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Abstract

The field of 3D generation, a rapidly emerging domain within generative AI,
holds immense potential for various applications in fields such as architecture,
product design, marketing, entertainment, and even in the novel realm of vir-
tual reality. Enhancing 3D technologies bears significant utility in fostering
society development and serves as a captivating and intellectually stimulating
field of study, offering intriguing challenges and opportunities for innovative
advancements.

In this dissertation, we introduce DreamText, an innovative Image to 3D gen-
erative model that harnesses text descriptors as an intermediate step for 3D
reconstruction. Our proposed method effectively learns to describe objects
within images, capturing crucial object details while disregarding extraneous
contextual information such as lighting, point of view, or specific arrange-
ments. This learned information serves as the foundation for generating com-
pelling and novel views of the object, subsequently facilitating the creation of
a comprehensive and accurate 3D reconstruction. Remarkably, our approach
achieves high quality results, surpassing current state-of-the-art methodologies
like RealFusion (CVPR2023)[1] in several test cases. Concrete evidence of our
results can be observed in the following link .

Furthermore, we present FitFusion, which leverages the knowledge of a pre-
trained image generative model, Stable Diffusion, to train a Neural Radiance
Field capable of generating 3D models when provided with image data during
training. This concept stems from a comprehensive analysis and understanding
of a previous model called Stable DreamFusion[2], combined with meticulous
parameter tuning that culminates in improved outcomes.

This project entails extensive mathematical and experimental analysis of cutting-
edge models, encompassing a comprehensive understanding of their intricate
details.

https://nazarpuriy.github.io/


Resumen

El campo de la generación 3D, un dominio emergente dentro de la IA genera-
tiva, encierra un inmenso potencial para diversas aplicaciones en campos como
la arquitectura, el diseño de productos, marketing, entretenimiento e incluso
en el novedoso ámbito de la realidad virtual. Mejorar las tecnologías 3D tiene
por ende una utilidad significativa en el desarrollo de la sociedad y se presenta
como un campo de estudio cautivador y estimulante, ofreciendo desafíos in-
teresantes y oportunidades para avances innovadoras.

En esta tesis presentamos DreamText, un innovador modelo generativo que
recibe imágenes como entrada y produce modelos 3D de estas. Para lograr
su objetivo, el modelo utiliza descriptores textuales como un paso intermedio.
Nuestro método aprende eficazmente a describir objetos presentes en imágenes,
capturando detalles cruciales de estos y descartando información contextual su-
perflua como la iluminación, el punto de vista o las disposiciones específicas.
Esta información aprendida sirve como base para generar nuevas vistas del
objeto, que serán utilizadas posteriormente para hacer una reconstrucción 3D
del mismo. Notablemente, nuestro enfoque logra resultados de alta calidad,
superando a metodologías de vanguardia como RealFusion (CVPR2023) [1] en
numerosas pruebas realizadas. Se puede observar evidencia concreta de nue-
stros resultados en el siguiente enlace.

Además del modelo anterior, presentamos FitFusion, que aprovecha el previo
conocimiento de un modelo generativo de imágenes ya preentrenado, Stable
Diffusion, para entrenar un modelo llamado Neural Radiance Field capaz de
generar objetos 3D cuando se le proporcionan datos de imagen durante el en-
trenamiento. Esta propuesta se deriva de un análisis exhaustivo y detallado
de un modelo previo llamado Stable DreamFusion [2], cuyos parámetros han
sido ajustados meticulosamente.

Este proyecto implica un extenso análisis matemático y la puesta en prueba de
modelos de última generación, abarcando un completo entendimiento de sus
detalles.

https://nazarpuriy.github.io/


Resum

El camp de la generació 3D, un domini emergent dins de la IA generativa, conté
un immens potencial per a diverses aplicacions en camps com l’arquitectura,
el disseny de productes, el màrqueting, l’entreteniment i fins i tot en l’àmbit
innovador de la realitat virtual. Millorar les tecnologies 3D té, per tant, una
utilitat significativa en el desenvolupament de la societat i es presenta com un
camp d’estudi captivador i estimulant, oferint reptes interessants i oportuni-
tats per a avanços innovadors.

En aquesta tesi presentem DreamText, un innovador model generatiu que rep
imatges com a entrada i produeix models 3D d’aquestes. Per aconseguir el
seu objectiu, el model utilitza descriptors textuals com a pas intermig. El
nostre mètode aprèn eficaçment a descriure objectes presents en imatges, cap-
turant detalls crucials d’aquests i descartant informació contextual superflua
com la il·luminació, el punt de vista o les disposicions específiques. Aquesta
informació apresa serveix com a base per generar noves vistes de l’objecte,
que seran utilitzades posteriorment per fer una reconstrucció 3D del mateix.
Notablement, el nostre enfocament aconsegueix resultats d’alta qualitat, su-
perant metodologies de última generació com RealFusion (CVPR2023) [1] en
nombroses proves realitzades. Es pot observar evidència concreta dels nostres
resultats al següent enllaç.

A més del model anterior, presentem FitFusion, que aprofita el coneixement
d’un model generatiu d’imatges ja preentrenat, Stable Diffusion, per entrenar
un model anomenat Neural Radiance Field capaç de generar models 3D quan
se li proporcionen dades (imatges) durant l’entrenament. Aquesta proposta
es deriva d’un anàlisi exhaustiu i detallat d’un model previ anomenat Stable
DreamFusion [2]], els paràmetres del qual han estat ajustats meticulosament.

Aquest projecte implica una extensa anàlisi matemàtica i la posada a prova
de models de última generació, abastant una comprensió completa dels seus
detalls.

https://nazarpuriy.github.io/
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Chapter 1

Introduction

The aim of this chapter is to present a concise overview of the project’s context,
the author’s motivations, and the structure of the thesis. Through this chapter,
readers will gain a better understanding of the relevance and significance of
the project, as well as the author’s approach and contributions to the field.
Please be aware that not all concepts or information can be presented within
the scope of this dissertation. However, we have made a conscientious selection
of the essential information necessary for comprehending the underlying work
and results pertaining to the subject matter at hand.

1.1 Context
Artificial Intelligence (AI) is a multidisciplinary field that blends computer
science and data analysis to develop problem-solving capabilities. The field
encompasses sub-fields such as machine learning and deep learning, which are
often associated with AI. At its core, AI is about enabling machines to learn
from data and solve complex problems. This involves creating algorithms and
models that can analyze vast amounts of data, identify patterns, and make
predictions or decisions.

Definition 1.1. Machine Learning (ML) is a subset of AI in which the
machine through the algorithms "learns" how to solve a problem learning from
data.

The origins of artificial intelligence can be traced back to the mid-20th century,
when Alan Turing posed the question, "Can machines think?" and developed
the Turing test as a means of evaluating a machine’s intelligence. Notable
advancements were made during what is often referred to as the "golden age"
of AI. In 1956, the Logic Theorist program was created to prove mathematical

1



CHAPTER 1. INTRODUCTION

theorems using logical rules. In 1958, Frank Rosenblatt unveiled the Percep-
tron, a neural network that is often regarded as the fundamental building block
of other neural networks. ELIZA, one of the first chatbots, was developed in
1966, followed by the Nearest Neighbor algorithm in 1967, which marked the
beginning of basic pattern recognition. Perhaps the most significant break-
through of this era was the development of the backpropagation algorithm,
which enabled the training of neural networks with multiple layers. This tech-
nique was first introduced in the early 1970s, and its impact on the field of
artificial intelligence was profound. Unfortunately, progress in the field was
hampered in the 1980s, when funding for research agencies like DARPA and
NRC was suspended due to limited computing power and a lack of available
data.

Over the years, the growth of computer power has followed Moore’s Law, and
processing structures like CPUs, GPUs and TPUs have become widely avail-
able in the market. Additionally, internet access has become ubiquitous in
first-world regions, resulting in massive amounts of data produced through ev-
ery user interaction with the digital world. This data has become a valuable
resource for most internet-based companies. The combination of these two
factors has enabled the creation of powerful algorithms and models that have
surpassed human capabilities in various tasks like playing chess, driving cars,
detecting objects or even in text and image generation.

The focus of this project will be on the emerging field of generative AI, which
has rapidly gained attention due to its ability to generate realistic and diverse
data.

Definition 1.2. A Generative Artificial Neural Network is a type of AI
model that has the ability to create data such as text, images, video, or audio,
that is, or aims to be, indistinguishable from real-world examples.

The field of generative artificial intelligence has experienced remarkable growth
in the past decade. Image generative models have been around since the late
2000s when autoencoders [3] were utilized to compress and expand informa-
tion, enabling the inference of new data. In 2013, Variation Autoencoders [4]
were introduced, incorporating stochastic mechanisms into these models. A
significant milestone occurred in 2014 with the introduction of Generative Ad-
versarial Networks (GANs) [5], pioneering the generation of realistic images,
style transfer, and accommodating diverse inputs for this purpose[6–8]. More
recently, starting from 2019, there has been an influx of research papers on dif-
fusion models which begin with a noisy image and progressively remove noise
until reaching a real looking sample. In the field of text generation, Recurrent

2



CHAPTER 1. INTRODUCTION

Neural Networks (RNNs) [9] gained prominence around 2010, followed by the
adoption of VAEs and GANs adapted to text generation, and finally the uti-
lization of transformers structures [10], that leaded to the widely-known GPT
models.

Nowadays, we are witnessing the development of exceptional models that
demonstrate the ability to generate highly realistic images and text. How-
ever, 3D object generation is a field that has yet to be fully explored, partially
due to the scarcity of 3D datasets.

1.2 Motivation
Stable Diffusion [11] stands out as a publicly available model, famous for its
data handling capabilities, including text, images, depth maps, etc., high train-
ing speed, and high-quality generated images. Recently, the question was posed
regarding the depth of knowledge of this generative model and whether it could
be used to generate 3D data. Numerous papers have been published, one of
which is called Dream Fusion [12], which achieved impressive results generat-
ing 3D models by leveraging the knowledge learned by diffusion models and
applying it to train a Neural Radiance Fields [13] model (see Section 3.2),
which generates 3D models from images.

The cheap and fast generation of 3D models is crucial for many industries
worldwide: entertainment and media, including film, television, animation,
and gaming, heavily relies on 3D models for creating realistic characters, en-
vironments, visual effects, and animations. Architecture and Construction
use 3D models to visualize and plan structures, buildings, and infrastructure
projects, allowing stakeholders to better understand the design, assess spatial
relationships, and identify potential issues before construction begins. In Man-
ufacturing and Product Design, for industries such as automotive, aerospace,
and consumer goods, 3D models are used for product design, prototyping, and
manufacturing, enabling designers to visualize and iterate on product concepts,
test for fit and functionality, and optimize manufacturing processes. Market-
ing and Advertising employ 3D models to create visually appealing product
presentations, virtual tours, and realistic visualizations for promotional mate-
rials. Virtual Reality (VR) and Augmented Reality (AR) rely heavily on 3D
models to create immersive and interactive virtual environments.

Hence, improving these models is crucial for the progress of these industries
and can represent a huge contribution to the society.

3



CHAPTER 1. INTRODUCTION

1.3 Objectives
The objectives of this Bachelor thesis project are multi-faceted, with both
academic and personal motivations.
From an academic standpoint, this project is a dissertation that fulfills the re-
quirements for a double degree, focusing on a field that encompasses them both.
The computer science aspect of this project includes topics such as computer
graphics and computer vision, as well as skills like memory management, class
oriented programming, data processing, and proficiency in Python, NumPy,
and Pytorch. The mathematical aspect of this project includes subjects such
as statistics and linear algebra, and requires skills related to the theoretical
foundations of the models such as problem detection, critical analysis and the
capacity of writing mathematically all the demonstrations.

From a scientific perspective, the following objectives have been identified:

• To comprehend the relationship between Diffusion Models and Neural
Radiance Fields models in the context of 3D generation.

• To investigate why the current performance level achieved by these mod-
els is not consistent with their individual performance levels.

• To suggest and implement one or more improvements to enhance the
model’s performance.

• To expand the model’s functionality by incorporating new capabilities
such as image conditioned 3D object generation.

From a personal perspective, there are two main goals: to apply the knowl-
edge and skills acquired during my bachelor’s degrees, and to explore and learn
about the latest technologies in the field using the learned abilities.

1.4 Organization
The memory is structured in a linear way, beginning with general and basic
concepts and going to the detailed architectures and notions used in the ex-
perimental part to achieve the goals. The memory can be divided basically
into two parts: the theoretical framework, consisting of Chapters 2 and 3, and
the experimental section, consisting of Chapters 4 and 5. In particular, each
chapter includes:

4



CHAPTER 1. INTRODUCTION

2. Background: tackles the theoretical background of the project giving
the foundations of the most basic components in machine learning.

3. Related Work: explores state-of-the-art models that are essential to
comprehend our proposal.

4. Analysis: comprehensive analysis of the assumptions in the first part,
giving mathematical demonstrations to them. Analysis of the model be-
haviour in order to the detect weaknesses and developing opportunities.

5. Methodology: our proposals consisting in a Model for quality enhance-
ment(FitFusion) and a model for Image to 3D generation(DreamText).
Besides, a method to improve generated samples diversity.

6. Experiments: conducted experiments to reach the proposed solution
and comparisons. Examination of failure cases.

7. Conclusions and Future Work: analysis of the completeness of the
objectives and the contributions made.

8. Appendix: additional information. Model specifications, tables, images
and results.

9. Bibliography: a list of papers, articles and literature consulted during
the project.

1.5 Notation
During this project common mathematical notation is widely used. However,
some notations have to be mentioned.

• The "," symbol used inside a probability function P (x, y) refers to the
intersection or conjunction of both events x and y.

• The ":" symbol inside a probability function P (x1 : xn) is used to com-
press the expression and refers to P (x1, x2, · · · , xn).

• "A:=B" is used to refer an equality that is defining the expression A
from a known expression B.

5



Chapter 2

Background on Artificial Neural
Networks

This chapter serves as a comprehensive overview of the fundamental concepts
in the field of machine learning. Our objective is to provide a solid under-
standing of the basic principles and building blocks that underpin the models
presented later in this work.

An Artificial Neural Network, referred as ANN, is a computational model
inspired by the human brain, designed with the purpose of mimicking the
information processing and learning capabilities of a human. Typically, the
objective is to establish a relationship between an input x and an output y. To
achieve this, a substantial amount of pre-existing paired samples is provided,
which serves as the basis for extracting the necessary information to make
accurate predictions in the future.

2.1 Perceptron
Perceptrons were introduced for the first time in the 1950s. They were cre-
ated to simulate the basic building blocks of biological neurons and perform
simple binary classifications. Perceptrons were primarily constructed using a
linear function, characterized by easily calculable derivatives combined with
a non-linear function called activation function. This crucial aspect enables
the neural network to effectively model intricate relationships and prevent the
collapse of multiple linear functions into a single one.

Definition 2.1. In ML, an Activation Function is a non-linear function
h : R → R

6



CHAPTER 2. BACKGROUND ON ARTIFICIAL NEURAL NETWORKS

The most usual ones are the sigmoid [14], the softmax [15] (see Equation (2.1)),
the ReLU[16] (see Equation (2.2)) and the Leaky-ReLU [17] (see Equation
(2.3), where α ∈ R+).

σ(x) =
1

1 + e−x
(2.1)

ReLU(x) = max(0, x) (2.2)

LeakyReLU(x) =

{
αx, if x < 0

x, otherwise
(2.3)

Definition 2.2. In ML, a Neuron, conceived from the biological model of
neurons, is a function f made of the composition of a linear function [18]
g : Rn → R and an activation function h (see Equation (2.4)).

f(x) = h(g(x)) = h

(
n∑

i=1

wi xi + b

)
(2.4)

Definition 2.3. In Equation (2.4) wi ∈ R, i ∈ {1, ...n}, are called weights of
the neuron while b ∈ R is called bias.

Definition 2.4. The Perceptron is a function f : Rn → {0, 1}, (see Equation
(2.5)):

f(x) =

{
0, if g(x) < T

1, if g(x) ≥ T
(2.5)

in which the activation function, h(x), is a threshold. The input x represents
the received data while the output y - binary class category annotated by
{0, 1}.

Figure 2.1: A visual representation of a Perceptron.

7
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2.2 Multi-Layer Perceptron
Definition 2.5. In ML, a Layer is a linear function f : x ∈ Rn → y ∈ Rm in
which y = (y1, · · · , ym) and yi = fi(x) where fi(x) are neurons.

A layer is basically a group of neurons stacked together.

Definition 2.6. A Multi-Layer Perceptron is a function mlp : x ∈ Rn →
y ∈ Rm made of the composition of multiple layers f 1, · · · , fn :

f(x) = fn ◦ fn−1 ◦ · · · ◦ f 1(x) (2.6)

In ML, an (ANN) (usually referred just as a model) is a mapping function
that maps inputs x to an output y. Mathematically, it is composed by neurons
distributed in multiple ways. If the function is carefully chosen, we can expect
that it can extract insights from the data. For example, from car information
such as the model, the manufactured year and the traveled distances (the
input), we can extract the expected selling price (the output). Notice that
all the information has to be previously expressed as numbers or vectors of
numbers. One of the most basic or common ones is the multi-layer perceptron
introduced in Definition 2.6.

2.3 Loss
In order to choose which concrete ANN model to use in a problem, we need a
way to decide. One way to do it is defining a mathematical function that will
tell us how well the network is performing: the loss function. Notice that this
function, besides measuring the error of the network, will allow us latterly to
improve the network capabilities by minimizing it.

Definition 2.7. A Loss Function, also referred as a cost function, is a func-
tion loss : RmxRm → R+ , m ≥ 1, that is used to measure the difference
between the output of a model and the expected one.

We can see that in order to evaluate the performance of an ANN, we need
input data. This input data x is passed through the function of the ANN
obtaining an output ypred which is then passed together with the expected
values ytrue to the loss function. The loss function will return a value ∈ R+

representing how good the network predicts values, with lower values being
better. Depending on the problem, there are multiple possible loss functions,
the most common ones are the Mean Squared Error shown in Equation (2.7),

8
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Binary-Cross Entropy Loss shown in Equation (2.8), the n-dimensional ver-
sion of it called Categorical-Cross Entropy Loss[19] shown in Equation (2.9)
or Kullback-Leibler (KL) Divergence [20] introduced later in Definition 3.2.
In the equations below ŷ is the real value or expected value, while y is the
predicted one. N is the number of items in the dataset, which output value is
predicted and C is the number of different categories.

MeanSquaredError(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)
2 (2.7)

BinaryCrossEntropyLoss(y, ŷ) = − 1

N

N∑
i=1

(ŷi) log yi+(1− ŷi) log(1− yi) (2.8)

CategoricalCrossEntropyLoss(y, ŷ) = − 1

N

N∑
i=1

C∑
j=1

ŷij log(yij) (2.9)

The loss function plays a crucial role to decide which ANN to use. It is
important to note that there are two distinct ways in which two ANNs can
differ: structure and value. Structural differences arise from variations in
activation functions, the number of layers, the number of neurons per layer,
or the connectivity patterns. On the other hand, value differences occur when
two neural networks have the same structure, but differ in the specific values
of their weights and biases.

2.4 Gradient Descent
While selecting between neural networks in the first category cannot be directly
automated, the process of choosing within the second category is an automat-
able procedure known as training. During training, the network learns to
adjust its weights and biases to minimize the loss function, resulting in im-
proved performance. To train the network, we can envision the loss function
as a mountain, and our goal is to descend from it. To determine the direction
of descent, we employ a mathematical tool known as the gradient.

Definition 2.8. If f : Rn → R is a differentiable function then the gradient
of f is a function ∇f : Rn → Rn that for x ∈ Rn is defined as:

∇f(x) =

(
∂f(x)

∂x1

, · · · , ∂f(x)
∂xn

)

9
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Figure 2.2: A Visual Representation of a Gradient Descent Process. Image ex-
tracted from [21]

.

Notice that the gradient points towards the direction in which the function
f has higher variance. Then given x ∈ Rn and for a small enough δ ∈ R+

we can assure, as the function is differentiable and therefore continuous, that
f(x) ≥ f(x− δ∇f(x)).
We can then iterate xt = xt−1 − δt−1∇f(xt−1) until arriving to a local mini-
mum of f . Figure 2.2 illustrates how this process works.

Notice that the method mentioned before allows us to achieve the local min-
ima of a given function. In our case, we fix the network structure, i.e. the
activation functions, the number of layers, the number of neurons per layer, or
how they connect. Then, we apply the gradient descent algorithm to the loss
function, fixing as a constants the input x and ytrue, and being the weights and
the biases the unique variables. Therefore, reaching the local minima would
mean reaching one of the the best functions inside our family of possible ones.
Equation (2.10) shows the final function in which x and ytrue are fixed val-
ues while the wi

j and bi are the variables that will be modified using gradient
descent:

loss(wi
j, b

i; f(x), ytrue) (2.10)

The function obtained at the local minimum is usually referred as trained
model and the process of obtaining it, previously mentioned, is called train-
ing.

The problem that still is being not resolved, is which structure to use in each
problem. Simple structures may not be sufficient for the function f to express
the complexity of the data, a problem usually known as high bias or underfit-
ting, while complex structures can lead to models that do not generalize well, a

10
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problem referred as overfitting or high variance. Currently, one of the primary
focuses in the field of ML revolves around studying different model structures
and determining which models are most suitable for specific problems.

2.5 Autoencoders
An important structure that has to be conceptually introduced before pro-
ceeding the reading is the autoencoder [3].

Definition 2.9. An autoencoder is an ANN structure, made of the compo-
sition of two functions g : Rn → Rm and h : Rm → Rn called encoder and
decoder respectively, and being m < n ∈ N. The objective of the autoencoder
is to minimize the difference between the input x and the output h ◦ g(x).

Figure 2.3: Autoencoder diagram. In blue the encoder that maps the input x ∈ Rn

towards a lower dimensionality z ∈ Rm. In green the decoder that maps this lower
dimensionality to the previous higher one y ∈ Rn. Notice that the internal structures
of these models are complex and typically rely on the data provided or the specific
problem being addressed.

Although the difference between input and output may appear straightforward,
just use id function, the crucial aspect of the model lies in the dimensional
reduction within the function, as m < n, see Figure 2.3. This reduction implies
that the model must determine the essential information that needs to be
conveyed. In other words, the model is tasked with selecting and transmitting
the most crucial features or relevant aspects from the input to the output.

11
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This process of information selection is a fundamental aspect of the model’s
functionality. After training, the encoder g can compress the data into a
lower-dimensional representation. This compressed data can then be utilized
to reconstruct the original content using the decoder h.

2.6 Further readings
The previously mentioned structures provide the most basic foundations for
understanding the methodology and algorithms used in this project. For a
more thorough understanding of these concepts, we recommend reading [22]
or attending to the online ML Specialization by Andrew Ng available on Cours-
era.
In addition to the aforementioned basic structure, other relevant structures to
understand this project include Convolutional Neural Networks [23], which are
used for image processing, Recurrent Neural Networks [9], which are used for
sequential data analysis, Attention layers [10], which are used to focus on the
important data parts, and Dropout layers [24] used to avoid overfitting.
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Chapter 3

Related Work on 3D Generation

In this chapter, we will introduce cutting-edge technologies in the machine
learning field, which are essential to understand our final proposals as they
serve as the foundation for our work. In Section 3.1, we will delve into image
generative models known as diffusion models. Embarking on our exploration,
we will delve into the foundational models, gradually advancing towards the
cutting-edge technology known as Stable Diffusion [11]. Subsequently, in Sec-
tion 3.2, we will explore Neural Radiance Fields [13], a 3D generative models
which utilize images with known camera poses to reconstruct underlying ob-
jects. Finally, in Section 3.3, we will present DreamFusion [12], our founda-
tional work that combines the aforementioned technologies to enable text-to-
3D generation.

3.1 Diffusion Models
We are interested in 3D generative models able to learn to effectively recon-
struct 3D representations of objects, relying on knowledge and insights derived
from an image generative model. Consequently avoiding the need for expen-
sive 3D datasets. Therefore, it is imperative to thoroughly comprehend the
inner workings of the image generative process that we employ.

Diffusion models [25; 26] are latent-variable generative models (Definition 1.2)
that learn to gradually transform a sample from a tractable noise distribution
towards a data distribution. The main idea behind them is a deconstruc-
tion and a learned reconstruction of an image. In this case, differing from
variational autoencoders [4], an autoencoder that includes uncertainity in its
process, the deconstruction is a fixed process while the reconstruction is the
learned one.
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Intuitively, our objective is to take a random noisy image, Figure 3.1, and
progressively remove the noise, ultimately generating a final realistic image. In
order to train the model for this task, we will utilize real images and introduce
noise artificially. The model will then be trained to predict the added noise.
Consequently, the model is comprised of two main components: the forward
process, also known as the noising process, and the backward process, also
referred to as the denoising process.

Figure 3.1: Noise image. Colour values are independently sampled from normal
standard distribution.

3.1.1 Diffusion models architecture

Forward process

The objective of the forward or deconstruction process is to convert an image
to a noise image, Figure 3.1. Mathematically, it aims to convert a data distri-
bution into a Gaussian noise distribution. Although it is possible to convert
directly an image to pure noise a Markov Chain, (see Definition 3.1), is used
to do so, as experimentally it has shown better performance [26]. The number
of steps used in the chain is T ∈ N, being 1000 the most typical value.

Definition 3.1. A Markov chain is a stochastic model describing a sequence
of possible events in which the probability of each event depends only on the
state of the previous one. Mathematically, if x0, x1, · · · , xn are a sequence of
already occured events then P (xn+1|x0 : xn) = P (xn+1|xn).

Let us see mathematically how this process works. Be x0 an image from the
training dataset. Then every subsequent image can be obtained as q(xt|xt−1) :=
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N (xt;
√
1− βtxt−1, βtI). Here β1, · · · , βT are called the variance schedule and

take linearly values from 10−4 to 0.02. The variance schedule refers to a mecha-
nism that determines the rate at which the input will degrade into noise within
a generative model. By adjusting the hyperparameter β, the model can con-
trol the characteristics of the generated samples. A higher value of β, closer to
1, corresponds to samples being generated with a distribution having a mean
closer to 0 and a higher variance. From this definition and being ϵ a random
variable following a standard normal distribution, we can write xt depending
on xt−1 as shown in Equation (3.1):

xt =
√

1− βtxt−1 +
√
βtϵ. (3.1)

One key factor to notice is that the previous expression can be rewritten so
that the xt term depends directly on x0 instead of xt−1 (see Equation (3.2)),
where αt := 1− βt and ᾱt :=

∏t
s=1 αs:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (3.2)

Figure 3.2: Diffusion backward and forward process as a Markov chain (figure
extracted from [26]).

Notice that this allows to evaluate xt in one step instead of doing t iterations.
Hence, boosting considerably the execution speed for the forward process, while
allowing to maintain the step by step reconstruction for the backward process,
which leads to better generated quality. The derivations are shown in Section
4.1.1.

Figure 3.2 illustrates how the process works.

Backward process

The backward process, also known as the denoising process, is responsible for
transforming noisy images into less noisy versions of themselves. At the end
of its Markov chain, it aims to recover the original clean image or reduce the
level of noise present in the input image. Every previous version of the noised
image can be obtained as pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)). Notice
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that µθ and Σθ depend on θ that are the parameters of the neural network
that will be trained. Their definition is done in Section 4.1.1 to ensure they
are specifically designed to simplify the final loss function. It is worth noting
that both do not receive x0 as an explicit input. This implies that they must
learn to reconstruct the image solely based on the noised image and the time
t.

3.1.2 Loss Function in Diffusion Models

Having defined both the forward (noising) process and the backward (denois-
ing) process, the subsequent step is to devise a suitable loss function for train-
ing the neural network with the objective of learning to reconstruct real images.
A natural approach is to maximize the probability of the backward process in
producing realistic samples, as this aligns with our goal of creating a model
that can generate high-quality images. This is mathematically the same as to
minimize the negative log likelihood, as shown in Equation (3.3):

E [− log pθ(x0)] (3.3)

The loss function can be derived as seen in Section 4.1.1 to a lower bound, and
a more tractable form, as seen in Equation (3.4):

Eq

[
DKL(q(xT |x0) ∥ p(xT )) +

∑
t>1

DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))− log pθ(x0|x1)

]
(3.4)

Notice that we can ignore the LT = DKL(q(xT |x0) ∥ p(xT )) term as it has no
trainable parameters and it would tend to 0 as q(xT |x0) ≈ N (xT ; 0, I) if enough
iterations are made, which is exactly the distribution of p(xT ), taken by def-
inition. On the other hand, the terms Lt−1 = DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))
are one of the key components as they calculate the difference, and not the
distance as it is not a symmetric function, between the known distribution
and the one that the network predicts (see Definition 3.2). Finally, the last
term, log pθ(x0|x1) is just the probability of generating the real image given
the one-step noised image.

Definition 3.2. In mathematical statistics, the Kullback-Leibler diver-
gence or DKL is defined for two distributions P and Q of continuous random
variables as DKL(P ||Q) =

∫∞
−∞ p(x) log

(
p(x)
q(x)

)
dx, where p and q are the prob-

ability density functions of the variables.
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Taking a specific structure for µθ and Σθ = σ2I, we can arrive to the last
equation for the Lt−1 terms (see Equation (3.5)). Notice that, as previously
mentioned, the specific election of these both therms is done in Section 4.1.1
with the objective of simplifying the final loss formula:

Ex0,ϵ

[
β2
t

2σ2
tαt(1− ᾱt)

||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)||2

]
(3.5)

Notice that now ϵθ(xt, t) = ϵθ(
√
ᾱtx0+

√
1− ᾱtϵ, t) is the trainable part aiming

to predict the real noised from the noised image and the time-step.
Finally, the L0 term, assuming that the image consists of integers in {0,1,· · · ,
255} scaled linearly to [−1, 1], can be written as Equation (3.6).

pθ(x0|x1) =
D∏
i=1

∫ δ+(xi
0)

δ−(xi
0)

N (x, µi
θ(x1, 1), σ

2
1)dx

δ+(x) =

{
∞, if x = 1

x+ 1
255

, if x < 1
δ−(x) =

{
−∞, if x = −1

x− 1
255

, if x > −1
(3.6)

Notice that we are taking each pixel individually, supposing them indepen-
dent, and calculating the probability that the pixel falls in the correct color,
mathematically the integral in the range of the colour bin. D is the number of
pixels of an image.
Finally, for the purpose of predicting noisy images, an U-Net [27], Figure 3.3
architecture will be employed as a basic network structure. Specifically, we
will utilize the model architecture presented in [11], making use of its publicly
pretrained version available on Hugging Face at the following link .
While this initial implementation of diffusion models had yielded commend-
able results, see Figure 3.4, there were still room for further improvements in
several key areas. These areas include addressing the computational complex-
ity, enhancing generation speed, improving scalability for larger image sizes,
incorporating guided generation techniques, and enhancing the overall sample
quality.

3.1.3 Improved proposals for diffusion models

Although this default implementation is capable of producing great results,
further improvements were made in the model architecture, training sched-
ule, model input and training procedure in order to enhance quality, speed
or features of the preexisting model. This implementations has served as the
foundation for the final model we employ; thus, we will now briefly illustrate
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Figure 3.3: U-Net: A powerful deep learning architecture known for its exceptional
feature extraction and contextual understanding. (figure extracted from [27]).

them in the following paragraphs.

Denoising Diffusion Implicits Models [28] show that the obtained local min-
ima with the loss given in Equation (3.4) are also a local minimum for other
Markov Chains. Two special cases are disgussed in this paper: determin-
istic backwards process, and faster sampling process. First is done taking
special variance values and the second is done by making bigger denoising
sampling steps (i.e. generating xt−2 or lower given xt). They both together
show faster and greater generative process than the previous implementation
[26]. Moreover, the deterministic generation process enables interpolation of
the generated images by conducting the interpolation in the noise space and
subsequently generating the samples.

Improved Denoising Diffusion Probabilistic Models [29] tackles the possibility
of using a learnable variance instead of the aforementioned fixed one. They
also introduce a new variance schedule for smaller images (Equation (3.7), with
s=0.008 and T being the number of steps in the diffusion process):

ᾱt =

cos
(

t/T+s
1+s

π
2

)
cos
(

s
1+s

π
2

)
2

(3.7)

The paper "Diffusion Models Beat GANs on Image Synthesis" [30] uses the
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Figure 3.4: Diffusion models DDPM [26] implementation, figure extracted from
original paper. Generated samples on CelebA-HQ 256 × 256 (left) and unconditional
CIFAR10 (right)

previous improvements and adds a class condition y guiding to the backward
process in order to make specific generations. To do so, they multiply the
probability of obtaining a particular xt by the probability of that generated xt

being part of the specified class y. This can be done with a pre-trained and
fine-tuned classifier.

Finally, in the work of Classifier-Free Diffusion Guidance [31], the inclusion
of a label y in the network’s input is sometimes employed, while at other
times, the symbol ∅ is added to indicate the absence of a label. This label is
used as a conditioning and adds information to the model about the expected
final image. Subsequently, the backward or generative process can be guided
according to Equation (3.8). In this equation, the parameter s denotes the
guidance scale, typically ranging from 0.1 to 5, which determines the level of
importance assigned to the text in the generation process. This method serves
as a foundation for further advancements discussed in subsequent works [32]:

ϵ̂θ(xt|y) = ϵθ(xt|y) + s(ϵθ(xt|y)− ϵθ(xt|∅)) (3.8)

3.1.4 Stable Diffusion

Stable Diffusion is referred to a group of publicly available models based on
the paper "High-Resolution Image Synthesis with Latent Diffusion Models"
[11].
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The underlying concept driving these approaches is perceptual image compres-
sion, which involves reducing the size of images while preserving their essential
information. This is achieved by training an auto-encoder with a perceptual
loss [33] and a patch-based adversarial objective [34–37]. In essence, these
methods learn how to effectively reduce the dimensionality of images while re-
taining all the necessary information to facilitate accurate reconstruction and
preserve fine details.

As part of the training process, all images are encoded into a lower-dimensional
space known as the latent space. This latent space serves as primary domain
for model training. During the generative phase, samples are generated in the
latent space and subsequently decoded to obtain high-quality images. This
approach allows for efficient representation and manipulation of images while
maintaining fidelity to the original content.

Furthermore, these approaches offer the flexibility to incorporate multi-modal
inputs through an intermediate mapping of the conditioning. Once mapped to
the intermediate space, the conditions are integrated into the U-Net backbone
using a cross-attention mechanism [10], see Section 3.1.4. Figure 3.6 provides
a visual depiction of how the autoencoder and conditioning elements are inte-
grated into the diffusion pipeline. Detailed specifications of the model can be
found in the original paper [11] or on the Hugging Face platform.

Cross-Attention mechanism

The objective of the cross-attention mechanism is to influence one embedding
with another embedding in order to enrich the information within a given con-
text, such as an image, text, or sound. In a concrete example, let us consider a
blurry image that depicts an indistinguishable, sticky iron object. The model’s
initial embedding for the image would contain this limited information. How-
ever, by using the text embedding for the sentence "a sword," we can leverage
the cross-attention mechanism to modify the image embedding and provide it
with additional information.

Figure 3.5 illustrates this process. Formally, we have two embeddings, denoted
as V and W . These embeddings are multiplied by three matrices, namely WQ,
WK , and W V , resulting in the query (Q), key (K), and value (V ) vectors. The
key represents the contextual information, and its associated details are stored
in the value. The query represents the target information that needs to be
contextualized. f the embedding W needs to be contextualized, it will be
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Figure 3.5: Attention mechanism. Q is influenced with V using K. Mask can be
ignored for the purposes of this explanation (figure extracted from [10]).

multiplied by the matrix WQ, while the other vector (e.g., the contextual in-
formation) will be multiplied by the matrices WK and W V . To achieve this,
we compute the dot product between the query and key vectors, yielding a
vector that represents the influence of different contextual elements on the
query. The softmax function is applied to normalize these outputs. Finally,
the resulting attention weights are multiplied by the values of the key to con-
textualize it. See Equation (3.9). It is worth noting that these matrices are
trainable, enabling the model to learn how to contextualize effectively. For a
more comprehensive understanding, we recommend referring to the paper [10],
which provides a thorough explanation of this process.

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (3.9)

In our particular case, we employ a CLIP model to obtain embeddings that
serve as conditioning inputs. These embeddings are then seamlessly integrated
into the model using the corresponding cross-attention mechanism.
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Figure 3.6: The figure shows how the autoencoder (red) and the conditioning
(white) fit in the diffusion model’s (green) pipeline. Figure extracted from the orig-
inal Stable Diffusion paper [11].

3.1.5 CLIP

"Learning Transferable Visual Models From Natural Language Supervision"
[38] presents CLIP, which is a model trained to pair images with text. To do
so, there are two independent encoders: one for the images and one for the
text, that are trained to produce a vector in the same dimensional space. For
every batch of images with their captions, a list of image vectors I1, · · · , In
and a list of text vectors T1, . . . , Tn are produced. Then, a scalar product is
made among all the image and text vectors in a batch, obtaining a matrix of
size nxn. This matrix contains on the diagonal the product corresponding to
correct match of image and text vectors and outside - the wrong ones. Con-
sequently, the objective of the model, a contrastive loss, is to maximize the
values in the diagonal and minimize the ones outside.

CLIP offers two key features: text embedding space, which provides a strong
representation of textual information that can be utilized to condition Stable
Diffusion generation, and text pairing capability, enabling text-image matching
as a powerful classifier, which we leverage for our DreamText proposal.

3.2 Neural Radiance Fields
Once a robust image generative model has been established, the next step is
to define a 3D generative model that will be combined with it. Additionally
to the disseration work, we present a comprehensive and publicly available
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repository (link), made by ourselves, that covers this technology extensively.
The repository includes complete implementations built from the ground up,
allowing users to gain a deep understanding of the inner workings in an easy
and interactive way.

NeRF (Neural Radiance Fields) models, as described in the paper [13], are
designed to generate realistic 3D object reconstructions using a collection of
images with known camera poses, without relying on pre-existing 3D datasets
like ShapeNet [39]. Previous approaches attempted to predict voxel values
within the 3D space in order to align their renderings with the given training
images [40–42]. While these methods achieved impressive results, they lacked
scalability to higher resolution imagery due to their computational intensity
and memory requirements. NeRF addresses these limitations by learning a
function that predicts voxel values, rather than directly predicting the values
themselves. The behavior of NeRF can be understood in two main steps. First,
it learns a function that outputs the color and density of a particular point
in 3D space. The second step involves rendering images by "stacking" these
values in a process called volume rendering. Figure 3.7 illustrates how the
model works.

Figure 3.7: An overview of the NeRF procedure (extracted from [13]). (a) A set of
samples is colected along each ray associated with each pixel. (b) Colour and density
values are predicted for every sample, which is essentially a point in the 3D space.
(c) Colour and density values are used to render the predicted images using volume
rendering techniques. (d) The difference between the predicted image and the real
image is used to train the colour and density predicting function FΘ.

3.2.1 Function to predict colour and density

The objective is to train a function that will predict colour and densities for
given 3D points, which then will be rendered into an image as explained in Sec-
tion 3.2.2. The function is defined as FΘ : R5 → R4, which takes (x, y, z, θ, ϕ)
and outputs (R,G,B, σ), where (x, y, z) are the point coordinates, (θ, ϕ) is the
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view direction and (R,G,B) is the output colour with σ being the associated
point density. Intuitively, we want to predict the colour and density of a par-
ticular point in 3D space by training a network that receives the position of
the point and in which direction, we are looking at it. The view direction is
used to simulate the specular behaviour of the object, i.e. the reflections, as it
is not the same to look towards a specific object from a different point of view.
To encourage the 3D representation to be multiview consistent, the density σ
only depends on the 3D coordinates (x, y, z), and not on the view direction
(θ, ϕ).

3.2.2 Volume Rendering

Once there is a function able to predict the colour and density values for each
point in 3D space, we need to perform a rendering to transform these values
into an image. To do so, classical principles of volume rendering are used [43].
The density is interpreted as a probability of the ray ending in the infinitesimal
position (x, y, z). Being now o - the origin of the ray, d - the direction of the
ray, and tn and tf - the near and far bounds, we can obtain the point at time
t as r(t) = o + td and use it as input to the colour and density functions that
will be rendered as follows:

C(r) =

∫ tf

tn

T (t)σ(r(t)) c(r(t), d) dt. (3.10)

Notice that FΘ(x, y, z, θ, ϕ) := (c(x, y, z, θ, ϕ), σ(x, y, z)). Meanwhile, T (t) is
the probability of the ray not being hit until time t. This is known as accu-
mulated transmittance, (see Equation (3.11)):

T (t) = exp

(
−
∫ t

tn

σ(r(s)) ds

)
(3.11)

Section 4.1.2 shows how this expression is obtained.

Numerically, this expression is estimated using quadrature. Stratified sampling
is used in order to ensure that every position of the ray has probability of being
sampled. This approach is necessary, because if the same spatial location is
repeatedly sampled, it can lead to the emergence of grid-like patterns in the
reconstructed 3D representation. To do so, the space [tn, tf ] is divided into N
evenly spaced bins. Then, within each of the bins, a time t is sampled as seen
in Equation (3.12) in which i ∈ {1, · · · , N}, where N is the number of samples
taken within each ray:

ti ∼ U
[
tn +

i− 1

N
(tf − tn), tn +

i

N
(tf − tn)

]
(3.12)
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Using this sampling, and supposing colour and density constant between two
times t, we can simplify Equation (3.10) into Equation (3.13) as seen in Section
4.1.2:

Ĉ(r) =
N∑
i=1

Ti(1− exp(−σiδi))ci, where Ti = exp

(
−

i−1∑
j=1

σjδj

)
, (3.13)

where δi = ti+1 − ti the distance between adjacent samples and σi = σ(r(ti)))
and ci = c(r(ti)).

3.2.3 Training a Neural Radiance Field

Before the training of the previously defined Fθ function, the one that predicts
colour and density, some improvements were added:

- Positional encoding to ensure that the network is able to express sharp con-
tours as follows in Equation (3.14). Notice that p is a vector, in our case we
use it for the vector of positioning and for the vector of view direction:

γ(p) = (sin(20πp), cos(20πp), · · · , sin(2L−1πp), cos(2L−1πp) (3.14)

Experimentally good values of L are 10 for the encoding of the position and 4
for the encoding of the view direction.

- Hierarchical volume sampling: two stages of sampling to improve ray tracing
efficiency and accuracy. Initially, Nc positions are sampled throughout the
volume to estimate hit probabilities. In the second stage, an additional Nf po-
sitions are sampled, with an emphasis on oversampling regions where the hit
probabilities are higher. First Nc samples are used to train a coarse network
which output is referred as Ĉc(r), while the Nc + Nf are used to train the final
fine network which output is referred as Ĉf (r).

- COLMAP from structure-from-motion package [44] is used to estimate cam-
era values such as position and view direction for real world samples taken
from videos.

With these assumptions, the loss is simply the difference between the rendered
and true pixel values, see Equation (3.15)), where C(r) are the real or expected
pixel values.

L =
∑
r∈R

[
∥Ĉc(r)− C(r)∥22 + ∥Ĉf (r)− C(r)∥22

]
. (3.15)
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It is worth noting that the pixels can be trained independently. This means
that there are no restrictions on selecting which subset of pixels to train, re-
gardless of their proximity or whether they belong to the same image.

3.2.4 Instant Neural Graphics Primitives

One of the drawbacks of first NeRF model [13] and many of its variants is the
long execution time required for training the model. Fortunately, [45] achieves
a reasonable time without the loss of quality. This enhancements come from
first programming directly the network on CUDA, and secondly from a train-
able efficient encoding of the input (x, y, z) position.

The objective of the encoding is to associate each position in 3D space with a
vector of values that captures meaningful information for the network. To do
so, each point in 3D-space is associated with a set of trainable encodings via
hash function. In order to make the storage efficient, the feature space, our
3D-space where the object lies, is partitioned into L (usually 16) 3D-grids of
different size. The size goes from Nmin to Nmax as shown in Equation (3.16):

Nl := [Nmin · bl], b := exp

(
lnNmax − lnNmin

L− 1

)
(3.16)

Usual values are 16 for Nmin and from 512 to 524288 for Nmax. Notice that
the number N3 indicates the number of cubes in which the 3D-space will be
partitioned. b ∈ [1.26, 2] and l ∈ 0, 1, · · · , L. Observe that the different grids
are independent (see Figure 3.8 step 1).
Then, given a concrete point in the 3D space, and for each grid, upper and
lower vertex are obtained with floor and ceil functions, as shown in Equation
(3.17):

xu = ⌈x ·Nl⌉ xl = ⌊x ·Nl⌋ (3.17)

Afterwards, all the possible combinations are made by extracting for each
dimension a component from one of the two vectors, obtaining the 23 = 8 cube
vertexes. Then, the vertex corresponding encoding values are obtained from a
hash-table. The hash tables contain T entries of size F . Typical values for T
range from 214 to 224 and 2 for F . The hash table positions of each cube vertex
are obtained using a spatial hash function (Equation (3.18)) [46], in which d
is the number of dimensions (d = 3 for 3D-space and π are the prime numbers
1, 2 654 435 761 and 805 459 861:

h(x) =
(
⊕d

i=1xiπi

)
(3.18)
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⊕ represents the bit-wise XOR operation (see Figure 3.8 step 2).

Finally, the obtained values corresponding to the vertex of the cube that con-
tains the concrete point are linearly interpolated. This gives the ·D point
value for a concrete grid size. Then, for each grid level the values are taken
and concatenated together, adding also the encoding for the viewing direction,
obtained as previously in [13]. This encoding will be used as input to the
NeRF MLP, which now is reduced from the original size to only 2 layers, that
will predict the colour and density (see Figure 3.8 steps 3,4,5.) This approach
enables quicker sampling while upholding the sample quality.

Figure 3.8: An overview of the multiresolution hash-encoding (extracted from [45]).
This 2D example showcases two grid levels: red and blue. In this illustration, the
pixel x is queried (1). Subsequently, the vertices of the corresponding square are
obtained, and their values are retrieved from the hash table (2). These obtained
values, four in this case (or eight for our 3D samples), are then interpolated to derive
the final value (3). The values obtained at each grid level are concatenated, along
with the encoding of the view direction (4). This resulting vector is subsequently
input into the network (5).

3.3 DreamFusion
Now, with the introduction of both a text-to-image generative model and an
image-to-3D model, it is time to explore their combination to achieve text-to-
3D model generation.

The objective is to use the prior gained knowledge of a diffusion model to
guide the NeRF model in its reconstruction process. [12] develops this idea,
producing high-quality 3D models without relying on explicit 3D training data.
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This is a significant advancement as acquiring large-scale 3D datasets, such as
ShapeNet [39], can be challenging, time-consuming, and expensive.

3.3.1 DreamFusion architecture

The model architecture consists on the join of a diffusion model and a NeRF
model. As explained in Section 3.1 the objective of the diffusion is to generate
realisting looking data by removing noise. On the other hand, NeRF model
learns a 3D representation of an object from different views of it.

The whole process can be visualized in Figure 3.9. First, random camera poses
are sampled: camera position, camera view direction, field of view, etc. These
values are passed as input to the NeRF model (Figure 3.9, step 1) that will ren-
der an image from that point of view (Figure 3.9, step 2). This is done in the
exact same way as the NeRF does it with a standard training dataset. Then,
noise is sampled from Gaussian standard distribution and a random time t,
inside the range of the diffusion model (ours is 0 to 1000), is used to add this
noise to the image (Figure 3.9, step 3). This noise is added using the forward
diffusion step previously mentioned. Then, the noised image (Figure 3.9, step
4) is passed to the diffusion model that will use the text prompt (Figure 3.9,
step 5) to predict the noise (Figure 3.9, step 6). The difference between the
predicted and real noise will work as the error for the NeRF model (Figure
3.9, step 7).

Intuitively, the NeRF model serves to render images, which are intentionally
corrupted with noise. These noisy images are then fed into the diffusion model,
which attempts to predict the present noise. Assuming the diffusion model per-
forms flawlessly, the discrepancies between the actual noise and the predicted
noise would correspond to the areas in the image where the NeRF model is
not working properly. Therefore, this is used as loss to train the network. For
a more comprehensive visualization and understanding, one can refer to the
complete diagram extracted from the original paper (Appendix Figure 8.2).

3.3.2 Loss for DreamFussion

The loss (see Equation 3.19) comes from the diffusion loss (see Equation 3.4)
in which the term β2

t

2σ2
tαt(1−ᾱt)

has been changed by w(t) as it has been shown
in [28] that the local minimum is achieved with the same parameters for any
w(t).

Ldiff = Et∼U(0,1),ϵ∼N (0,I),γ
[
w(t)∥ϵϕ(zt; t, y)− ϵ∥22

]
(3.19)
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The xt is now called zt as it is now obtained as αt g(θ, γ) + σt ϵ instead of
αt x0 + σt ϵ. Now, the start images x are rendered with g(θ, γ)). γ represent
the non-trainable camera poses while θ the trainable parameters of the NeRF
network. Notice also that a y parameter has been added to the ϵθ network as
now we have text prompts as seen in [31].
Our objective is to minimize this loss by changing the θ parameters of the
NeRF network while maintaining the ϕ parameters of the diffusion networks
constant. The following Equation (3.20) shows the gradient of the function
respect the θ parameters.

∇θLdiff (ϕ, θ) = Et,ϵ,γ

[
2w(t)(ϵϕ(zt; t, y)− ϵ)

∂ϵϕ(zt; t, y)

∂zt

∂zt
∂x

∂x

∂θ

]
(3.20)

Experimentally, it has been shown [12] that removing the second term ∂ϵϕ(zt;t,y)

zt
produced much faster sampling without quality loss. This means that the
gradient has to be manually specified in pytorch as in Equation 3.21:

∇θLdiff (ϕ, θ) = Et,ϵ,γ

[
w(t)(ϵϕ(zt; t, y)− ϵ)

∂x

∂θ

]
(3.21)

Notice that ∂zt
∂x

= αt and the 2 has been absorbed by the w(t) term.

3.3.3 Stable DreamFusion

The previous implementation [12] utilized Mip-NeRF [47] as the NeRF model
and [48] as the diffusion model. However, both of these models faced limi-
tations as they were neither publicly accessible, nor optimized for speed. To
overcome these challenges, a more efficient and publicly available alternative
was employed, as demonstrated in [2]. For the diffusion model, we adopted
the Stable Diffusion 2-1-base [11], which offers improved performance. As
for the NeRF model, we replaced it with a publicly implemented version of
Instant-NGP [45], known as torch-ngp.

29

https://huggingface.co/stabilityai/stable-diffusion-2-1-base
https://github.com/ashawkey/torch-ngp


CHAPTER 3. RELATED WORK ON 3D GENERATION

Figure 3.9: DreamFusion model pipeline. Gray rectangles are inputs that are au-
tomatically, randomly sampled. Blue rectangles are the used models. (1) Random
camera poses are sampled and passed towards NeRF model. (2) NeRF model gen-
erates an image. (3) Noise is sampled from a Gaussian distribution and a random
time t is sampled, both are used to noise the NeRF’s image. (4) The noised image is
passed towards the diffusion model that using the text prompt (5) will predict the
noise. Finally, both the predicted and real noises (7) are compared to measure the
error. This error will be back-propagated to update the NeRF’s network parameters.
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Chapter 4

Analysis: Mathematical
Foundations and Challenges in
Text-to-3D Generation

In this chapter, we will first present all the mathematical assumptions outlined
in the initial section to establish a profound understanding of the model’s
behavior. Following that, we will perform an experimental analysis to examine
the interrelationships among the various components of the model and identify
the strengths and weaknesses associated with each. This analysis will lay the
groundwork for our proposed methodologies in the next section.

4.1 Theoretical analysis
In this section, we will tackle the derivations of the previous formulations
in order to explore in depth the performance of the Stable diffusion. These
studies are usually not present in the papers and are mandatory to understand
completely the algorithms and to justify the mathematical part of the Bachelor
thesis. Some of the calculus is present in [25; 26]. However, none of those
papers provide extensive formula derivations as done here.

4.1.1 Diffusion models derivations

One step forward process

Defining αt := 1−βt and ᾱt :=
∏t

s=1 αs, and being ϵt, ϵt−1, ϵ random variables
with a Gaussian standard distribution, we can rewrite xt in terms of x0. The in-
corporation of this technique holds immense value as it allows for a substantial
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reduction in the number of steps required to generate a noised sample. Specif-
ically, the process that previously demanded 1000 steps can now be achieved
with just a single step. This remarkable advancement directly translates into
a significant decrease in the execution time of the algorithm.

xt =
√
αtxt−1 +

√
1− αtϵt =

√
αt · (

√
αt−1xt−2 +

√
1− αt−1ϵt−1) +

√
1− αtϵt

=
√
αtαt−1xt−2 +

√
αt(1− αt−1)ϵt−1 +

√
1− αtϵt (4.1)

=
√
αtαt−1xt−2 +

√
αt(1− αt−1) + (1− αt)ϵ

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ = · · · (4.2)

=
√
ᾱtx0 +

√
1− ᾱtϵ

In this derivation, equality (4.1) comes from the sum of two Gaussian 1 while
equality (4.2) is made by iteration.

Tractable lower bound

Our primary objective is to transform our loss function into a more manage-
able and computationally feasible form. To achieve this, we will undertake a
systematic step-by-step process. Throughout this process, we will introduce
several equalities with the purpose of utilizing them in subsequent equations,
ultimately leading us to our desired outcome of an appealing loss function.

First let us rewrite the probability of generating x0 as in Equation (4.3):

pθ(x0) =

∫
pθ(x0:T ) dx1, . . . , dxT =

∫
pθ(x0:T ) ·

q(x1:T |x0)

q(x1:T |x0)
dx1, . . . , dxT . (4.3)

Now, we can use this to obtain our lower bound as done in equation (4.6).
Notice that the expectation comes from the part that we want to minimize the
log likelihood for all the images of the dataset. An image from the dataset has
probability 1

k
of being picked, q(x0) =

1
k
, while an image outside the dataset

has probability 0, being k ∈ N the number of elements in the dataset.
1https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
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E[− log pθ(x0)] =

∫
−q(x0) · log pθ(x0)dx0 (4.4)

=

∫
−q(x0) · log

[∫
pθ(x0:T ) ·

q(x1:T |x0)

q(x1:T |x0)
dx1, . . . , dxT

]
dx0

(4.5)

≤ −
∫

q(x0:T ) · log
pθ(x0:T )

q(x1:T |x0)
dx0, . . . , dxT

= Eq

[
− log

pθ(x0:T )

q(x1:T |x0)

]
(4.6)

Notice that equality (4.4) uses the previous expression obtained in Equation
(4.3) while equality (4.5) comes from the Jensen’s inequality2. Now, we can
develop this expression even further, but first let us expand the numerator and
denominator of the fraction:

pθ(x0:T ) = pθ(x0|x1:T ) · pθ(x1:T ) = pθ(x0|x1) · pθ(x1|x2:T ) · pθ(x2:T ) = · · · (4.7)

=

(
T∏
t=1

pθ(xt−1|xt)

)
· pθ(xT ) (4.8)

q(x1:T |x0) =
q(x0:T )

q(x0)
=

q(xT |xT−1:0) · q(xT−1:0)

q(x0)
=

q(xT |xT−1) · q(xT−1:0)

q(x0)

(4.9)

= · · · =

(∏T
t=1 q(xt|xt−1)

)
· q(x0)

q(x0)
=

T∏
t=1

q(xt|xt−1) (4.10)

Notice that the equality at lines (4.7) and (4.9) come from the fact that q
and p are Markov chains, so the next state only depends on the previous and
consequently the steps before can be removed in the conditioning.

Now, we can plug the obtained results of this Equations (4.8) and (4.10) into
the expression (4.6) as follows in the following derivation (4.12):

2https://en.wikipedia.org/wiki/Jensen%27s_inequality
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Eq

[
− log

pθ(x0:T )

q(x1:T |x0)

]
= Eq

[
− log

(
T∏
t=1

pθ(xt−1|xt)

q(xt|xt−1)
· pθ(xT )

)]
(4.11)

= Eq

[
−

T∑
t=1

log
pθ(xt−1|xt)

q(xt|xt−1)
− log p(xT )

]
(4.12)

Notice that equaltiy (4.11) comes from the fact that pθ(xT ) follows a Gaussian
standard distribution and does not depend on θ, so we can remove this term
to showcase this observation. Let us develop two expressions more that will
be used latterly: Equations (4.13) and (4.14):

q(xt|xt−1) = q(xt|xt−1, x0) =
q(xt, xt−1, x0)

q(xt−1, x0)
=

q(xt−1|xt, x0) · q(xt, x0)

q(xt−1, x0)

=
q(xt−1|xt, x0) · q(xt|x0) · q(x0)

q(xt−1|x0) · q(x0)
=

q(xt−1|xt, x0) · q(xt|x0)

q(xt−1|x0)
(4.13)

q(x1|x0)

q(x2|x0)
· q(x2|x0)

q(x3|x0)
· · · q(xT−1|x0)

q(xT |x0)
=

q(x1|x0)

q(xT |x0)
(4.14)

Now, using these two expressions, we can develop the expression further as in
Equation (4.17).

Eq

[
−

T∑
t=1

log
pθ(xt−1|xt)
q(xt|xt−1)

− log p(xT )

]

= Eq

[
−

T∑
t=2

log
pθ(xt−1|xt)
q(xt|xt−1)

− log p(xT )−
pθ(x0|x1)
q(x1|x0)

]
(4.15)

= Eq

[
− log

T∏
t=2

(
pθ(xt−1|xt)
q(xt−1|xt, x0)

· q(xt−1|x0)
q(xt|x0)

)
− log p(xT )− log

pθ(x0|x1)
q(x1|x0)

]
(4.16)

= Eq

[
− log

T∏
t=2

(
pθ(xt−1|xt)
q(xt−1|xt, x0)

)
· q(x1|x0)
q(xT |x0)

− log p(xT )− log
pθ(x0|x1)
q(x1|x0)

]

= Eq

[
−

T∑
t=2

log
pθ(xt−1|xt)
q(xt−1|xt, x0)

− log
p(xT )

q(xT |x0)
− log pθ(x0|x1)

]
(4.17)

Notice that in equality (4.15), we use the expression obtained in Equation
(4.13) and in equality (4.16) we use the expression obtained in Equation (4.14).
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We see that our expression is very similar to the one desired except that we
do not have the divergence yet. Let us take each term of the summation and
convert it to DKL divergence:

Eq

[
log

q(xt−1|xt, x0)
pθ(xt−1|xt)

]
=

∫
q(x0:T ) · log

q(xt−1|xt, x0)
pθ(xt−1|xt)

dx0, · · · , dxT

=

∫ (∫
q(x0:T ) dx1, · · · , dx̂t−1, dx̂t, · · · , dxT

)
· log q(xt−1|xt, x0)

pθ(xt−1|xt)
dx0, dxt−1, dxt

=

∫
q(x0, xt−1, xt) · log

q(xt−1|xt, x0)
pθ(xt−1|xt)

dx0, dxt−1, dxt

=

∫
q(xt−1|xt, x0) · q(xt, x0) · log

q(xt−1|xt, x0)
pθ(xt−1|xt)

dx0, dxt−1, dxt

=

∫
q(xt, x0) ·DKL (q(xt−1|xt, x0)∥pθ(xt−1|xt)) dx0, dxt

=

∫
q(x0:T ) ·DKL (q(xt−1|xt, x0) ∥ pθ(xt−1|xt)) dx0, · · · , dxT

= Eq [DKL (q(xt−1|xt, x0) ∥ pθ(xt−1|xt))] (4.18)

Now, with this last expression obtained in Equation (4.18), we can rewrite the
Equation (4.17) to obtain our desired expression:

Eq

[
DKL(q(xT |x0) ∥ p(xT )) +

∑
t>1

DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))− log pθ(x0|x1)

]
(4.19)

Notice that the negative sign has vanished by changing the denominator with
the numerator in the logarithm using − log

(
a
b

)
= log

(
b
a

)
.

Final Lt loss

In this final part, we want to expand our Lt terms until obtaining the final,
manageable formulation. This final formulation will convert our loss into a
weighted difference between the real and the expected noise. First of all let us
analyse which is the value of q(xt−1|xt, x0):
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q(xt−1|xt, x0) =
q(xt−1, xt, x0)

q(xt, x0)
=

q(xt|xt−1, x0) · q(xt−1,x0)
q(x0)

q(xt,x0)
q(x0)

=
q(xt|xt−1) · q(xt−1|x0)

q(xt|x0)

=
N (xt;

√
αtxt−1, 1− αt) · N (xt−1;

√
ᾱt−1x0, 1− ᾱt−1)

N (xt;
√
ᾱtx0, 1− ᾱt)

=

e

−1·(xt−
√
αtxt−1)

2

2·(1−αt)√
2π(1−αt)

· e

−1·(xt−
√

ᾱt−1x0)
2

2·(1−ᾱt−1)√
2π(1−ᾱt−1)

e
−1·(xt−

√
ᾱtx0)

2

2·(1−ᾱt)√
2π(1−ᾱt)

=
e

−1·
(
xt−1−

(√
ᾱt−1βt
1−ᾱt

x0+

√
αt(1−ᾱt−1)

1−ᾱt
xt

))2

2·
1−ᾱt−1
1−ᾱt

βt√
2π
(
1−ᾱt−1

1−ᾱt
βt

)
= N (xt−1;

√
ᾱt−1βt
1− ᾱt

x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt,

1− ᾱt−1

1− ᾱt
βt)

= N (xt−1; µ̃t(xt, x0), β̃t) (4.20)

The equality in the middle has been omitted due to its extension. It can be
easily checked in any internet calculator that both expressions are equivalent.
The step-by-step process begins with the isolation of the variance and the
posterior reconstruction of the mean. We strongly do not recommend trying
to do it. It is tedious and long work, and any small mistake can lead to a dead
end. The important thing is that q(xt−1|xt, x0) follows a Gaussian distribution,
and that µ̃t(xt, x0) =

√
ᾱt−1βt

1−ᾱt
x0 +

√
αt(1−ᾱt−1)

1−ᾱt
xt. Now, we can take Equation

(4.19) Lt terms and, knowing the form of the DKL divergence between two
Gaussians3, rewrite them as follows in Equation (4.22):

Eq [DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))]

= Eq

log√σ2
t√
β̃t

+
β̃t + ∥µ̃t(xt, x0)− µθ(xt, t)∥2

2σ2
t

− 1

2


= Ex0,ϵ

[
∥µ̃t(xt, x0)− µθ(xt, t)∥2

2σ2
t

]
+ C (4.21)

= Ex0,ϵ

[
1

2σ2
t

∥∥∥∥ 1
√
αt

(
xt −

βt√
1− ᾱt

ϵ

)
− µθ(xt, t)

∥∥∥∥2
]
+ C. (4.22)

Notice that we will be sampling the noised images xt using the forward process
previously developed: xt as

√
ᾱtx0 +

√
1− ᾱtϵ. This is the reason why the

expectation in eq. (4.22) is done over x0 and ϵ. We left xt in the derivations as
it is easier to work with and makes the formulas easier to visualise. The last

3https://scoste.fr/posts/dkl_gaussian/
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expression (4.21) comes from rewriting of µ̃t depending on xt and ϵ instead of
x0 and xt as follows in Equation (4.23), in which we use the previous obtained
expressions at (4.20). Notice that we are writing x0 in terms of xt and ϵ by
isolating it in the original forward Equation (3.1):

µ̃(xt, x0) =

√
ᾱt−1βt
1− ᾱt

x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt =

√
ᾱt−1βt
1− ᾱt

xt −
√
1− ᾱtϵ√
ᾱt

+

√
αt(1− ᾱt−1)

1− ᾱt
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So we see from Equation (4.23) a natural choice of µθ would be same as
µ̃(xt, x0), but predicting x0 by writing it in terms of xt and ϵθ (see Equation
(4.24)). The last equality is derived similarly as in Equation 4.23, but using
instead these terms:

µθ(xt, t) := µ̃t

(
xt,

xt −
√
1− ᾱtϵθ(xt, t)√

ᾱt

)
=

1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
(4.24)

We can now finally rewrite the Lt terms as in Equation (4.25):

Ex0,ϵ [DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))] =

= Eq
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ϵθ(xt, t)

)∥∥∥∥2
]

= Ex0,ϵ
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t

2σ2
tαt(1− ᾱt)

∥(ϵ− ϵθ(xt, t))∥2
]

(4.25)

At the end, we see that our expression resumes to predicting the added noise
given the noised image(xt) and the time-step t.

4.1.2 NeRF model derivations

Transmittance

Let us analyse how the transmittance formula is obtained. We first have that
P [no hits before t] = T (t) and P [hit at t] = σ(t)dt and they both can be related
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as T (t+ dt) = T (t) · (1− σ(t)dt). Now, we can use the Taylor expansion at dt
= 0 as in Equation (4.27):

T (t) + T ′(t)dt = T (t)− T (t)σ(t)dt

⇒ T ′(t)

T (t)
dt = −σ(t)dt (4.26)

⇒ log T (t) = −
∫ t

t0

σ(s)ds

⇒ T (t) = exp

(
−
∫ t

t0

σ(s) ds

)
(4.27)

Notice that in expression (4.26), we have log(T (t)) and −log(T (t0)) after ap-
plying the integral. By definition t0 is the beginning time so T (t0) = 1 and
consequently log(1) = 0 and the term is ignored.

Finite raymarching

The objective is to break the integral into sum of tractable integrals. Being
ti, i ∈ {1, · · · , n} the sampled times and tn+1 the time when the ray intersects
with the far plane, we have

∫
T (t)σ(t)c(t) dt ≈

∑n
i=1

∫ ti+1

ti
T (t)σici. Notice

that in this expression between each sampled time, we suppose that colour
and density are constant while, as we have seen by definition, T (t) still has to
depend on time t. Now, for t ∈ [ti, ti+1], we have that:

T (t) = exp

(
−
∫ t

t0

σ(s) ds

)
= exp

(
−
∫ ti

t0

σ(s) ds

)
· exp

(
−
∫ t

ti

σ(s) ds

)
= exp

[
−

i−1∑
j=1

σj · (tj+1 − tj)

]
· exp

(
−
∫ t

ti

σi ds

)
= Ti exp(−σi(t− ti)).

(4.28)

One can note how the definition of Ti := exp
[
−
∑i−1

j=1 σj · δj
]
, where δj :=

(tj+1 − tj), comes from the Equation (4.28) above. We can plug this obtained
term at the previous equation obtaining the final (4.29) equation:
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∫ tf

ti

T (t)σ(t)c(t) dt ≈
n∑

i=1

∫ ti+1
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T (t)σici dt =

n∑
i=1
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Ti exp(−σi(t− ti))σici dt

=
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Tiσici

∫ ti+1
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exp(−σi(t− ti)) dt =

n∑
i=1

Tiσici ·
exp(σi(ti+1 − ti))− 1

−σi

=

n∑
i=1

Tici(1− exp(−σiδi)) (4.29)

This is the final formula used in NeRF to calculate pixel colours for a given
ray.

4.2 Problem analysis
Due to the complexity of the used algorithm, we used public base code available
on Github, called Stable Dreamfusion [2], see Section 3.3.3, instead of working
directly from scratch, which would be probably impossible in the given amount
of time. This decision was also impulsed by the availability and low-resource
demand of the diffusion and NeRF models used in this implementation.

4.2.1 Low-Quality Output

Individually, both models, NeRF and Stable Diffusion have demonstrated ex-
ceptional performance and accuracy. However, when used in conjunction, their
performance suffers. This is present on the original paper and even more on
our used version of it. One of the objectives of this project is to investigate the
behavior of the combined model, understand how each component relates to
the others, and identify the reasons why its performance is suboptimal. By do-
ing so, we aim to propose improvements to enhance the model’s performance.
Figure 4.1 includes examples of several generations of the model, which reveal
that while the semantic generation is functioning correctly, there is a lack of
quality and detail in the generated images, which needs to be addressed. For
comparison purposes, see Appendix Figure 8.3 to see how the Stable Diffusion
model is capable of generating quality and detailed samples.

4.2.2 Artifacts

The objective of the stable diffusion generated images is to look realistic, but
it does not contain the behaviour of the objects that appear on the scenes.
This makes the generated image look realistic at first glance, but then you can
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A snowflake A car A piano A tree

Figure 4.1: Examples of renderings done by Stable Dreamfusion model [2]. Please
note the deficiency in quality and level of detail exhibited in the images.

notice strange parts on it. These artifacts usually are related with the number
of components of an object: fingers on a hand, legs of an animal (see Figure
4.2 for an illustrative example) or wheels of a car, and also the disposition
of the different components among the picture that might no match exactly
with the expected ones. It is important to notice that these artifacts can be
perpetuated to our 3d models although it is outside the scope of this study to
minimize them, but it is important to have these limitations in mind.

Figure 4.2: Stable Diffusion [11] generated image with the text prompt: "a horse".
We can observe that the model struggles with the number of hind limbs.

4.2.3 Janus problem

This phenomenon is referred to as the Janus problem, named after the Roman
god Janus, who is depicted with two faces. It occurs when a 3D model has
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multiple faces, resulting in ambiguous or inconsistent renderings. An example
of this is shown in Figure 4.3. This issue may arise from the bias of the diffusion
model towards generating certain perspectives or faces, which is likely due to
the dataset used to train the model [49], that was collected from the internet.
The dataset, as in the case of a cat, might contain mostly front-facing images,
or in the case of a house, images with the door visible, which results in the
model producing similar perspectives. Figure 4.3 illustrates this behaviour. It
is worth noting that the loss function used to train the NeRF model, shown
previously in Equation (3.19), does not enforce consistency across different
renderings. Consequently, it is possible to generate multiple renderings that
are identical. To mitigate this issue, input text labels such as top, front, back,
and side view are used to specify the desired rendering viewpoint. However,
this problem persists and further research is needed to address it.

0º 72º 144º 216º 288º

Figure 4.3: Janus multi-face problem with the input "A frog" rendered from dif-
ferent perspectives.

4.2.4 Mode collapse

One interesting observation when rendering multiple models from the same
input is the striking similarity between them. In contrast to the Stable Dif-
fusion model, which produces different images for the same input, our model
generates almost identical 3D reconstruction, no matter the used random seed.
The reason for this phenomenon is not yet fully understood, but it could be
related to the mode-seeking nature of the loss function, as mentioned in [12].
Since the model needs to generate a plausible image for every perspective, it
might ignore distinctive features of a particular sample and instead generate a
class-looking reconstruction that is consistent across all perspectives. There-
fore, the unique features that are preserved in the final generation must be
specific to the input text. Figure 4.4 shows 4 rendering of 4 3D models which
look surprisingly similar considering the stochastic nature of the underlying
model.
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Figure 4.4: Rendered images from various reconstruction attempts using [2] with
text prompt "A castle". We can observe that the samples exhibit strikingly similar
characteristics. This phenomenon is commonly referred to as mode collapse.

4.3 Component analysis
In this section, we will conduct a comprehensive analysis of the model’s most
significant components to gain a deeper understanding of their interrelation
and behavior. By examining these components, we aim to establish a solid
foundation for comprehending the insights and behavior of the model.

4.3.1 Epochs

In our experiments, we investigated the impact of increasing the number of
epochs on the quality and level of detail in the generated results. We realized
that at the first stages the model tends to generate the objects contour while
in the last it focuses on the colour and details. During the training process,
we observed that around 100 epochs the model’s ability to generate additional
details on the object seemed to stop.

4.3.2 Image size

Image size is a critical factor in determining the performance of our model.
While NeRF, which calculates loss per ray or per pixel, is not directly affected
by image quality, the diffusion model, which serves as a loss for the NeRF
model, might be influenced by it.

Notice that in contrast to the original paper [12], our model utilizes the Stable
Diffusion technique, which operates with a larger image size of 512. It is
important to note that if the NeRF model produces lower-resolution images,
being 64 the base image size, the diffusion model may not fully capture all the
intricate details present in the 3D reconstruction. Consequently, the model
may not fully capture the subtle nuances and complexities of the reconstructed
objects, resulting in suboptimal performance during training.
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4.3.3 Guidance

Analyzing the role of guidance is crucial in our model, as it serves as a key fac-
tor in the diffusion process for generating desired samples. It has been shown
in previous works [31] that using values of 5-10 instead of only text prompt
leads to better generations of the diffusion models. However, it is worth noting
that the guidance values used in our model are significantly higher compared
to those typically used in the diffusion image generation process, with 100 be-
ing the default and most commonly employed value.

Our initial objective is to examine the behavior of the guidance values at a
specific stage of the diffusion generative process. Isolating x0 as in Equation
(4.30), derived directly from Equation (3.2), allows us to visualize the impact
of the guidance:

x0 =
(xt −

√
1− ᾱtϵ)

ᾱt

(4.30)

Without text With text Guidance value of 5

Figure 4.5: Text and guidance effect on stable diffusion generated samples with
text input "A castle". First column shows the regenerated sample without any text
prompt. Second column shows the regenerated sample predicting the noise with the
text prompt. Third column shows the regenerated sample using guidance value of 5.
We can observe how the last column enhances the level of detail in the image.

Figure 4.5 provides a visual example of how the guidance values capture im-
portant details and contours in the generated images.

When generating complete images using different guidance values, we observe
two distinct patterns. Lower guidance values tend to include the object men-
tioned in the prompt, but it may not be the central focus of the image. On the
other hand, higher guidance values tend to produce sketchy representations

43



CHAPTER 4. ANALYSIS: MATHEMATICAL FOUNDATIONS AND
CHALLENGES IN TEXT-TO-3D GENERATION

of the object, lacking in specific details, but closely aligned with the intended
concept of the prompt. This phenomenon is illustrated in Figure 4.6.

Guidance 1 Guidance 2 Guidance 5 Guidance 10

Guidance 20 Guidance 50 Guidance 100 Guidance 500

Figure 4.6: Generated images with Stable Diffusion using the text prompt "A
castle". This example shows how with low guidance values the model uses the text
prompt more like a context, while with higher guidance values in captures strictly
the prompt idea without further details.

Upon careful examination of the diffusion generative process, we have observed
that it exhibits remarkable noise removal capabilities. It exhibits an impressive
capability to regenerate highly resembling images even from noised versions
that would pose a significant challenge for human observers. We noticed that
the model’s reliance on the text prompt during the generative process varies
depending on the noise level in the input image. With low-noised images, the
model tends to rely less on the text prompt and more on the visual information
in the image itself. However, with higher noise levels, the model relies more
heavily on the text prompt for guidance.

This observation intrigued us, particularly regarding the initial structure of a
gray-centered bubble in the NeRF model. This bubble is created by manually
adding density, that is part of the model itself, to enhance the model’s per-
formance. When starting with the noise produced by the application of the
forward diffusion process to the image, and applying the backward diffusion
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process with our model and a text prompt, we noticed that the base image has
a strong influence on the generated samples. This suggests that the model is
highly biased towards the initial noised image. Consequently, when using Sta-
ble Diffusion for 3D reconstruction, higher guidance values may be necessary
to rely more on the text prompt, and not in the default generated render-
ings. Figure 4.7 showcases the influence of this initial image on the posterior
generations.

Figure 4.7: The initial image displays a randomly weighted NeRF model render-
ing. The formation of the bubble arises from the manual incorporation of density
to enhance NeRF model performance. The succeeding columns showcase different
generations produced by applying the backward diffusion process with the prompt
"A castle" to a completely noised version of the bubble.

4.3.4 Other component analysis

In addition to our main component analysis, we investigated other components
as well. One noteworthy was the generated model’s opacity. Previous works
[2; 12] used an opacity loss that came from the aggregation of densities over
the rays. Interestingly, we found that using the default values for opacity loss
led to empty image generations. However, when we increased the guidance val-
ues to 250 or higher, the model was able to generate the samples. Our initial
expectation was that by augmenting the opacity loss, we would reduce unnec-
essary densities and consequently generate images with more defined borders
and less blurriness. However, we observed that the model generated smaller
versions of the objects instead. Appendix Figure 4.8 presents the results of
this phenomenon.

Additionally, when examining other components such as time, we discovered
that employing high noise values with time steps beyond 700 often led to
suboptimal reconstructions, which were included in the training of the NeRF
model. It is worth noting that these peculiar generations represented only a
small fraction of the overall outputs produced by the Stable Diffusion model
and can be regarded as noise within the dataset. Interestingly, the undesired
images frequently depicted humans, cats, or text, very common and standard
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No opacity loss 0.1 Opacity loss 1.0 Opacity loss

Figure 4.8: Generated-rendered images with different opacity values and guidance
of 250. The text prompt used to generate these results was "A castle". Opacity loss
penalized the sum of the overall density values over a ray. We see that higher opacity
loss produce smaller objects.

objects. This behavior is visually shown in Figure 4.9.

Time 771 Time 817 Time 893 Time 916

Figure 4.9: This images correspond to generations of the Stable Diffusion model
from a NeRF rendering which has been noised. Notice the presence of unusual images
that reveal some of the challenges the model faces when reconstructing at higher time
steps (t).

Finally, it is noteworthy to mention that we conducted an analysis of various
other components including the angles used in the NeRF camera poses, the
weight value of the diffusion loss w(t), camera aperture and radius, and the text
descriptions used to define the point of view. However, these investigations did
not yield any significant insights or findings of note.
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Chapter 5

Methodology for Image to 3D
reconstruction and Enhanced text
to 3D reconstruction

In this section, we present two novel techinques: FitFusion and DreamText.
Our first proposal, FitFusion is a fine-tuning approach for Stable DreamFusion,
aimed at enhancing the quality of generated 3D reconstructions reaching the
expected outputs of NeRF and Stable Diffusion. Additionally, we introduce a
second model, we call DreamText, a method specifically designed for image-
to-3D generation. Both techniques contribute to advancing the field of 3D
sample synthesis by leveraging the power of StableDiffusion and introducing
innovative capabilities.

5.1 FitFusion
Stable DreamFusion [2] currently produces samples that fall short in compari-
son to its foundational models, Stable Diffusion [11] and NeRF [13]. To address
this issue, we propose in this section fine-tuning certain network parameters
that we have identified as essential in the previous chapter. Through this ap-
proach, we aim to improve the quality of the generated samples, bridging the
gap between the base model and its superior foundational models.

5.1.1 Initial Approaches

We conducted a thorough exploration of time and guidance, two critical com-
ponents of Stable Diffusion that were not fully explored in the context of 3D
sample generation [2].
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Time

Initially, we sought to constrain the time values used to add noise to the NeRF-
rendered images. As mentioned in Section 3.3, the diffusion model operates
as a loss prior, but it does not impose any mathematical requirements on the
specific range of time values to be used. The network objective is to remove
noise, with the difference between the generated and ground truth data serving
as the NeRF model error. With the aim of enhancing the model accuracy, we
conducted experiments involving different time values.

Our initial observations revealed that the network generated unfavorable pre-
dictions when high time values were employed, while low values led to no
training progress as the loss was predicted almost perfectly. In response, we
attempted to reduce the time range from the original 20-980 to narrower inter-
vals, such as 100-800 and 200-700. Unfortunately, these adjustments did not
yield significant improvements over the original renderings, but even to worse
generations.

Subsequently, we conducted numerous experiments and formulated several hy-
potheses regarding the effects of time values on the model output, in order to
have a deeper understanding of the model behaviour. Specifically, we observed
that high values appeared to introduce new details, artifacts, and image com-
ponents, while low values tended to smooth existing features. We speculate
that this behavior stems from the model inclination to downplay the influence
of text input at low time values, while relying on it more prominently at high
values.

Finally, drawing inspiration from the work of [50], we attempted to implement
a similar time schedule with the goal of generating new details using high time
values, followed by smoothing with lower values, and repeating the process.
Regrettably, this approach did not yield improvement in the output quality of
our model. For illustrative purposes, Appendix Figure 8.4 showcases some of
the failed results obtained when using the text prompt "An image of a castle."

Guidance

In addition to exploring time values, we also extensively examined the guid-
ance parameter, used to drive the image generations to desired outputs. We
conducted experiments with both higher and lower values to assess their im-
pact on the quality of the generated 3D reconstructions. Higher values tended
to introduce more details, but often resulted in poor overall reconstructions,
with artifact like noise clouds present in most of it parts and with high contrast
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colours. Meanwhile, lower values produced smoother results, but potentially
missed important details. We also attempted to implement a cosine guid-
ance schedule inspired by previous work, but unfortunately, it did not lead to
noticeable improvements. Figure 8.5 in the Appendix serves as a visual rep-
resentation of these failure cases, providing evidence for the aforementioned
observations.

5.1.2 Final proposal

Base model Improved model

Figure 5.1: Rendered images from a reconstruction using the text prompt "An
image of a rabbit". On the left, the rendering from Stable DreamFusion, while on
the right, our FitFusion method, which clearly outperforms the previous one.

Our hypothesis is that combining larger images with higher guidance values
significantly improves the output of the model, resulting in the highest quality
generations, we had produced thus far. However, the model requires a greater
number of training epochs to fully express these new details. It is worth noting
that we used a 256x256 image size as it was the largest that could fit within
our GPU, but we expect that using a size of 512x512 would yield even better
results. The guidance proposed value is 1000, in contrast with the original
value of 100. Of course, different objects may require different guidance values
for optimal reconstruction. For complex objects with many parts or intricate
details, lower values such as 800 lead better results, while objects that are
relatively easier to reconstruct may benefit from higher guidance values of 1200.
Notice that with bigger image size, higher guidance values should produce even
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better results. Equation (5.1) shows the incorporation of the recommended
guidance and image values in the base algorithm [2]:

ϵ̂θ(xt256|y) = ϵθ(xt256|y) + 1000 · (ϵθ(xt256|y)− ϵθ(xt256|∅)) (5.1)

Figure 5.1 shows the difference between the base generation and our improved
proposal. The guidance value of 1000 pushes the noise prediction to be more
strongly conditioned on the text input. Simultaneously, the higher image qual-
ity is introduced through the xt256 samples, so the diffusion model is able to
visualize more details of the renderings before predicting the noise.
Table 5.1 shows the value difference between both models.

Method Image Size Guidance Epochs
Stable DreamFusion 64 100 100
FitFusion 256 1000 200

Table 5.1: Comparison of Stable DreamFusion and FitFusion model values.

5.1.3 Limitations

Despite the proposed enhancements, it is important to acknowledge that cer-
tain limitations from the original approach can still persist. Specifically, the
Janus problem, characterized by the rendering of multiple faces, remains unre-
solved. It is important to note that the multi-face problem is observed within
the initial 25 epochs of execution. One potential mitigation strategy for the
multi-face problem is to halt and restart the model from scratch using different
random seeds.

5.2 DreamText
We aim to address the challenge of reconstructing a 3D model from a single
input image by developing a robust sentence descriptor. Our goal is to create
a descriptor that can capture the unique characteristics of the object instance
while maintaining sufficient generalization. Leveraging this powerful sentence
representation, we will incorporate it as a conditioning factor in the diffusion
model to guide the generation of high-quality 3D reconstructions. Our method
can be divided in 3 parts: sentence selection, descriptor training and 3D-
reconstruction.
The proposed method consists of the following steps:

• (1) The input image is encoded using a pre-trained CLIP image encoder.
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Figure 5.2: Summary of our approach: First, CLIP is used as zero-shot classifier
to obtain a sentence embedding that has high similarity score with the image em-
bedding. Later, part of this sentence is trained to describe more precisely the image
embedding, using Stable Diffusion as a loss.

• (2) Vocabulary words are incrementally added to the starting sentence
"An image of ", and each resulting sentence is encoded using CLIP’s text
encoder.

• (3) Similarity scores are calculated using dot product, and the best word
is added to the sentence. This process is repeated from step 2 until the
similarity score no longer improves.
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• (4) The sentence is duplicated, with one version containing descriptive
nouns and adjectives, and the other containing only the first found noun.

• (5) The embeddings of the descriptors are set as trainable.

• (6) Augmentations of the input image are noised.

• (7) The diffusion UNET predicts the noise given the complete sentence
(with trainable parameters) and the basic sentence.

• (8) The difference between the predicted complete noise and the real and
basic predicted noise is used as loss, which is backpropagated to train
the descriptor embeddings.

5.2.1 Sentence selection

In the first step of our process, we focus on sentence building, aiming to auto-
matically extract a suitable generic sentence that describes the input image. To
achieve this, we leverage the image classification capabilities of CLIP. Initially,
we encode the input image using CLIP’s image encoder (see Figure 5.2 (1)).
We then construct the evaluated sentences, starting with the base sentence
"An image of" and appending words. We enforce the first appended word, at
step 0, to be a noun. Meanwhile, at step n the sentence would be "An image
of <word1>, <word2>, · · · , <wordn>, <noun>" (see Figure 5.2 (2)). Next,
the sentence is encoded using CLIP’s text encoder, and the cosine similarity
between the text and the image encodings is calculated. If the cosine similarity
exceeds the previous step similarity, the corresponding word is added to the
sentence (see Figure 5.2 (3)). If not, the existing sentence is passed to the next
step. This process of sentence selection provides a solid foundation sentence
that can be further trained to accurately describe the object depicted in the
image.

5.2.2 Sentence training

In this step, our objective is to train the sentence to accurately describe the
object without incorporating specific image characteristics such as disposition,
pose, lighting, or view. To achieve this, we introduce a second sentence that
solely contains the noun, "An image of a <noun>" (see Figure 5.2 (4)). Both
the complete sentence and the noun sentence are encoded using CLIP’s textual
encoder. Notably, the embeddings of the tokens present in the complete sen-
tence (all words except the noun obtained in the first step) are set as trainable
(see Figure 5.2 (5)). These textual embeddings serve as conditioning inputs to
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the Stable Diffusion UNET, which also receives noised images of augmented
versions of the original image (see Figure 5.2 (6)). The augmented versions of
the input image are essential to ensure that the model captures the character-
istics of the object itself rather than specific details of the image. Then, the
UNET predicts two different noises: one obtained conditioned with the embed-
ding of the base sentence τb that remains unchanged, and the other with the
embedding of the trainable sentence τθ(y), (see Figure 5.2 (7)). The difference
between the predicted noise using the trainable sentence and the actual noise
ensures that the sentence learns to describe the specific object instance accu-
rately. The difference with the predicted noise using the base sentence prevents
loosing the general object class meaning and helps mitigate over-fitting to the
image. This second loss can be viewed as a regularization term, and both losses
together constitute our overall loss (see Figure 5.2 (8)). Equation (5.2) shows
the first loss, Equation (5.3) shows the second loss. Equation (5.4) shows the
combination of both losses, which is used to obtain the best trainable token
embeddings, corresponding to the θ parameter in the equations:

Ldiffreal = Et∼U(0,1),ϵ∼N (0,I)
[
∥ϵϕ(αtx + σtϵ, t, τθ(y))− ϵ∥22

]
(5.2)

Ldiffbase = Et∼U(0,1),ϵ∼N (0,I)
[
∥ϵϕ(αtx + σtϵ, t, τθ(y))− ϵϕ(αtx + σtϵ, t, τb)∥22

]
(5.3)

Ldiffbase = Ldiffreal + Ldiffbase (5.4)

5.2.3 3D reconstruction

The 3D reconstruction is made as in [2]. First of all, the trained embeddings
are loaded in the text embeding model. Then the previously obtained sentences
are passed to the Stable Diffusion model as the prompt. This will enable Stable
Diffusion to incorporate influences from our trained textual descriptor inducing
the NeRF model to produce a 3D reconstruction of the object present in our
image.

5.3 Diversity augmentation
As discussed in the analysis section, prior works such as [12] and [2] encoun-
tered the challenge of mode collapse or low diversity in the generated images.
To address this problem, we devised a direct solution. Our approach involves
two steps:
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CHAPTER 5. METHODOLOGY FOR IMAGE TO 3D RECONSTRUCTION
AND ENHANCED TEXT TO 3D RECONSTRUCTION

First, we utilize Stable Diffusion, as demonstrated in [11], to generate an image
based on the provided text prompt. Stable Diffusion is known for its ability
to generate diverse samples, avoiding the issue of producing the same object,
repeatedly.

Next, we leverage this generated image as input to our Image to 3D model, in-
corporating the mechanism described earlier. By doing so, we effectively make
the prompt more specific to a concrete and detailed instance, thus providing
the 3D reconstruction model with rich and specific information.

It is important to note that the lack of diversity in prior works stemmed from
the model tendency to generate generic class objects that fit the given prompt.
With our method, we address this issue by making the prompt more specific,
resulting in a more diverse set of generated 3D reconstructions. Figure 5.3
showcases how we can leverage our proposal to make more diverse generations.

Figure 5.3: First image corresponds to the generated image with Stable Diffusion
using the text prompt "An image of a castle". Notice how the model fits this new
image and how finally the generation gains more diversity compared to the ones
obtained directly with the text prompt as seen in Figure 4.4. See GIF .
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Chapter 6

Experiments

In this section, we present an overview of the experiments conducted to vali-
date our proposals. First we introduce the experimental setup in Section 6.1
in which we introduce the used dataset for the experiments, the pretrained
models, the model architecture and some used values specifications. Then, we
compare present a set of generations for each of the proposed models: FitFu-
sion and DreamText. In the first case these are compared with the preexisting
baseline, while in the second case they are compared with a state of the art
model called RealFusion [1]. For the DreamText model we also include previ-
ous versions that lead to the final proposal.

6.1 Implementation Details
Most of the implementation details follow [12]. Other are slight variations
introduced in our implementation or come from [2].
The graphic card used for the experiments is a 12GB GeForce RTX 3060.
We had to use half precision floating point in our implementation to fit the
models in our graphic card. Furthermore, we were not able to use the whole
512x512 image size as the GPU was not capable of fitting it. We anticipated a
significant improvement when utilizing larger GPUs capable of accommodating
full floating points and processing full-sized images.

6.1.1 Dataset

In the experimental section on DreamText (Section 6.3), we employed a dataset
shown in Figure 6.1 that encompasses a variety of image samples. The dataset
comprises five castle images in the first row, serving as a basis for comparing
how the model describes their intricate details. In the second row, we included

55



CHAPTER 6. EXPERIMENTS

five everyday objects, a potential model usage for the population. Addition-
ally, the dataset incorporates two rows of examples sourced from [1], used for
comparison purposes.

The vocabularies for nouns and adjectives used in the DreamText project, are
included with the project code. These vocabularies serve as a predefined set
of words specifically selected for generating text descriptions in the context of
the project.

Castle 1 Castle 2 Castle 3 Castle 4 Castle 5

Mug Watch Purse Cactus 1 Sneaker

Bird Teapot Statue 1 Cactus 2 Statue 2

Donut Fish Microphone Cherries Teddy

Figure 6.1: Images utilized as image conditioning for text regeneration in the subse-
quent section. The first two rows consist of new images used during this dissertation,
meanwhile, the other two rows feature images from preexisting works.

6.1.2 Pre-trained models

Our work is based on pre-trained state of the art models. For the diffusion
model, we use Stable Diffusion 2-1-base [11]. For the NeRF model, we use a
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public implementation of Instant-NGP [45], called torch-ngp1. Notice that the
base code for the model comes from a forked version at March 2023, from a
Stable-Dreamfusion2 [2].

6.1.3 NeRF Architecture

Out NeRF architecture consists on two MLP, one that predicts the object itself
and the other used to predict the background. The first consists on 4 Residual
blocks [51] with 96 neurons and a SiLU [52] activation function, while the
second consists on 2 linear layers of 64 neurons with ReLU activation function.
The multi-resolution hash encoding contains 6 resolution layers.

6.1.4 Shading

Three different types of shading were considered in our experiments: Lam-
bertian, Albedo, and Textureless. For the first 10 epochs, Albedo shading is
exclusively used. However, starting from epoch 11, the shading type is se-
lected randomly with a probability of 0.2 for Albedo, 0.4 for Textureless, and
0.4 for Lambertian. Textureless shading, which is essentially Lambertian shad-
ing with all colors set to white, was introduced to promote the generation of 3D
reconstructions rather than flat images. Light is sampled following Gaussian
noise around ray origin, in order to avoid looking at dark faces.

6.1.5 Camera poses

The camera in our experiments is oriented towards the origin, where the object
is centered. The radius of the camera position is selected uniformly from the
interval [1.0, 1.5]. For 0.5 of the samples, the position vector components
are uniformly selected from the interval [-1, 1], except the y component that
is selected from [0,1]. Then the vector is normalized, and multiplied by the
radius. For the remaining 0.5 of the samples, the horizontal and vertical angles
are uniformly selected from the intervals [0, 120] and [0, 360], respectively. The
horizontal angle sampling is limited to 90 degrees above the horizontal and 30
degrees below.

6.1.6 Density bias

A density blob is placed surrounding the origin. The value of the default
density for a point p = (x, y, z) can be obtained with the Equation (6.1):

1https://github.com/ashawkey/torch-ngp
2https://github.com/ashawkey/stable-dreamfusion
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d = v ·

(
1−

√
x2 + y2 + z2

b

)
(6.1)

where v is the value of the density, 10 in our case, and b is the blob radius,
0.5 in our case. The equation value is added to the predicted density of the
network before applying the Sigmoid function, making a strong bias at the
beginning towards a density blob in the center of coordinates.

6.1.7 View-Dependent Prompt

To prevent the Janus Problem and encourage the generation of diverse ob-
ject views, view positions are incorporated into the text prompts. The views
include overhead (elevation angle ranging from 0 to 30 degrees), bottom (el-
evation angle ranging from 150 to 180 degrees), front (azimuth angle ranging
from 0 to 60 degrees), back (azimuth angle ranging from 180 to 240 degrees),
and side views. Notice that overhead and bottom override the other views.

6.1.8 Execution time

FitFusion requires approximately 160 minutes of GPU time to complete the 3D
reconstruction process. On the other hand, DreamText involves around 2 hours
for training the text descriptor and an additional 80 minutes for reconstructing
the object. It is worth noting that we did not explore lower training times for
the text descriptor, which could potentially result in shorter execution times.

6.1.9 Data augmentation

Data augmentation has been used to prevent the DreamText model from over-
fitting to the input image. In this case, overfitting the image means learning
the exact nuances of the image, such as lighting, object disposition, and camera
pose, rather than focusing on the object’s intrinsic details. By employing data
augmentation techniques, variations are introduced into the training data, en-
suring that the model generalizes effectively and learns the essential features
of the objects, rather than memorizing specific image instances. The used
augmentations are the following ones:

1 tf1 = transforms.RandomHorizontalFlip(p=0.5)
2 tf2 =

transforms.RandomApply([transforms.RandomRotation(degrees=10,
fill =1.0)], p=0.9)

↪→

↪→
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3 tf3 = transforms.RandomApply([transforms.GaussianBlur(5, (0.1,
2.0))], p=0.25)↪→

4 tf4 =
transforms.RandomApply([transforms.RandomCrop(img.shape[2]*0.8,
fill=1.0)], p=0.5)

↪→

↪→

5 tf5 = transforms.RandomGrayscale(p=0.10)
6 tf6 = transforms.RandomApply([transforms.ColorJitter(0.1, 0.1,

0.1, 0.1)])↪→

7 tf7 = transforms.Resize(512)
8 transformations =

transforms.Compose([tf1,tf2,tf3,tf4,tf5,tf6,tf7])↪→

6.1.10 Text embedding training

We use Mean Squared Error loss previously introduced in Equation (2.7),
which compares noise values. We use Adam [53] optimizer with pytorch default
parameters and a learning rate of 3e-4.

6.2 FitFusion
All the experiments described in this section were conducted using a fork of the
original code as of March 23 3. It is important to note that the code may have
undergone changes and updates since then, which could potentially affect the
comparison between the experimental results presented here and the current
state of the code. However, we believe that the improvements and findings
obtained from these experiments are noteworthy and can potentially be bene-
ficial in other versions of the code as well. While the specific implementation
details may vary, the insights gained from these experiments can provide valu-
able knowledge and guidance for future developments and enhancements in the
codebase. Let us analyse first how different components behave separately.

6.2.1 Epochs

We found that improving the epochs solely did not produce any improvement in
the reconstructed 3D sample quality. Figure 6.2 shows a comparison between
rendered images after 100 epochs and after 200 epochs. We see that some
samples gain colour quality and are more defined, however no one seems to
contain more details.

3https://github.com/ashawkey/stable-dreamfusion
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Figure 6.2: Epoch comparison on the result rendering from the NeRF model. First
row shows rendering produced with 100 epochs of training, while second row shows
renderings after 200 epochs of training. We observe slight improvements in color and
overall image quality, although the level of detail remains relatively unchanged.

Please note that Appendix Section 8.5 contains additional rendered samples
that demonstrate the observed details in greater depth.

6.2.2 Image size

We observed that increasing the image size resulted in longer execution times,
ranging from approximately 60 to 80 minutes for augmentations from 64 to
256. See Figure 6.3. While some images displayed enhanced details, no notable
observations were made regarding this aspect.

Figure 6.3: The first row of the figure displays the results obtained by rendering
64x64 images, while the second rows showcase the outcomes obtained by rendering
256x256 images. In some cases, the generated samples show improvement, while in
others, there are noticeable color transitions that appear unusual.
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6.2.3 Guidance

Figure 6.4: The first row of the figure displays the default results, while the second
rows showcase the outcomes obtained with a guidance value of 1000. Here we can
observe that the quantity of details is enhanced, but it appears that the model
struggles to display them accurately.

We observed that increasing the guidance values resulted in higher contrast
images with a greater presence of artifacts, see Figure 6.4. These artifacts
represented elements of the 3D reconstruction intended to provide additional
details, but were not accurately expressed. This finding led us to consider the
combination of higher guidance values with larger image sizes, as we hypoth-
esized that the image size acted as a bottleneck in capturing and representing
the desired details.

6.2.4 Final proposal comparison

This new approach allows the model express the desired quality and details
of the different generated reconstructions as seen in Figure 5.1. We have seen
texture improvements in almost all generated samples and general quality aug-
mentation in most of them. We were strongly convinced that the model was
capable of generating high quality samples, so the cause must be more than 1
bottleneck. Using bigger image space in NeRF generations allowed the details
to flow from the NeRF to the diffusion model. Using bigger guidance allowed
the diffusion network to ignore the image prior and push forward these details.
The quality improvement is huge while the execution time only increases from
60 to 80 minutes. Figure 6.5 shows more examples between the execution of
the base provided code and the fine-tunned version.

Please note that Appendix Section 8.4 contains additional rendered samples
that demonstrate the observed details in greater depth.
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Figure 6.5: Comparison on the rendered results between the basic implementa-
tion(first row) and our fine tuned proposal (second row). Observe the significant
improvement in sample quality.

6.3 DreamText
The experimental section of this study serves two main objectives. Firstly, it
aims to showcase samples generated by our DreamText model, highlighting
its capabilities in text generation. Secondly, it involves a comparative analysis
between DreamText and other similar state of the art implementations. Lastly,
we introduce a preliminary section that explores a previous approach [1], which
ultimately led us to the development of our latest technology.

6.3.1 First approaches

Throughout our extensive research journey, we conducted numerous experi-
ments, leading us to the development of our solution. Here, we highlight some
of these experiments and the ideas extracted from them.

Embedding training

In our initial experimentation, we focused on training the text embedding
used as input in the diffusion model, employing the loss function mentioned
in equation (5.4). After training for 3000 epochs, we proceeded to assess the
performance of the diffusion process by generating images using the embedding.
The results of this evaluation can be observed in Figure 6.6, which showcases
some of the Stable Diffusion model generations achieved using the trained
embedding.
These outcomes unveiled a remarkable finding: the textual embedding can
effectively preserve most of the image information, subsequently serving as
valuable conditioning input for the Stable Diffusion model to regenerate it
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Figure 6.6: Regenerated images of the castle 1 from the dataset after pre-training
the conditioning embedding. Notice how Stable Diffusion can reconstruct the image
almost perfectly in all cases.

from pure noise. This revelation attests to the potential of leveraging the tex-
tual embedding as a means to store and utilize image-related data.

Initially, we held the optimistic belief that the text embedding could be lever-
aged for 3D generation purposes. However, after some experiments, it became
evident that the embedding was excessively specific, resulting in the utilization
of the same image for training every rendered perspective within the NeRF
model. Consequently, this approach proved futile, as it failed to yield any
meaningful reconstruction or contribute to effective training overall. Notice
that training this embedding is similar as training the best sentence, in the
embedding space, that describes the image.

Noun training

Our second approach involved selecting a noun that best described the image
and fixing all parameters in the network except for its embedding, which we
then fine-tuned. This process corresponds to the second part of the Dream-
Text method, but training only the noun. This idea comes from [54] and is the
one used at [1]. Our initial expectation was that the noun embedding would
undergo a transition, progressing from a general to a more specific description
of the object at hand. To explore this hypothesis, we initiated an experiment
utilizing the text prompt "An image of a castle" and trained the model to refine
the embedding specifically for the "castle" token. As anticipated, we observed
a greater diversity in the regenerated images when employing Stable diffusion,
since we were training the noun embedding rather than the final embedding.
This result yielded a satisfactory range of generated images, showcasing the
flexibility of stable diffusion.

However, despite the successful image generation, we encountered limitations
when attempting to reconstruct 3D samples. The approach, while effective in
producing image variety, did not sufficiently capture the necessary information
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for accurate 3D reconstruction. This discrepancy prompted us to reassess
the methodology and explore alternative avenues to overcome this particular
challenge.

6.3.2 Descriptor training

In our subsequent approach, we drew inspiration from the work of [55] and
aimed to train a descriptor for the class noun. Building upon a similar tech-
nique, we devised a straightforward yet effective strategy. Our objective was
to train an additional word to describe the unique characteristics of the object
depicted in the image, while preserving the general meaning within the noun.
This approach aimed to utilize the noun for 3D reconstruction information
while leveraging the descriptor for specific details. To enhance the descrip-
tive power of the generated text, we introduced adjectives into the sentences.
These adjectives were obtained using CLIP, similarly as in the initial phase of
our final methodology.

This methodology has yielded impressive results, as demonstrated in Figures
6.7 and 6.8. However, one notable challenge is the need to manually determine
the optimal reconstruction guidance and set the training time for the text
tokens. Despite this inconvenience, the overall outcomes highlight the potential
and effectiveness of this approach in generating high-quality reconstructions.

Figure 6.7: Example of a trained reconstruction utilizing descriptor training for
Castle 3 from the training dataset. We see great results, although the resemblance
to the original castle is limited.
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Figure 6.8: Example of a trained reconstruction utilizing descriptor training for
Castle 3 from the training dataset. We observe excellent results, although there is
not a strong resemblance to the original image.

6.3.3 Method comparison

Our approach final approach, DreamText, has delivered exceptional outcomes
in numerous executions, consistently exceeding our initial expectations. It is
worth noting that the execution time for our GPU-based model varies depend-
ing on the task at hand. Specifically, training the token requires approximately
2 hours and 10 minutes, encompassing around 10.000 iterations. On the other
hand, the 3D reconstruction process takes approximately 80 minutes also for
10.000 iterations. Due to the thesis time constraints, we have not yet been
able to thoroughly explore alternative iteration number for training the text
embedding. However, it is worth considering that shorter training times may
be viable for this phase.

Our model is compared with another similar approach for the problem of 3D
reconstruction from images called RealFusion [1]. These comparisons can be
completely visualized in a specific webpage4 made for this project. This web-
page is also included in the code of the project in a file named index.html

For successful 3D RealFusion approach incorporates the image as an additional
loss to the NeRF model, requiring the NeRF model to render the image accu-
rately from a specific viewpoint. A notable drawback of this approach is the
manual input required to align the provided camera angles accurately with the
image observed pose. Other poses are rendered with a trained noun token as
described above and following [54]. As noted above the noun token alone usu-

4https://nazarpuriy.github.io/
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ally cannot store the whole information of the object, but it leverages with the
image information during the reconstruction process. Notice that their model
descriptor time takes 3h in comparison with our that takes 2h of training.
Notice that examples corresponding to the 3rd and 4th rows of the dataset
6.1.1 were reconstructed using already pre-trained token embedding that they
provide with the code5. Notably, a decrease in performance was observed when
reconstructing objects using freshly pre-trained tokens, prompting us to spec-
ulate that their embeddings may have undergone slight fine-tuning, potentially
contributing to enhanced reconstruction quality.

Although we observed that this descriptor struggled to accurately describe the
samples, it effectively utilized the information from the image input to gen-
erate 3D reconstructions. However, we discovered that significant disparities
between the trained embedding and the image resulted in poor model per-
formance. These discrepancies may not be readily apparent in static images,
but they become evident when examining the accompanying videos or GIFs.
While their model excels in generating images from a specific image perspec-
tive, our focus lies in achieving a comprehensive alignment across all rendered
views, as our ultimate objective is to obtain a complete 3D reconstruction of
the object instead of good sparse views. Figures 6.9, 6.10 and 6.11 showcase
some examples of both model behaviours.

Figure 6.9: Cactus 1. Note the superior 3D spatial coherence of our proposed
model (top), when compared to RealFusion (bottom).

5https://github.com/lukemelas/realfusion
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Figure 6.10: Castle 1. Our model (top) excels at capturing complex geometries
with remarkable precision, effortlessly reproducing intricate details that RealFusion
(bottom) struggles to acquire.

Figure 6.11: Sneaker. Our model demonstrates the ability to generate plausible
views of the original sneaker, including a successful match with the original view
(top row, last column). In contrast, their model predominantly renders the image
view while mantaining a general flat reconstruction.

6.3.4 Limitations

Our model inherits certain limitations from both the Stable Diffusion and Sta-
ble DreamFusion models, upon which it is based. Notably, the presence of
the Janus face problem stands out as a significant issue, hindering the gener-
ation of alternative views beyond the frontal face of an object. Additionally,
we have observed instances where certain parts of the object are repeated in
the generated samples, which can impact the overall quality. While text view
conditioning helps mitigate this problem to some extent, further research and
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improvements are required to address this issue comprehensively. Furthermore,
when rendering complex objects, we encountered challenges on rendering all
the details or learning all the information. We suggest that employing a larger
image size could potentially overcome these obstacles.

Finally, it is worth highlighting that RealFusion demonstrates better perfor-
mance in certain cases of the Janus problem. This can be attributed to the
inclusion of a mask loss in their model architecture. The mask loss effec-
tively removes the density of points that are projected onto pixels outside the
boundaries of the object in the input image.

Figure 6.12: Teapot. An interesting observation in our (top) samples is the presence
of the Janus problem, where the handle of the teapot is rendered multiple times. This
artifact highlights a limitation in our model. In contrast, their model does not exhibit
this behavior, suggesting that the mask error might help in the generation of some
objects.
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Conclusions and Future Work

We have presented FitFusion, a high-quality text-to-3D generative model that
has been developed through a comprehensive analysis of the most prominent
state-of-the-art models and a meticulous extraction of relevant information
from them. This enhancement has enabled our model to achieve the expected
high-quality outputs comparable to those of Stable Diffusion and NeRF.

Furthermore, our research has significantly contributed to the advancement of
Image-to-3D generation, surpassing the performance of a previously published
model at CVPR 2023 [1]. By leveraging text descriptors, we have successfully
extracted essential object information from an image, which was later used to
condition a Stable Diffusion model during the training of a Neural Radiance
Field. This approach has demonstrated that direct image conditioning is not
necessary for 3D reconstruction, as the textual descriptors alone contain suffi-
cient information to accurately reconstruct the corresponding 3D object.

From a personal perspective, I am extremely pleased with the outcome of this
project. It has been a challenging yet exciting journey, filled with ups and
downs. However, this experience has deepened my passion for these fields
and has solidified my decision to pursue a Master’s degree in Data Science. I
am grateful for the opportunity that I have had to explore these technologies,
conduct experiments, and contribute to the advancement of 3D generative
models.

7.1 Future work
Despite the extensive interest in this research area and our detailed exploration
and proposed improvements, there are still several areas for future work:
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• Noise start: Investigate the use of a NeRF model that initially renders
scenes resembling Gaussian noise to reduce bias in the 3D generation
process.

• Further investigate the potential of training the entire model to make
the text fit a specific sample, as shown in [55], to enhance Image-to-3D
reconstructions.

• Conduct rigorous quantitative comparisons with other existing works to
evaluate the performance of our model.

• Investigate the synergies and potential collaborations with concurrent
work in the rapidly expanding field to further enhance 3D generation
capabilities, since numerous related works [56–58] have been published
during the writing of this dissertation. Notice that his works rely on 3D
datasets and cannot be directly compared with our findings.
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Appendix

This additional chapter serves to supplement the project by providing sup-
plementary information. Section 8.1 offers a comprehensive guide on how to
replicate code executions, enabling further experimentation. Following that,
Section 8.2 presents informative diagrams that aid in understanding NeRF and
DreamFusion models. In Section 8.3, a collection of image samples is provided,
which were instrumental in gaining insights into the behavior of Stable Diffu-
sion.

Expanding on the discussion of the proposed models, Sections 8.4, 8.5.1, and
8.5.2 present additional samples and comparisons.

8.1 Code replication
Before working on Stable Diffusion, one should ensure that his/her computer
has the CUDA libraries installed and a graphics card with at least 12 GB of
memory in order to successfully run the code. Some libraries have dependen-
cies on the others and the requirements.txt, obtained with pip freeze, might not
work properly. We recommend to run it one time and then install the missing
libraries manually. Also the exact version of CUDA should be checked, and
torch libraries that you need for your GPU.

There are three scripts that can be executed to run our code: for the text
embedding, for the 3D reconstruction and to generate image samples for the
diversity enhancement. The following code contains three imperative vari-
ables: WORKSPACE, TEXT and PATH. First is used to indicate where all
the generated data will be stored, second is used to indicate where the training
image is located and the last is used as the guiding text for the text to 3D
generations. Besides, for DreamText, we recommend to add noun and quan-
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tifier parameters to specify this values to the network, although they can be
automatically predicted. The following sniper of code generates the sentence
that describes the image and trains it:

python ./descriptor.py --workspace WORKSPACE --noun watch --
quantifier a --image_path PATH

Once the sentence is generated and trained the 3D reconstruction can be made.
It is imperative to provide the same workspace directory for this. The follow-
ing snipet of code reconstructs the 3D object after training the descriptive
sentence:

python main.py --workspace "object3" -O --h 256 --w 256 --iters
10100 --load_token 1

Here, a snippet of the code to execute the model as explained in FitFusion;

python main.py -O --g 1000 --h 256 --w 256 --text "TEXT" --
workspace WORKSPACE

Finally, the code used to generate sample images for diversity augmentation
can be found here:

python stable_diffusion.py --text "An␣image␣of␣a␣dog" --
workspace example

Visualization

Samples can be visualized in a graphical user interface using:

python main.py -O --test --gui --workspace examples/sample1

We have uploaded 2 samples: examples/sample1 and examples/sample2. Change
the workspace in the code above by one of these two directories to see them.

8.2 Diagrams
This section includes the architecture of the NeRF model (see Figure 8.1) and
a visual diagram of the Stable DreamFussion model (see Figure 8.2). Both
figures provide a visual representation of the respective models, illustrating
the key components and their interactions.
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Figure 8.1: NeRF MLP architecture, extracted from [13]. Black arrow indicates
ReLU, orange indicates no activation and dash arrow indicates sigmoid. + indicates
concatenation. All blue blocks are fully connected layers. Green blocks are inputs
and red blocks are outputs.

Figure 8.2: Pipeline of DreamFusion model, extracted from [12]. We see that the
NeRF model generates a view of the peacock, which is shaded. The shaded version of
the image, the rendering, is passed to the Stable Diffusion model that appends noise
to it. Then the model itself predicts the noise using the text input. The difference
between the real and predicted noise is used as an error to train the NeRF model.

8.3 Examples for model insight
This section provides a valuable opportunity to gain insights into the behavior
of the Stable Diffusion model. The included generations and images offer a
glimpse into the capabilities of this model.
Figure 8.3 showcases the impressive performance of Stable Diffusion [11], demon-
strating its ability to generate high-quality samples. This serves as a point of
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comparison, highlighting the contrasting quality of the initial results produced
by the Stable DreamFusion model.

A snowflake A car A piano A tree

Figure 8.3: Images generated with Stable Diffusion that showcase the details and
the quality of the generated samples.

In addition, Figures 8.4 and 8.5 present failed experiments that explore the
impact of different time and guidance values on the generated sample quality
of Stable DreamFusion[2] model.

Figure 8.4: Failure cases during experiment with time parameter. First row cor-
responds to a random time between 500 and 980 included. Second corresponds to
random time uniformly picked between 300 and 700. Third column corresponds to
linearly decreasing time from 980 to 20. The last column corresponds to cosine ap-
pealing time.

Furthermore, Figure 8.6 illustrates the proficiency of Stable Diffusion in regen-
erating noised samples without the use of a text prompt. This showcases the
model’s capacity to leverage the information present in an image.
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Guidance 50 Guidance 750 Guidance 100 to 50 Cosine Guidance

Figure 8.5: Failure cases during experiment with guidance parameter. First row
corresponds to guidance value of 50 that does not capture any detail. The second
image demonstrates that with a high value of 750, the model attempts to output
details but is not capable of doing so successfully. Third row corresponds to a
linearly decreasing guidance, without great results. Finally, the last example uses
cosine appealing guidance, that has greater results that all the previous examples.

Image Noised Image(input) Produced Image

Figure 8.6: Stable Diffusion denoising process. This figure illustrates how the
Stable Diffusion model is capable of removing the noise without having any text
guidance of what he has to generate. The noise level used corresponds to the time
step 550.
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8.4 FitFusion Comparisons
This section expands on the examples provided in the experimental section,
offering additional comparisons and insights. Specifically, we explore various
modifications to the base model and compare them with the original results. In
concrete compare the base model[2] with a version using more epochs (Figure
8.7), with a version with higher image size (Figure 8.8), with a version using
higher guidance value (Figure 8.9 ) and finally with our proposal FitFusion
(Figure 8.10).
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Figure 8.7: More comparisons of the epoch effects on the generated samples. Odd
rows show the results obtained after training for 100 epochs, while the following
even rows show the results obtained after training for 200 epochs. We observe slight
improvements in color and overall image quality, although the level of detail remains
relatively unchanged.
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Figure 8.8: More comparisons of the image size effects on the generated samples.
Odd rows show the results obtained with small image size of 64x64, while the follow-
ing even rows show the results obtained with higher image size of 256x256. In some
cases, the generated samples show improvement, while in others, there are noticeable
color transitions that appear unusual.
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Figure 8.9: More comparisons of the guidance effects on the generated samples.
Odd rows show the results obtained with guidance value of 100, while the following
even rows show the results obtained with higher value of 1000. Here we can observe
that the quantity of details is enhanced, but it appears that the model struggles to
display them accurately
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Figure 8.10: The comparison of renderings between the base provided code (odd
rows) and our proposal (even rowds). Our proposal clearly shows higher quality and
details in the reconstructions.

8.5 DreamText

8.5.1 Descriptor token examples

This section provides additional examples that showcase the previous approach
to DreamText, referred as descriptor token. The Figures 8.11, 8.12, 8.13, 8.14,
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8.15, 8.16, 8.17, and 8.18 illustrate the outcomes of this approach. While
the results obtained are visually impressive, it is worth noting that the 3D
reconstructions may not be sufficiently similar to the input images.

Figure 8.11: Example of a reconstructed castle 1 using descriptor training. We
can see that, although the reconstruction is great, there isn’t a high match with the
provided image.

Figure 8.12: Example of a reconstructed castle 2 using descriptor training. We can
see colour and density problems here.

8.5.2 DreamText examples

We present additional examples that further elucidate the strengths and diffi-
culties encountered by our, DreamText model and RealFusion. These examples
showcase the behavior of both approaches, shedding light on their respective
capabilities and limitations. By examining a diverse range of objects and
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Figure 8.13: Example of a reconstructed castle 5 using descriptor training. As in
the previous sample we see problem colours when comparing to the original image.

Figure 8.14: Example of a reconstructed mug using descriptor training. We can
observe that while the object is preserved, the details of the image are completely
lost.

scenarios, we aim to provide a comprehensive understanding of the outperfor-
mance and characteristics exhibited by our model in most of the samples. We
would like to highlight that a more comprehensive and detailed comparison
can be readily accessed on our webpage1.

1https://nazarpuriy.github.io/
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Figure 8.15: Here is an example of a reconstructed watch using descriptor training.
It is important to note that the Janus problem can be observed in this case. This
is a natural occurrence since there are limited photos available on the internet that
capture the back sides of watches, thus Stable Diffusion must have a bias here.

Figure 8.16: Example of a reconstructed purse using descriptor training. Here wee
see quite good reconstruction of a it but without the correct geometry matching with
the object in the image.
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Figure 8.17: Example of a reconstructed cactus using descriptor training. The
shape and texture are detailed but we see some colour problems on the basis.

Figure 8.18: Example of a reconstructed sneaker using descriptor training. Simi-
larly to the previous example we can observe colour problems, although the details
and shape are correct.
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Figure 8.19: DreamText (first row) and RealFusion (second row) renderings of
the Microphone. Both models demonstrate proficient 3D reconstruction capabili-
ties, producing commendable results. Nevertheless, it is notable that their model
(bottom) lacks coherence between the input view and the corresponding views from
different perspectives.

Figure 8.20: DreamText (first row) and RealFusion (second row) renderings of the
Cactus 2. This example further emphasizes the proficiency of our model in generating
accurate and compact 3D reconstructions of objects, while their model struggles to
achieve alignment between the input view and the remaining perspectives. The
second and third examples reveal the presence of fog noise, that comes from the
influence of image loss.
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Figure 8.21: DreamText (first row) and RealFusion (second row) renderings of
the Donut. In this example, our model demonstrates remarkable 3D reconstruction
capabilities, producing visually pleasing results. However, it is important to note
that our model falls short in achieving an exact match with the input image. On the
other hand, their model encounters difficulties in rendering any view accurately.

Figure 8.22: DreamText (first row) and RealFusion (second row) renderings of the
Statue 1. Both models exhibit commendable results in generating 3D reconstructions.
However, our model stands out by maintaining better overall coherence.
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Figure 8.23: DreamText (first row) and RealFusion (second row) renderings of the
bird. It highlights the challenges faced by both models, as the reconstruction faces
the Janus problem. However, our approach successfully retains more of the object’s
characteristics.

Figure 8.24: DreamText (first row) and RealFusion (second row) renderings of the
Cherries. This particular case represents a failure for both models. Our model, un-
fortunately, falls short in accurately capturing the exact number of objects present in
the image. This discrepancy can be attributed to inherent limitations in Stable Dif-
fusion. Conversely, their model encounters challenges in effectively learning a robust
token description, resulting in difficulties in generating faithful 3D reconstructions.
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Figure 8.25: DreamText (first row) and RealFusion (second row) renderings of the
Statue 2. We observe difficulties to render the object in both cases. However, it
is noteworthy that their model surpasses our generations by effectively leveraging
the information present in the image, resulting in a more accurate and refined 3D
reconstruction.

Figure 8.26: DreamText (first row) and RealFusion (second row) renderings of the
Teddy. This example highlights a failure case for both models. Our model struggles
to accurately render the color and shape of the object. Conversely, their model faces
challenges in accurately rendering the shape and achieving a satisfactory alignment
between the original image view and the other rendered perspectives.
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