonni adjusted
p-values for pairwise comparisons of nonsense/frameshift variant numbers. NSFS0: zero nonsense/frameshift variants. NSFS1: one nonsense/frameshift variant.
NSFS2: two nonsense/frameshift variants.

Manifestation Number of NSFS variants Sample size (n) Median Lower quartile Upper quartile

A

Diabetes Mellitus NSFS0 109 8 5 11

Diabetes Mellitus NSFS1 87 7 4.35 9

Diabetes Mellitus NSFS2 129 5 4 6.8

Optic Atrophy NSFS0 97 11 8 19

Optic Atrophy NSFS1 87 12 9 16

Optic Atrophy NSFS2 123 10 7.45 12

Diabetes Insipidus NSFS0 46 14 10 18.0825

Diabetes Insipidus NSFS1 38 12 10 15.75

Diabetes Insipidus NSFS2 65 12 10 15

Hearing Loss NSFS0 59 12 8 17.15

Hearing Loss NSFS1 48 14 9 18

Hearing Loss NSFS2 88 14 10 19.25

Manifestation Comparison p-value Adjusted p-value

B

Diabetes Mellitus NSFS2-NSFS0 2.14E-09 2.57E-08

Diabetes Mellitus NSFS1-NSFS0 5.63E-02 6.76E-01

Diabetes Mellitus NSFS2-NSFS1 5.07E-05 6.09E-04

Optic Atrophy NSFS2-NSFS0 4.06E-03 4.87E-02

Optic Atrophy NSFS1-NSFS0 9.43E-01 1.00E+00

Optic Atrophy NSFS2-NSFS1 6.42E-04 7.71E-03

Diabetes Insipidus NSFS2-NSFS0 1.34E-01 1.00E+00

Diabetes Insipidus NSFS1-NSFS0 1.45E-01 1.00E+00

Diabetes Insipidus NSFS2-NSFS1 8.30E-01 1.00E+00

Hearing Loss NSFS2-NSFS0 2.71E-01 1.00E+00

Hearing Loss NSFS1-NSFS0 5.48E-01 1.00E+00

Hearing Loss NSFS2-NSFS1 5.40E-01 1.00E+00
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3.3 Missense WFS1 variants in
transmembrane domains are associated
with earlier onset of disease

For missense and in-frame insertion and deletion variants,
amino acid position information was matched against the
predicted transmembrane domain annotations from UniProt.
These variants were then clarified as transmembrane (TM) or
non-transmembrane. For each clinical manifestation, the subset
of patients previously defined with a) zero NSFS alleles and

consequently two in-frame variants and b) one NSFS allele and
one in-frame variant were then further classified by whether their in-
frame variant(s) were transmembrane or non-transmembrane.
Average age of onset for each clinical manifestation was
compared by the number of TM alleles (Figure 3A). Patients
with two in-frame variants (zero NSFS variants) showed a similar
effect of the number of transmembrane variants as seen with the
number of NSFS alleles, with the number of in-frame variants which
were transmembrane demonstrating a statistically significant dose-
effect on age of onset of DM and OA. Diabetes mellitus emerged

FIGURE 3
Analysis of genotype-phenotype correlations for in-frame variants by transmembrane/non-transmembrane domain. Age of onset of different
clinical manifestations by number of in-frame variants (either missense or in-frame insertion/deletion) in transmembrane domains for patients with two
in-frame variants (A) and patients with one in-frame variant (B). The sample size (n) for each group for each clinical manifestation is shown along the
x-axis. p < 0.05; **, p < 0.01; n.s., no significance. p-values were assigned usingWilcoxon Rank Sum Test with multiple test correction applied via the
Bonferroni method. Box plots show the following for onset age of each clinical manifestation within each group: inner line, median; box edges, quartiles;
whiskers, 1.5x interquartile range; individual points, outliers (defined as outside 1.5x interquartile range).
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TABLE 2 Age of onset and Wilcoxon Rank Sums test results for number of transmembrane in-frame variants analysis. A) Sample size, median, and quartile age of
onset information for each clinical manifestation for different numbers of transmembrane in-frame variants in patients who have two in-frame variants. (B)
Wilcoxon Rank Sums test p-values and Bonferonni adjusted p-values for pairwise comparisons among numbers of transmembrane in-frame variants in patients
who have two in-frame variants. I Sample size, median, and quartile age of onset information for each clinical manifestation for different numbers of
transmembrane in-frame variants in patients who have one in-frame variant. (D) Wilcoxon Rank Sums test p-values and Bonferonni adjusted p-values for pairwise
comparisons among numbers of transmembrane in-frame variants in patients who have one in-frame variant. NTM0: zero transmembrane in-frame variants.
NTM1: one transmembrane in-frame variant. NTM2: two transmembrane in-frame variants.

Manifestation Number of in-frame TM variants Sample size (n) Median Lower quartile Upper quartile

A

Diabetes Mellitus NTM0 44 11 5 20

Diabetes Mellitus NTM1 23 9 7.5 11

Diabetes Mellitus NTM2 42 6 4 8

Optic Atrophy NTM0 41 15.3 9 25

Optic Atrophy NTM1 19 10 9.5 19.5

Optic Atrophy NTM2 37 9 8 13

Diabetes Insipidus NTM0 16 14 10.75 17.2775

Diabetes Insipidus NTM1 6 11.5 9.5 14.25

Diabetes Insipidus NTM2 24 15.3 10 24

Hearing Loss NTM0 20 16 9.275 25.25

Hearing Loss NTM1 8 8.5 5 14.25

Hearing Loss NTM2 31 12 8.5 15

Manifestation Comparison p-value Adjusted p-value

B

Diabetes Mellitus NTM0-NTM2 1.20E-03 1.44E-02

Diabetes Mellitus NTM0-NTM1 3.52E-01 1.00E+00

Diabetes Mellitus NTM1-NTM2 1.26E-04 1.51E-03

Optic Atrophy NTM0-NTM2 1.54E-03 1.85E-02

Optic Atrophy NTM0-NTM1 2.33E-01 1.00E+00

Optic Atrophy NTM1-NTM2 7.90E-02 9.48E-01

Diabetes Insipidus NTM0-NTM2 7.40E-01 1.00E+00

Diabetes Insipidus NTM0-NTM1 2.69E-01 1.00E+00

Diabetes Insipidus NTM1-NTM2 1.78E-01 1.00E+00

Hearing Loss NTM0-NTM2 2.03E-01 1.00E+00

Hearing Loss NTM0-NTM1 1.54E-01 1.00E+00

Hearing Loss NTM1-NTM2 2.44E-01 1.00E+00

Manifestation Number of in-frame TM variants Sample size (n) Median Lower quartile Upper quartile

C

Diabetes Mellitus NTM0 51 8 6 10.4

Diabetes Mellitus NTM1 36 4.7 3.5 7

Optic Atrophy NTM0 52 13 9.75 16.25

Optic Atrophy NTM1 35 10 8 16

Diabetes Insipidus NTM0 20 12 11 14

Diabetes Insipidus NTM1 18 9.75 6.25 19.5

(Continued on following page)
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significantly earlier in patients with two in-frame TM variants
compared with both zero and one in-frame TM variants, and
correspondingly emerged at a median age of 6.0 years (lower and
upper quartiles: 4.0 and 8.0 years), 9.0 years (7.5 and 11.0 years), and
11.0 years (5.0 and 20.0 years) for two, one, and 0 TM variants,
respectively. Optic atrophy emerged significantly earlier in patients
with two in-frame TM alleles compared with patients that had two
in-frame, non-transmembrane variants; however, there was no
statistically significant difference in the age of onset between
patients with two in-frame TM variants and one in-frame TM
variant for optic atrophy. Optic atrophy correspondingly emerged
at a median age of 9.0 years (lower and upper quartile: 8.0 and
13.0 years), 10.0 (9.5 and 19.5 years) and 15.3 years (9.0 and
25.0 years) for two, one, and zero in-frame TM variants. The
median onset, lower and upper quartiles, number of patients in
each category, and statistical test results for patients with two in-
frame variants are shown in Table 2(A,B).

In patients with one in-frame variant and one nonsense/
frameshift variant, an in-frame variant in a transmembrane
position had statistically significant earlier onset of diabetes
mellitus but none of the other clinical manifestations (Figure 3B).
For diabetes mellitus, the median age of onset was 4.7 years (lower
and upper quartiles: 3.5 and 7.0 years) compared to 8.0 years
(6.0 and 10.4 years) for patients with their in-frame variant in a
transmembrane position versus those with their in-frame variant in
a non-transmembrane position. The median onset, lower and upper
quartiles, number of patients in each category, and statistical test
results for patients with one in-frame variant are shown in
Table 2(C,D).

4 Discussion

In the setting of Wolfram syndrome, we sought to explore the
associations between genotype and phenotype characteristics to
explore the role that gene alterations can play in the variability of
clinical phenotypes. It was found that both diabetes mellitus and

optic atrophy demonstrated a dose-effect of number of NSFS
variants with respect to age of onset. In addition, the number of
transmembrane in-frame variants demonstrated a statistically
significant dose-effect on age of onset of diabetes mellitus and
optic atrophy.

These results highlight principles that are important in
understanding the genotype-phenotype relationship in Wolfram
syndrome. Firstly, it has been previously suggested that a greater
number of variants correlates with earlier onset and a more severe
presentation of Wolfram Syndrome (Majander et al., 2022).
Autosomal dominant variants have previously been associated
with Wolfram-like syndrome, a WFS1-related disorder with
generally milder phenotypes and unlike Wolfram Syndrome, no
decrease in life expectancy (de Muijnck et al., 2023). An exception to
this observed associated between autosomal dominant variants and
milder clinical phenotypes has been documented in a subset of
patients with heterozygous missense variants in WFS1 who present
with onset of diabetes in the first year of life as well as hypotonia,
congenital sensorineural deafness and cataracts (De Franco et al.,
2017). In other studies, the relationship between variant
characteristics and disease severity has been explored with the
discovery of the Arg558Cys variant in Ashkenazi Jewish
individuals, which is associated with a milder, late-onset
phenotype of Wolfram syndrome including early onset diabetes
and reduced penetrance for optic atrophy (Bansal et al., 2018; Wilf-
Yarkoni et al., 2021). A schematic illustrating the spectrum ofWFS1-
associated disorders, including their relative phenotypic severity,
associated variants, and clinical manifestations is shown in
Figure 4A.

Secondly, our results indicate that non-sense and frameshift
mutations have more severe phenotypic presentations thanmissense
mutations, as evidenced by optic atrophy emerging significantly
earlier in patients with two NSFS variant alleles compared with zero
NSFS alleles. Similarly, among in-frame variants, those affecting
transmembrane positions are associated with earlier onset of
diabetes mellitus and optic atrophy. A schematic of these
relationships among variant locations and types is shown in

TABLE 2 (Continued) Age of onset and Wilcoxon Rank Sums test results for number of transmembrane in-frame variants analysis. A) Sample size, median, and
quartile age of onset information for each clinical manifestation for different numbers of transmembrane in-frame variants in patients who have two in-frame
variants. (B) Wilcoxon Rank Sums test p-values and Bonferonni adjusted p-values for pairwise comparisons among numbers of transmembrane in-frame variants
in patients who have two in-frame variants. I Sample size, median, and quartile age of onset information for each clinical manifestation for different numbers of
transmembrane in-frame variants in patients who have one in-frame variant. (D) Wilcoxon Rank Sums test p-values and Bonferonni adjusted p-values for pairwise
comparisons among numbers of transmembrane in-frame variants in patients who have one in-frame variant. NTM0: zero transmembrane in-frame variants.
NTM1: one transmembrane in-frame variant. NTM2: two transmembrane in-frame variants.

Manifestation Number of in-frame TM variants Sample size (n) Median Lower quartile Upper quartile

Hearing Loss NTM0 21 14 13 18

Hearing Loss NTM1 27 12 8.055 18

Manifestation Comparison p-value Adjusted p-value

D

Diabetes Mellitus NTM0-NTM1 4.33E-05 1.73E-04

Optic Atrophy NTM0-NTM1 7.32E-02 2.93E-01

Diabetes Insipidus NTM0-NTM1 4.38E-01 1.00E+00

Hearing Loss NTM0-NTM1 2.40E-01 9.61E-01
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Figure 4B. A similar phenomenon is highlighted in the case of
another autosomal recessive disorder, cystic fibrosis. Literature on
genotype-phenotype correlations in cystic fibrosis predicts
milder phenotypes and better prognosis associated with A455E, a
missense variant, compared to ΔF508, a deletion variant (Gan et al.,
1995).

The observation that in-frame variants affecting transmembrane
domains are associated with earlier onset of disease is intriguing and
requires further study and functional characterization. The
importance of transmembrane domains in genetic disease has
been demonstrated in the context of Pelizeus-Merzbacher disease,

an early-onset leukodystrophy defined by mutations of the PLP1
gene. It has been shown that mutant isoforms of the PLP1-encoded
proteins PLP and DM20 which disrupt the four endogenous
transmembrane domains are fully retained in the endoplasmic
reticulum (Dhaunchak et al., 2011). Given the important role of
transmembrane domains in membrane anchoring and subcellular
trafficking of proteins as well as the known roles of wolframin in the
ER stress response and Ca2+ homeostasis, characterization of WFS1
transmembrane variants causing potential localization defects or
functional deficits in Ca2+ and ER stress tolerance represent
intriguing directions for future study.

FIGURE 4
Schema of severity of Wolfram-Syndrome and Wolfram-related disorders. (A) Severity and clinical manifestations of Wolfram-related disorders and
Wolfram Syndrome. (B) Severity of Wolfram Syndrome based on variant number and effect on coding sequence or transmembrane domain positions.
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Similarly, WFS1 protein has been shown to interact with various
molecular partners, such as the Sarco endoplasmic reticulum Ca2+

ATPase (SERCA) (Zatyka et al., 2015), Sigma 1 Receptor (SIG1R)
(Crouzier et al., 2022), Neuronal Calcium Sensor 1 (NCS1)
(Angebault et al., 2018), and Activating Transcription Factor 6
(ATF6) (Fonseca et al., 2010), each of which have crucial roles in
cellular functions. Therefore, pathogenic variants in the WFS1 gene
could potentially disrupt these interactions and consequently
perturb the functions of these molecules. For instance, disruption
of WFS1-SERCA interaction could affect calcium homeostasis,
while alterations in the WFS1-ATF6 interaction may impair the
unfolded protein response, a mechanism vital to handling ER stress.
The potential impact of WFS1 mutations on its interaction with
SIG1R and NCS1 could also lead to wide-ranging effects, given their
roles in modulating ion channels and neuronal activity, respectively.
These possible consequences underscore the need for further
research to fully elucidate the complex network of interactions
involving WFS1 and the broader implications of WFS1 variants.

Lastly, we observed significantly earlier onset of diabetes mellitus
in male patients compared to female patients, though we did not
observe this trend for optic atrophy or among any of the subsets of
patients by their number of nonsense/frameshift variants. This
finding of earlier onset diabetes mellitus is consistent with the
pathophysiology of Wolfram syndrome involving ER stress and
previous evidence that estrogen can mitigate ER stress (Xu et al.,
2018). Additionally, in WFS1 knockout mice, males have been
shown to present with more severe phenotypes than females
(Abreu et al., 2020). These findings raise the possibility that
female patients would present with milder manifestations of
Wolfram syndrome, which is supported by our data for diabetes
mellitus onset.

The impact of these findings is significant as the results offer
contribution to our current understanding of the genotype-
phenotype relationship of Wolfram syndrome. These results
highlight that alterations in coding sequences result in significant
changes in the presentation and severity of Wolfram Syndrome.

The implications of these findings on clinical management of
patients with Wolfram Syndrome is another potential direction for
future studies. The Wolfram Unified Rating Scale (WURS) has
previously been developed and tested for reliability and validity
in quantifying disease severity in Wolfram Syndrome patients
(Nguyen et al., 2012). Studying the relationship between WURS
disease severity scores and variants of different classes such as those
explored in this study could be used to make more specific and
personalized prognoses for patients with Wolfram Syndrome based
on their genotype. Similarly, the development of clinically
meaningful biomarkers for Wolfram Syndrome remains an
important research goal and would aid clinicians in providing
more accurate prognoses of outcomes and disease progression for
patients withWolfram Syndrome. Prior studies have exploredWFS1
expression levels and their correlations with clinical progression (Hu
et al., 2022). Similarly, biomarkers for neurodegeneration, such as
neurofilament light chain and myelin basic protein, and
inflammatory cytokine levels have been shown to be elevated in
patients with Wolfram (Abreu et al., 2021; Panfili et al., 2021;
Eisenstein et al., 2022). Establishing correlations between these
biomarker levels and phenotype severity may eventually pave the

way for their validation and use as prognostic tools. This further
highlights the need for large patient registries such as those
described in this study to provide sufficient statistical power to
develop meaningful clinical prognostic tools.

The same variant classes highlighted in this study might
represent patient populations that may respond differently to
previously-reported potential pharmacological therapies (Lu et al.,
2014; Nguyen et al., 2020; Abreu et al., 2021). Further understanding
of the mechanisms by which patient WFS1 variants functionally
affect ER and Ca2+ stress responses may aid in the development and
identification of other potential therapeutic targets and agents,
though further studies are needed to explore this area of research.

Although correlations between genotype and phenotype
presentations for Wolfram syndrome have been posed in this
study, further research is needed to validate these hypotheses.
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