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BACKGROUND: Diabetes is an established risk factor for colorectal cancer. However, the mechanisms underlying this relationship
still require investigation and it is not known if the association is modified by genetic variants. To address these questions, we
undertook a genome-wide gene-environment interaction analysis.
METHODS: We used data from 3 genetic consortia (CCFR, CORECT, GECCO; 31,318 colorectal cancer cases/41,499 controls) and
undertook genome-wide gene-environment interaction analyses with colorectal cancer risk, including interaction tests of
genetics(G)xdiabetes (1-degree of freedom; d.f.) and joint testing of Gxdiabetes, G-colorectal cancer association (2-d.f. joint test) and
G-diabetes correlation (3-d.f. joint test).
RESULTS: Based on the joint tests, we found that the association of diabetes with colorectal cancer risk is modified by loci on
chromosomes 8q24.11 (rs3802177, SLC30A8 – ORAA: 1.62, 95% CI: 1.34–1.96; ORAG: 1.41, 95% CI: 1.30–1.54; ORGG: 1.22, 95% CI:
1.13–1.31; p-value3-d.f.: 5.46 × 10−11) and 13q14.13 (rs9526201, LRCH1 – ORGG: 2.11, 95% CI: 1.56–2.83; ORGA: 1.52, 95% CI: 1.38–1.68;
ORAA: 1.13, 95% CI: 1.06–1.21; p-value2-d.f.: 7.84 × 10−09).
DISCUSSION: These results suggest that variation in genes related to insulin signaling (SLC30A8) and immune function (LRCH1) may
modify the association of diabetes with colorectal cancer risk and provide novel insights into the biology underlying the diabetes
and colorectal cancer relationship.
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INTRODUCTION
Colorectal cancer is the third most common cancer globally with an
estimated number of 1.9 million new cases in 2020 [1]. The etiology of
colorectal cancer involves a complex interplay between genetic and
environmental determinants. Currently, around 140 genetic variants
have been identified by genome-wide association studies (GWAS)
explaining ~12% of the variability in colorectal cancer risk [2, 3].
However, limited research has been conducted to understand the
interaction between genetic and environmental/lifestyle risk factors
on the risk of colorectal cancer. Understanding how genetic variation
may modify the association of environmental and lifestyle exposures

with colorectal cancer risk may potentially uncover novel biological
pathways underlying disease etiology and contribute to the
development of prevention strategies.
Type 2 diabetes (T2D), the most common form of diabetes, is an

established risk factor for colorectal cancer [4]. The biological
mechanisms that underlie the association between T2D and
colorectal cancer risk are not fully understood but likely entail
exposure to hyperinsulinemia and insulin resistance as well as
hyperglycemia, which often precede onset of T2D [5]. However, it
is possible that other, yet-to-be recognized, molecular pathways
mediate the T2D-colorectal cancer relationship.
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Gene-environment interaction (GxE) studies have been
employed to investigate whether genetic variants modify the
association of diet, lifestyle, and drugs with colorectal cancer [6]. A
previous GxE analysis of diabetes and risk of colorectal cancer was
limited by small sample size and was focused on candidate genes
[7]. To provide further insights into the molecular pathways of
diabetes with colorectal cancer risk, we undertook a large-scale
genome-wide GxE analysis that tested for interactions between
common and rare variants and diabetes in 31,318 colorectal
cancer cases and 41,499 controls.

METHODS
Study participants
For this gene-environment interaction analysis, we used data from
48 studies described elsewhere [2, 3, 8, 9] (Supplementary Table 1). Briefly,
we combined genetic and epidemiologic data from studies participating in
the Colon Cancer Family Registry (CCFR), the Genetics and Epidemiology of
Colorectal Cancer Consortium (GECCO), and the Colorectal Cancer
Transdisciplinary Study (CORECT) with individuals of European ancestry.
For cohort studies and clinical trials, nested case-control sets were
assembled. Controls were matched on factors such as age, sex, race, and
enrollment date or trial group (only in SELECT and a subset of WHI study),
when applicable. Colorectal adenocarcinoma cases were confirmed by
medical records, pathology reports, or death-certificate information. All
studies were approved by the relevant research ethics committee or
institutional review board.
Analyses were limited to individuals of European ancestry, based on

self-reported race and clustering of principal components with 1000
Genomes EUR superpopulation. We further excluded individuals based
on cryptic relatedness or duplicates (prioritizing cases and/or individuals
genotyped on the better platform) (N= 2284), and genotyping/imputa-
tion errors (N= 9). When two cases were from the same matching pair,
we kept the younger case (N= 71). Additionally, individuals were
excluded if they had missing diabetes status (N= 2958), with age,
gender and colorectal case/control status being largely unrelated to
diabetes missingness. The final pooled sample size was 31,318 colorectal
cancer cases and 41,499 controls.

Harmonization of epidemiologic data
Information on demographics and potential risk factors were collected by
self-report using in-person interviews and/or structured questionnaires
[10]. Individuals with diabetes were defined using a binary self-reported
diagnosis of the disease (not explicitly defined if diabetes is Type I or Type
II). Given that Type I diabetes is rare, it is most likely that the majority of the
participants live with Type II diabetes (although, any misclassification
cannot be ruled out). Data were collected and centralized at the GECCO
coordinating center (Fred Hutchinson Cancer Center). Briefly, data
harmonization consisted of a multi-step procedure, where common data
elements (CDEs) were defined a priori. Study questionnaires and data
dictionaries were examined and, through an iterative process of
communication with data contributors, elements were mapped to these
CDEs. Definitions, permissible values, and standardized coding were
implemented into a single database via SAS and T-SQL. The resulting
data were checked for errors and outlying values within and between
studies.

Genotyping, quality assurance/quality control and imputation
Detailed information on genotyping, imputation, and quality control are
presented elsewhere [2, 3]. In brief, genotyped variants were excluded
based on deviation from Hardy–Weinberg Equilibrium (p-value < 1 ×
10−4), low call rate (<95–98%), discrepancies between reported and
genotypic sex, discordant calls between duplicates. Autosomal variants
of all studies were imputed to the Haplotype Reference Consortium
(HRC) r1.1 (2016) panel using the University of Michigan Imputation
Server [11] and converted into a binary format for data management
and analyses using R package BinaryDosage [12]. Imputed variants
were excluded if they had low imputation quality (R2 < 0.8). After
quality control, a total of over 7.2 million variants were used for
the gene-environment interaction analysis for common variants and
25,216 gene sets for rare variants (i.e. with minor allele frequency
below 1%).

Statistical methods
Association of diabetes with colorectal cancer risk. To evaluate the main
association of diabetes with colorectal cancer risk, each study was analyzed
separately using logistic regression models. Study-specific results were
combined using a random-effects meta-analysis (Hartung–Knapp) to
obtain summary odds ratios (ORs) and 95% confidence intervals (CIs)
across studies [13]. We calculated the heterogeneity p-values using
Cochran’s Q statistic [14] and funnel plots were used to identify studies
with outlying ORs for potential exclusion and sensitivity analyses.

GxE analyses for common variants. We performed genome-wide interac-
tion scans using GxEScanR [15]. Our primary inferences are based on the
standard 1-degrees of freedom (d.f.) GxE test, the 2-step EDGE approach
[16], and the 3-d.f. joint test (joint association of main genetic effect on
colorectal cancer, G-E association, and GxE interaction) [17]. Compared to
the 1-d.f., the 3-d.f. joint test has higher power to detect GxE interactions
when they exist, while accommodating gene-disease and gene-exposure
associations [17]. The two-step method reduces the burden of multiple
testing by preserving the statistical power, mainly through the initial
filtering step [16]. We applied a family-wise error rate for each set to 0.05/3
to control for multiple testing. We note that this approach is conservative
as these testing approaches are somewhat correlated.
We implemented a hybrid two-step method that prioritizes potential

interaction loci by weighting GxE tests (step 2) based on the ranks of an
independent test statistic (step 1). Step 1 tests include a joint test referred
to as the EDGE statistic [16] of the marginal association of each variant with
risk of colorectal cancer [18] and the association between each variant with
diabetes in the combined case-control sample [19]. Our approach modifies
the original weighted hypothesis testing framework [20] by accounting for
linkage disequilibrium in controlling for type I error [21] (details are
provided in the Supplementary Methods).
In secondary analyses, we used the 2-d.f. test that evaluates

simultaneously the main genetic effect and the GxE interaction and has
been shown to improve power to detect susceptibility loci under a wide
range of circumstances by accounting for GxE interactions [22, 23]. A
p-value < 5 × 10−8 was used to declare statistical significance, with the
qualification that these findings were secondary. All tests were two-sided.
Imputed variant dosages were modeled as continuous variables [24]. All

analyses were adjusted for age at baseline, sex, study/genotyping platform,
and the first three principal components to account for potential
population structure. Statistically significant interactions were further
adjusted for body mass index (BMI) because it is a potential confounder in
the diabetes-colorectal cancer association [25]. A pooled analysis is
preferred over a meta-analytical approach as the latter is prone to
violation of normality assumptions when effect estimates of studies with
small sample sizes are combined.
For statistically significant findings, we estimated stratified ORs by

modeling the association between diabetes and colorectal cancer risk
stratified by genotype and association of the per-allele increase in
genotype and colorectal cancer risk stratified by diabetes status. We
assessed the extent of genomic inflation by quantile-quantile (Q-Q) plots
and by calculating the genomic inflation factor (lambda). As lambda scales
according to sample size, we also calculated lambda1000, which scales the
genomic inflation factor to an equivalent study of 1000 cases and 1000
controls [26, 27].
To present 2-d.f., 3-d.f. test, and two-step-method results, we created

additional plots after removing known GWAS colorectal cancer loci (and
variants in close proximity ±2MB with correlation r2 > 0.2) [2] to ensure the
overall significance is not driven merely by the main genetic effect on
colorectal cancer.
Regional plots for all statistically significant findings were generated

using LocusZoom v1.3 [28]. Measures of linkage disequilibrium (LD) were
estimated using our controls. Possible eQTL relationships were explored
using the Genotype-Tissue Expression (GTEx V8) and the University of
Barcelona and University of Virginia genotyping and RNA sequencing
project (BarcUVa-Seq) datasets [29]. The BarcUVa-Seq data has data on
diabetes status of 410 participants which we used to test interactions
between the genetic variants and diabetes on gene expression.

Prediction of regulatory impact of candidate non-coding variants. We used
ATAC-seq, DNASE-seq, H3K27ac histone ChIP-seq, and H3K4me1 histone
ChIP-seq datasets of primary tissue from healthy colon and tumor primary
tissue samples from Scacheri et al. [30], as well as from three colorectal
cancer cell lines (SW480, HCT116, COLO205). These datasets were
processed through ENCODE ATAC-seq/DNASE-seq [31] and histone
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ChIP-seq pipelines [32] to perform alignment and peak calling. Dataset
sources are indicated in Supplementary Table 2. −log10(p-value) tracks
were extracted from the MACS2 step of the pipeline for visualization in
genome browsers. Irreproducible Discovery Rate (IDR) [33] peak calls for

ATAC-seq and DNASE-seq datasets, as well as naive overlap peak calls for
histone ChIP-seq datasets, were determined from the ENCODE pipelines.
The pyGenomeTracks [34] software package was used to visualize
chromatin accessibility across the functional datasets and to plot
−log10(p-value) signal tracks. Peaks across samples from the same assay
were concatenated across datasets, cropped to within 200 bp centered on
the peak summit, and merged using bedtools [35] merge.
Gapped k-mer support vector machine models (LS-GKM) (v0.1.0) with a

center-weighted GKM kernel were trained to classify chromatin accessible
regions against genomic background regions as a function of their
underlying DNA sequences [36]. Default parameters were utilized. Support
vector machines (SVMs) were trained via 10-fold cross-validation, where
groups of chromosomes were split into folds (Supplementary Table 3).
Separate SVM models were trained on DNase-seq data from Supplemen-
tary Table 2 with samples pooled across assays as described above [30]
(details are provided in the Supplementary Methods).

GxE analyses for rare variants. As power for rare variant testing – and
particularly GxE testing – tends to be low, we conducted GxE testing only
for rare variants as a secondary analysis. We performed interaction tests of
diabetes and aggregated rare variant sets at the gene and enhancer level
(details are provided in the Supplementary Methods) using the Mixed
effects Score Tests for interactions (MiSTi) method [37]. This unified
hierarchical regression framework combines the burdenxE (all variants with
a MAF of <1% were included in the variant sets) as fixed effect and
heterogeneous GxE effects as random effects. We considered a Fisher’s
combination approach under MiSTi (fMiSTi) to discover GxE interactions
[37], adjusting for age at baseline, sex, study, genotyping platform, and the
first three principal components. Since 25,000 genes were tested and this
was a secondary analysis, interactions with p-value < 2 × 10−6 (a= 0.05/
25,000) were considered suggestively significant. The MiSTi R package was
used for rare variants interaction analyses [37].

RESULTS
Overall, diabetes was associated with a significantly higher risk of
colorectal cancer (OR: 1.36, 95% CI: 1.23–1.51, Table 1), with similar
results found in cohort and case-control studies. This association
showed statistically significant between-study heterogeneity
(Cochran’s Q p-value: <0.001; I2= 48%, Supplementary Fig. S1).
However, there were no strong outlying studies (Supplementary
Fig. S2).
In our primary analysis we found that the association between

diabetes and colorectal cancer risk was modified by variants on
chromosome 8q24.11 within the SLC30A8 gene based on the 3-d.f.
joint test, with rs3802177 being the genetic variant showing the
most significant effect (p-value: 5.46 × 10−11, Supplementary
Figs. S3A, S4A, Table 2). This result was robust in a sensitivity
analysis accounting for BMI (Table 2). Although this variant was
not directly associated with colorectal cancer (P-value: >0.05), we
observed a strong association with diabetes (P-value:
4.90 × 10−10), and an interaction with diabetes for colorectal
cancer risk (P-value: 7.49 × 10−04). When we stratified by genotype
of rs3802177 (with A as variant allele), we observed that the OR for
diabetes vs. colorectal cancer among those carrying the AA
genotype was the largest: 1.62, 95% CI: 1.34–1.96, P-value:
7.5 × 10−07, compared with OR: 1.41; 95% CI: 1.30–1.54; P-value:
6.2 × 10−16 among those carrying the AG genotype and, OR: 1.22;
95% CI: 1.13–1.31; P-value: 2.4 × 10−07 for those carrying the GG
genotype. When stratifying by diabetes status, the risk of
developing colorectal cancer per G allele was not statistically
significant in those without diabetes (OR: 1.00; 95% CI: 0.98–1.03;
P-value: 8.2 × 10−01) but was inverse among those with diabetes
(OR: 0.87; 95% CI: 0.80–0.94; P-value: 5.4 × 10−04) (Table 3). The full
GxE results are available in Table 3. We did not identify any
statistically significant interactions using the traditional logistic
regression or the 2-step approach. Genomic inflation for 1-d.f. GxE
was minimal (lambda= 1.008; lambda1000= 1.000).
In our secondary 2-d.f. joint test, we identified that the

association between diabetes and colorectal cancer risk is

Table 1. Characteristics of the study participants included in the
gene-diabetes interaction analysis for colorectal cancer risk.

Colorectal cancer
cases (N= 31,318)

Controls
(N= 41,499)

Age (years)a 63.3 (±10.1) 62.1 (±8.97)

Sex

Women 47.4% 49.4%

Tumor site

Proximal 29.2%

Distal 24.9%

Rectal 26.0%

Missing 19.9%

Body mass index
(kg/m2)a

27.4 (±4.86) 27.0 (±4.61)

Missing 6.6% 3.5%

Height (cm)a 170 (±9.61) 169 (±9.59)

Missing 1.7% 0.7%

Family history of
colorectal cancer

Yes 13.5% 10.5%

Missing 18.6% 26.9%

Education (highest
completed)

Less than High
School

24.8% 20.1%

College/Graduate
School

26.5% 31.7%

Missing 9.3% 10.0%

Smoking status

Ever 53.2% 49.9%

Missing 4.5% 1.8%

Post-menopausal
hormone useb

Yes 25.5% 29.6%

Missing 25.9% 19.9%

Regular aspirin or
NSAID use

Yes 25.2% 32.1%

Missing 25.1% 16.7%

Diabetes

Yes 11.4% 7.7%

Red meat
consumption

Highest quartile 18.7% 16.0%

Missing 15.4% 8.5%

Processed meat
consumption

Highest quartile 13.8% 11.8%

Missing 25.5% 16.4%

NSAID non-steroidal anti-inflammatory drugs.
aMean and standard deviation.
bAmong women only.
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modified by a locus on chromosome 13q14.13 within the LRCH1
gene, with genetic variant rs9526201 showing the most significant
effect (p-value: 7.84 × 10−09, Supplementary Figs. S3B and S4B,
Table 2). This result was robust in a sensitivity analysis accounting
for BMI (Table 2). As can be seen in Table 2, the p-value for the
genetic variant-diabetes interaction was 1.33 × 10−06 and the
association between genetic variants and colorectal cancer was
1.87 × 10−04, resulting in a combined significant 2-d.f. test statistic.
When we stratified the association between diabetes and color-
ectal cancer by genotype of rs9526201 (with G as variant allele),
we observed a substantially stronger association among those
carrying the GG genotype with an OR of 2.11 (95% CI: 1.56–2.83,
P-value: 8.9 × 10−07), compared with an OR of 1.52 (95% CI:
1.38–1.68; P-value: 1.1 × 10−16) among those carrying the GA
genotype and, an OR of 1.13 (95% CI: 1.06–1.21; P-value:
3.8 × 10−09) among those carrying the AA genotype. When
stratifying by diabetes status, the risk of developing colorectal
cancer increased per A allele in those without diabetes (OR: 1.08;
95% CI: 1.05–1.11; P-value: 4.7 × 10−7) but decreased in those with
diabetes (OR: 0.85; 95% CI: 0.77–0.93; P-value: 5.9 × 10−4) (Table 3).
We did not identify any statistically significant GxE interactions

when testing gene sets with rare variants.
We used two independent sources of eQTLs to evaluate

the regulatory role of rs3802177 and rs9526201 variants on gene
expression. Variant rs3802177 was not associated with gene
expression in GTEx data; however, there was a suggestive eQTL in
BarcUVa-Seq data that regulates expression of AARD, with the G
allele associated with increased expression (β: 0.14, P-value:
4.7 × 10−2) (Supplementary Table S4). Also, variants in LD
R2 > 0.5 with rs3802177 were suggestive eQTLs in GTEx transverse
colon data that are associated with the expression of AARD
(Supplementary Table S5). For the BarcUVa data, we assessed the
diabetes status of participants who provided this information (N:
49 individuals with diabetes; N: 361 without diabetes) and tested
for interactions between the variant and diabetes on gene
expression. There was no evidence of a statistically significant
interaction (P-values > 0.05) of variant rs3802177 (or variants in LD
R2 > 0.5 with rs3802177) with diabetes in relation to SLC30A8 gene
expression in BarcUVa-Seq data (or any gene within 1 Mb of
rs3802177).
Variant rs9526201 is an eQTL in the GTEx V8 compendium that

influences the expression of LRCH1 in 8 non-colorectal tissues
(Supplementary Table S6) and variants correlated with rs9526201
are suggestive eQTLs for LRCH1 based on GTEx transverse colon
tissue (Supplementary Table S5). Also, variant rs9526201 is a
suggestive eQTL in normal colon tissue (from the BarcUVa-Seq
data) that regulates expression of RUBCNL, with the A allele
associated with increased expression (β: 0.17, p-value: 1.3 × 10−2)
(Supplementary Table S4). We found a suggestive interaction
(P-value: 0.02) of variant rs9534444 (LD R2: 0.52 with rs9526201)
with diabetes in relation to LRCH1 gene expression (Supplemen-
tary Fig. S5).
Functional annotation analyses showed no evidence of

enhancer activity for the variant rs3802177 or variants correlated
with this variant (Supplementary Fig. S6A). However, the variant
rs9526201 in the LRCH1 gene is associated with pronounced
enhancer activity in colon tumor and cancer cell lines (Supple-
mentary Fig. S6B) and is in proximity with several variants that are
located in open chromatin, suggesting enhancer activity in normal
colon tissues, colorectal cancer cell lines, and several tissues
(Supplementary Table S7).
We expanded our candidate set of variants to include variants

in LD, in a 500 kb window around rs3802177 and rs9526201
variants (LD R2 > 0.20) and used gkmSVM models to predict
variant allelic effects on chromatin accessibility (Supplementary
Fig. S7). For rs3802177 and rs9526201, the models showed a
weak difference in predicted chromatin accessibility between
the reference and alternate alleles (Supplementary Table S8).Ta
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We found a borderline difference in predicted chromatin
accessibility between the alternate G allele and the reference C
(ISM score=−1.148 in HCT116) for variant rs9534444 (LD R2: 0.52
with rs9526201; Supplementary Table S8).
GkmExplain analysis of rs3802177 and rs9526201 showed that

there a was weak allelic effect in healthy tissue, tumor tissue, and
cancer cell lines (Supplementary Fig. S8). G to A variation in
rs3802177 disrupts IRX3, leading to an increased probability of
chromatin accessibility with the A allele whereas A to G allelic
variation in rs9526201 completes a RUNX1 motif, leading to
decreased probability of chromatin accessibility with the G allele
(Supplementary Fig. S8). For variant rs9534444 which is the
highest-effect variant, in LD with rs9526201, results suggested that
C to G variation disrupts motifs ZN341, MYF5, and PRGR.

DISCUSSION
In this large genome-wide GxE interaction analysis involving more
than 30,000 colorectal cancer cases, we found that the association
of diabetes status with colorectal cancer was modified by
common genetic variants located within the SLC30A8 and LRCH1
genes. The mechanisms linking diabetes with colorectal cancer are
not fully understood. Dysregulation of insulin and glucose
metabolism are important candidate mechanisms and hyperinsu-
linemia itself has been causally linked to colorectal cancer
development [38, 39]; however, the precise mechanisms linking
these phenomena are not clear. The findings of this analysis may
provide biological insights into the established link between
diabetes and colorectal cancer.
We found that the association of diabetes with colorectal cancer

risk was modified by variants located in the SLC30A8 gene. These
genetic variants were not statistically significantly associated with
gene expression in GTEx and only a weak eQTL has been observed
in colorectal tissue for the AARD gene. Furthermore, the genetic
variants were not located within predicted enhancer regions and
we observed only weak evidence for allele-specific effects. Given
the limited functional evidence, we focused on the closest gene,
SLC30A8, which encodes a zinc transporter, ZnT8, that regulates
zinc accumulation in the beta cells of the pancreas [40]. Zinc is
implicated in the phosphorylation of the insulin receptor beta-
subunit and phosphatidylinositol 3-kinase (PI3K)/serine/threonine-
specific protein kinase (Akt) signaling pathway [41, 42]. Dysregula-
tion of the PI3K/AKT pathway is associated with diabetes
development [43] and with anti-apoptotic effects in colorectal
cancer cells [44, 45]. Our top hit, rs3802177 in the SLC30A8 gene is
in LD (R2= 1) with rs13266634, which was associated with
diabetes risk in a previous GWAS [46] (as well as in our analysis)
and has also been shown to modify insulin secretion [47]. In
summary, although we did not find strong functional genomic
support for this highly significant association, the genetic variant is
located within SLC30A8 which is a strong candidate gene for
modifying the diabetes-colorectal cancer association.
We also observed that the association of diabetes with

colorectal cancer risk was modified by genetic variants located
in LRCH1. eQTL as well as gene-expression analysis for the
variantxdiabetes interaction suggests that LRCH1 might represent
the target gene regulating expression and transcription. The
variants in LD with rs9526201 are located in enhancer peaks and
we observed borderline significant allele-specific effects for
variant rs9534444. For rs9534444, a C-to-G mutation disrupts the
motif “TGGAAGAGCAGATGG”, which the TomTom software
presents as a significant match to the know binding motifs of
the ZN341, MYF5, PRGR transcription factors. The loss of function
in response to the C-to-G mutation was observed in all 5 datasets
profiled via SVM, with the strongest effects observed in the
HCT116 cell line. LRCH1 is known to interact with DOCK8 to
restrain the guanine-nucleotide exchange factor activity of
DOCK8, resulting in the inhibition of Cdc42 activation and T cell

migration [48]. Cdc42 activation has been related to several
malignancies, including colorectal cancer [49]. Increased Cdc42
levels have been associated with colorectal cancer progression by
promoting colorectal cancer cell migration and invasion [50] and
regulating the putative tumor suppressor gene ID4 [51]. Low
LRCH1 levels, which increase migration of CD4+ T cells, have also
been found in patients with ulcerative colitis [52]. Moreover,
Cdc42 is implicated in Natural Killer (NK) cell cytotoxicity: Wiskott-
Aldrich Syndrome protein which is the effector of Cdc42 is
required for NK cell killing activity [53]. Experimental evidence has
shown that LRCH1 may regulate NK-92 cell cytotoxicity [54]. Of
further relevance to our finding, Cdc42 is implicated in insulin
secretion and is linked to insulin resistance and diabetic
nephropathy [55]. One of the proposed mechanisms is via the
Cdc42-p21-activated kinase1 (PAK1) signaling pathway essential
for insulin secretion in human islets, as it was shown that
individuals with diabetes were more likely to have an abnormal
component of PAK1 [56]. These data demonstrate a link between
LRCH1 and immune function via Cdc42 that is related to colorectal
cancer and diabetes, which may explain the observed differential
association. However, functional follow-up studies are needed to
further explore this potential significant finding.
To our knowledge, there has been one previous study

examining the interaction between T2D genetic variants and
diabetes status in colorectal cancer risk, which included 1798
colorectal cancer cases and 1810 controls and focused on T2D-
related variants [7]. That study found a statistically significant
interaction of T2D with an intronic variant rs4402960 located at
the IGF2BP2 gene (interaction P-value: 0.040) and a missense
variant rs1801282 at the PPARG gene (interaction P-value: 0.036)
The respective p-values for interaction for rs4402960 and
rs1801282 with diabetes on colorectal cancer were not nominally
significant in our GxE analysis providing limited support for those
previously observed interactions. Additionally, we previously
conducted an analysis among a large subset of our studies
(26,017 cases and 20,692 controls) evaluating interactions
between genetic predicted gene-expression levels and diabetes
on colorectal cancer risk, and identified a statistically significant
interaction between genetically predicted gene expression levels
for PTPN2 and diabetes (P-value: 2.31 × 10−5) [57]. As the approach
of this previous analysis was use of multiple common variants to
predict gene expression, we would not expect to replicate those
findings here.
Strengths of this study include the large sample size and state

of the art statistical approaches, including 2-step [16] and joint
tests [17, 22, 23], that improved statistical power by leveraging
direct gene-diabetes and gene-colorectal cancer associations
induced by Gxdiabetes effects on colorectal cancer risk. We
applied strict corrections to account for multiple comparisons
because of the number of the methods used. For the two novel
variants we identified, we performed sensitivity analyses addi-
tionally adjusting our models for BMI, GxBMI, and BMIxDiabetes. In
these adjusted models, the GxDiabetes effect estimate changed
very little (less than 0.2%) and both interactions remained
statistically significant. We acknowledge that our results were
limited to European descent individuals and thus our findings
cannot be readily generalized to other populations but require
follow up in those population groups where GxE efforts are
underpowered. Additional harmonization of epidemiological data
is ongoing and as such we will expand GxE testing once this is
complete. We used self-reported diabetes to define our exposure
which may be subject to measurement error in the traditional
case-control settings. However, measurement and imputation of G
should be non-differential with respect to both diabetes and
colorectal cancer status. Thus, while measurement error may lead
to reduced power to detect GxE interaction, we do not expect it to
lead to spurious associations if G and E are independent. In
addition, our novel findings need to be explored in experimental
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models. Also, we could not account for diabetes history and
treatment which may have an effect on colorectal cancer risk. For
example, an inverse association between metformin use and
colorectal cancer risk has been found in some studies, but not all,
while a clinical trial conducted in Japan reported a protective
effect of metformin on colorectal polyp development [58]. Future
studies may also focus on incorporating data on pre-diabetes
states and those with hyperinsulinemia.
In summary, our results suggest that variation in genes related

to immune function and regulation of the insulin receptor and
PI3K activity may modify the association between diabetes
and colorectal cancer risk. These results provide novel insights
into the biology underlying diabetes and colorectal cancer
relationship. Further experimental studies are warranted to
understand the mechanisms by which these genes play a role in
linking diabetes and colorectal cancer development.
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